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Preface 
 

This solutions manual contains the solutions to all end-of-chapter problems in Water-

Resources Engineering, Third Edition. This manual should be treated as confidential 

by course instructors and/or their trustees, such as teaching assistants and graders. 

Unauthorized use of this solutions manual by students would normally be considered 

as cheating. 

 

This solutions manual contains two sets of solutions: conventional solutions and 

Mathcad® solutions. The conventional solutions to all end-of-chapter problems were 

prepared by Dr. David A. Chin, using a calculator and/or electronic spreadsheet. 

Mathcad® solutions to selected problems were prepared by Dr. Dixie M. Griffin Jr. 

exclusively using Mathcad® software. Depending on the preference of the course 

instructor, students could be asked to solve problems in either format. The 

conventional solutions to all problems are presented first, and Mathcad® solutions to 

selected problems are presented thereafter. 
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Chapter 1

Introduction

1.1. The mean annual rainfall in Boston is approximately 1050 mm , and the mean annual evap-

otranspiration is in the range of 380–630 mm (USGS). On the basis of rainfall, this indicates

a subhumid climate. The mean annual rainfall in Santa Fe is approximately 360 mm and

the mean annual evapotranspiration is < 380 mm . On the basis of rainfall, this indicates

an arid climate.
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Chapter 2

Fundamentals of Flow in Closed
Conduits

2.1. D1 = 0.1 m, D2 = 0.15 m, V1 = 2 m/s, and

A1 =
π

4
D2

1 =
π

4
(0.1)2 = 0.007854 m2

A2 =
π

4
D2

2 =
π

4
(0.15)2 = 0.01767 m2

Volumetric flow rate, Q, is given by

Q = A1V1 = (0.007854)(2) = 0.0157 m3/s

According to continuity,
A1V1 = A2V2 = Q

Therefore

V2 =
Q

A2
=

0.0157

0.01767
= 0.889 m/s

At 20◦C, the density of water, ρ, is 998 kg/m3, and the mass flow rate, ṁ, is given by

ṁ = ρQ = (998)(0.0157) = 15.7 kg/s

2.2. From the given data: D1 = 200 mm, D2 = 100 mm, V1 = 1 m/s, and

A1 =
π

4
D2

1 =
π

4
(0.2)2 = 0.0314 m2

A2 =
π

4
D2

2 =
π

4
(0.1)2 = 0.00785 m2

The flow rate, Q1, in the 200-mm pipe is given by

Q1 = A1V1 = (0.0314)(1) = 0.0314 m3/s

and hence the flow rate, Q2, in the 100-mm pipe is

Q2 =
Q1

2
=

0.0314

2
= 0.0157 m3/s

3

© 2013 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This publication  
is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,  
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: 
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



The average velocity, V2, in the 100-mm pipe is

V2 =
Q2

A2
=

0.0157

0.00785
= 2 m/s

2.3. The velocity distribution in the pipe is

v(r) = V0

[
1−

( r
R

)2]
(1)

and the average velocity, V̄ , is defined as

V̄ =
1

A

∫
A
V dA (2)

where
A = πR2 and dA = 2πrdr (3)

Combining Equations 1 to 3 yields

V̄ =
1

πR2

∫ R

0
V0

[
1−

( r
R

)2]
2πrdr =

2V0
R2

[∫ R

0
rdr −

∫ R

0

r3

R2
dr

]
=

2V0
R2

[
R2

2
− R4

4R2

]
=

2V0
R2

R2

4
=

V0
2

The flow rate, Q, is therefore given by

Q = AV̄ =
πR2V0

2

2.4.

β =
1

AV̄ 2

∫
A
v2 dA =

4

πR2V 2
0

∫ R

0
V 2
0

[
1− 2r2

R2
+
r4

R4

]
2πrdr

=
8

R2

[∫ R

0
rdr −

∫ R

0

2r3

R2
dr +

∫ R

0

r5

R4
dr

]
=

8

R2

[
R2

2
− R4

2R2
+

R6

6R4

]
=

4

3

2.5. D = 0.2 m, Q = 0.06 m3/s, L = 100 m, p1 = 500 kPa, p2 = 400 kPa, γ = 9.79 kN/m3.

R =
D

4
=

0.2

4
= 0.05 m

∆h =
p1
γ

− p2
γ

=
500− 400

9.79
= 10.2 m

τ0 =
γR∆h

L
=

(9.79× 103)(0.05)(10.2)

100
= 49.9 N/m2

A =
πD2

4
=
π(0.2)2

4
= 0.0314 m2

V =
Q

A
=

0.06

0.0314
= 1.91 m/s

f =
8τ0
ρV 2

=
8(49.9)

(998)(1.91)2
= 0.11

4
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2.6. T = 20◦C, V = 2 m/s, D = 0.25 m, horizontal pipe, ductile iron. For ductile iron pipe, ks =
0.26 mm, and

ks
D

=
0.26

250
= 0.00104

Re =
ρV D

µ
=

(998.2)(2)(0.25)

(1.002× 10−3)
= 4.981× 105

From the Moody diagram:

f = 0.0202 (pipe is smooth)

Using the Colebrook equation,

1√
f
= −2 log

(
ks/D

3.7
+

2.51

Re
√
f

)
Substituting for ks/D and Re gives

1√
f
= −2 log

(
0.00104

3.7
+

2.51

4.981× 105
√
f

)
By trial and error leads to

f = 0.0204

Using the Swamee-Jain equation,

1√
f
= −2 log

[
ks/D

3.7
+

5.74

Re0.9

]
= −2 log

[
0.00104

3.7
+

5.74

(4.981× 105)0.9

]
which leads to

f = 0.0205

The head loss, hf , over 100 m of pipeline is given by

hf = f
L

D

V 2

2g
= 0.0204

100

0.25

(2)2

2(9.81)
= 1.66 m

Therefore the pressure drop, ∆p, is given by

∆p = γhf = (9.79)(1.66) = 16.3 kPa

If the pipe is 1 m lower at the downstream end, f would not change, but the pressure drop,
∆p, would then be given by

∆p = γ(hf − 1.0) = 9.79(1.66− 1) = 6.46 kPa

5
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2.7. From the given data: D = 25 mm, ks = 0.1 mm, θ = 10◦, p1 = 550 kPa, and L = 100 m. At
20◦C, ν = 1.00× 10−6 m2/s, γ = 9.79 kN/m3, and

ks
D

=
0.1

25
= 0.004

A =
π

4
D2 =

π

4
(0.025)2 = 4.909× 10−4 m2

hf = f
L

D

Q2

2gA2
= f

100

0.025

Q2

2(9.81)(4.909× 10−4)2
= 8.46× 108fQ2

The energy equation applied over 100 m of pipe is

p1
γ

+
V 2

2g
+ z1 =

p2
γ

+
V 2

2g
+ z2 + hf

which simplifies to

p2 = p1 − γ(z2 − z1)− γhf

p2 = 550− 9.79(100 sin 10◦)− 9.79(8.46× 108fQ2)

p2 = 380.0− 8.28× 109fQ2

(a) For Q = 2 L/min = 3.333× 10−5 m3/s,

V =
Q

A
=

3.333× 10−5

4.909× 10−4
= 0.06790 m/s

Re =
V D

ν
=

(0.06790)(0.025)

1× 10−6
= 1698

Since Re < 2000, the flow is laminar when Q = 2 L/min. Hence,

f =
64

Re
=

64

1698
= 0.03770

p2 = 380.0− 8.28× 109(0.03770)(3.333× 10−5)2 = 380 kPa

Therefore, when the flow is 2 L/min, the pressure at the downstream section is 380 kPa .
For Q = 20 L/min = 3.333× 10−4 m3/s,

V =
Q

A
=

3.333× 10−4

4.909× 10−4
= 0.6790 m/s

Re =
V D

ν
=

(0.6790)(0.025)

1× 10−6
= 16980

Since Re > 5000, the flow is turbulent when Q = 20 L/min. Hence,

f =
0.25[

log
(
ks/D
3.7 + 5.74

Re0.9

)]2 =
0.25[

log
(
0.004
3.7 + 5.74

169800.9

)]2 = 0.0342

p2 = 380.0− 8.28× 109(0.0342)(3.333× 10−4)2 = 349 kPa

Therefore, when the flow is 2 L/min, the pressure at the downstream section is 349 kPa .

6
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(b) Using the Colebrook equation with Q = 20 L/min,

1√
f
= −2 log

[
ks/D

3.7
+

2.51

Re
√
f

]
= −2 log

[
0.004

3.7
+

2.51

16980
√
f

]
which yields f = 0.0337 . Comparing this with the Swamee-Jain result of f = 0.0342

indicates a difference of 1.5% , which is more than the 1% claimed by Swamee-Jain.

2.8. The Colebrook equation is given by

1√
f
= −2 log

(
ks/D

3.7
+

2.51

Re
√
f

)
Inverting and squaring this equation gives

f =
0.25

{log[(ks/D)/3.7 + 2.51/(Re
√
f)]}2

This equation is “slightly more convenient” than the Colebrook formula since it is quasi-
explicit in f , whereas the Colebrook formula gives 1/

√
f .

2.9. The Colebrook equation is preferable since it provides greater accuracy than interpolating
from the Moody diagram.

2.10. D = 0.5 m, p1 = 600 kPa, Q = 0.50 m3/s, z1 = 120 m, z2 = 100 m, γ = 9.79 kN/m3, L =
1000 m, ks (ductile iron) = 0.26 mm,

A =
π

4
D2 =

π

4
(0.5)2 = 0.1963 m2

V =
Q

A
=

0.50

0.1963
= 2.55 m/s

Using the Colebrook equation,

1√
f
= −2 log

(
ks/D

3.7
+

2.51

Re
√
f

)
where ks/D = 0.26/500 = 0.00052, and at 20◦C

Re =
ρV D

µ
=

(998)(2.55)(0.5)

1.00× 10−3
= 1.27× 106

Substituting ks/D and Re into the Colebrook equation gives

1√
f
= −2 log

(
0.00052

3.7
+

2.51

1.27× 106
√
f

)
which leads to

f = 0.0172

7
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Applying the energy equation

p1
γ

+
V 2
1

2g
+ z1 =

p2
γ

+
V 2
2

2g
+ z2 + hf

Since V1 = V2, and hf is given by the Darcy-Weisbach equation, then the energy equation
can be written as

p1
γ

+ z1 =
p2
γ

+ z2 + f
L

D

V 2

2g

Substituting known values leads to

600

9.79
+ 120 =

p2
9.79

+ 100 + 0.0172
1000

0.5

(2.55)2

2(9.81)

which gives

p2 = 684 kPa

If p is the (static) pressure at the top of a 30 m high building, then

p = p2 − 30γ = 684− 30(9.79) = 390 kPa

This (static) water pressure is adequate for service.

2.11. The head loss, hf , in the pipe is estimated by

hf =

(
pmain

γ
+ zmain

)
−
(
poutlet
γ

+ zoutlet

)
where pmain = 400 kPa, zmain = 0 m, poutlet = 0 kPa, and zoutlet = 2.0 m. Therefore,

hf =

(
400

9.79
+ 0

)
− (0 + 2.0) = 38.9 m

Also, since D = 25 mm, L = 20 m, ks = 0.15 mm (from Table 2.1), ν = 1.00 × 10−6 m2/s
(at 20◦C), the combined Darcy-Weisbach and Colebrook equation (Equation 2.43) yields,

Q = −0.965D2

√
gDhf
L

ln

(
ks/D

3.7
+

1.774ν

D
√
gDhf/L

)

= −0.965(0.025)2
√

(9.81)(0.025)(38.9)

20
ln

[
0.15/25

3.7
+

1.774(1.00× 10−6)

(0.025)
√
(9.81)(0.025)(38.9)/20

]
= 0.00265 m3/s = 2.65 L/s

The faucet can therefore be expected to deliver 2.65 L/s when fully open.

2.12. From the given data: Q = 300 L/s = 0.300 m3/s, L = 40 m, and hf = 45 m. Assume that
ν = 10−6 m2/s (at 20◦C) and take ks = 0.15 mm (from Table 2.1). Substituting these data

8
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into Equation 2.43 gives

Q = −0.965D2

√
gDhf
L

ln

(
ks/D

3.7
+

1.784ν

D
√
gDhf/L

)

0.2 = −0.965D2

√
(9.81)D(45)

(40)
ln

(
0.00015

3.7D
+

1.784(10−6)

D
√

(9.81)D(45)/(40)

)

This is an implicit equation in D that can be solved numerically to yield D = 166 mm .

2.13. Since ks = 0.15 mm, L = 40 m, Q = 0.3 m3/s, hf = 45 m, ν = 1.00 × 10−6 m2/s, the
Swamee-Jain approximation (Equation 2.44 gives

D = 0.66

[
k1.25s

(
LQ2

ghf

)4.75

+ νQ9.4

(
L

ghf

)5.2
]0.04

= 0.66

{
(0.00015)1.25

[
(40)(0.3)2

(9.81)(45)

]4.75
+ (1.00× 10−6)(0.3)9.4

[
40

(9.81)(45)

]5.2}0.04

= 0.171 m = 171 mm

The calculated pipe diameter (171 mm) is about 3% higher than calculated by the Colebrook
equation (166 mm).

2.14. The kinetic energy correction factor, α, is defined by∫
A
ρ
v3

2
dA = αρ

V 3

2
A

or

α =

∫
A v

3dA

V 3A
(1)

Using the velocity distribution in Problem 2.3 gives∫
A
v3dA =

∫ R

0
V 3
0

[
1−

( r
R

)2]2
2πr dr

= 2πV 3
0

∫ R

0

[
1− 3

( r
R

)2
+ 3

( r
R

)4
−
( r
R

)6]
r dr

= 2πV 3
0

∫ R

0

[
r − 3r3

R2
+

3r5

R4
− r7

R6

]
dr

= 2πV 3
0

[
r2

2
− 3r4

4R2
+

r6

2R4
− r8

8R6

]R
0

= 2πR2V 3
0

[
1

2
− 3

4
+

1

2
− 1

8

]
=
πR2V 3

0

4
(2)

9
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The average velocity, V , was calculated in Problem 2.3 as

V =
V0
2

hence

V 3A =

(
V0
2

)3

πR2 =
πR2V 3

0

8
(3)

Combining Equations 1 to 3 gives

α =
πR2V 3

0 /4

πR2V 3
0 /8

= 2

2.15. The kinetic energy correction factor, α, is defined by

α =

∫
A v

3dA

V 3A
(1)

Using the given velocity distribution gives∫
A
v3dA =

∫ R

0
V 3
0

(
1− r

R

) 3
7
2πr dr

= 2πV 3
0

∫ R

0

(
1− r

R

) 3
7
r dr (2)

To facilitate integration, let

x = 1− r

R
(3)

which gives

r = R(1− x) (4)

dr = −R dx (5)

Combining Equations 2 to 5 gives∫
A
v3dA = 2πV 3

0

∫ 1

0
x

3
7R(1− x)(−R)dx

= 2πR2V 3
0

∫ 1

0
x

3
7 (1− x)dx = 2πR2V 3

0

∫ 1

0
(x

3
7 − x

10
7 )dx

= 2πR2V 3
0

[
7

10
x

10
7 − 7

17
x

17
7

]1
0

= 0.576πR2V 3
0 (6)

The average velocity, V , is given by (using the same substitution as above)

V =
1

A

∫
A
v dA

=
1

πR2

∫ R

0
V0

(
1− r

R

) 1
7
2πr dr =

2V0
R2

∫ 0

1
x

1
7R(1− x)(−R)dx

= 2V0

∫ 1

0
(x

1
7 − x

8
7 )dx = 2V0

[
7

8
x

8
7 − 7

15
x

15
7

]1
0

= 0.817V0 (7)

10
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Using this result,
V 3A = (0.817V0)

3πR2 = 0.545πR2V 3
0 (8)

Combining Equations 1, 6, and 8 gives

α =
0.576πR2V 3

0

0.545πR2V 3
0

= 1.06

The momentum correction factor, β, is defined by

β =

∫
A v

2dA

AV 2
(9)

In this case,
AV 2 = πR2(0.817V0)

2 = 0.667πR2V 2
0 (10)

and ∫
A
v2dA =

∫ R

0
V 2
0

(
1− r

R

) 2
7
2πr dr

= 2πV 2
0

∫ 0

1
x

2
7R(1− x)(−R)dx = 2πR2V 2

0

∫ 1

0
(x

2
7 − x

9
7 )dx

= 2πR2V 2
0

[
7

9
x

9
7 − 7

16
x

16
7

]1
0

= 0.681πR2V 2
0 (11)

Combining Equations 9 to 11 gives

β =
0.681πR2V 2

0

0.667πR2V 2
0

= 1.02

2.16. The kinetic energy correction factor, α, is defined by

α =

∫
A v

3dA

V 3A
(1)

Using the velocity distribution given by Equation 2.73 gives∫
A
v3dA =

∫ R

0
V 3
0

(
1− r

R

) 3
n
2πr dr

= 2πV 3
0

∫ R

0

(
1− r

R

) 3
n
r dr (2)

Let
x = 1− r

R
(3)

which gives

r = R(1− x) (4)

dr = −R dx (5)

11
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Combining Equations 2 to 5 gives∫
A
v3dA = 2πV 3

0

∫ 1

0
x

3
nR(1− x)(−R)dx

= 2πR2V 3
0

∫ 1

0
x

3
n (1− x)dx = 2πR2V 3

0

∫ 1

0
(x

3
n − x

3+n
n )dx

= 2πR2V 3
0

[
n

3 + n
x

3+n
n − n

3 + 2n
x

3+2n
n

]1
0

=
2n2

(3 + n)(3 + 2n)
πR2V 3

0 (6)

The average velocity, V , is given by

V =
1

A

∫
A
v dA

=
1

πR2

∫ R

0
V0

(
1− r

R

) 1
n
2πr dr =

2V0
R2

∫ 0

1
x

1
nR(1− x)(−R)dx

= 2V0

∫ 1

0
(x

1
n − x

1+n
n )dx = 2V0

[
n

1 + n
x

1+n
n − n

1 + 2n
x

1+2n
n

]1
0

=

[
2n2

(1 + n)(1 + 2n)

]
V0 (7)

Using this result,

V 3A =

[
2n2

(1 + n)(1 + 2n)

]3
V 3
0 πR

2 =
8n6

(1 + n)3(1 + 2n)3
πR2V 3

0 (8)

Combining Equations 1, 6, and 8 gives

α =

2n2

(3+n)(3+2n)πR
2V 3

0

8n6

(1+n)3(1+2n)3
πR2V 3

0

=
(1 + n)3(1 + 2n)3

4n4(3 + n)(3 + 2n)

Putting n = 7 gives α = 1.06 , the same result obtained in Problem 2.15.

2.17. p1 = 30 kPa, p2 = 500 kPa, therefore head, hp, added by pump is given by

hp =
p2 − p1
γ

=
500− 30

9.79
= 48.0 m

Power, P , added by pump is given by

P = γQhp = (9.79)(Q)(48.0) = 470 kW per m3/s
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2.18. Q = 0.06 m3/s, D = 0.2 m, ks = 0.9 mm (riveted steel), ks/D = 0.9/200 = 0.00450, for 90◦

bend K = 0.3, for the entrance K = 1.0, at 20◦C ρ = 998 kg/m3, and µ = 1.00× 10−3 Pa·s,
therefore

A =
π

4
D2 =

π

4
(0.2)2 = 0.0314 m2

V =
Q

A
=

0.06

0.0314
= 1.91 m/s

Re =
ρV D

µ
=

(998)(1.91)(0.2)

1.00× 10−3
= 3.81× 105

Substituting ks/D and Re into the Colebrook equation gives

1√
f
= −2 log

(
0.00450

3.7
+

2.51

3.81× 105
√
f

)
which leads to

f = 0.0297

Minor head loss, hm, is given by

hm =
∑

K
V 2

2g
= (1.0 + 0.3)

(1.91)2

2(9.81)
= 0.242 m

If friction losses, hf , account for 90% of the total losses, then

hf = f
L

D

V 2

2g
= 9hm

which means that

0.0297
L

0.2

(1.91)2

2(9.81)
= 9(0.242)

Solving for L gives
L = 78.9 m

For pipe lengths shorter than the length calculated in this problem, the word “minor” should
not be used.

2.19. From the given data: p0 = 480 kPa, v0 = 5 m/s, z0 = 2.44 m, D = 19 mm = 0.019 m, L =
40 m, z1 = 7.62 m, and

∑
Km = 3.5. For copper tubing it can be assumed that ks = 0.0023

mm. Applying the energy and Darcy-Weisbach equations between the water main and the
faucet gives

p0
γ

+ z0 − hf − hm =
p1
γ

+
v21
2g

+ z1

480

9.79
+ 2.44− f(40)

0.019

v2

2(9.81)
− 3.5

v2

2(9.81)
=

0

γ
+

v2

2(9.81)
+ 7.62

which simplifies to

v =
6.622√

107.3f − 0.2141
(1)
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The Colebrook equation, with ν = 1× 10−6 m2/s gives

1√
f
= −2 log

[
ks

3.7D
+

2.51

Re
√
f

]
1√
f
= −2 log

[
0.0025

3.7(19)
+

2.51
v(0.019)
1×10−6

√
f

]
1√
f
= −2 log

[
3.556× 10−5 +

1.321× 10−4

v
√
f

]
(2)

Combining Equations 1 and 2 gives

1√
f
= −2 log

[
3.556× 10−5 +

1.995× 10−5
√
107.3f − 0.2141√
f

]
which yields

f = 0.0189

Substituting into Equation 1 yields

v =
6.622√

107.3(0.0189)− 0.2141
= 4.92 m/s

Q = Av =
(π
4
0.0192

)
(4.92) = 0.00139 m3/s = 1.39 L/s (= 22 gpm)

This flow is very high for a faucet. The flow would be reduced if other faucets are open,
this is due to increased pipe flow and frictional resistance between the water main and the
faucet.

2.20. From the given data: z1 = −1.5 m, z2 = 40 m, p1 = 450 kPa,
∑
k = 10.0, Q = 20 L/s = 0.02

m3/s, D = 150 mm (PVC), L = 60 m, T = 20◦C, and p2 = 150 kPa. The combined energy
and Darcy-Weisbach equations give

p1
γ

+
V 2
1

2g
+ z1 + hp =

p2
γ

+
V 2
2

2g
+ z2 +

[
fL

D
+
∑

k

]
V 2

2g
(1)

where

V1 = V2 = V =
Q

A
=

0.02
π(0.15)2

4

= 1.13 m/s (2)

At 20◦C, ν = 1.00× 10−6 m2/s, and

Re =
V D

ν
=

(1.13)(0.15)

1.00× 10−6
= 169500

Since PVC pipe is smooth (ks = 0), the friction factor, f , is given by

1√
f
= −2 log

(
2.51

Re
√
f

)
= −2 log

(
2.51

169500
√
f

)

14

© 2013 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This publication  
is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,  
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: 
Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Water-Resources Engineering 3rd Edition Chin Solutions Manual
Full Download: https://testbanklive.com/download/water-resources-engineering-3rd-edition-chin-solutions-manual/

Full download all chapters instantly please go to Solutions Manual, Test Bank site: TestBankLive.com

https://testbanklive.com/download/water-resources-engineering-3rd-edition-chin-solutions-manual/

	cover pages
	sman1.3.pdf
	All_Griffin_Files
	Chap 3 Binder.pdf
	Mathcad - Chin - 3-2 3rd edition Population Estimates
	Mathcad - Chin - 3-2 Population Estimates - all parts
	Mathcad - Chin - 3-3 Logistic Growth Population Estimate
	Mathcad - Chin - 3-5 fire demand and volume
	Mathcad - Chin 3-4 3rd edition
	Mathcad - Chin 3-6 3rd edition fire flow
	Mathcad - chin 3-7 and 3-10 3rd edition fire flow design
	Mathcad - Chin 3-8 3rd edition minimum pressure requirements

	Binder chap 4.pdf
	Mathcad - Chin 4-10 3rd edition Mannings equation
	Mathcad - Chin 4-11 3rd edition estimating n
	Mathcad - Chin 4-14 3rd edition evaluation of turbulent condition
	Mathcad - Chin 4-15 assessing the use of Manning's equation
	Mathcad - Chin 4-18 bridge pier place in channel
	Mathcad - Chin 4-22 - variable Manning's n across X section (2)
	Mathcad - Chin 4-23 composite channel roughness
	Mathcad - Chin 4-27 friction loss in 100 m of channel
	Mathcad - Chin 4-29 Determination of flow type
	Mathcad - Chin 4-30 - critical depth in a channel
	Mathcad - Chin 4-31 Obstruction in channel
	Mathcad - Chin 4-34 Flow Constriction
	Mathcad - Chin 4-39 step in trapzoidal channel
	Mathcad - Chin 4-46 critical slope in channel (2)
	Mathcad - Chin 4-7 3rd edition  Manning and D-W equation (2)
	Mathcad - Chin 4-8 3rd edition D-W and Manning's equation

	Binder Chap 7.pdf
	Mathcad - Chin 7-16 box culvert performance
	Mathcad - Chin 7-6
	Mathcad - Chin 7-7 Type I culvert Flow and HY-8 output
	Mathcad - Chin 7-9 Type 5 flow

	Binder chapter 8.pdf
	Mathcad - Chin 3rd edition 8-1 moments of a distribution
	Mathcad - Chin 8-12
	Mathcad - Chin 8-14 Poisson and Gamma Distributions
	Mathcad - Chin 8-15 Everglades National Park - Annual Rainfall
	Mathcad - Chin 8-16 Log Normal distribution - Annual River max flows
	Mathcad - Chin 8-17 Log normal distribution
	Mathcad - Chin 8-2 moments of a distribution
	Mathcad - Chin 8-27 Frequency analysis
	Mathcad - Chin 8-3 - probability distribution from data
	Mathcad - Chin 8-5 Binomial Distribution
	Mathcad - Chin 8-7 Bernoulli distribution
	Mathcad - Chin 8-9 Drainage system failure Gumbel and Bernoulli Distributions
	Mathcad - Chin extreme value Type I (Gumbel) 8-20

	Binder chap 9 3rd edition.pdf
	Mathcad - Chin - 9-12 alternating block method
	Mathcad - Chin  9-26 interception
	Mathcad - Chin 5-16 and 9-17 NRCS hyetograph
	Mathcad - Chin 9-11 rainfall hyetograph from IDF equation
	Mathcad - Chin 9-13 - Chen Method and alternating block comparison
	Mathcad - Chin 9-16 SCS dimensionless 24 hour storm Miami
	Mathcad - Chin 9-2 40 yr IDF curve from data
	Mathcad - Chin 9-26 and 9-28 Interception
	Mathcad - Chin 9-34 Green Ampt Infiltration
	Mathcad - Chin 9-35 Sandy Clay - Green Ampt Infiltration
	Mathcad - Chin 9-37 and 9-38 Curve number method
	Mathcad - Chin 9-43  and 9-44 Runoff from mixed area
	Mathcad - Chin 9-5 model of IDF curves - Splines

	Binder chap 10.pdf
	Mathcad - Chin 10-21 base flow separation, UH, convolution
	Mathcad - Chin 10-22 3-hr Synder UH
	Mathcad - Chin 10-34 Modified Puls Method2
	Mathcad - Chin problem 10-18 UH 15 min
	Mathcad - Chin problem 10-18 UH 30 min interval
	Mathcad - Chin problem 10-20 15 min interval convolution
	Mathcad - Chin problem 10-20 30 min interval convolution


	All_Griffin_Solutions.pdf

