Full Download: http://testbanklive.com/download/trigonometry-1st-edition-blitzer-solutions-manual/

Chapter 2 Graphs of the Trigonometric Functions; Inverse Trigonometric Functions

Section 2.1

Checkpoint Exercises

1. The equation $y = 3\sin x$ is of the form

 $y = A \sin x$ with A = 3. Thus, the amplitude is |A| = |3| = 3 The period for both $y = 3 \sin x$ and $y = \sin x$ is 2π . We find the three *x*-intercepts, the maximum point, and the minimum point on the interval $[0, 2\pi]$ by dividing the period, 2π , by 4,

 $\frac{\text{period}}{4} = \frac{2\pi}{4} = \frac{\pi}{2}$, then by adding quarter-periods to generate *x*-values for each of the key points. The five *x*-values are

$$x = 0$$

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$

$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = 3\sin x$	coordinates
0	$y = 3\sin 0 = 3 \cdot 0 = 0$	(0, 0)
$\frac{\pi}{2}$	$y = 3\sin\frac{\pi}{2} = 3 \cdot 1 = 3$	$\left(\frac{\pi}{2},3\right)$
π	$y = 3\sin x = 3 \cdot 0 = 0$	$(\pi, 0)$
$\frac{3\pi}{2}$	$y = 3\sin\frac{3\pi}{2}$ $= 3(-1) = -3$	$\left(\frac{3\pi}{2},-3\right)$
2π	$y = 3\sin 2\pi = 3 \cdot 0 = 0$	$(2\pi, 0)$

Connect the five points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \sin x$.

2. The equation $y = -\frac{1}{2}\sin x$ is of the form $y = A\sin x$ with $A = -\frac{1}{2}$. Thus, the amplitude is $|A| = \left|-\frac{1}{2}\right| = \frac{1}{2}$. The period for both $y = -\frac{1}{2}\sin x$ and $y = \sin x$ is 2π .

Find the *x*-values for the five key points by dividing the period, 2π , by 4, $\frac{\text{period}}{4} = \frac{2\pi}{4} = \frac{\pi}{2}$, then by adding quarter- periods. The five *x*-values are x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

x	$y = -\frac{1}{2}\sin x$	coordinates
0	$y = -\frac{1}{2}\sin 0$	(0, 0)
	$= -\frac{1}{2} \cdot 0 = 0$	
$\frac{\pi}{2}$	$y = -\frac{1}{2}\sin\frac{\pi}{2}$ $= -\frac{1}{2} \cdot 1 = -\frac{1}{2}$	$\left(\frac{\pi}{2},-\frac{1}{2}\right)$
π	$y = -\frac{1}{2}\sin \pi$ $= -\frac{1}{2} \cdot 0 = 0$	(π, 0)
$\frac{3\pi}{2}$	$y = -\frac{1}{2}\sin\frac{3\pi}{2} = -\frac{1}{2}(-1) = \frac{1}{2}$	$\left(\frac{3\pi}{2},\frac{1}{2}\right)$
2π	$y = -\frac{1}{2}\sin 2\pi$ $= -\frac{1}{2} \cdot 0 = 0$	(2 <i>π</i> , 0)

Connect the five key points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \sin x$. Extend the pattern of each graph to the left and right as desired.

3. The equation $y = 2\sin\frac{1}{2}x$ is of the form $y = A\sin Bx$ with A = 2 and $B = \frac{1}{2}$. The amplitude is |A| = |2| = 2. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{2}} = 4\pi$. Find the *x*-values for the five key points by dividing the period, 4π , by 4, $\frac{\text{period}}{4} = \frac{4\pi}{4} = \pi$, then by adding quarter-periods. The five *x*-values are x = 0 $x = 0 + \pi = \pi$ $x = \pi + \pi = 2\pi$ $x = 2\pi + \pi = 3\pi$ $x = 3\pi + \pi = 4\pi$

Evaluate the function at each value of *x*.

- 14			
	x	$y = 2\sin\frac{1}{2}x$	coordinates
	0	$y = 2\sin\left(\frac{1}{2} \cdot 0\right)$	(0, 0)
		$= 2\sin 0$ $= 2 \cdot 0 = 0$	
	π	$y = 2\sin\left(\frac{1}{2} \cdot \pi\right)$	(<i>π</i> , 2)
		$= 2\sin\frac{\pi}{2} = 2 \cdot 1 = 2$	
	2π	$y = 2\sin\left(\frac{1}{2} \cdot 2\pi\right)$	$(2\pi, 0)$
		$= 2\sin\pi = 2 \cdot 0 = 0$	
	3π	$y = 2\sin\left(\frac{1}{2} \cdot 3\pi\right)$	$(3\pi, -2)$
		$=2\sin\frac{3\pi}{2}$	
		$= 2 \cdot (-1) = -2$	
	4π	$y = 2\sin\left(\frac{1}{2} \cdot 4\pi\right)$	$(4\pi, 0)$
		$= 2\sin 2\pi = 2 \cdot 0 = 0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function. Extend the pattern of the graph another full period to the right.

4.	The equation $y = 3\sin\left(2x - \frac{\pi}{3}\right)$ is of the form
	$y = A\sin(Bx - C)$ with $A = 3, B = 2$, and $C = \frac{\pi}{3}$.
	The amplitude is $ A = 3 = 3$.
	The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$.
	The phase shift is $\frac{C}{B} = \frac{\frac{\pi}{3}}{2} = \frac{\pi}{3} \cdot \frac{1}{2} = \frac{\pi}{6}$.
	Find the <i>x</i> -values for the five key points by dividing
	the period, π , by 4, $\frac{\text{period}}{4} = \frac{\pi}{4}$, then by adding
	quarter-periods to the value of x where the cycle
	begins, $x = \frac{\pi}{6}$.
	The five <i>x</i> -values are
	$x = \frac{\pi}{6}$
	$x = \frac{\pi}{6} + \frac{\pi}{4} = \frac{2\pi}{12} + \frac{3\pi}{12} = \frac{5\pi}{12}$
	5 5 - 2 - 9 - 2 -

$$x = \frac{11\pi}{6} + \frac{\pi}{4} = \frac{11\pi}{12} + \frac{\pi}{12} = \frac{11\pi}{12}$$

$$x = \frac{5\pi}{12} + \frac{\pi}{4} = \frac{5\pi}{12} + \frac{3\pi}{12} = \frac{8\pi}{12} = \frac{2\pi}{3}$$

$$x = \frac{2\pi}{3} + \frac{\pi}{4} = \frac{8\pi}{12} + \frac{3\pi}{12} = \frac{11\pi}{12}$$

$$x = \frac{11\pi}{12} + \frac{\pi}{4} = \frac{11\pi}{12} + \frac{3\pi}{12} = \frac{14\pi}{12} = \frac{7\pi}{6}$$

Evaluate the function at each value of *x*.

x	$y = 3\sin\left(2x - \frac{\pi}{3}\right)$	coordinates
$\frac{\pi}{6}$	$y = 3\sin\left(2 \cdot \frac{\pi}{6} - \frac{\pi}{3}\right)$ $= 3\sin 0 = 3 \cdot 0 = 0$	$\left(\frac{\pi}{6},0\right)$
5 -		(5)
$\frac{5\pi}{12}$	$y = 3\sin\left(2\cdot\frac{5\pi}{12} - \frac{\pi}{3}\right)$	$\left(\frac{5\pi}{12},3\right)$
	$= 3\sin\frac{3\pi}{6} = 3\sin\frac{\pi}{2}$	
	$= 3 \cdot 1 = 3$	
$\frac{2\pi}{3}$	$y = 3\sin\left(2\cdot\frac{2\pi}{3}-\frac{\pi}{3}\right)$	$\left(\frac{2\pi}{3},0\right)$
	$= 3\sin\frac{3\pi}{3} = 3\sin\pi$	
	$= 3 \cdot 0 = 0$	

$\frac{11\pi}{12}$	$y = 3\sin\left(2 \cdot \frac{11\pi}{12} - \frac{\pi}{3}\right)$	$\left(\frac{11\pi}{12}, -3\right)$
	$= 3\sin\frac{9\pi}{6} = 3\sin\frac{3\pi}{2} = 3(-1) = -3$	
$\frac{7\pi}{6}$	$y = 3\sin\left(2 \cdot \frac{7\pi}{6} - \frac{\pi}{3}\right)$	$\left(\frac{7\pi}{6},0\right)$
	$= 3\sin\frac{6\pi}{3} = 3\sin 2\pi$ $= 3 \cdot 0 = 0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given graph.

5. The equation $y = -4\cos \pi x$ is of the form $y = A\cos Bx$ with A = -4, and $B = \pi$. Thus, the amplitude is |A| = |-4| = 4.

The period is
$$\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$$
.

Find the *x*-values for the five key points by dividing the period, 2, by 4, $\frac{\text{period}}{4} = \frac{2}{4} = \frac{1}{2}$, then by adding quarter periods to the value of *x* where the cycle begins. The five *x*-values are x = 0

$$x = 0 + \frac{1}{2} = \frac{1}{2}$$
$$x = \frac{1}{2} + \frac{1}{2} = 1$$
$$x = 1 + \frac{1}{2} = \frac{3}{2}$$
$$x = \frac{3}{2} + \frac{1}{2} = 2$$

x	$y = -4\cos\pi x$	coordinates
0	$y = -4\cos\left(\pi \cdot 0\right)$	(0, -4)
	$= -4\cos 0 = -4$	
$\frac{1}{2}$	$y = -4\cos\left(\pi \cdot \frac{1}{2}\right)$	$\left(\frac{1}{2}, 0\right)$
	$= -4\cos\frac{\pi}{2} = 0$	
1	$y = -4\cos(\pi \cdot 1)$	(1, 4)
	$=-4\cos\pi=4$	
$\frac{3}{2}$	$y = -4\cos\left(\pi \cdot \frac{3}{2}\right)$	$\left(\frac{3}{2}, 0\right)$
	$= -4\cos\frac{3\pi}{2} = 0$	
2	$y = -4\cos(\pi \cdot 2)$	(2, -4)
	$=-4\cos 2\pi = -4$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function. Extend the pattern of the graph another full period to the left.

6.
$$y = \frac{3}{2}\cos(2x+\pi) = \frac{3}{2}\cos(2x-(-\pi))$$

The equation is of the form $y = A\cos(Bx-C)$ with

 $A = \frac{3}{2}, B = 2$, and $C = -\pi$.

Thus, the amplitude is $|A| = \left|\frac{3}{2}\right| = \frac{3}{2}$. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{-\pi}{2} = -\frac{\pi}{2}$.

Find the *x*-values for the five key points by dividing the period, π , by 4, $\frac{\text{period}}{4} = \frac{\pi}{4}$, then by adding quarter-periods to the value of *x* where the cycle begins, $x = -\frac{\pi}{2}$. The five *x*-values are

$$x = -\frac{\pi}{2}$$

$$x = -\frac{\pi}{2} + \frac{\pi}{4} = -\frac{\pi}{4}$$

$$x = -\frac{\pi}{4} + \frac{\pi}{4} = 0$$

$$x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

Evaluate the function at each value of *x*.

x	$y = \frac{3}{2}\cos(2x + \pi)$	coordinates
$-\frac{\pi}{2}$	$y = \frac{3}{2}\cos(-\pi + \pi)$ $= \frac{3}{2} \cdot 1 = \frac{3}{2}$	$\left(-\frac{\pi}{2},\frac{3}{2}\right)$
$-\frac{\pi}{4}$	$y = \frac{3}{2}\cos\left(-\frac{\pi}{2} + \pi\right)$ $= \frac{3}{2} \cdot 0 = 0$	$\left(-\frac{\pi}{4},0\right)$
0	$y = \frac{3}{2}\cos(0+\pi)$ = $\frac{3}{2} \cdot -1 = -\frac{3}{2}$	$\left(0,-\frac{3}{2}\right)$
$\frac{\pi}{4}$	$y = \frac{3}{2}\cos\left(\frac{\pi}{2} + \pi\right)$ $= \frac{3}{2} \cdot 0 = 0$	$\left(\frac{\pi}{4},0\right)$
$\frac{\pi}{2}$	$y = \frac{3}{2}\cos(\pi + \pi)$ $= \frac{3}{2} \cdot 1 = \frac{3}{2}$	$\left(\frac{\pi}{2},\frac{3}{2}\right)$

Connect the five key points with a smooth curve and graph one complete cycle of the given graph.

7. The graph of $y = 2\cos x + 1$ is the graph of $y = 2\cos x$ shifted one unit upwards. The period for both functions is 2π .

The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate x-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = 2\cos x + 1$	coordinates
0	$y = 2\cos 0 + 1$	(0, 3)
	$= 2 \cdot 1 + 1 = 3$	
$\frac{\pi}{2}$	$y = 2\cos\frac{\pi}{2} + 1$	$\left(\frac{\pi}{2},1\right)$
	$= 2 \cdot 0 + 1 = 1$	
π	$y = 2\cos\pi + 1$	$(\pi, -1)$
	$= 2 \cdot (-1) + 1 = -1$	
$\frac{3\pi}{2}$	$y = 2\cos\frac{3\pi}{2} + 1$	$\left(\frac{3\pi}{2},1\right)$
	$= 2 \cdot 0 + 1 = 1$	
2π	$y = 2\cos 2\pi + 1$	$(2\pi, 3)$
	$= 2 \cdot 1 + 1 = 3$	

By connecting the points with a smooth curve, we obtain one period of the graph.

8. Select several values of *x* over the interval.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = 2\sin x$	0	1.4	2	1.4	0	-1.4	-2	-1.4	0
$y_2 = \cos x$	1	0.7	0	-0.7	-1	-0.7	0	0.7	1
$y = 2\sin x + \cos x$	1	2.1	2	0.7	-1	-2.1	-2	-0.7	1

9. *A*, the amplitude, is the maximum value of *y*. The graph shows that this maximum value is 4, Thus,

$$A = 4$$
. The period is $\frac{\pi}{2}$, and period $= \frac{2\pi}{B}$. Thus,
 $\frac{\pi}{2} = \frac{2\pi}{B}$
 $\pi B = 4\pi$
 $B = 4$
Substitute these values into $y = A \sin Bx$.

The graph is modeled by $y = 4\sin 4x$.

10. Because the hours of daylight ranges from a minimum of 10 hours to a maximum of 14 hours, the curve oscillates about the middle value, 12 hours. Thus, D = 12. The maximum number of hours is 2 hours above 12 hours. Thus, A = 2. The graph shows that one complete cycle occurs in 12–0, or 12

months. The period is 12. Thus, $12 = \frac{2\pi}{B}$ $12B = 2\pi$

$$B = \frac{2\pi}{12} = \frac{\pi}{6}$$

The graph shows that the starting point of the cycle is shifted from 0 to 3. The phase shift, $\frac{C}{R}$, is 3.

$$3 = \frac{C}{B}$$
$$3 = \frac{C}{\frac{\pi}{6}}$$

$$\frac{\pi}{2} = C$$

Substitute these values into $y = A\sin(Bx - C) + D$. The number of hours of daylight is modeled by

$$y = 2\sin\left(\frac{\pi}{6}x - \frac{\pi}{2}\right) + 12.$$

Concept and Vocabulary Check 2.1

- **1.** $|A|; \frac{2\pi}{B}$
- **2.** 3; 4π

3.
$$\pi$$
; 0; $\frac{\pi}{4}$; $\frac{\pi}{2}$; $\frac{3\pi}{4}$; π

4. $\frac{C}{B}$; right; left

5.
$$|A|; \frac{2\pi}{B}$$

6. $\frac{1}{2}; \frac{2\pi}{3}$

- 7. false
- 8. true
- **9.** true
- **10.** true

Exercise Set 2.1

1. The equation $y = 4 \sin x$ is of the form $y = A \sin x$ with A = 4. Thus, the amplitude is |A| = |4| = 4. The period is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = 4\sin x$	coordinates
0	$y = 4\sin 0 = 4 \cdot 0 = 0$	(0, 0)
$\frac{\pi}{2}$	$y = 4\sin\frac{\pi}{2} = 4 \cdot 1 = 4$	$\left(\frac{\pi}{2}, 4\right)$
π	$y = 4\sin\pi = 4 \cdot 0 = 0$	$(\pi, 0)$
$\frac{3\pi}{2}$	$y = 4\sin\frac{3\pi}{2}$ $= 4(-1) = -4$	$\left(\frac{3\pi}{2},-4\right)$
2π	$y = 4\sin 2\pi = 4 \cdot 0 = 0$	$(2\pi, 0)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \sin x$.

2. The equation $y = 5\sin x$ is of the form $y = A\sin x$ with A = 5. Thus, the amplitude is |A| = |5| = 5. The period is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = 5 \sin x$	coordinates
0	$y = 5\sin 0 = 5 \cdot 0 = 0$	(0, 0)
$\frac{\pi}{2}$	$y = 5\sin\frac{\pi}{2} = 5 \cdot 1 = 5$	$\left(\frac{\pi}{2},5\right)$
π	$y = 5\sin\pi = 5 \cdot 0 = 0$	$(\pi, 0)$
$\frac{3\pi}{2}$	$y = 5\sin\frac{3\pi}{2} = 5(-1) = -5$	$\left(\frac{3\pi}{2},-5\right)$
2π	$y = 5\sin 2\pi = 5 \cdot 0 = 0$	$(2\pi, 0)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \sin x$.

3. The equation $y = \frac{1}{3}\sin x$ is of the form $y = A\sin x$ with $A = \frac{1}{3}$. Thus, the amplitude is $|A| = \left|\frac{1}{3}\right| = \frac{1}{3}$. The period is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = \frac{1}{3}\sin x$	coordinates
0	$y = \frac{1}{3}\sin 0 = \frac{1}{3} \cdot 0 = 0$	(0, 0)
$\frac{\pi}{2}$	$y = \frac{1}{3}\sin\frac{\pi}{2} = \frac{1}{3} \cdot 1 = \frac{1}{3}$	$\left(\frac{\pi}{2},\frac{1}{3}\right)$
π	$y = \frac{1}{3}\sin \pi = \frac{1}{3} \cdot 0 = 0$	$(\pi, 0)$
$\frac{3\pi}{2}$	$y = \frac{1}{3}\sin\frac{3\pi}{2} = \frac{1}{3}(-1) = -\frac{1}{3}$	$\left(\frac{3\pi}{2},-\frac{1}{3}\right)$
2π	$y = \frac{1}{3}\sin 2\pi = \frac{1}{3} \cdot 0 = 0$	$(2\pi, 0)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \sin x$.

4. The equation $y = \frac{1}{4}\sin x$ is of the form $y = A\sin x$ with $A = \frac{1}{4}$. Thus, the amplitude is $|A| = \left|\frac{1}{4}\right| = \frac{1}{4}$. The period is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to

The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = \frac{1}{4}\sin x$	coordinates
0	$y = \frac{1}{4}\sin 0 = \frac{1}{4} \cdot 0 = 0$	(0, 0)
$\frac{\pi}{2}$	$y = \frac{1}{4}\sin\frac{\pi}{2} = \frac{1}{4} \cdot 1 = \frac{1}{4}$	$\left(\frac{\pi}{2},\frac{1}{4}\right)$
π	$y = \frac{1}{4}\sin\pi = \frac{1}{4} \cdot 0 = 0$	$(\pi, 0)$
$\frac{3\pi}{2}$	$y = \frac{1}{4}\sin\frac{3\pi}{2} = \frac{1}{4}(-1) = -\frac{1}{4}$	$\left(\frac{3\pi}{2},-\frac{1}{4}\right)$
2π	$y = \frac{1}{4}\sin 2\pi = \frac{1}{4} \cdot 0 = 0$	$(2\pi, 0)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \sin x$.

5. The equation $y = -3\sin x$ is of the form $y = A\sin x$ with A = -3. Thus, the amplitude is |A| = |-3| = 3. The period is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = -3\sin x$	coordinates
0	$y = -3\sin x$ $= -3 \cdot 0 = 0$	(0, 0)
$\frac{\pi}{2}$	$y = -3\sin\frac{\pi}{2}$ $= -3 \cdot 1 = -3$	$\left(\frac{\pi}{2},-3\right)$
π	$y = -3\sin \pi$ $= -3 \cdot 0 = 0$	$(\pi, 0)$
$\frac{3\pi}{2}$	$y = -3\sin\frac{3\pi}{2}$ $= -3(-1) = 3$	$\left(\frac{3\pi}{2},3\right)$
2π	$y = -3\sin 2\pi$ $= -3 \cdot 0 = 0$	$(2\pi, 0)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \sin x$.

6. The equation $y = -4\sin x$ is of the form $y = A\sin x$ with A = -4. Thus, the amplitude is |A| = |-4| = 4. The period is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate x-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = -4\sin x$	coordinates
0	$y = -4\sin 0 = -4 \cdot 0 = 0$	(0, 0)
$\frac{\pi}{2}$	$y = -4\sin\frac{\pi}{2} = -4 \cdot 1 = -4$	$\left(\frac{\pi}{2},-4\right)$
π	$y = -4\sin\pi = -4 \cdot 0 = 0$	$(\pi, 0)$
$\frac{3\pi}{2}$	$y = -4\sin\frac{3\pi}{2} = -4(-1) = 4$	$\left(\frac{3\pi}{2},4\right)$
2π	$y = -4\sin 2\pi = -4 \cdot 0 = 0$	$(2\pi, 0)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \sin x$.

7. The equation $y = \sin 2x$ is of the form $y = A \sin Bx$ with A = 1 and B = 2. The amplitude is |A| = |1| = 1. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points.

$$x = 0$$

$$x = 0 + \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$

Evaluate the function at each value of *x*.

x	$y = \sin 2x$	coordinates
0	$y = \sin 2 \cdot 0 = \sin 0 = 0$	(0, 0)
$\frac{\pi}{4}$	$y = \sin\left(2 \cdot \frac{\pi}{4}\right)$	$\left(\frac{\pi}{4},1\right)$
	$=\sin\frac{\pi}{2}=1$	
$\frac{\pi}{2}$	$y = \sin\left(2 \cdot \frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},0\right)$
	$=\sin\pi=0$	
$\frac{3\pi}{4}$	$y = \sin\left(2 \cdot \frac{3\pi}{4}\right)$	$\left(\frac{3\pi}{4},-1\right)$
	$=\sin\frac{3\pi}{2}=-1$	
π	$y = \sin(2 \cdot \pi)$	$(\pi, 0)$
	$=\sin 2\pi = 0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

8. The equation $y = \sin 4x$ is of the form $y = A \sin Bx$ with A = 1 and B = 4. Thus, the amplitude is

$$|A| = |1| = 1$$
. The period is $\frac{2\pi}{B} = \frac{2\pi}{4} = \frac{\pi}{2}$. The quarter period is $\frac{\pi}{2} = \frac{\pi}{2} \cdot \frac{1}{2} = \frac{\pi}{2}$. The cycle begins

quarter-period is $\frac{2}{4} = \frac{2}{2} \cdot \frac{2}{4} = \frac{2}{8}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points.

$$x = 0$$
$$x = 0 + \frac{\pi}{8} = \frac{\pi}{8}$$
$$x = \frac{\pi}{8} + \frac{\pi}{8} = \frac{\pi}{4}$$
$$x = \frac{\pi}{4} + \frac{\pi}{8} = \frac{3\pi}{8}$$
$$x = \frac{3\pi}{8} + \frac{\pi}{8} = \frac{\pi}{2}$$

Evaluate the function at each value of *x*.

x	$y = \sin 4x$	coordinates
0	$y = \sin(4 \cdot 0) = \sin 0 = 0$	(0, 0)
$\frac{\pi}{8}$	$y = \sin\left(4 \cdot \frac{\pi}{8}\right) = \sin\frac{\pi}{2} = 1$	$\left(\frac{\pi}{8},1\right)$
$\frac{\pi}{4}$	$y = \sin\left(4 \cdot \frac{\pi}{4}\right) = \sin \pi = 0$	$\left(\frac{\pi}{4},0\right)$
$\frac{3\pi}{8}$	$y = \sin\left(4 \cdot \frac{3\pi}{8}\right)$	$\left(\frac{3\pi}{8}, -1\right)$
	$=\sin\frac{3\pi}{2}=-1$	
$\frac{\pi}{2}$	$y = \sin 2\pi = 0$	$\left(\frac{\pi}{2},0\right)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

9. The equation $y = 3\sin\frac{1}{2}x$ is of the form $y = A\sin Bx$ with A = 3 and $B = \frac{1}{2}$. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$. The quarterperiod is $\frac{4\pi}{4} = \pi$. The cycle begins at x = 0. Add quarter-periods to generate x-values for the key points. x = 0 $x = 0 + \pi = \pi$ $x = \pi + \pi = 2\pi$ $x = 2\pi + \pi = 3\pi$ $x = 3\pi + \pi = 4\pi$

Evaluate the function at each value of *x*.

x	$y = 3\sin\frac{1}{2}x$	coordinates
0	$y = 3\sin\left(\frac{1}{2} \cdot 0\right)$	(0, 0)
	$= 3\sin 0 = 3 \cdot 0 = 0$	
π	$y = 3\sin\left(\frac{1}{2} \cdot \pi\right)$	(\pi, 3)
	$=3\sin\frac{\pi}{2}=3\cdot 1=3$	
2π	$y = 3\sin\left(\frac{1}{2} \cdot 2\pi\right)$	$(2\pi, 0)$
	$= 3\sin\pi = 3 \cdot 0 = 0$	
3π	$y = 3\sin\left(\frac{1}{2} \cdot 3\pi\right)$	$(3\pi, -3)$
	$=3\sin\frac{3\pi}{2}$	
	=3(-1)=-3	
4π	$y = 3\sin\left(\frac{1}{2} \cdot 4\pi\right)$	$(4\pi, 0)$
	$= 3\sin 2\pi = 3 \cdot 0 = 0$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

- 10. The equation $y = 2\sin\frac{1}{4}x$ is of the form
 - $y = A \sin Bx$ with A = 2 and $B = \frac{1}{4}$. Thus, the

amplitude is |A| = |2| = 2. The period is

- $\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{4}} = 2\pi \cdot 4 = 8\pi$. The quarter-period is
- $\frac{8\pi}{4} = 2\pi$. The cycle begins at x = 0. Add quarter-

periods to generate *x*-values for the key points. x = 0

 $x = 0 + 2\pi = 2\pi$ $x = 2\pi + 2\pi = 4\pi$ $x = 4\pi + 2\pi = 6\pi$

 $x = 6\pi + 2\pi = 8\pi$

Evaluate the function at each value of *x*.

x	$y = 2\sin\frac{1}{4}x$	coordinates
0	$y = 2\sin\left(\frac{1}{4} \cdot 0\right)$	(0, 0)
	$= 2\sin 0 = 2 \cdot 0 = 0$	
2π	$y = 2\sin\left(\frac{1}{4} \cdot 2\pi\right)$	$(2\pi, 2)$
	$= 2\sin\frac{\pi}{2} = 2 \cdot 1 = 2$	
4π	$y = 2\sin\pi = 2 \cdot 0 = 0$	$(4\pi, 0)$
6π	$y = 2\sin\frac{3\pi}{2} = 2(-1) = -2$	$(6\pi, -2)$
8π	$y = 2\sin 2\pi = 2 \cdot 0 = 0$	$(8\pi, 0)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

11. The equation $y = 4 \sin \pi x$ is of the form $y = A \sin Bx$ with A = 4 and $B = \pi$. The amplitude is |A| = |4| = 4. The period is $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$. The quarter-period is $\frac{2}{4} = \frac{1}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{1}{2} = \frac{1}{2}$ $x = \frac{1}{2} + \frac{1}{2} = 1$ $x = 1 + \frac{1}{2} = \frac{3}{2}$

$$x = \frac{3}{2} + \frac{1}{2} = 2$$

Evaluate the function at each value of *x*.

x	$y = 4\sin \pi x$	coordinates
0	$y = 4\sin(\pi \cdot 0)$	(0, 0)
	$=4\sin 0=4\cdot 0=0$	
$\frac{1}{2}$	$y = 4\sin\left(\pi \cdot \frac{1}{2}\right)$	$\left(\frac{1}{2}, 4\right)$
	$=4\sin\frac{\pi}{2}=4(1)=4$	
1	$y = 4\sin(\pi \cdot 1)$	(1, 0)
	$=4\sin\pi=4\cdot0=0$	
$\frac{3}{2}$	$y = 4\sin\left(\pi \cdot \frac{3}{2}\right)$	$\left(\frac{3}{2},-4\right)$
	$=4\sin\frac{3\pi}{2}$	
	=4(-1)=-4	
2	$y = 4\sin(\pi \cdot 2)$	(2, 0)
	$=4\sin 2\pi=4\cdot 0=0$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

12. The equation $y = 3\sin 2\pi x$ is of the form $y = A\sin Bx$ with A = 3 and $B = 2\pi$. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The quarter-period is $\frac{1}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{1}{2} = \frac{1}{2\pi}$

$$x = 0 + \frac{1}{4} = \frac{1}{4}$$
$$x = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
$$x = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$
$$x = \frac{3}{4} + \frac{1}{4} = 1$$

Evaluate the function at each value of *x*.

x	$y = 3\sin 2\pi x$	coordinates
0	$y = 3\sin(2\pi \cdot 0)$	(0, 0)
	$= 3\sin 0 = 3 \cdot 0 = 0$	
$\frac{1}{4}$	$y = 3\sin\left(2\pi \cdot \frac{1}{4}\right)$	$\left(\frac{1}{4},3\right)$
	$= 3\sin\frac{\pi}{2} = 3 \cdot 1 = 3$	
$\frac{1}{2}$	$y = 3\sin\left(2\pi \cdot \frac{1}{2}\right)$	$\left(\frac{1}{2}, 0\right)$
	$= 3\sin\pi = 3 \cdot 0 = 0$	
$\frac{3}{4}$	$y = 3\sin\left(2\pi \cdot \frac{3}{4}\right)$	$\left(\frac{3}{4},-3\right)$
	$= 3\sin\frac{3\pi}{2} = 3(-1) = -3$	
1	$y = 3\sin(2\pi \cdot 1)$	(1, 0)
	$= 3\sin 2\pi = 3 \cdot 0 = 0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

13. The equation $y = -3\sin 2\pi x$ is of the form $y = A\sin Bx$ with A = -3 and $B = 2\pi$. The amplitude is |A| = |-3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The quarter-period is $\frac{1}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{1}{4} = \frac{1}{4}$

$$x = 0 + \frac{1}{4} = \frac{1}{4}$$
$$x = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
$$x = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$
$$x = \frac{3}{4} + \frac{1}{4} = 1$$

-		1.
x	$y = -3\sin 2\pi x$	coordinates
0	$y = -3\sin(2\pi \cdot 0)$	(0, 0)
	$=-3\sin 0$	
	$= -3 \cdot 0 = 0$	
$\frac{1}{4}$	$y = -3\sin\left(2\pi \cdot \frac{1}{4}\right)$	$\left(\frac{1}{4}, -3\right)$
	$=-3\sin\frac{\pi}{2}$	
	$= -3 \cdot 1 = -3$	
$\frac{1}{2}$	$y = -3\sin\left(2\pi \cdot \frac{1}{2}\right)$	$\left(\frac{1}{2},0\right)$
	$=-3\sin\pi$	
	$= -3 \cdot 0 = 0$	
$\frac{3}{4}$	$y = -3\sin\left(2\pi \cdot \frac{3}{4}\right)$	$\left(\frac{3}{4},3\right)$
	$=-3\sin\frac{3\pi}{2}$	
	= -3(-1) = 3	
1	$y = -3\sin(2\pi \cdot 1)$	(1, 0)
	$=-3\sin 2\pi$	
	$= -3 \cdot 0 = 0$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

14. The equation $y = -2\sin \pi x$ is of the form

 $y = A \sin Bx$ with A = -2 and $B = \pi$. The amplitude is |A| = |-2| = 2. The period is $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$. The quarter-period is $\frac{2}{4} = \frac{1}{2}$. The cycle begins at x = 0. Add quarter-periods to generate x-values for the key points. x = 0

$$x = 0 + \frac{1}{2} = \frac{1}{2}$$
$$x = \frac{1}{2} + \frac{1}{2} = 1$$
$$x = 1 + \frac{1}{2} = \frac{3}{2}$$
$$x = \frac{3}{2} + \frac{1}{2} = 2$$

Evaluate the function at each value of *x*.

x	$y = -2\sin \pi x$	coordinates
0	$y = -2\sin(\pi \cdot 0)$	(0, 0)
	$= -2\sin 0 = -2 \cdot 0 = 0$	
$\frac{1}{2}$	$y = -2\sin\left(\pi \cdot \frac{1}{2}\right)$	$\left(\frac{1}{2},-2\right)$
	$=-2\sin\frac{\pi}{2}=-2\cdot 1=-2$	
1	$y = -2\sin(\pi \cdot 1)$	(1, 0)
	$= -2\sin\pi = -2 \cdot 0 = 0$	
$\frac{3}{2}$	$y = -2\sin\left(\pi \cdot \frac{3}{2}\right)$	$\left(\frac{3}{2},2\right)$
	$= -2\sin\frac{3\pi}{2} = -2(-1) = 2$	
2	$y = -2\sin(\pi \cdot 2)$	(2, 0)
	$= -2\sin 2\pi = -2 \cdot 0 = 0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

15. The equation $y = -\sin \frac{2}{3}x$ is of the form $y = A\sin Bx$ with A = -1 and $B = \frac{2}{3}$. The amplitude is |A| = |-1| = 1. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{2}{3}} = 2\pi \cdot \frac{3}{2} = 3\pi$. The quarter-period is $\frac{3\pi}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{3\pi}{4} = \frac{3\pi}{4}$$
$$x = \frac{3\pi}{4} + \frac{3\pi}{4} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{3\pi}{4} = \frac{9\pi}{4}$$
$$x = \frac{9\pi}{4} + \frac{3\pi}{4} = 3\pi$$

x	$y = -\sin\frac{2}{3}x$	coordinates
0	$y = -\sin\left(\frac{2}{3} \cdot 0\right)$	(0, 0)
	$=-\sin 0=0$	
$\frac{3\pi}{4}$	$y = -\sin\left(\frac{2}{3} \cdot \frac{3\pi}{4}\right)$	$\left(\frac{3\pi}{4},-1\right)$
	$=-\sin\frac{\pi}{2}=-1$	
$\frac{3\pi}{2}$	$y = -\sin\left(\frac{2}{3} \cdot \frac{3\pi}{2}\right)$	$\left(\frac{3\pi}{2},0\right)$
	$=-\sin\pi=0$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

- 16. The equation $y = -\sin\frac{4}{3}x$ is of the form
 - $y = A \sin Bx$ with A = -1 and $B = \frac{4}{3}$.

The amplitude is |A| = |-1| = 1.

The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{4}{3}} = 2\pi \cdot \frac{3}{4} = \frac{3\pi}{2}$.

The quarter-period is $\frac{\frac{3\pi}{2}}{4} = \frac{3\pi}{2} \cdot \frac{1}{4} = \frac{3\pi}{8}$.

The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{3\pi}{8} = \frac{3\pi}{8}$$
$$x = \frac{3\pi}{8} + \frac{3\pi}{8} = \frac{3\pi}{4}$$
$$x = \frac{3\pi}{4} + \frac{3\pi}{8} = \frac{9\pi}{8}$$
$$x = \frac{9\pi}{8} + \frac{3\pi}{8} = \frac{3\pi}{2}$$

Evaluate the function at each value of *x*.

x	$y = -\sin\frac{4}{3}x$	coordinates
0	$y = -\sin\left(\frac{4}{3} \cdot 0\right)$	(0, 0)
	$=-\sin 0=0$	
$\frac{3\pi}{8}$	$y = -\sin\left(\frac{4}{3} \cdot \frac{3\pi}{8}\right)$	$\left(\frac{3\pi}{8},-1\right)$
	$=-\sin\frac{\pi}{2}=-1$	
$\frac{3\pi}{4}$	$y = -\sin\left(\frac{4}{3} \cdot \frac{3\pi}{4}\right)$	$\left(\frac{3\pi}{4},0\right)$
	$=-\sin\pi=0$	
$\frac{9\pi}{8}$	$y = -\sin\left(\frac{4}{3} \cdot \frac{9\pi}{8}\right)$	$\left(\frac{9\pi}{8},1\right)$
	$=-\sin\frac{3\pi}{2}=-(-1)=1$	
$\frac{3\pi}{2}$	$y = -\sin\left(\frac{4}{3} \cdot \frac{3\pi}{2}\right)$	$\left(\frac{3\pi}{2},0\right)$
	$=-\sin 2\pi = 0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

17. The equation $y = \sin(x - \pi)$ is of the form $y = A\sin(Bx - C)$ with A = 1, B = 1, and $C = \pi$. The amplitude is |A| = |1| = 1. The period is $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$. The phase shift is $\frac{C}{B} = \frac{\pi}{1} = \pi$. The quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The cycle begins at $x = \pi$. Add quarter-periods to generate *x*-values for the key points. $x = \pi$ $x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$ $x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$

$$2 2 x = 2\pi + \frac{\pi}{2} = \frac{5\pi}{2} x = \frac{5\pi}{2} + \frac{\pi}{2} = 3\pi$$

Evaluate the function at each value of *x*.

x	$y = \sin(x - \pi)$	coordinates
π	$y = \sin(\pi - \pi)$ $= \sin(\theta - \theta)$	$(\pi, 0)$
	= 311 0 = 0	
$\frac{3\pi}{2}$	$y = \sin\left(\frac{3\pi}{2} - \pi\right)$	$\left(\frac{3\pi}{2},1\right)$
	$=\sin\frac{\pi}{2}=1$	
2π	$y = \sin(2\pi - \pi)$	$(2\pi, 0)$
	$=\sin\pi=0$	
$\frac{5\pi}{2}$	$y = \sin\left(\frac{5\pi}{2} - \pi\right)$	$\left(\frac{5\pi}{2},-1\right)$
	$=\sin\frac{3\pi}{2}=-1$	
3π	$y = \sin(3\pi - \pi)$	$(3\pi, 0)$
	$=\sin 2\pi = 0$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

18. The equation $y = \sin\left(x - \frac{\pi}{2}\right)$ is of the form $y = A\sin(Bx - C)$ with $A = 1, B = 1, \text{ and } C = \frac{\pi}{2}$. The amplitude is |A| = |1| = 1. The period is $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$. The phase shift is $\frac{C}{B} = \frac{\pi}{2} = \frac{\pi}{2}$. The quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The cycle begins at $x = \frac{\pi}{2}$. Add quarter-periods to generate x-values for the key points. $x = \frac{\pi}{2}$ $x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$ $x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$ $x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$ $x = 2\pi + \frac{\pi}{2} = \frac{5\pi}{2}$

x	$y = \sin\left(x - \frac{\pi}{2}\right)$	coordinates
$\frac{\pi}{2}$	$y = \sin\left(\frac{\pi}{2} - \frac{\pi}{2}\right) = \sin 0 = 0$	$\left(\frac{\pi}{2},0\right)$
π	$y = \sin\left(\pi - \frac{\pi}{2}\right) = \sin\frac{\pi}{2} = 1$	$(\pi, 1)$
$\frac{3\pi}{2}$	$y = \sin\left(\frac{3\pi}{2} - \frac{\pi}{2}\right)$ $= \sin \pi = 0$	$\left(\frac{3\pi}{2},0\right)$
2π	$y = \sin\left(2\pi - \frac{\pi}{2}\right)$ $= \sin\frac{3\pi}{2} = -1$	(2π, -1)
$\frac{5\pi}{2}$	$y = \sin\left(\frac{5\pi}{2} - \frac{\pi}{2}\right)$ $= \sin 2\pi = 0$	$\left(\frac{5\pi}{2},0\right)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

$$(\pi, 1) \left(\frac{3\pi}{2}, 0\right)$$

$$(\frac{\pi}{2}, 0)$$

$$(\frac{\pi}{2}, 0)$$

$$(\frac{\pi}{2}, 0)$$

$$(\frac{\pi}{2}, 0)$$

$$(\frac{\pi}{2}, 0)$$

$$(\frac{5\pi}{2}, 0)$$

$$(2\pi, -1)$$

$$y = \sin\left(x - \frac{\pi}{2}\right)$$

19. The equation $y = \sin(2x - \pi)$ is of the form $y = A\sin(Bx - C)$ with A = 1, B = 2, and $C = \pi$. The amplitude is |A| = |1| = 1. The period is

 $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{\pi}{2}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = \frac{\pi}{2}$. Add quarter-periods to generate *x*-values for the key points.

$$x = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$

$$x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

$$x = \frac{5\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{2}$$

Evaluate the function at each value of *x*.

x	$y = \sin(2x - \pi)$	coordinates
$\frac{\pi}{2}$	$y = \sin\left(2 \cdot \frac{\pi}{2} - \pi\right)$ $= \sin(\pi - \pi)$ $= \sin 0 = 0$	$\left(\frac{\pi}{2},0\right)$
$\frac{3\pi}{4}$	$y = \sin\left(2 \cdot \frac{3\pi}{4} - \pi\right)$ $= \sin\left(\frac{3\pi}{2} - \pi\right)$ $= \sin\frac{\pi}{2} = 1$	$\left(\frac{3\pi}{4},1\right)$
π	$y = \sin(2 \cdot \pi - \pi)$ $= \sin(2\pi - \pi)$ $= \sin \pi = 0$	$(\pi, 0)$

1			
	$\frac{5\pi}{4}$	$y = \sin\left(2 \cdot \frac{5\pi}{4} - \pi\right)$	$\left(\frac{5\pi}{4},-1\right)$
		$=\sin\left(\frac{5\pi}{2}-\pi\right)$	
		$=\sin\frac{3\pi}{2}=-1$	
	$\frac{3\pi}{2}$	$y = \sin\left(2 \cdot \frac{3\pi}{2} - \pi\right)$	$\left(\frac{3\pi}{2},0\right)$
		$=\sin(3\pi-\pi)$	
		$=\sin 2\pi = 0$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

20. The equation $y = \sin\left(2x - \frac{\pi}{2}\right)$ is of the form

 $y = A\sin(Bx - C)$ with A = 1, B = 2, and $C = \frac{\pi}{2}$. The amplitude is |A| = |1| = 1. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{2} \cdot \frac{1}{2} = \frac{\pi}{4}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = \frac{\pi}{4}$. Add quarter-periods to generate *x*-values for the key points.

$$x = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$

$$x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

x	$y = \sin\left(2x - \frac{\pi}{2}\right)$	coordinates
$\frac{\pi}{4}$	$y = \sin\left(2 \cdot \frac{\pi}{4} - \frac{\pi}{2}\right)$ $= \sin\left(\frac{\pi}{2} - \frac{\pi}{2}\right) = \sin 0 = 0$	$\left(\frac{\pi}{4}, 0\right)$
$\frac{\pi}{2}$	$y = \sin\left(2 \cdot \frac{\pi}{2} - \frac{\pi}{2}\right)$ $= \sin\left(\pi - \frac{\pi}{2}\right) = \sin\frac{\pi}{2} = 1$	$\left(\frac{\pi}{2},1\right)$
$\frac{3\pi}{4}$	$y = \sin\left(2 \cdot \frac{3\pi}{4} - \frac{\pi}{2}\right)$ $= \sin\left(\frac{3\pi}{2} - \frac{\pi}{2}\right)$ $= \sin \pi = 0$	$\left(\frac{3\pi}{4},0\right)$
π	$y = \sin\left(2 \cdot \pi - \frac{\pi}{2}\right)$ $= \sin\left(2\pi - \frac{\pi}{2}\right)$ $= \sin\frac{3\pi}{2} = -1$	(<i>π</i> , -1)
$\frac{5\pi}{4}$	$y = \sin\left(2 \cdot \frac{5\pi}{4} - \frac{\pi}{2}\right)$ $= \sin\left(\frac{5\pi}{2} - \frac{\pi}{2}\right)$ $= \sin 2\pi = 0$	$\left(\frac{5\pi}{4},0\right)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

21. The equation $y = 3\sin(2x - \pi)$ is of the form $y = A\sin(Bx - C)$ with $A = 3, B = 2, \text{ and } C = \pi$. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{\pi}{2}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = \frac{\pi}{2}$. Add quarter-periods to generate *x*-values for the key points. $x = \frac{\pi}{2}$ $x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$ $x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$ $x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$ $x = \frac{5\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{2}$

x	$y = 3\sin(2x - \pi)$	coordinates
$\frac{\pi}{2}$	$y = 3\sin\left(2\cdot\frac{\pi}{2} - \pi\right)$	$\left(\frac{\pi}{2},0\right)$
	$=3\sin(\pi-\pi)$	
	$= 3\sin 0 = 3 \cdot 0 = 0$	
$\frac{3\pi}{4}$	$y = 3\sin\left(2\cdot\frac{3\pi}{4} - \pi\right)$	$\left(\frac{3\pi}{4},3\right)$
	$=3\sin\left(\frac{3\pi}{2}-\pi\right)$	
	$=3\sin\frac{\pi}{2}=3\cdot 1=3$	
π	$y = 3\sin(2 \cdot \pi - \pi)$	$(\pi, 0)$
	$=3\sin(2\pi-\pi)$	
	$= 3\sin\pi = 3 \cdot 0 = 0$	
$\frac{5\pi}{4}$	$y = 3\sin\left(2\cdot\frac{5\pi}{4} - \pi\right)$	$\left(\frac{5\pi}{4},-3\right)$
	$=3\sin\left(\frac{5\pi}{2}-\pi\right)$	
	$=3\sin\frac{3\pi}{2}$	
	=3(-1)=-3	
$\frac{3\pi}{2}$	$y = 3\sin\left(2\cdot\frac{3\pi}{2} - \pi\right)$	$\left(\frac{3\pi}{2},0\right)$
	$=3\sin(3\pi-\pi)$	
	$= 3\sin 2\pi = 3 \cdot 0 = 0$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

$$\begin{pmatrix} \frac{3\pi}{4}, 3 \\ y \\ \frac{\pi}{2}, 0 \end{pmatrix} \xrightarrow{y} \begin{pmatrix} \frac{3\pi}{4}, 3 \\ \frac{3\pi}{2}, 0 \end{pmatrix} (\pi, 0)$$

$$(\frac{\pi}{2}, 0) \xrightarrow{\pi} \begin{pmatrix} \frac{3\pi}{2}, 0 \\ \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi$$

22. The equation $y = 3\sin\left(2x - \frac{\pi}{2}\right)$ is of the form $y = A\sin(Bx - C)$ with $A = 3, B = 2, \text{ and } C = \frac{\pi}{2}$. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{2} \cdot \frac{1}{2} = \frac{\pi}{4}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = \frac{\pi}{4}$. Add quarter-periods to generate x-values for the key points. $x = \frac{\pi}{4}$ $x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$ $x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$

$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$
$$x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

Evaluate the function at each value of *x*.

x	$y = 3\sin\left(2x - \frac{\pi}{2}\right)$	coordinates
$\frac{\pi}{4}$	$y = 3\sin\left(2\cdot\frac{\pi}{4} - \frac{\pi}{2}\right)$	$\left(\frac{\pi}{4},0\right)$
	$=\sin\left(\frac{\pi}{2}-\frac{\pi}{2}\right)$ $=3\sin 0=3\cdot 0=0$	
$\frac{\pi}{2}$	$y = 3\sin\left(2\cdot\frac{\pi}{2} - \frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},3\right)$
	$=3\sin\left(\pi-\frac{\pi}{2}\right)$	
	$= 3\sin\frac{\pi}{2} = 3 \cdot 1 = 3$	
$\frac{3\pi}{4}$	$y = 3\sin\left(2\cdot\frac{3\pi}{4} - \frac{\pi}{2}\right)$	$\left(\frac{3\pi}{4},0\right)$
	$= 3\sin\left(\frac{3\pi}{2} - \frac{\pi}{2}\right)$ $= 3\sin\pi = 3 \cdot 0 = 0$	
π	$y = 3\sin\left(2\cdot\pi - \frac{\pi}{2}\right)$	$(\pi, -3)$
	$=3\sin\left(2\pi-\frac{\pi}{2}\right)$	
	$= 3\sin\frac{3\pi}{2} = 3 \cdot (-1) = -3$	
$\frac{5\pi}{4}$	$y = 3\sin\left(2\cdot\frac{5\pi}{4}-\frac{\pi}{2}\right)$	$\left(\frac{5\pi}{4},0\right)$
	$=3\sin\left(\frac{5\pi}{2}-\frac{\pi}{2}\right)$	
	$= 3\sin 2\pi = 3 \cdot 0 = 0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

23. $y = \frac{1}{2} \sin\left(x + \frac{\pi}{2}\right) = \frac{1}{2} \sin\left(x - \left(-\frac{\pi}{2}\right)\right)$ The equation $y = \frac{1}{2} \sin\left(x - \left(-\frac{\pi}{2}\right)\right)$ is of the form $y = A \sin(Bx - C)$ with $A = \frac{1}{2}$, B = 1, and $C = -\frac{\pi}{2}$. The amplitude is $|A| = \left|\frac{1}{2}\right| = \frac{1}{2}$. The period is $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$. The phase shift is $\frac{C}{B} = -\frac{\pi}{2} = -\frac{\pi}{2}$. The quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The cycle begins at $x = -\frac{\pi}{2}$. Add quarter-periods to generate x-values for the key points. $x = -\frac{\pi}{2}$ $x = -\frac{\pi}{2} + \frac{\pi}{2} = 0$

$$x = -\frac{\pi}{2} + \frac{\pi}{2} = 0$$

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$

Evaluate the function at each value of *x*.

x	$y = \frac{1}{2}\sin\left(x + \frac{\pi}{2}\right)$	coordinates
$-\frac{\pi}{2}$	$y = \frac{1}{2}\sin\left(-\frac{\pi}{2} + \frac{\pi}{2}\right) = \frac{1}{2}\sin(0 - \frac{1}{2} + \frac{\pi}{2})$	$\left(-\frac{\pi}{2},0\right)$
0	$y = \frac{1}{2}\sin\left(0 + \frac{\pi}{2}\right)$	$\left(0,\frac{1}{2}\right)$
	$= \frac{1}{2}\sin\frac{\pi}{2} = \frac{1}{2} \cdot 1 = \frac{1}{2}$	(2)
$\frac{\pi}{2}$	$y = \frac{1}{2}\sin\left(\frac{\pi}{2} + \frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},0\right)$
	$=\frac{1}{2}\sin\pi=\frac{1}{2}\cdot 0=0$	

π	$y = \frac{1}{2}\sin\left(\pi + \frac{\pi}{2}\right)$	$\left(\pi,-\frac{1}{2}\right)$
	$=\frac{1}{2}\sin\frac{3\pi}{2}$	
	$=\frac{1}{2}\cdot(-1)=-\frac{1}{2}$	
$\frac{3\pi}{2}$	$y = \frac{1}{2}\sin\left(\frac{3\pi}{2} + \frac{\pi}{2}\right)$	$\left(\frac{3\pi}{2},0\right)$
	$=\frac{1}{2}\sin 2\pi$	
	$=\frac{1}{2}\cdot 0=0$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

24.
$$y = \frac{1}{2}\sin(x+\pi) = \frac{1}{2}\sin(x-(-\pi))$$

The equation $y = \frac{1}{2}\sin(x-(-\pi))$ is of the form
 $y = A\sin(Bx-C)$ with $A = \frac{1}{2}$, $B = 1$, and $C = -\pi$.
The amplitude is $|A| = \left|\frac{1}{2}\right| = \frac{1}{2}$. The period is
 $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$. The phase shift is $\frac{C}{B} = \frac{-\pi}{1} = -\pi$.
The quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The cycle begins at
 $x = -\pi$. Add quarter-periods to generate x-values for
the key points.
 $x = -\pi$

$$x = -\pi + \frac{\pi}{2} = -\frac{\pi}{2}$$
$$x = -\frac{\pi}{2} + \frac{\pi}{2} = 0$$
$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

x	$y = \frac{1}{2}\sin(x+\pi)$	coordinates
$-\pi$	$y = \frac{1}{2}\sin(-\pi + \pi)$	$(-\pi, 0)$
	$= \frac{1}{2}\sin 0 = \frac{1}{2} \cdot 0 = 0$	
$-\frac{\pi}{2}$	$y = \frac{1}{2}\sin\left(-\frac{\pi}{2} + \pi\right)$	$\left(-\frac{\pi}{2},\frac{1}{2}\right)$
	$=\frac{1}{2}\sin\frac{\pi}{2} = \frac{1}{2} \cdot 1 = \frac{1}{2}$	
0	$y = \frac{1}{2}\sin(0+\pi)$	(0, 0)
	$=\frac{1}{2}\sin\pi=\frac{1}{2}\cdot 0=0$	
$\frac{\pi}{2}$	$y = \frac{1}{2}\sin\left(\frac{\pi}{2} + \pi\right)$	$\left(\frac{\pi}{2},-\frac{1}{2}\right)$
	$=\frac{1}{2}\sin\frac{3\pi}{2}=\frac{1}{2}\cdot(-1)=-\frac{1}{2}$	
π	$y = \frac{1}{2}\sin(\pi + \pi)$	$(\pi, 0)$
	$=\frac{1}{2}\sin 2\pi = \frac{1}{2} \cdot 0 = 0$	

Evaluate the function at each value of *x*.

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

 $(\pi 1)$

$$(-\overline{2}, \overline{2}) \xrightarrow{y}$$

$$(-\pi, 0) \xrightarrow{2} \xrightarrow{5} (\pi, 0) \xrightarrow{3\pi}$$

$$(0, 0) \xrightarrow{2} \xrightarrow{5} (\pi, 0) \xrightarrow{3\pi}$$

$$(0, 0) \xrightarrow{2} \xrightarrow{5} (\pi, 0) \xrightarrow{3\pi}$$

$$(0, 0) \xrightarrow{2} \xrightarrow{5} (\pi, 0) \xrightarrow{3\pi}$$

$$(\overline{2}, -\frac{1}{2})$$

$$y = \frac{1}{2} \sin \left(x + \pi\right)$$
25. $y = -2 \sin \left(2x + \frac{\pi}{2}\right) = -2 \sin \left(2x - \left(-\frac{\pi}{2}\right)\right)$
The equation $y = -2 \sin \left(2x - \left(-\frac{\pi}{2}\right)\right)$ is of the form $y = A \sin(Bx - C)$ with $A = -2$,
 $B = 2$, and $C = -\frac{\pi}{2}$. The amplitude is $|A| = |-2| = 2$. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The

phase shift is $\frac{C}{B} = \frac{-\frac{\pi}{2}}{2} = -\frac{\pi}{2} \cdot \frac{1}{2} = -\frac{\pi}{4}$. The quarterperiod is $\frac{\pi}{4}$. The cycle begins at $x = -\frac{\pi}{4}$. Add quarter-periods to generate x-values for the key points. $x = -\frac{\pi}{4}$ $x = -\frac{\pi}{4} + \frac{\pi}{4} = 0$

$$x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$$
$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

x	$y = -2\sin\left(2x + \frac{\pi}{2}\right)$	coordinates
$-\frac{\pi}{4}$	$y = -2\sin\left(2\cdot\left(-\frac{\pi}{4}\right) + \frac{\pi}{2}\right)$	$\left(-\frac{\pi}{4},0\right)$
	$=-2\sin\left(-\frac{\pi}{2}+\frac{\pi}{2}\right)$	
	$= -2\sin 0 = -2 \cdot 0 = 0$	
0	$y = -2\sin\left(2\cdot 0 + \frac{\pi}{2}\right)$	(0, -2)
	$=-2\sin\left(0+\frac{\pi}{2}\right)$	
	$=-2\sin\frac{\pi}{2}$	
	$= -2 \cdot 1 = -2$	
$\frac{\pi}{4}$	$y = -2\sin\left(2\cdot\frac{\pi}{4} + \frac{\pi}{2}\right)$	$\left(\frac{\pi}{4},0\right)$
	$=-2\sin\left(\frac{\pi}{2}+\frac{\pi}{2}\right)$	
	$= -2\sin\pi$	
	$= -2 \cdot 0 = 0$	

$$\frac{\pi}{2} \quad y = -2\sin\left(2\cdot\frac{\pi}{2} + \frac{\pi}{2}\right) \qquad \left(\frac{\pi}{2}, 2\right)$$
$$= -2\sin\left(\pi + \frac{\pi}{2}\right)$$
$$= -2\sin\left(\pi + \frac{\pi}{2}\right)$$
$$= -2\sin\left(\pi + \frac{\pi}{2}\right)$$
$$= -2\sin\left(\pi + \frac{\pi}{2}\right)$$
$$= -2\sin\left(2\cdot\frac{3\pi}{4} + \frac{\pi}{2}\right) \qquad \left(\frac{3\pi}{4}, 0\right)$$
$$= -2\sin\left(\frac{3\pi}{2} + \frac{\pi}{2}\right)$$
$$= -2\sin 2\pi$$
$$= -2\cdot 0 = 0$$

Connect the five points with a smooth curve and graph one complete cycle of the given function.

26. $y = -3\sin\left(2x + \frac{\pi}{2}\right) = -3\sin\left(2x - \left(-\frac{\pi}{2}\right)\right)$ The equation $y = -3\sin\left(2x - \left(-\frac{\pi}{2}\right)\right)$ is of the form $y = A\sin(Bx - C)$ with A = -3, B = 2, and $C = -\frac{\pi}{2}$. The amplitude is |A| = |-3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{-\frac{\pi}{2}}{2} = -\frac{\pi}{2} \cdot \frac{1}{2} = -\frac{\pi}{4}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = -\frac{\pi}{4}$. Add quarter-periods to generate x-values for the key points.

$$x = -\frac{\pi}{4}$$

$$x = -\frac{\pi}{4} + \frac{\pi}{4} = 0$$

$$x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

x	$y = -3\sin\left(2x + \frac{\pi}{2}\right)$	coordinates
$-\frac{\pi}{4}$	$y = -3\sin\left(2\cdot\left(-\frac{\pi}{4}\right) + \frac{\pi}{2}\right)$	$\left(-\frac{\pi}{4},0\right)$
	$= -3\sin\left(-\frac{\pi}{2} + \frac{\pi}{2}\right)$	
	$= -3\sin 0 = -3 \cdot 0 = 0$	
0	$y = -3\sin\left(2\cdot 0 + \frac{\pi}{2}\right)$	(0, -3)
	$=-3\sin\left(0+\frac{\pi}{2}\right)$	
	$=-3\sin\frac{\pi}{2}=-3\cdot 1=-3$	
$\frac{\pi}{4}$	$y = -3\sin\left(2\cdot\frac{\pi}{4} + \frac{\pi}{2}\right)$	$\left(\frac{\pi}{4}, 0\right)$
	$= -3\sin\left(\frac{\pi}{2} + \frac{\pi}{2}\right)$ $= -3\sin\pi = -3\cdot 0 = 0$	
	$=-5511\pi = -5.0 = 0$	
$\frac{\pi}{2}$	$y = -3\sin\left(2\cdot\frac{\pi}{2} + \frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},3\right)$
	$=-3\sin\left(\pi+\frac{\pi}{2}\right)$	
	$=-3\sin\frac{3\pi}{2}=-3\cdot(-1)=3$	
$\frac{3\pi}{4}$	$y = -3\sin\left(2\cdot\frac{3\pi}{4} + \frac{\pi}{2}\right)$	$\left(\frac{3\pi}{4},0\right)$
	$= -3\sin\left(\frac{3\pi}{2} + \frac{\pi}{2}\right)$	
	$=-3\sin 2\pi=-3\cdot 0=0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

$$\begin{pmatrix} \frac{\pi}{4}, 0 \end{pmatrix} \begin{pmatrix} \frac{\pi}{2}, 3 \end{pmatrix}$$

$$\begin{pmatrix} -\frac{\pi}{4}, 0 \end{pmatrix} \begin{pmatrix} \frac{\pi}{2}, 3 \end{pmatrix}$$

$$\begin{pmatrix} -\frac{\pi}{4}, 0 \end{pmatrix} \begin{pmatrix} \frac{\pi}{2}, 3 \end{pmatrix}$$

$$\begin{pmatrix} \frac{\pi}{2} \end{pmatrix}$$

$$\begin{pmatrix} \frac{\pi}{2} \end{pmatrix}$$

$$(0, -3) \begin{pmatrix} \frac{\pi}{2} \end{pmatrix}$$

$$y = -3 \sin \left(2x + \frac{\pi}{2}\right)$$

27. $y = 3\sin(\pi x + 2)$

The equation $y = 3\sin(\pi x - (-2))$ is of the form $y = A\sin(Bx - C)$ with A = 3, $B = \pi$, and C = -2. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$. The phase shift is $\frac{C}{B} = \frac{-2}{\pi} = -\frac{2}{\pi}$. The quarter-period is $\frac{2}{4} = \frac{1}{2}$. The cycle begins at $x = -\frac{2}{\pi}$. Add quarter-periods to generate *x*-values

for the key points.

$$x = -\frac{2}{\pi}$$

$$x = -\frac{2}{\pi} + \frac{1}{2} = \frac{\pi - 4}{2\pi}$$

$$x = \frac{\pi - 4}{2\pi} + \frac{1}{2} = \frac{\pi - 2}{\pi}$$

$$x = \frac{\pi - 2}{\pi} + \frac{1}{2} = \frac{3\pi - 4}{2\pi}$$

$$x = \frac{3\pi - 4}{2\pi} + \frac{1}{2} = \frac{2\pi - 2}{\pi}$$

Evaluate the function at each value of *x*.

x	$y = 3\sin(\pi x + 2)$	coordinates
$-\frac{2}{\pi}$	$y = 3\sin\left(\pi\left(-\frac{2}{\pi}\right) + 2\right)$	$\left(-\frac{2}{\pi},0\right)$
	$= 3\sin(-2+2)$ $= 3\sin 0 = 3 \cdot 0 = 0$	
$\frac{\pi-4}{2\pi}$	$y = 3\sin\left(\pi\left(\frac{\pi-4}{2\pi}\right) + 2\right)$	$\left(\frac{\pi-4}{2\pi},3\right)$
	$= 3\sin\left(\frac{\pi-4}{2}+2\right)$	
	$= 3\sin\left(\frac{\pi}{2} - 2 + 2\right)$	
	$=3\sin\frac{\pi}{2}$	
	$= 3 \cdot 1 = 3$	
$\frac{\pi-2}{\pi}$	$y = 3\sin\left(\pi\left(\frac{\pi-2}{\pi}\right) + 2\right)$	$\left(\frac{\pi-2}{\pi}, 0\right)$
	$= 3\sin(\pi - 2 + 2)$	
	$= 3\sin\pi = 3 \cdot 0 = 0$	
$\frac{3\pi - 4}{2\pi}$	$y = 3\sin\left(\pi\left(\frac{3\pi - 4}{2\pi}\right) + 2\right)$	$\left(\frac{5\pi}{4},-3\right)$
	$= 3\sin\left(\frac{3\pi - 4}{2} + 2\right)$	
	$= 3\sin\left(\frac{3\pi}{2} - 2 + 2\right)$	
	$=3\sin\frac{3\pi}{2}$	
	=3(-1)=-3	
$\frac{2\pi-2}{\pi}$	$y = 3\sin\left(\pi\left(\frac{2\pi - 2}{\pi}\right) + 2\right)$	$\left(\frac{2\pi-2}{\pi},0\right)$
	$=3\sin(2\pi-2+2)$	
	$= 3\sin 2\pi = 3 \cdot 0 = 0$	
π	$y = 3\sin\left(\pi\left(\frac{\pi}{\pi}\right) + 2\right)$ $= 3\sin(2\pi - 2 + 2)$ $= 3\sin(2\pi - 3 \cdot 0 = 0$	$\left(\frac{\pi}{\pi}, 0 \right)$

Connect the five points with a smooth curve and graph one complete cycle of the given function.

28. $y = 3\sin(2\pi x + 4) = 3\sin(2\pi x - (-4))$ The equation $y = 3\sin(2\pi x - (-4))$ is of the form $y = A\sin(Bx - C)$ with A = 3, $B = 2\pi$, and C = -4. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The phase shift is $\frac{C}{B} = \frac{-4}{2\pi} = -\frac{2}{\pi}$. The quarter-period is $\frac{1}{4}$. The cycle begins at $x = -\frac{2}{\pi}$. Add quarter-periods to generate *x*-values for the key points.

$$x = -\frac{2}{\pi}$$

$$x = -\frac{2}{\pi} + \frac{1}{4} = \frac{\pi - 8}{4\pi}$$

$$x = \frac{\pi - 8}{4\pi} + \frac{1}{4} = \frac{\pi - 4}{2\pi}$$

$$x = \frac{\pi - 4}{2\pi} + \frac{1}{4} = \frac{3\pi - 8}{4\pi}$$

$$x = \frac{3\pi - 8}{4\pi} + \frac{1}{4} = \frac{\pi - 2}{\pi}$$

Evaluate the function at each value of x.

x	$y = 3\sin(2\pi x + 4)$	coordinates
$-\frac{2}{\pi}$	$y = 3\sin\left(2\pi\left(-\frac{2}{\pi}\right) + 4\right)$	$\left(-\frac{2}{\pi},0\right)$
	$= 3\sin(-4+4)$	
	$= 3\sin 0 = 3 \cdot 0 = 0$	
$\frac{\pi-8}{4\pi}$	$y = 3\sin\left(2\pi\left(\frac{\pi-8}{4\pi}\right) + 4\right)$	$\left(\frac{\pi-8}{4\pi},3\right)$
	$= 3\sin\left(\frac{\pi-8}{2}+4\right)$	
	$= 3\sin\left(\frac{\pi}{2} - 4 + 4\right)$	
	$= 3\sin\frac{\pi}{2} = 3 \cdot 1 = 3$	
$\frac{\pi-4}{2\pi}$	$y = 3\sin\left(2\pi\left(\frac{\pi-4}{2\pi}\right) + 4\right)$	$\left(\frac{\pi-4}{2\pi},0\right)$
	$= 3\sin(\pi - 4 + 4)$	
	$= 3\sin\pi = 3 \cdot 0 = 0$	

$\frac{3\pi-8}{4\pi}$	$y = 3\sin\left(2\pi\left(\frac{3\pi - 8}{4\pi}\right) + 4\right)$	$\left(\frac{3\pi-8}{4\pi},-3\right)$
	$= 3\sin\left(\frac{3\pi - 8}{2} + 4\right)$	
	$= 3\sin\left(\frac{3\pi}{2} - 4 + 4\right)$	
	$= 3\sin\frac{3\pi}{2} = 3(-1) = -3$	
$\frac{\pi-2}{\pi}$	$y = 3\sin\left(2\pi\left(\frac{\pi-2}{\pi}\right) + 4\right)$	$\left(\frac{\pi-2}{\pi},0\right)$
	$=3\sin(2\pi-4+4)$	
	$= 3\sin 2\pi = 3 \cdot 0 = 0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

29. $y = -2\sin(2\pi x + 4\pi) = -2\sin(2\pi x - (-4\pi))$ The equation $y = -2\sin(2\pi x - (-4\pi))$ is of the form $y = A\sin(Bx - C)$ with A = -2, $B = 2\pi$, and $C = -4\pi$. The amplitude is |A| = |-2| = 2. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The phase shift is $\frac{C}{B} = \frac{-4\pi}{2\pi} = -2$. The quarter-period is $\frac{1}{4}$. The cycle begins at x = -2. Add quarter-periods to generate *x*values for the key points. x = -2 $x = -2 + \frac{1}{4} = -\frac{7}{4}$ $x = -\frac{7}{4} + \frac{1}{4} = -\frac{3}{2}$

 $x = -\frac{3}{4} + \frac{1}{4} = -\frac{5}{2}$ $x = -\frac{3}{2} + \frac{1}{4} = -\frac{5}{4}$ $x = -\frac{5}{4} + \frac{1}{4} = -1$

x	$y = -2\sin(2\pi x + 4\pi)$	coordinates
-2	$y = -2\sin(2\pi(-2) + 4\pi)$ = -2sin(-4\pi + 4\pi) = -2sin 0 = -2\cdot 0 = 0	(-2, 0)
$-\frac{7}{4}$	$y = -2\sin\left(2\pi\left(-\frac{7}{4}\right) + 4\pi\right)$ $= -2\sin\left(-\frac{7\pi}{2} + 4\pi\right)$ $= -2\sin\frac{\pi}{2} = -2 \cdot 1 = -2$	$\left(-\frac{7}{4},-2\right)$
$-\frac{3}{2}$	$y = -2\sin\left(2\pi\left(-\frac{3}{2}\right) + 4\pi\right)$ $= -2\sin(-3\pi + 4\pi)$ $= -2\sin\pi = -2 \cdot 0 = 0$	$\left(-\frac{3}{2},0\right)$
$-\frac{5}{4}$	$y = -2\sin\left(2\pi\left(-\frac{5}{4}\right) + 4\pi\right)$ $= -2\sin\left(-\frac{5\pi}{2} + 4\pi\right)$ $= -2\sin\frac{3\pi}{2}$ $= -2(-1) = 2$	$\left(-\frac{5}{4},2\right)$
-1	$y = -2\sin(2\pi(-1) + 4\pi)$ = -2sin(-2\pi + 4\pi) = -2sin 2\pi = -2\cdot 0 = 0	(-1, 0)

Connect the five points with a smooth curve and graph one complete cycle of the given function.

30. $y = -3\sin(2\pi x + 4\pi) = -3\sin(2\pi x - (-4\pi))$ The equation $y = -3\sin(2\pi x - (-4\pi))$ is of the form $y = A\sin(Bx - C)$ with A = -3, $B = 2\pi$, and $C = -4\pi$. The amplitude is |A| = |-3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The phase shift is $\frac{C}{B} = \frac{-4\pi}{2\pi} = -2$. The quarter-period is $\frac{1}{4}$. The cycle begins at x = -2. Add quarter-periods to generate *x*-values for the key points. x = -2 $x = -2 + \frac{1}{2} = -\frac{7}{2}$

$$x = -2 + \frac{1}{4} = -\frac{7}{4}$$
$$x = -\frac{7}{4} + \frac{1}{4} = -\frac{3}{2}$$
$$x = -\frac{3}{2} + \frac{1}{4} = -\frac{5}{4}$$
$$x = -\frac{5}{4} + \frac{1}{4} = -1$$

x	$y = -3\sin(2\pi x + 4\pi)$	coordinates
-2	$y = -3\sin(2\pi(-2) + 4\pi)$	(-2, 0)
	$= -3\sin(-4\pi + 4\pi)$	
	$=-3\sin 0=-3\cdot 0=0$	
$-\frac{7}{4}$	$y = -3\sin\left(2\pi\left(-\frac{7}{4}\right) + 4\pi\right)$	$\left(-\frac{7}{4},-3\right)$
	$=-3\sin\left(-\frac{7\pi}{2}+4\pi\right)$	
	$=-3\sin\frac{\pi}{2}=-3\cdot 1=-3$	
$-\frac{3}{2}$	$y = -3\sin\left(2\pi\left(-\frac{3}{2}\right) + 4\pi\right)$	$\left(-\frac{3}{2},0\right)$
	$= -3\sin(-3\pi + 4\pi)$	
	$= -3\sin\pi = -3 \cdot 0 = 0$	
$-\frac{5}{4}$	$y = -3\sin\left(2\pi\left(-\frac{5}{4}\right) + 4\pi\right)$	$\left(-\frac{5}{4},3\right)$
	$=-3\sin\left(-\frac{5\pi}{2}+4\pi\right)$	
	$= -3\sin\frac{3\pi}{2} = -3(-1) = 3$	
-1	$y = -3\sin(2\pi(-1) + 4\pi)$	(-1, 0)
	$= -3\sin(-2\pi + 4\pi)$	
	$=-3\sin 2\pi=-3\cdot 0=0$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

31. The equation $y = 2\cos x$ is of the form $y = A\cos x$ with A = 2. Thus, the amplitude is |A| = |2| = 2.

The period is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = 2\cos x$	coordinates
0	$y = 2\cos 0$ $= 2 \cdot 1 = 2$	(0, 2)
$\frac{\pi}{2}$	$y = 2\cos\frac{\pi}{2}$ $= 2 \cdot 0 = 0$	$\left(\frac{\pi}{2},0\right)$
π	$y = 2\cos \pi$ $= 2 \cdot (-1) = -2$	$(\pi, -2)$
$\frac{3\pi}{2}$	$y = 2\cos\frac{3\pi}{2}$ $= 2 \cdot 0 = 0$	$\left(\frac{3\pi}{2},0\right)$
2π	$y = 2\cos 2\pi$ $= 2 \cdot 1 = 2$	(2 π , 2)

Connect the five points with a smooth curve and graph one complete cycle of the given function with the graph of $y = 2\cos x$.

32. The equation $y = 3\cos x$ is of the form $y = A\cos x$ with A = 3. Thus, the amplitude is |A| = |3| = 3.

The period is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = 3\cos x$	coordinates
0	$y = 3\cos 0 = 3 \cdot 1 = 3$	(0, 3)
$\frac{\pi}{2}$	$y = 3\cos\frac{\pi}{2} = 3 \cdot 0 = 0$	$\left(\frac{\pi}{2},0\right)$
π	$y = 3\cos\pi = 3 \cdot (-1) = -3$	$(\pi, -3)$
$\frac{3\pi}{2}$	$y = 3\cos\frac{3\pi}{2} = 3 \cdot 0 = 0$	$\left(\frac{3\pi}{2},0\right)$
2π	$y = 3\cos 2\pi = 3 \cdot 1 = 3$	(2 <i>π</i> , 3)

Connect the five key points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \cos x$.

33. The equation $y = -2\cos x$ is of the form $y = A\cos x$ with A = -2. Thus, the amplitude is

|A| = |-2| = 2. The period is 2π . The quarterperiod is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key

points. x = 0 π π

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = -2\cos x$	coordinates
0	$y = -2\cos 0$	(0, -2)
	$= -2 \cdot 1 = -2$	
$\frac{\pi}{2}$	$y = -2\cos\frac{\pi}{2}$ $= -2 \cdot 0 = 0$	$\left(\frac{\pi}{2},0\right)$
π	$y = -2\cos\pi$ $= -2 \cdot (-1) = 2$	(<i>π</i> , 2)
$\frac{3\pi}{2}$	$y = -2\cos\frac{3\pi}{2}$ $= -2 \cdot 0 = 0$	$\left(\frac{3\pi}{2},0\right)$
2π	$y = -2\cos 2\pi$ $= -2 \cdot 1 = -2$	$(2\pi, -2)$

Connect the five points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \cos x$.

34. The equation $y = -3\cos x$ is of the form $y = A\cos x$ with A = -3. Thus, the amplitude is |A| = |-3| = 3.

The period is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate x-values for the key points.

$$x = 0$$

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$

$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = -3\cos x$	coordinates
0	$y = -3\cos 0 = -3 \cdot 1 = -3$	(0, -3)
$\frac{\pi}{2}$	$y = -3\cos\frac{\pi}{2} = -3 \cdot 0 = 0$	$\left(\frac{\pi}{2}, 0\right)$
π	$y = -3\cos\pi = -3\cdot(-1) = 3$	(<i>π</i> , 3)
$\frac{3\pi}{2}$	$y = -3\cos\frac{3\pi}{2} = -3 \cdot 0 = 0$	$\left(\frac{3\pi}{2},0\right)$
2π	$y = -3\cos 2\pi = -3 \cdot 1 = -3$	$(2\pi, -3)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function with the graph of $y = \cos x$.

35. The equation $y = \cos 2x$ is of the form $y = A \cos Bx$ with A = 1 and B = 2. Thus, the amplitude is

$$|A| = |1| = 1$$
. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The

quarter-period is $\frac{\pi}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points.

$$x = 0$$

$$x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$

Evaluate the function at each value of *x*.

x	$y = \cos 2x$	coordinates
0	$y = \cos(2 \cdot 0)$	(0, 1)
	$=\cos 0 = 1$	
$\frac{\pi}{4}$	$y = \cos\left(2 \cdot \frac{\pi}{4}\right)$	$\left(\frac{\pi}{4},0\right)$
	$=\cos\frac{\pi}{2}=0$	
$\frac{\pi}{2}$	$y = \cos\left(2 \cdot \frac{\pi}{2}\right)$	$\left(\frac{\pi}{2}, -1\right)$
	$=\cos\pi=-1$	
$\frac{3\pi}{4}$	$y = \cos\left(2 \cdot \frac{3\pi}{4}\right)$	$\left(\frac{3\pi}{4},0\right)$
	$=\cos\frac{3\pi}{2}=0$	
π	$y = \cos(2 \cdot \pi)$	$(\pi, 1)$
	$=\cos 2\pi = 1$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

36. The equation $y = \cos 4x$ is of the form $y = A \cos Bx$ with A = 1 and B = 4. Thus, the amplitude is

$$|A| = |1| = 1$$
. The period is $\frac{2\pi}{B} = \frac{2\pi}{4} = \frac{\pi}{2}$. The
quarter-period is $\frac{\pi}{2} = \frac{\pi}{2} \cdot \frac{1}{4} = \frac{\pi}{8}$. The cycle begins at
 $x = 0$. Add quarter-periods to generate x-values for
the key points.
 $x = 0$
 $x = 0 + \frac{\pi}{8} = \frac{\pi}{8}$
 $x = \frac{\pi}{8} + \frac{\pi}{8} = \frac{\pi}{4}$
 $x = \frac{\pi}{4} + \frac{\pi}{8} = \frac{3\pi}{8}$
 $x = \frac{3\pi}{8} + \frac{\pi}{8} = \frac{\pi}{2}$

Evaluate the function at each value of *x*.

x	$y = \cos 4x$	coordinates
0	$y = \cos(4 \cdot 0) = \cos 0 = 1$	(0, 1)
$\frac{\pi}{8}$	$y = \cos\left(4 \cdot \frac{\pi}{8}\right) = \cos\frac{\pi}{2} = 0$	$\left(\frac{\pi}{8},0\right)$
$\frac{\pi}{4}$	$y = \cos\left(4 \cdot \frac{\pi}{4}\right) = \cos \pi = -1$	$\left(\frac{\pi}{4}, -1\right)$
$\frac{3\pi}{8}$	$y = \cos\left(4 \cdot \frac{3\pi}{8}\right)$	$\left(\frac{3\pi}{8},0\right)$
	$=\cos\frac{3\pi}{2}=0$	
$\frac{\pi}{2}$	$y = \cos\left(4 \cdot \frac{\pi}{2}\right) = \cos 2\pi = 1$	$\left(\frac{\pi}{2},1\right)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

37. The equation $y = 4\cos 2\pi x$ is of the form $y = A\cos Bx$ with A = 4 and $B = 2\pi$. Thus, the amplitude is

$$|A| = |4| = 4$$
. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The

quarter-period is $\frac{1}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{1}{4} = \frac{1}{4}$$
$$x = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
$$x = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$
$$x = \frac{3}{4} + \frac{1}{4} = 1$$

Evaluate the function at each value of *x*.

x	$y = 4\cos 2\pi x$	coordinates
0	$y = 4\cos(2\pi \cdot 0)$	(0, 4)
	$=4\cos 0$	
	$= 4 \cdot 1 = 4$	
$\frac{1}{4}$	$y = 4\cos\left(2\pi \cdot \frac{1}{4}\right)$	$\left(rac{1}{4}, 0 ight)$
	$=4\cos\frac{\pi}{2}$	
	$= 4 \cdot 0 = 0$	
$\frac{1}{2}$	$y = 4\cos\left(2\pi \cdot \frac{1}{2}\right)$	$\left(\frac{1}{2},-4\right)$
	$=4\cos\pi$	
	$= 4 \cdot (-1) = -4$	
$\frac{3}{4}$	$y = 4\cos\left(2\pi \cdot \frac{3}{4}\right)$	$\left(\frac{3}{4},0\right)$
	$=4\cos\frac{3\pi}{2}$	
	$= 4 \cdot 0 = 0$	
1	$y = 4\cos(2\pi \cdot 1)$	(1, 4)
	$=4\cos 2\pi$	
	$= 4 \cdot 1 = 4$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

38. The equation $y = 5\cos 2\pi x$ is of the form $y = A\cos Bx$ with A = 5 and $B = 2\pi$. Thus, the amplitude is |A| = |5| = 5. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The quarter-period is $\frac{1}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*values for the key points.

$$x = 0$$

$$x = 0 + \frac{1}{4} = \frac{1}{4}$$

$$x = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$x = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$x = \frac{3}{4} + \frac{1}{4} = 1$$

Evaluate the function at each value of *x*.

-		
x	$y = 5\cos 2\pi x$	coordinates
0	$y = 5\cos(2\pi \cdot 0)$	(0, 5)
	$=5\cos 0=5\cdot 1=5$	
$\frac{1}{4}$	$y = 5\cos\left(2\pi \cdot \frac{1}{4}\right)$	$\left(rac{1}{4},0 ight)$
	$=5\cos\frac{\pi}{2}=5\cdot 0=0$	
$\frac{1}{2}$	$y = 5\cos\left(2\pi \cdot \frac{1}{2}\right)$	$\left(\frac{1}{2},-5\right)$
	$=5\cos\pi=5\cdot(-1)=-5$	
$\frac{3}{4}$	$y = 5\cos\left(2\pi \cdot \frac{3\pi}{4}\right)$	$\left(\frac{3}{4},0\right)$
	$=5\cos\frac{3\pi}{2}=5\cdot 0=0$	
1	$y = 5\cos(2\pi \cdot 1)$	(1, 5)
	$=5\cos 2\pi=5\cdot 1=5$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

- **39.** The equation $y = -4\cos\frac{1}{2}x$ is of the form
 - $y = A \cos Bx$ with A = -4 and $B = \frac{1}{2}$. Thus, the amplitude is |A| = |-4| = 4. The period is
 - $\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$. The quarter-period is
 - $\frac{4\pi}{4} = \pi$. The cycle begins at x = 0. Add quarterperiods to generate *x*-values for the key points.

periods to generate x-values for the key points. x = 0

 $x = 0 + \pi = \pi$ $x = \pi + \pi = 2\pi$ $x = 2\pi + \pi = 3\pi$ $x = 3\pi + \pi = 4\pi$

Evaluate the function at each value of *x*.

1		
x	$y = -4\cos\frac{1}{2}x$	coordinates
0	$y = -4\cos\left(\frac{1}{2} \cdot 0\right)$	(0, -4)
	$=-4\cos 0$	
	$= -4 \cdot 1 = -4$	
π	$y = -4\cos\left(\frac{1}{2} \cdot \pi\right)$	$(\pi, 0)$
	$=-4\cos\frac{\pi}{2}$	
	$= -4 \cdot 0 = 0$	
2π	$y = -4\cos\left(\frac{1}{2} \cdot 2\pi\right)$	(2 <i>π</i> , 4)
	$=-4\cos\pi$	
	$= -4 \cdot (-1) = 4$	
3π	$y = -4\cos\left(\frac{1}{2} \cdot 3\pi\right)$	$(3\pi, 0)$
	$=-4\cos\frac{3\pi}{2}$	
	$= -4 \cdot 0 = 0$	
4π	$y = -4\cos\left(\frac{1}{2} \cdot 4\pi\right)$	$(4\pi, -4)$
	$=-4\cos 2\pi$	
	$= -4 \cdot 1 = -4$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

40. The equation $y = -3\cos\frac{1}{3}x$ is of the form $y = A\cos Bx$ with A = -3 and $B = \frac{1}{3}$. Thus, the amplitude is |A| = |-3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{3}} = 2\pi \cdot 3 = 6\pi$. The quarter-period is $\frac{6\pi}{4} = \frac{3\pi}{2}$. The cycle begins at x = 0. Add quarterperiods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{3\pi}{2} = \frac{3\pi}{2}$

$$x = 0 + \frac{3\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{3\pi}{2} = 3\pi$$
$$x = 3\pi + \frac{3\pi}{2} = \frac{9\pi}{2}$$
$$x = \frac{9\pi}{2} + \frac{3\pi}{2} = 6\pi$$

x	$y = -3\cos\frac{1}{3}x$	coordinates
0	$y = -3\cos\left(\frac{1}{3} \cdot 0\right)$	(0, -3)
	$= -3\cos 0 = -3 \cdot 1 = -3$	
$\frac{3\pi}{2}$	$y = -3\cos\left(\frac{1}{3} \cdot \frac{3\pi}{2}\right)$	$\left(\frac{3\pi}{2},0\right)$
	$=-3\cos\frac{\pi}{2}=-3\cdot 0=0$	
3π	$y = -3\cos\left(\frac{1}{3} \cdot 3\pi\right)$	(3\pi, 3)
	$= -3\cos\pi = -3\cdot(-1) = 3$	

$$\frac{9\pi}{2} \quad y = -3\cos\left(\frac{1}{3} \cdot \frac{9\pi}{2}\right) \qquad \left(\frac{9\pi}{2}, 0\right)$$
$$= -3\cos\frac{3\pi}{2} = -3 \cdot 0 = 0$$
$$6\pi \quad y = -3\cos\left(\frac{1}{3} \cdot 6\pi\right)$$
$$= -3\cos 2\pi = -3 \cdot 1 = -3$$
$$(6\pi, -3)$$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

41. The equation $y = -\frac{1}{2}\cos\frac{\pi}{3}x$ is of the form $y = A\cos Bx$ with $A = -\frac{1}{2}$ and $B = \frac{\pi}{3}$. Thus, the amplitude is $|A| = \left|-\frac{1}{2}\right| = \frac{1}{2}$. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{3}} = 2\pi \cdot \frac{3}{\pi} = 6$. The quarter-period is $\frac{6}{4} = \frac{3}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{3}{2} = \frac{3}{2}$

$$x = \frac{3}{2} + \frac{3}{2} = 3$$
$$x = 3 + \frac{3}{2} = \frac{9}{2}$$
$$x = \frac{9}{2} + \frac{3}{2} = 6$$

Evaluate the function at each value of *x*.

x	$y = -\frac{1}{2}\cos\frac{\pi}{3}x$	coordinates
0	$y = -\frac{1}{2}\cos\left(\frac{\pi}{3} \cdot 0\right)$	$\left(0,-\frac{1}{2}\right)$
	$=-\frac{1}{2}\cos 0$	
	$=-\frac{1}{2}\cdot 1 = -\frac{1}{2}$	
$\frac{3}{2}$	$y = -\frac{1}{2}\cos\left(\frac{\pi}{3} \cdot \frac{3}{2}\right)$	$\left(\frac{3}{2},0\right)$
	$=-\frac{1}{2}\cos\frac{\pi}{2}$	
	$= -\frac{1}{2} \cdot 0 = 0$	
3	$y = -\frac{1}{2}\cos\left(\frac{\pi}{3} \cdot 3\right)$	$\left(3,\frac{1}{2}\right)$
	$=-\frac{1}{2}\cos\pi$	
	$=-\frac{1}{2}\cdot(-1)=\frac{1}{2}$	
$\frac{9}{2}$	$y = -\frac{1}{2}\cos\left(\frac{\pi}{3} \cdot \frac{9}{2}\right)$	$\left(\frac{9}{2},0\right)$
	$=-\frac{1}{2}\cos\frac{3\pi}{2}$	
	$= -\frac{1}{2} \cdot 0 = 0$	
6	$y = -\frac{1}{2}\cos\left(\frac{\pi}{3} \cdot 6\right)$	$\left(6,-\frac{1}{2}\right)$
	$=-\frac{1}{2}\cos 2\pi$	
	$=-\frac{1}{2}\cdot 1 = -\frac{1}{2}$	

Connect the five points with a smooth curve and graph one complete cycle of the given function.

- 42. The equation $y = -\frac{1}{2}\cos\frac{\pi}{4}x$ is of the form $y = A\cos Bx$ with $A = -\frac{1}{2}$ and $B = \frac{\pi}{4}$. Thus, the amplitude is $|A| = \left| -\frac{1}{2} \right| = \frac{1}{2}$. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{4}} = 2\pi \cdot \frac{4}{\pi} = 8$. The quarter-period is $\frac{8}{4} = 2$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 x = 0 + 2 = 2 x = 2 + 2 = 4
 - x = 4 + 2 = 6x = 6 + 2 = 8

Evaluate the function at each value of *x*.

x	$y = -\frac{1}{2}\cos\frac{\pi}{4}x$	coordinates
0	$y = -\frac{1}{2}\cos\left(\frac{\pi}{4} \cdot 0\right)$	$\left(0,-\frac{1}{2}\right)$
	$= -\frac{1}{2}\cos 0 = -\frac{1}{2} \cdot 1 = -\frac{1}{2}$	
2	$y = -\frac{1}{2}\cos\left(\frac{\pi}{4} \cdot 2\right)$	(2, 0)
	$=-\frac{1}{2}\cos\frac{\pi}{2}=-\frac{1}{2}\cdot 0=0$	
4	$y = -\frac{1}{2}\cos\left(\frac{\pi}{4} \cdot 4\right)$	$\left(4,\frac{1}{2}\right)$
	$= -\frac{1}{2}\cos \pi = -\frac{1}{2} \cdot (-1) = \frac{1}{2}$	
6	$y = -\frac{1}{2}\cos\left(\frac{\pi}{4} \cdot 6\right)$	(6, 0)
	$=-\frac{1}{2}\cos\left(\frac{3\pi}{2}\right)=-\frac{1}{2}\cdot 0=0$	
8	$y = -\frac{1}{2}\cos\left(\frac{\pi}{4} \cdot 8\right)$	$\left(8,-\frac{1}{2}\right)$
	$= -\frac{1}{2}\cos 2\pi = -\frac{1}{2} \cdot 1 = -\frac{1}{2}$	

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

43.	The equation $y = \cos\left(x - \frac{\pi}{2}\right)$ is of the form
	$y = A\cos(Bx - C)$ with $A = 1$, and $B = 1$, and
	$C = \frac{\pi}{2}$. Thus, the amplitude is $ A = 1 = 1$. The
	period is $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$. The phase shift is
	$\frac{C}{B} = \frac{\frac{\pi}{2}}{1} = \frac{\pi}{2}$. The quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The
	cycle begins at $x = \frac{\pi}{2}$. Add quarter-periods to
	generate x-values for the key points.
	$x = \frac{\pi}{2}$
	$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$

$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$
$$x = 2\pi + \frac{\pi}{2} = \frac{5\pi}{2}$$

x	coordinates
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},1\right)$
π	$(\pi, 0)$
$\frac{3\pi}{2}$	$\left(\frac{3\pi}{2},-1\right)$
2π	$(2\pi, 0)$
$\frac{5\pi}{2}$	$\left(\frac{5\pi}{2},1\right)$

Connect the five points with a smooth curve and graph one complete cycle of the given function

$$\begin{pmatrix} \frac{\pi}{2}, 1 \end{pmatrix} \xrightarrow{y} (\pi, 0) (2\pi, 0) (5\pi, 1) \\ \hline \frac{\pi}{2}, 5\pi, x \\ -5 \\ y = \cos\left(x - \frac{\pi}{2}\right) (3\pi, -1) \\ \hline \frac{\pi}{2}, -1 \end{pmatrix}$$

- 44. The equation $y = \cos\left(x + \frac{\pi}{2}\right)$ is of the form
 - $y = A\cos(Bx C)$ with A = 1, and B = 1, and
 - $C = -\frac{\pi}{2}$. Thus, the amplitude is |A| = |1| = 1. The
 - period is $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$. The phase shift is

 $\frac{C}{B} = \frac{-\frac{\pi}{2}}{1} = -\frac{\pi}{2}$. The quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The

cycle begins at $x = -\frac{\pi}{2}$. Add quarter-periods to generate *x*-values for the key points.

$$x = -\frac{\pi}{2}$$
$$x = -\frac{\pi}{2} + \frac{\pi}{2} = 0$$
$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$

Evaluate the function at each value of *x*.

x	coordinates
$-\frac{\pi}{2}$	$\left(-\frac{\pi}{2},1\right)$
0	(0, 0)
$\frac{\pi}{2}$	$\left(\frac{\pi}{2}, -1\right)$
π	$(\pi, 0)$
$\frac{3\pi}{2}$	$\left(\frac{3\pi}{2},1\right)$

Connect the five points with a smooth curve and graph one complete cycle of the given function

45. The equation $y = 3\cos(2x - \pi)$ is of the form $y = A\cos(Bx - C)$ with A = 3, and B = 2, and $C = \pi$. Thus, the amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{\pi}{2}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = \frac{\pi}{2}$. Add quarter-periods to generate *x*-values for the key points. $x = \frac{\pi}{2}$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$
$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$
$$x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$
$$x = \frac{5\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{2}$$

x	coordinates
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},3\right)$
$\frac{3\pi}{4}$	$\left(\frac{3\pi}{4},0\right)$
π	$(\pi, -3)$
$\frac{5\pi}{4}$	$\left(\frac{5\pi}{4},0\right)$
$\frac{3\pi}{2}$	$\left(\frac{3\pi}{2},3\right)$

Connect the five points with a smooth curve and graph one complete cycle of the given function

- **46.** The equation $y = 4\cos(2x \pi)$ is of the form $y = A\cos(Bx C)$ with A = 4, and B = 2, and $C = \pi$. Thus, the amplitude is |A| = |4| = 4. The period is
 - $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{\pi}{2}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = \frac{\pi}{2}$.

Add quarter-periods to generate *x*-values for the key points.

$$x = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$

$$x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

$$x = \frac{5\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{2}$$

Evaluate the function at each value of *x*.

x	coordinates
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},4\right)$
$\frac{3\pi}{4}$	$\left(\frac{3\pi}{4},0\right)$
π	$(\pi, -4)$
$\frac{5\pi}{4}$	$\left(\frac{5\pi}{4},0\right)$
$\frac{3\pi}{2}$	$\left(\frac{3\pi}{2},4\right)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

$$x = 0 + \frac{\pi}{6} - \frac{\pi}{6}$$
$$x = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$$
$$x = \frac{\pi}{3} + \frac{\pi}{6} = \frac{\pi}{2}$$

x	coordinates
$-\frac{\pi}{6}$	$\left(-\frac{\pi}{6},\frac{1}{2}\right)$
0	(0, 0)
$\frac{\pi}{6}$	$\left(\frac{\pi}{6}, -\frac{1}{2}\right)$
$\frac{\pi}{3}$	$\left(\frac{\pi}{3},0\right)$
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},\frac{1}{2}\right)$

Connect the five points with a smooth curve and graph one complete cycle of the given function

48. $y = \frac{1}{2}\cos(2x + \pi) = \frac{1}{2}\cos(2x - (-\pi))$ The equation $y = \frac{1}{2}\cos(2x - (-\pi))$ is of the form $y = A\cos(Bx - C)$ with $A = \frac{1}{2}$, and B = 2, and $C = -\pi$. Thus, the amplitude is $|A| = \left|\frac{1}{2}\right| = \frac{1}{2}$. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{-\pi}{2} = -\frac{\pi}{2}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = -\frac{\pi}{2}$. Add quarter-periods to generate *x*-values for the key points.

$$x = -\frac{\pi}{2}$$

$$x = -\frac{\pi}{2} + \frac{\pi}{4} = -\frac{\pi}{4}$$

$$x = -\frac{\pi}{4} + \frac{\pi}{4} = 0$$

$$x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

Evaluate the function at each value of *x*.

x	coordinates
$-\frac{\pi}{2}$	$\left(-\frac{\pi}{2},\frac{1}{2}\right)$
$-\frac{\pi}{4}$	$\left(-\frac{\pi}{4},0\right)$
0	$\left(0,-\frac{1}{2}\right)$
$\frac{\pi}{4}$	$\left(\frac{\pi}{4},0\right)$
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},\frac{1}{2}\right)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

49.	The equation $y = -3\cos\left(2x - \frac{\pi}{2}\right)$ is of the form
	$y = A\cos(Bx - C)$ with $A = -3$, and
	$B = 2$, and $C = \frac{\pi}{2}$. Thus, the amplitude is
	$ A = -3 = 3$. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The
	phase shift is $\frac{C}{B} = \frac{\frac{\pi}{2}}{\frac{2}{2}} = \frac{\pi}{2} \cdot \frac{1}{2} = \frac{\pi}{4}$.
	The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = \frac{\pi}{4}$
	Add quarter-periods to generate <i>x</i> -values for the key
	points.
	$x = \frac{\pi}{4}$

$$x = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$

$$x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

Evaluate the function at each value of *x*.

x	coordinates
$\frac{\pi}{4}$	$\left(\frac{\pi}{4}, -3\right)$
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},0\right)$
$\frac{3\pi}{4}$	$\left(\frac{3\pi}{4},3\right)$
π	$(\pi, 0)$
$\frac{5\pi}{4}$	$\left(\frac{5\pi}{4}, -3\right)$

Connect the five points with a smooth curve and graph one complete cycle of the given function

50. The equation $y = -4\cos\left(2x - \frac{\pi}{2}\right)$ is of the form $y = A\cos(Bx - C)$ with A = -4, and B = 2, and $C = \frac{\pi}{2}$. Thus, the amplitude is |A| = |-4| = 4. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{2} \cdot \frac{1}{2} = \frac{\pi}{4}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = \frac{\pi}{4}$. Add quarter-periods to generate *x*-values for the key points. $x = \frac{\pi}{4}$

$$x = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$

$$x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

Evaluate the function at each value of *x*.

x	coordinates
$\frac{\pi}{4}$	$\left(\frac{\pi}{4}, -4\right)$
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},0\right)$
$\frac{3\pi}{4}$	$\left(\frac{3\pi}{4},4\right)$
π	$(\pi, 0)$
$\frac{5\pi}{4}$	$\left(\frac{5\pi}{4},-4\right)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

51. $y = 2\cos(2\pi x + 8\pi) = 2\cos(2\pi x - (-8\pi))$ The equation $y = 2\cos(2\pi x - (-8\pi))$ is of the form $y = A\cos(Bx - C)$ with A = 2, $B = 2\pi$, and $C = -8\pi$. Thus, the amplitude is |A| = |2| = 2. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The phase shift is $\frac{C}{B} = \frac{-8\pi}{2\pi} = -4$. The quarter-period is $\frac{1}{4}$. The cycle begins at x = -4. Add quarter-periods to generate xvalues for the key points. x = -4

$$x = -4 + \frac{1}{4} = -\frac{15}{4}$$
$$x = -\frac{15}{4} + \frac{1}{4} = -\frac{7}{2}$$
$$x = -\frac{7}{2} + \frac{1}{4} = -\frac{13}{4}$$
$$x = -\frac{13}{4} + \frac{1}{4} = -3$$

Evaluate the function at each value of *x*.

x	coordinates
-4	(-4, 2)
$-\frac{15}{4}$	$\left(-\frac{15}{4},0\right)$
$-\frac{7}{2}$	$\left(-\frac{7}{2},-2\right)$
$-\frac{13}{4}$	$\left(-\frac{13}{4},0\right)$
-3	(-3, 2)

Connect the five points with a smooth curve and graph one complete cycle of the given function

52. $y = 3\cos(2\pi x + 4\pi) = 3\cos(2\pi x - (-4\pi))$ The equation $y = 3\cos(2\pi x - (-4\pi))$ is of the form $y = A\cos(Bx - C)$ with A = 3, and $B = 2\pi$, and $C = -4\pi$. Thus, the amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The phase shift is $\frac{C}{B} = \frac{-4\pi}{2\pi} = -2$. The quarter-period is $\frac{1}{4}$. The cycle begins at x = -2. Add quarter-periods to generate xvalues for the key points. x = -2 $x = -2 + \frac{1}{4} = -\frac{7}{4}$ $x = -\frac{7}{4} + \frac{1}{4} = -\frac{3}{2}$ $x = -\frac{3}{2} + \frac{1}{4} = -\frac{5}{4}$

 $x = -\frac{5}{4} + \frac{1}{4} = -1$ Evaluate the function at each value of *x*.

x	coordinates
-2	(-2, 3)
$-\frac{7}{4}$	$\left(-\frac{7}{4},0\right)$
$-\frac{3}{2}$	$\left(-\frac{3}{2},-3\right)$
$-\frac{5}{4}$	$\left(-\frac{5\pi}{4},0\right)$
-1	(-1, 3)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

53. The graph of $y = \sin x + 2$ is the graph of $y = \sin x$ shifted up 2 units upward. The period for both functions is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = \sin x + 2$	coordinates
0	$y = \sin 0 + 2$	(0, 2)
	= 0 + 2 = 2	
$\frac{\pi}{2}$	$y = \sin\frac{\pi}{2} + 2$ $= 1 + 2 = 3$	$\left(\frac{\pi}{2},3\right)$
π	$y = \sin \pi + 2$ $= 0 + 2 = 2$	<i>(π</i> , 2)
$\frac{3\pi}{2}$	$y = \sin \frac{3\pi}{2} + 2$ $= -1 + 2 = 1$	$\left(\frac{3\pi}{2},1\right)$
2π	$y = \sin 2\pi + 2$ $= 0 + 2 = 2$	$(2\pi, 2)$

By connecting the points with a smooth curve we obtain one period of the graph.

54. The graph of $y = \sin x - 2$ is the graph of $y = \sin x$ shifted 2 units downward. The period for both functions is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$.

The cycle begins at x = 0. Add quarter-periods to generate x-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = \sin x - 2$	coordinates
0	$y = \sin 0 - 2 = 0 - 2 = -2$	(0, -2)
$\frac{\pi}{2}$	$y = \sin \frac{\pi}{2} - 2 = 1 - 2 = -1$	$\left(\frac{\pi}{4}, -1\right)$
π	$y = \sin \pi - 2 = 0 - 2 = -2$	$(\pi, -2)$
$\frac{3\pi}{2}$	$y = \sin\frac{3\pi}{2} - 2 = -1 - 2 = -3$	$\left(\frac{3\pi}{2},-3\right)$
2π	$y = \sin 2\pi - 2 = 0 - 2 = -2$	$(2\pi, -2)$

By connecting the points with a smooth curve we obtain one period of the graph.

55. The graph of $y = \cos x - 3$ is the graph of $y = \cos x$ shifted 3 units downward. The period for both

functions is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate x-values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = \cos x - 3$	coordinates
0	$y = \cos 0 - 3$ = 1 - 3 = -2	(0, -2)
	-1 5- 2	
$\frac{\pi}{2}$	$y = \cos\frac{\pi}{2} - 3$ $= 0 - 3 = -3$	$\left(\frac{\pi}{2},-3\right)$
π	$y = \cos \pi - 3$ $= -1 - 3 = -4$	$(\pi, -4)$
$\frac{3\pi}{2}$	$y = \cos\frac{3\pi}{2} - 3$ $= 0 - 3 = -3$	$\left(\frac{3\pi}{2},-3\right)$
2π	$y = \cos 2\pi - 3$ $= 1 - 3 = -2$	$(2\pi, -2)$

By connecting the points with a smooth curve we obtain one period of the graph.

56. The graph of $y = \cos x + 3$ is the graph of $y = \cos x$ shifted 3 units upward. The period for both functions

is 2π . The quarter-period is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*values for the key points. x = 0

$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$
$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

Evaluate the function at each value of *x*.

x	$y = \cos x + 3$	coordinates
0	$y = \cos 0 + 3 = 1 + 3 = 4$	(0, 4)
$\frac{\pi}{2}$	$y = \cos\frac{\pi}{2} + 3 = 0 + 3 = 3$	$\left(\frac{\pi}{2},3\right)$
π	$y = \cos \pi + 3 = -1 + 3 = 2$	(<i>π</i> , 2)
$\frac{3\pi}{2}$	$y = \cos\frac{3\pi}{2} + 3 = 0 + 3 = 3$	$\left(\frac{3\pi}{2},3\right)$
2π	$y = \cos 2\pi + 3 = 1 + 3 = 4$	(2 <i>π</i> , 4)

By connecting the points with a smooth curve we obtain one period of the graph.

57. The graph of $y = 2\sin \frac{1}{2}x + 1$ is the graph of $y = 2\sin \frac{1}{2}x$ shifted one unit upward. The amplitude for both functions is |2| = 2. The period for both functions is $\frac{2\pi}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$. The quarterperiod is $\frac{4\pi}{4} = \pi$. The cycle begins at x = 0. Add

quarter-periods to generate x-values for the key

points. x = 0 $x = 0 + \pi = \pi$ $x = \pi + \pi = 2\pi$ $x = 2\pi + \pi = 3\pi$ $x = 3\pi + \pi = 4\pi$ Evaluate the function at each value of x. $x = \frac{1}{2}x + 1$ coordin

x	$y = 2\sin\frac{1}{2}x + 1$	coordinates
0	$y = 2\sin\left(\frac{1}{2} \cdot 0\right) + 1$	(0, 1)
	$=2\sin 0+1$	
	$= 2 \cdot 0 + 1 = 0 + 1 = 1$	
π	$y = 2\sin\left(\frac{1}{2} \cdot \pi\right) + 1$	(<i>π</i> , 3)
	$=2\sin\frac{\pi}{2}+1$	
	$= 2 \cdot 1 + 1 = 2 + 1 = 3$	
2π	$y = 2\sin\left(\frac{1}{2} \cdot 2\pi\right) + 1$	$(2\pi, 1)$
	$=2\sin\pi+1$	
	$= 2 \cdot 0 + 1 = 0 + 1 = 1$	
3π	$y = 2\sin\left(\frac{1}{2} \cdot 3\pi\right) + 1$	$(3\pi, -1)$
	$=2\sin\frac{3\pi}{2}+1$	
	$= 2 \cdot (-1) + 1$	
	= -2 + 1 = -1	
4π	$y = 2\sin\left(\frac{1}{2} \cdot 4\pi\right) + 1$	$(4\pi, 1)$
	$=2\sin 2\pi + 1$	
	$= 2 \cdot 0 + 1 = 0 + 1 = 1$	

By connecting the points with a smooth curve we obtain one period of the graph.

58. The graph of $y = 2\cos\frac{1}{2}x + 1$ is the graph of $y = 2\cos\frac{1}{2}x$ shifted one unit upward. The amplitude for both functions is |2| = 2. The period for both functions is $\frac{2\pi}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$. The quarter-period is $\frac{4\pi}{4} = \pi$. The cycle begins at x = 0. Add quarterperiods to generate *x*-values for the key points. x = 0 $x = 0 + \pi = \pi$ $x = \pi + \pi = 2\pi$ $x = 2\pi + \pi = 3\pi$ $x = 3\pi + \pi = 4\pi$ Evaluate the function at each value of *x*.

x	$y = 2\cos\frac{1}{2}x + 1$	coordinates
0	$y = 2\cos\left(\frac{1}{2} \cdot 0\right) + 1$	(0, 3)
	$= 2\cos 0 + 1$	
	$= 2 \cdot 1 + 1 = 2 + 1 = 3$	
π	$y = 2\cos\left(\frac{1}{2} \cdot \pi\right) + 1$	(<i>π</i> , 1)
	$=2\cos\frac{\pi}{2}+1$	
	$= 2 \cdot 0 + 1 = 0 + 1 = 1$	
2π	$y = 2\cos\left(\frac{1}{2} \cdot 2\pi\right) + 1$	$(2\pi, -1)$
	$=2\cos\pi+1$	
	$= 2 \cdot (-1) + 1 = -2 + 1 = -1$	
3π	$y = 2\cos\left(\frac{1}{2} \cdot 3\pi\right) + 1$	(3 <i>π</i> , 1)
	$= 2 \cdot 0 + 1 = 0 + 1 = 1$	
4π	$y = 2\cos\left(\frac{1}{2} \cdot 4\pi\right) + 1$	(4 <i>π</i> , 3)
	$=2\cos 2\pi +1$	
	$= 2 \cdot 1 + 1 = 2 + 1 = 3$	

By connecting the points with a smooth curve we obtain one period of the graph.

$$y = 2\cos\frac{1}{2}x + 1$$

59. The graph of $y = -3\cos 2\pi x + 2$ is the graph of $y = -3\cos 2\pi x$ shifted 2 units upward. The amplitude for both functions is |-3| = 3. The period for both functions is $\frac{2\pi}{2\pi} = 1$. The quarter-period is $\frac{1}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{1}{4} = \frac{1}{4}$

$$x = 0 + \frac{1}{4} = \frac{1}{4}$$
$$x = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
$$x = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$
$$x = \frac{3}{4} + \frac{1}{4} = 1$$

Evaluate the function at each value of *x*.

x	$y = -3\cos 2\pi x + 2$	coordinates
0	$y = -3\cos(2\pi \cdot 0) + 2$	(0, -1)
	$= -3\cos 0 + 2$	
	$= -3 \cdot 1 + 2$	
	= -3 + 2 = -1	
$\frac{1}{4}$	$y = -3\cos\left(2\pi \cdot \frac{1}{4}\right) + 2$	$\left(\frac{1}{4}, 2\right)$
	$= -3\cos\frac{\pi}{2} + 2$	
	$= -3 \cdot 0 + 2$	
	= 0 + 2 = 2	
$\frac{1}{2}$	$y = -3\cos\left(2\pi \cdot \frac{1}{2}\right) + 2$	$\left(\frac{1}{2},5\right)$
	$=-3\cos\pi+2$	
	$= -3 \cdot (-1) + 2$	
	=3+2=5	

$\frac{3}{4}$	$y = -3\cos\left(2\pi \cdot \frac{3}{4}\right) + 2$	$\left(\frac{3}{4},2\right)$
	$= -3\cos\frac{3\pi}{2} + 2$	
	$= -3 \cdot 0 + 2$	
	= 0 + 2 = 2	
1	$y = -3\cos(2\pi \cdot 1) + 2$	(1, -1)
	$=-3\cos 2\pi + 2$	
	$= -3 \cdot 1 + 2$	
	= -3 + 2 = -1	

By connecting the points with a smooth curve we obtain one period of the graph.

60. The graph of $y = -3\sin 2\pi x + 2$ is the graph of $y = -3\sin 2\pi x$ shifted two units upward. The amplitude for both functions is |A| = |-3| = 3. The period for both functions is $\frac{2\pi}{2\pi} = 1$. The quarter-period is $\frac{1}{4}$. The cycle begins at x = 0. Add quarter-

periods to generate *x*-values for the key points. x = 0

$$x = 0 + \frac{1}{4} = \frac{1}{4}$$
$$x = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
$$x = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$
$$x = \frac{3}{4} + \frac{1}{4} = 1$$

Evaluate the function at each value of *x*.

x	$y = -3\sin 2\pi x + 2$	coordinates
0	$v = -3\sin(2\pi \cdot 0) + 2$	(0, 2)
	$=-3\sin 0+2$	
	$= -3 \cdot 0 + 2 = 0 + 2 = 2$	
$\frac{1}{4}$	$y = -3\sin\left(2\pi \cdot \frac{1}{4}\right) + 2$	$\left(\frac{1}{4}, -1\right)$
	$= -3\sin\frac{\pi}{2} + 2$	
	$= -3 \cdot 1 + 2 = -3 + 2 = -1$	
$\frac{1}{2}$	$y = -3\sin\left(2\pi \cdot \frac{1}{2}\right) + 2$	$\left(\frac{1}{2},2\right)$
	$=-3\sin\pi+2$	
	$= -3 \cdot 0 + 2 = 0 + 2 = 2$	
$\frac{3}{4}$	$y = -3\sin\left(2\pi \cdot \frac{3}{4}\right) + 2$	$\left(\frac{3}{4},5\right)$
	$= -3\sin\frac{3\pi}{2} + 2$	
	$= -3 \cdot (-1) + 2 = 3 + 2 = 5$	
1	$y = -3\sin(2\pi \cdot 1) + 2$	(1, 2)
	$= -3\sin 2\pi + 2$	
	$= -3 \cdot 0 + 2 = 0 + 2 = 2$	

By connecting the points with a smooth curve we obtain one period of the graph.

61. Select several values of *x* over the interval.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = 2\cos x$	2	1.4	0	-1.4	-2	-1.4	0	1.4	2
$y_2 = \sin x$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
$y = 2\cos x + \sin x$	2	2.1	1	-0.7	-2	-2.1	-1	0.7	2

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = 3\cos x$	3	2.1	0	-2.1	-3	-2.1	0	2.1	3
$y_2 = \sin x$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
$y = 3\cos x + \sin x$	3	2.8	1	-1.4	-3	-2.8	-1	1.4	3

62. Select several values of *x* over the interval.

63. Select several values of *x* over the interval.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = \sin x$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
$y_2 = \sin 2x$	0	1	0	-1	0	1	0	-1	0
$y = \sin x + \sin 2x$	0	1.7	1	-0.3	0	0.3	-1	-1.7	0

64. Select several values of *x* over the interval.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = \cos x$	1	0.7	0	-0.7	-1	-0.7	0	0.7	1
$y_2 = \cos 2x$	1	0	-1	0	1	0	-1	0	1
$y = \cos x + \cos 2x$	2	0.7	-1	-0.7	0	-0.7	-1	0.7	2

1									
x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = \sin x$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
$y_2 = \cos 2x$	1	0	-1	0	1	0	-1	0	1
$y = \sin x + \cos 2x$	1	0.7	0	0.7	1	-0.7	-2	-0.7	1
$(\frac{\pi}{4}, \sqrt{\frac{2}{2}})$ $y = \sin x$ $(0, 1)$ $(\frac{\pi}{2}, 0)$ $y = \cos 2x$ $(\frac{5\pi}{4}, \sqrt{\frac{2}{2}})$	$\left \left(\frac{3}{4} \right) \left(\frac{3}{4} \right) \right = \left \left($	$\frac{\pi}{4}, \sqrt{\frac{2}{2}}, \frac{1}{2}, \frac{1}{2}$	$\begin{pmatrix} 1\\ \frac{7\pi}{4}, \frac{1}{2} \\ 2 \end{pmatrix}$	$-\frac{\sqrt{2}}{2}$	os 2.	x			

65. Select several values of *x* over the interval.

66. Select several values of *x* over the interval.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = \cos x$	1	0.7	0	-0.7	-1	-0.7	0	0.7	1
$y_2 = \sin 2x$	0	1	0	-1	0	1	0	-1	0
$y = \cos x + \sin 2x$	1	1.7	0	-1.7	-1	0.3	0	-0.3	1

67. Select several values of *x* over the interval.

x	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3	$\frac{7}{2}$	4
$y_1 = \sin \pi x$	0	1	0	-1	0	1	0	-1	0
$y_2 = \cos\frac{\pi}{2}x$	1	0.7	0	-0.7	-1	-0.7	0	0.7	1
$y = \sin \pi x + \cos \frac{\pi}{2} x$	1	1.7	0	-1.7	-1	0.3	0	-0.3	1

x	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3	$\frac{7}{2}$	4
$y_1 = \cos \pi x$	1	0	-1	0	1	0	-1	0	1
$y_2 = \sin\frac{\pi}{2}x$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
$y = \cos \pi x + \sin \frac{\pi}{2} x$	1	0.7	0	0.7	1	-0.7	-2	-0.7	1

68. Select several values of *x* over the interval.

69. Using $y = A \cos Bx$ the amplitude is 3 and A = 3, The period is 4π and thus

$$B = \frac{2\pi}{\text{period}} = \frac{2\pi}{4\pi} = \frac{1}{2}$$
$$y = A\cos Bx$$
$$y = 3\cos\frac{1}{2}x$$

70. Using $y = A \sin Bx$ the amplitude is 3 and A = 3, The period is 4π and thus

$$B = \frac{2\pi}{\text{period}} = \frac{2\pi}{4\pi} = \frac{1}{2}$$
$$y = A \sin Bx$$
$$y = 3\sin\frac{1}{2}x$$

71. Using $y = A \sin Bx$ the amplitude is 2 and A = -2, The period is π and thus

$$B = \frac{2\pi}{\text{period}} = \frac{2\pi}{\pi} = 2$$
$$y = A \sin Bx$$
$$y = -2\sin 2x$$

72. Using $y = A \cos Bx$ the amplitude is 2 and A = -2, The period is 4π and thus

$$B = \frac{2\pi}{\text{period}} = \frac{2\pi}{\pi} = 2$$
$$y = A\cos Bx$$
$$y = -2\cos 2x$$

73. Using $y = A \sin Bx$ the amplitude is 2 and A = 2, The period is 4 and thus

$$B = \frac{2\pi}{\text{period}} = \frac{2\pi}{4} = \frac{\pi}{2}$$
$$y = A \sin Bx$$
$$y = 2\sin\left(\frac{\pi}{2}x\right)$$

74. Using $y = A \cos Bx$ the amplitude is 2 and A = 2, The period is 4 and thus

$$B = \frac{2\pi}{\text{period}} = \frac{2\pi}{4} = \frac{\pi}{2}$$
$$y = A\cos Bx$$
$$y = 2\cos\left(\frac{\pi}{2}x\right)$$

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = \cos x$	1	0.7	0	-0.7	-1	-0.7	0	0.7	1
$y_2 = \sin 2x$	0	1	0	-1	0	1	0	-1	0
$y = \cos x - \sin 2x$	1	-0.3	0	0.3	-1	-1.7	0	1.7	1

79. Select several values of *x* over the interval.

80. Select several values of *x* over the interval.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = \cos 2x$	1	0	-1	0	1	0	-1	0	1
$y_2 = \sin x$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
$y = \cos 2x - \sin x$	1	-0.7	-2	-0.7	1	0.7	0	0.7	1

81. Select several values of *x* over the interval.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = \sqrt{x}$	0	0.9	1.3	1.5	1.8	2.0	2.2	2.3	2.5
$y_2 = \sin x$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
$y = \sqrt{x} + \sin x$	0	1.6	2.3	2.2	1.8	1.3	1.2	1.6	2.5

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = x $	0	0.8	1.6	2.4	3.1	3.9	4.7	5.5	6.3
$y_2 = \cos x$	1	0.7	0	-0.7	-1	-0.7	0	0.7	1
$y = x + \cos x$	1	1.5	1.6	1.6	2.1	3.2	4.7	6.2	7.3

82. Select several values of *x* over the interval.

- 83. The period of the physical cycle is 33 days.
- 84. The period of the emotional cycle is 28 days.
- 85. The period of the intellectual cycle is 23 days.
- **86.** In the month of February, the physical cycle is at a minimum on February 18. Thus, the author should not run in a marathon on February 18.
- 87. In the month of March, March 21 would be the best day to meet an on-line friend for the first time, because the emotional cycle is at a maximum.
- **88.** In the month of February, the intellectual cycle is at a maximum on February 11. Thus, the author should begin writing the on February 11.
- 89. Answers may vary.
- 90. Answers may vary.
- 91. The information gives the five key point of the graph.
 - (0, 14) corresponds to June,
 - (3, 12) corresponds to September,
 - (6, 10) corresponds to December,
 - (9, 12) corresponds to March,
 - (12, 14) corresponds to June

By connecting the five key points with a smooth curve we graph the information from June of one year to June of the following year.

- **92.** The information gives the five key points of the graph.
 - (0, 23) corresponds to Noon,
 - (3, 38) corresponds to 3 P.M.,
 - (6, 53) corresponds to 6 P.M.,
 - (9, 38) corresponds to 9 P.M.,
 - (12, 23) corresponds to Midnight.

By connecting the five key points with a smooth curve we graph information from noon to midnight. Extend the graph one cycle to the right to graph the information for $0 \le x \le 24$.

- 93. The function $y = 3\sin\frac{2\pi}{365}(x-79)+12$ is of the form $y = A\sin B\left(x - \frac{C}{B}\right) + D$ with A = 3 and $B = \frac{2\pi}{365}$.
 - **a.** The amplitude is |A| = |3| = 3.
 - **b.** The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{2\pi}{365}} = 2\pi \cdot \frac{365}{2\pi} = 365$.
 - **c.** The longest day of the year will have the most hours of daylight. This occurs when the sine function equals 1.

$$y = 3\sin\frac{2\pi}{365}(x - 79) + 12$$

y = 3(1) + 12
y = 15

There will be 15 hours of daylight.

d. The shortest day of the year will have the least hours of daylight. This occurs when the sine function equals -1.

$$y = 3\sin\frac{2\pi}{365}(x - 79) + 12$$

y = 3(-1) + 12
y = 9

There will be 9 hours of daylight.

e. The amplitude is 3. The period is 365. The phase shift is $\frac{C}{B} = 79$. The quarter-period is $\frac{365}{4} = 91.25$. The cycle begins at x = 79. Add

quarter-periods to find the *x*-values of the key points.

x = 79 x = 79 + 91.25 = 170.25 x = 170.25 + 91.25 = 261.5 x = 261.5 + 91.25 = 352.75x = 352.75 + 91.25 = 444

Because we are graphing for $0 \le x \le 365$, we will evaluate the function for the first four *x*-values along with x = 0 and x = 365. Using a calculator we have the following points. (0, 9.1) (79, 12) (170.25, 15) (261.5, 12) (352.75, 9) (365, 9.1)

By connecting the points with a smooth curve we obtain one period of the graph, starting on January 1.

94. The function $y = 16\sin\left(\frac{\pi}{6}x - \frac{2\pi}{3}\right) + 40$ is in the

form $y = A\sin(Bx - C) + D$ with A = 16, $B = \frac{\pi}{6}$,

and $C = \frac{2\pi}{3}$. The amplitude is |A| = |16| = 16.

The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{6}} = 2\pi \cdot \frac{6}{\pi} = 12$. The phase

shift is $\frac{C}{B} = \frac{\frac{2\pi}{3}}{\frac{\pi}{6}} = \frac{2\pi}{3} \cdot \frac{6}{\pi} = 4$. The quarter-period is

 $\frac{12}{4} = 3$. The cycle begins at x = 4. Add quarterperiods to find the *x*-values for the key points.

$$x = 4$$

$$x = 4 + 3 = 7$$

$$x = 7 + 3 = 10$$

$$x = 10 + 3 = 13$$

$$x = 13 + 3 = 16$$

Because we are graphing for $1 \le x \le 12$, we will evaluate the function for the three *x*-values between 1 and 12, along with x = 1 and x = 12. Using a calculator we have the following points. (1, 24) (4, 40) (7, 56) (10, 40) (12, 26.1) By connecting the points with a smooth curve we obtain the graph for $1 \le x \le 12$.

The highest average monthly temperature is 56° in July.

95. Because the depth of the water ranges from a minimum of 6 feet to a maximum of 12 feet, the curve oscillates about the middle value, 9 feet. Thus, D = 9. The maximum depth of the water is 3 feet above 9 feet. Thus, A = 3. The graph shows that one complete cycle occurs in 12-0, or 12 hours. The period is 12. Thus

$$12 = \frac{2\pi}{B}$$
$$12B = 2\pi$$
$$B = \frac{2\pi}{12} = \frac{\pi}{6}$$

Substitute these values into $y = A \cos Bx + D$. The

depth of the water is modeled by $y = 3\cos\frac{\pi x}{6} + 9$.

96. Because the depth of the water ranges from a minimum of 3 feet to a maximum of 5 feet, the curve oscillates about the middle value, 4 feet. Thus, D = 4. The maximum depth of the water is 1 foot above 4 feet. Thus, A = 1. The graph shows that one complete cycle occurs in 12–0, or 12 hours. The period is 12. Thus,

$$12 = \frac{2\pi}{B}$$
$$12B = 2\pi$$
$$B = \frac{2\pi}{12} = \frac{\pi}{6}$$

Substitute these values into $y = A \cos Bx + D$. The depth of the water is modeled by $y = \cos \frac{\pi x}{6} + 4$.

97. – 110. Answers may vary.

111. The function $y = 3\sin(2x + \pi) = 3\sin(2x - (-\pi))$ is of the form $y = A\sin(Bx - C)$ with A = 3, B = 2, and $C = -\pi$. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The cycle begins at $x = \frac{C}{B} = \frac{-\pi}{2} = -\frac{\pi}{2}$. We choose $-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$, and $-4 \le y \le 4$ for our graph.

112. The function $y = -2\cos\left(2\pi x - \frac{\pi}{2}\right)$ is of the form $y = A\cos(Bx - C)$ with A = -2, $B = 2\pi$, and $C = \frac{\pi}{2}$. The amplitude is |A| = |-2| = 2. The period is $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$. The cycle begins at $x = \frac{C}{B} = \frac{\frac{\pi}{2}}{2\pi} = \frac{\pi}{2} \cdot \frac{1}{2\pi} = \frac{1}{4}$. We choose $\frac{1}{4} \le x \le \frac{9}{4}$,

113. The function

$$y = 0.2 \sin\left(\frac{\pi}{10}x + \pi\right) = 0.2 \sin\left(\frac{\pi}{10}x - (-\pi)\right) \text{ is of the}$$

form $y = A \sin(Bx - C)$ with $A = 0.2$, $B = \frac{\pi}{10}$, and
 $C = -\pi$. The amplitude is $|A| = |0.2| = 0.2$. The
period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{10}} = 2\pi \cdot \frac{10}{\pi} = 20$. The cycle begins
at $x = \frac{C}{B} = \frac{-\pi}{\frac{\pi}{10}} = -\pi \cdot \frac{10}{\pi} = -10$. We choose
 $-10 \le x \le 30$, and $-1 \le y \le 1$ for our graph.

114. The function $y = 3\sin(2x - \pi) + 5$ is of the form $y = A\cos(Bx - C) + D$ with A = 3, B = 2, $C = \pi$, and D = 5. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The cycle begins at $x = \frac{C}{B} = \frac{\pi}{2}$. Because D = 5, the graph has a vertical shift 5 units upward. We choose $\frac{\pi}{2} \le x \le \frac{5\pi}{2}$, and $0 \le y \le 10$ for our graph.

The graphs appear to be the same from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.

The graphs appear to be the same from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$. 117. $\frac{2}{5}$

The graph is similar to $y = \sin x$, except the amplitude is greater and the curve is less smooth.

The graph is very similar to $y = \sin x$, except not smooth.

- 120. Answers may vary.
- 121. makes sense
- **122.** does not make sense; Explanations will vary. Sample explanation: It may be easier to start at the highest point.
- 123. makes sense
- 124. makes sense

125. a. Since A = 3 and D = -2, the maximum will occur at 3-2=1 and the minimum will occur at -3-2=-5. Thus the range is [-5,1]

Viewing rectangle: $\left[-\frac{\pi}{6}, \frac{23\pi}{6}, \frac{\pi}{6}\right]$ by $\left[-5, 1, 1\right]$

b. Since A = 1 and D = -2, the maximum will occur at 1-2 = -1 and the minimum will occur at -1-2 = -3. Thus the range is $\left[-3, -1\right]$ Viewing rectangle: $\left[-\frac{\pi}{6}, \frac{7\pi}{6}, \frac{\pi}{6}\right]$ by $\left[-3, -1, 1\right]$

126.
$$A = \pi$$
$$B = \frac{2\pi}{\text{period}} = \frac{2\pi}{1} = 2\pi$$
$$\frac{C}{B} = \frac{C}{2\pi} = -2$$
$$C = -4\pi$$
$$y = A\cos(Bx - C)$$
$$y = \pi\cos(2\pi x + 4\pi)$$
or
$$y = \pi\cos[2\pi(x + 2)]$$

127.
$$y = \sin^2 x = \frac{1}{2} - \frac{1}{2} \cos 2x$$

$$\begin{pmatrix} \frac{\pi}{4}, \frac{1}{2} \end{pmatrix} \xrightarrow{y} \begin{pmatrix} \frac{\pi}{2}, 1 \\ 2 \\ (0, 0) \\ \frac{\pi}{2} \\ y = \sin^2 x \\ \text{or } y = \frac{1}{2} - \frac{1}{2} \cos 2x \end{pmatrix}$$

128.
$$y = \cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x$$

$$\begin{pmatrix} \pi \\ \overline{4}, \frac{1}{2} \end{pmatrix} \xrightarrow{y_{1}} \begin{pmatrix} \frac{\pi}{2}, 0 \\ \overline{2}, 0 \end{pmatrix}$$

$$\begin{pmatrix} (0, 1) \\ \overline{2} \\ \overline{4}, \frac{1}{2} \end{pmatrix} \xrightarrow{p_{1}} \begin{pmatrix} (\pi, 1) \\ \overline{4}, \frac{3\pi}{4}, \frac{1}{2} \end{pmatrix}$$

$$y = \cos^{2}x$$
or $y = \frac{1}{2} + \frac{1}{2} \cos 2x$

129. Answers may vary.

130.
$$-\frac{\pi}{2} < x + \frac{\pi}{4} < \frac{\pi}{2}$$
$$-\frac{\pi}{2} - \frac{\pi}{4} < x + \frac{\pi}{4} - \frac{\pi}{4} < \frac{\pi}{2} - \frac{\pi}{4}$$
$$-\frac{2\pi}{4} - \frac{\pi}{4} < x < \frac{2\pi}{4} - \frac{\pi}{4}$$
$$-\frac{3\pi}{4} < x < \frac{\pi}{4}$$
$$\left\{ x \middle| -\frac{3\pi}{4} < x < \frac{\pi}{4} \right\} \text{ or } \left(-\frac{3\pi}{4}, \frac{\pi}{4} \right)$$
$$131. \quad \frac{-\frac{3\pi}{4} + \frac{\pi}{4}}{2} = -\frac{2\pi}{4} = -\frac{\pi}{2} = -\frac{\pi}{4}$$

b. The reciprocal function is undefined.

Section 2.2

Check Point Exercises

1. Solve the equations $2x = -\frac{\pi}{2}$ and $2x = \frac{\pi}{2}$ $x = -\frac{\pi}{4}$ $x = \frac{\pi}{4}$

Thus, two consecutive asymptotes occur at $x = -\frac{\pi}{4}$

and $x = \frac{\pi}{4}$. Midway between these asymptotes is x = 0. An *x*-intercept is 0 and the graph passes

through (0, 0). Because the coefficient of the tangent is 3, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -3 and 3. Use the two asymptotes, the *x*-intercept, and the points midway between to graph one period

of $y = 3\tan 2x$ from $-\frac{\pi}{4}$ to $\frac{\pi}{4}$. In order to graph

for $-\frac{\pi}{4} < x < \frac{3\pi}{4}$, Continue the pattern and extend the graph another full period to the right.

2. Solve the equations

$$x - \frac{\pi}{2} = -\frac{\pi}{2}$$
 and $x - \frac{\pi}{2} = \frac{\pi}{2}$
 $x = \frac{\pi}{2} - \frac{\pi}{2}$ $x = \frac{\pi}{2} + \frac{\pi}{2}$
 $x = 0$ $x = \pi$

Thus, two consecutive asymptotes occur at x = 0 and $x = \pi$.

x-intercept = $\frac{0+\pi}{2} = \frac{\pi}{2}$

An *x*-intercept is $\frac{\pi}{2}$ and the graph passes through

 $\left(\frac{\pi}{2}, 0\right)$. Because the coefficient of the tangent is 1,

the points on the graph midway between an *x*intercept and the asymptotes have *y*-coordinates of -1and 1. Use the two consecutive asymptotes, x = 0 and $x = \pi$, to graph one full period of $y = \tan\left(x - \frac{\pi}{2}\right)$ from 0 to π . Continue the pattern

and extend the graph another full period to the right.

3. Solve the equations

$$\frac{\pi}{2}x = 0 \quad \text{and} \quad \frac{\pi}{2}x = \pi$$
$$x = 0 \qquad x = \frac{\pi}{\frac{\pi}{2}}$$
$$x = 2$$

Two consecutive asymptotes occur at x = 0 and x = 2. Midway between x = 0 and x = 2 is x = 1. An *x*-intercept is 1 and the graph passes through (1, 0). Because the coefficient of the cotangent is $\frac{1}{2}$, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of $-\frac{1}{2}$ and $\frac{1}{2}$. Use the two consecutive asymptotes, x = 0 and

x = 2, to graph one full period of $y = \frac{1}{2} \cot \frac{\pi}{2} x$. The curve is repeated along the *x*-axis one full period as shown.

4. The *x*-intercepts of
$$y = \sin\left(x + \frac{\pi}{4}\right)$$
 correspond to vertical asymptotes of $y = \csc\left(x + \frac{\pi}{4}\right)$.

$$\begin{pmatrix} \frac{\pi}{4}, 1 \end{pmatrix} \xrightarrow{\uparrow} \\ 1 \\ -\frac{\pi}{4} \\ -\frac{\pi}{4} \\ 2 \\ -\frac{\pi}{4} \\ -$$

v

5. Graph the reciprocal cosine function, $y = 2\cos 2x$. The equation is of the form $y = A\cos Bx$ with A = 2and B = 2. amplitude: |A| = |2| - 2

$$A = |2| = 2$$

period:
$$\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$$

Use quarter-periods, $\frac{\pi}{4}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$, and π . Evaluating the function at each value of *x*, the key points are

$$(0,2), \left(\frac{\pi}{4}, 0\right), \left(\frac{\pi}{2}, -2\right), \left(\frac{3\pi}{4}, 0\right), (\pi, 2)$$
. In order to

graph for $-\frac{3\pi}{4} \le x \le \frac{3\pi}{4}$, Use the first four points 3π

and extend the graph $-\frac{3\pi}{4}$ units to the left. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts,

and use them as guides to graph $y = 2 \sec 2x$.

Concept and Vocabulary Check 2.2

$$1. \quad \left(-\frac{\pi}{4},\frac{\pi}{4}\right); \ -\frac{\pi}{4}; \ \frac{\pi}{4}$$

- **2.** $(0,\pi); 0; \pi$
- **3.** (0, 2); 0; 2

$$4. \quad \left(-\frac{\pi}{4},\frac{3\pi}{4}\right); \ -\frac{\pi}{4}; \ \frac{3\pi}{4}$$

5. $3\sin 2x$

- $6. \qquad y = 2\cos \pi x$
- 7. false
- 8. true

Exercise Set 2.2

1. The graph has an asymptote at $x = -\frac{\pi}{2}$. The phase shift, $\frac{C}{B}$, from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$ is $-\pi$ units. Thus, $\frac{C}{B} = \frac{C}{1} = -\pi$ $C = -\pi$ The function with $C = -\pi$ is $y = \tan(x + \pi)$.

2. The graph has an asymptote at x = 0. The phase shift, $\frac{C}{B}$, from $\frac{\pi}{2}$ to 0 is $-\frac{\pi}{2}$ units. Thus, $\frac{C}{B} = \frac{C}{1} = -\frac{\pi}{2}$ $C = -\frac{\pi}{2}$ The function with $C = -\frac{\pi}{2}$ is $y = \tan\left(x + \frac{\pi}{2}\right)$. 3. The graph has an asymptote at $x = \pi$.

- The graph has an asymptote at x = 7 $\pi = \frac{\pi}{2} + C$ $C = \frac{\pi}{2}$ The function is $y = -\tan\left(x - \frac{\pi}{2}\right)$.
- 4. The graph has an asymptote at $\frac{\pi}{2}$. There is no phase shift. Thus, $\frac{C}{B} = \frac{C}{1} = 0$ C = 0The function with C = 0 is $y = -\tan x$.

5. Solve the equations
$$\frac{x}{4} = -\frac{\pi}{2}$$
 and $\frac{x}{4} = \frac{\pi}{2}$
 $x = \left(-\frac{\pi}{2}\right)4$ $x = \left(\frac{\pi}{2}\right)4$
 $x = -2\pi$ $x = 2\pi$

Thus, two consecutive asymptotes occur at $x = -2\pi$ and $x = 2\pi$.

x-intercept =
$$\frac{-2\pi + 2\pi}{2} = \frac{0}{2} = 0$$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is 3, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -3 and 3. Use the two consecutive asymptotes, $x = -2\pi$ and

 $x = 2\pi$, to graph one full period of $y = 3\tan\frac{x}{4}$ from -2π to 2π .

Continue the pattern and extend the graph another full period to the right.

6. Solve the equations

$$\frac{x}{4} = -\frac{\pi}{2} \quad \text{and} \quad \frac{x}{4} = \frac{\pi}{2}$$
$$x = \left(-\frac{\pi}{2}\right)4 \quad x = \left(\frac{\pi}{2}\right)4$$
$$x = -2\pi \quad x = 2\pi$$

Thus, two consecutive asymptotes occur at $x = -2\pi$ and $x = 2\pi$.

x-intercept =
$$\frac{-2\pi + 2\pi}{2} = \frac{0}{2} = 0$$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is 2, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -2 and 2. Use the two consecutive asymptotes, $x = -2\pi$ and $x = 2\pi$,

to graph one full period of $y = 2 \tan \frac{x}{4}$ from -2π to 2π .

Continue the pattern and extend the graph another full period to the right.

7. Solve the equations
$$2x = -\frac{\pi}{2}$$
 and $2x = \frac{\pi}{2}$
 $x = \frac{-\frac{\pi}{2}}{2}$ $x = \frac{\frac{\pi}{2}}{2}$
 $x = -\frac{\pi}{4}$ $x = \frac{\pi}{4}$

Thus, two consecutive asymptotes occur at $x = -\frac{\pi}{4}$

and $x = \frac{\pi}{4}$. *x*-intercept = $\frac{-\frac{\pi}{4} + \frac{\pi}{4}}{2} = \frac{0}{2} = 0$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is $\frac{1}{2}$, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of $-\frac{1}{2}$ and $\frac{1}{2}$. Use the two consecutive asymptotes, $x = -\frac{\pi}{4}$ and $x = \frac{\pi}{4}$, to graph one full period of $y = \frac{1}{2} \tan 2x$ from $-\frac{\pi}{4}$ to $\frac{\pi}{4}$. Continue the pattern and extend the graph another full period to the right.

8. Solve the equations

$$2x = -\frac{\pi}{2} \quad \text{and} \quad 2x = \frac{\pi}{2}$$
$$x = \frac{-\frac{\pi}{2}}{2} \qquad x = \frac{\frac{\pi}{2}}{2}$$
$$x = -\frac{\pi}{4} \qquad x = \frac{\pi}{4}$$

Thus, two consecutive asymptotes occur at $x = -\frac{\pi}{4}$

and
$$x = \frac{\pi}{4}$$
.
x-intercept = $\frac{-\frac{\pi}{4} + \frac{\pi}{4}}{2} = \frac{0}{2} =$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is 2, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -2 and 2.

0

Use the two consecutive asymptotes, $x = -\frac{\pi}{4}$ and

 $x = \frac{\pi}{4}$, to graph one full period of $y = 2 \tan 2x$ from

$$-\frac{\pi}{4}$$
 to $\frac{\pi}{4}$.

Continue the pattern and extend the graph another full period to the right.

9. Solve the equations

$$\frac{1}{2}x = -\frac{\pi}{2} \quad \text{and} \quad \frac{1}{2}x = \frac{\pi}{2}$$
$$x = \left(-\frac{\pi}{2}\right)2 \quad x = \left(\frac{\pi}{2}\right)2$$
$$x = -\pi \quad x = \pi$$

Thus, two consecutive asymptotes occur at $x = -\pi$ and $x = \pi$.

x-intercept = $\frac{-\pi + \pi}{2} = \frac{0}{2} = 0$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is -2, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of 2 and -2.

Use the two consecutive asymptotes, $x = -\pi$ and $x = \pi$, to graph one full period of $y = -2 \tan \frac{1}{2}x$

from $-\pi$ to π . Continue the pattern and extend the graph another full period to the right.

10. Solve the equations

$$\frac{1}{2}x = -\frac{\pi}{2} \quad \text{and} \quad \frac{1}{2}x = \frac{\pi}{2}$$
$$x = \left(-\frac{\pi}{2}\right)2 \quad x = \left(\frac{\pi}{2}\right)2$$
$$x = -\pi \quad x = \pi$$

Thus, two consecutive asymptotes occur at $x = -\pi$ and $x = \pi$.

x-intercept =
$$\frac{-\pi + \pi}{2} = \frac{0}{2} = 0$$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is -3, the points on the graph midway between an *x*-intercept and the asymptotes have

y-coordinates of 3 and -3. Use the two consecutive asymptotes, $x = -\pi$ and $x = \pi$, to graph one full

period of $y = -3\tan\frac{1}{2}x$ from $-\pi$ to π . Continue

the pattern and extend the graph another full period to the right.

11. Solve the equations

3

$$x - \pi = -\frac{\pi}{2} \quad \text{and} \quad x - \pi = \frac{\pi}{2}$$
$$x = -\frac{\pi}{2} + \pi \quad x = \frac{\pi}{2} + \pi$$
$$x = \frac{\pi}{2} \quad x = \frac{3\pi}{2}$$

Thus, two consecutive asymptotes occur at $x = \frac{\pi}{2}$

and $x = \frac{3\pi}{2}$. *x*-intercept = $\frac{\frac{\pi}{2} + \frac{3\pi}{2}}{2} = \frac{\frac{4\pi}{2}}{2} = \frac{4\pi}{4} = \pi$

An *x*-intercept is π and the graph passes through $(\pi, 0)$. Because the coefficient of the tangent is 1, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -1 and 1. Use the two consecutive asymptotes, $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$, to graph one full period of

 $y = \tan(x - \pi)$ from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$. Continue the pattern and extend the graph another full period to the right.

12. Solve the equations

$$x - \frac{\pi}{4} = -\frac{\pi}{2} \quad \text{and} \quad x - \frac{\pi}{4} = \frac{\pi}{2}$$
$$x = -\frac{2\pi}{4} + \frac{\pi}{4} \quad x = \frac{2\pi}{4} + \frac{\pi}{4}$$
$$x = -\frac{\pi}{4} \quad x = \frac{3\pi}{4}$$

Thus, two consecutive asymptotes occur at $x = -\frac{\pi}{4}$

and
$$x = \frac{3\pi}{4}$$
.
x-intercept = $\frac{-\frac{\pi}{4} + \frac{3\pi}{4}}{2} = \frac{2\pi}{4} = \frac{\pi}{4}$

13. An *x*-intercept is $\frac{\pi}{4}$ and the graph passes through $\left(\frac{\pi}{4}, 0\right)$. Because the coefficient of the tangent is 1,

the points on the graph midway between an *x*intercept and the asymptotes have *y*-coordinates of -1and 1. Use the two consecutive asymptotes, $x = -\frac{\pi}{4}$ and $x = \frac{3\pi}{4}$, to graph one full period of

$$y = \tan\left(x - \frac{\pi}{4}\right)$$
 from 0 to π .

Continue the pattern and extend the graph another full period to the right.

13. There is no phase shift. Thus,

$$\frac{C}{B} = \frac{C}{1} = 0$$
$$C = 0$$

Because the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -1 and 1, A = -1. The function with C = 0 and A = -1 is $y = -\cot x$.

14. The graph has an asymptote at $\frac{\pi}{2}$. The phase shift,

$$\frac{C}{B}$$
, from 0 to $\frac{\pi}{2}$ is $\frac{\pi}{2}$ units.
Thus, $\frac{C}{B} = \frac{C}{1} = \frac{\pi}{2}$
 $C = \frac{\pi}{2}$

The function with $C = \frac{\pi}{2}$ is $y = -\cot\left(x - \frac{\pi}{2}\right)$.

15. The graph has an asymptote at $-\frac{\pi}{2}$. The phase shift,

$$\frac{C}{B}, \text{ from 0 to } -\frac{\pi}{2} \text{ is } -\frac{\pi}{2} \text{ units. Thus,}$$
$$\frac{C}{B} = \frac{C}{1} = -\frac{\pi}{2}$$
$$C = -\frac{\pi}{2}$$

The function with $C = -\frac{\pi}{2}$ is $y = \cot\left(x + \frac{\pi}{2}\right)$.

16. The graph has an asymptote at $-\pi$. The phase shift,

$$\frac{C}{B}$$
, from 0 to $-\pi$ is $-\pi$ units.
Thus, $\frac{C}{B} = \frac{C}{1} = -\pi$
 $C = -\pi$
The function with $C = -\pi$ is $y = \cot(x + \pi)$.

17. Solve the equations x = 0 and $x = \pi$. Two consecutive asymptotes occur at x = 0 and $x = \pi$.

x-intercept $= \frac{0+\pi}{2} = \frac{\pi}{2}$ An x-intercept is $\frac{\pi}{2}$ and the graph passes through $\left(\frac{\pi}{2}, 0\right)$. Because the coefficient of the cotangent is

2, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of 2 and -2. Use the two consecutive asymptotes, x = 0 and $x = \pi$, to graph one full period of $y = 2 \cot x$. The curve is repeated along the *x*-axis one full period as shown.

18. Solve the equations x = 0 and $x = \pi$ Two consecutive asymptotes occur at x = 0and $x = \pi$. x-intercept $= \frac{0+\pi}{2} = \frac{\pi}{2}$ An *x*-intercept is $\frac{\pi}{2}$ and the graph passes through $\left(\frac{\pi}{2}, 0\right)$. Because the coefficient of the cotangent is $\frac{1}{2}$, the points on the graph midway between an *x*intercept and the asymptotes have *y*-coordinates of $\frac{1}{2}$ and $-\frac{1}{2}$. Use the two consecutive asymptotes, x = 0 and $x = \pi$, to graph one full period of $y = \frac{1}{2} \cot x$.

The curve is repeated along the *x*-axis one full period as shown.

19. Solve the equations 2x = 0 and $2x = \pi$ x = 0 $x = \frac{\pi}{2}$

Two consecutive asymptotes occur at x = 0 and

$$x = \frac{\pi}{2}.$$

x-intercept = $\frac{0 + \frac{\pi}{2}}{2} = \frac{\pi}{2} = \frac{\pi}{4}$
An x-intercept is $\frac{\pi}{4}$ and the graph passes through $\left(\frac{\pi}{4}, 0\right)$. Because the coefficient of the cotangent is $\frac{1}{2}$, the points on the graph midway between an x-intercept and the asymptotes have y-coordinates of $\frac{1}{2}$ and $-\frac{1}{2}$. Use the two consecutive asymptotes,

$$x = 0$$
 and $x = \frac{\pi}{2}$, to graph one full period of

 $y = \frac{1}{2} \cot 2x$. The curve is repeated along the *x*-axis one full period as shown.

 $\begin{pmatrix} \frac{\pi}{8}, \frac{1}{2} \end{pmatrix} \xrightarrow{y} \begin{pmatrix} \frac{\pi}{4}, 0 \end{pmatrix} \xrightarrow{\pi} \frac{\pi}{2} \xrightarrow{\pi} \frac{\pi}{2} \xrightarrow{x} \frac{\pi}{2} \xrightarrow{x} \frac{\pi}{2} \xrightarrow{x} \frac{\pi}{2} \xrightarrow{x} y = \frac{1}{2} \cot 2x$

20. Solve the equations 2x = 0 and $2x = \pi$ x = 0 $x = \frac{\pi}{2}$

Two consecutive asymptotes occur at x = 0 and

$$x=\frac{\pi}{2}$$
.

x-intercept = $\frac{0 + \frac{\pi}{2}}{2} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{4}$

An *x*-intercept is $\frac{\pi}{4}$ and the graph passes through

 $\left(\frac{\pi}{4}, 0\right)$. Because the coefficient of the cotangent is 2,

the points on the graph midway between an *x*intercept and the asymptotes have *y*-coordinates of 2 and -2. Use the two consecutive asymptotes, x = 0

and $x = \frac{\pi}{2}$, to graph one full period of $y = 2 \cot 2x$.

The curve is repeated along the *x*-axis one full period as shown.

21. Solve the equations $\frac{\pi}{2}x = 0$ and $\frac{\pi}{2}x = \pi$ x = 0 $x = \frac{\pi}{\frac{\pi}{2}}$ x = 2

Two consecutive asymptotes occur at x = 0 and x = 2.

x-intercept =
$$\frac{0+2}{2} = \frac{2}{2} = 1$$

An x-intercept is 1 and the graph passes through (1, 0).

Because the coefficient of the cotangent is -3, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -3 and 3. Use the two consecutive asymptotes,

x = 0 and x = 2, to graph one full period of

 $y = -3\cot\frac{\pi}{2}x$. The curve is repeated along the *x*-axis one full period as shown.

22. Solve the equations $\frac{\pi}{4}x = 0$ and $\frac{\pi}{4}x = \pi$ x = 0 $x = \frac{\pi}{\frac{\pi}{4}}$ x = 4

Two consecutive asymptotes occur at x = 0 and x = 4.

x-intercept =
$$\frac{0+4}{2} = \frac{4}{2} = 2$$

An *x*-intercept is 2 and the graph passes through

(2, 0). Because the coefficient of the cotangent is -2,

the points on the graph midway between an *x*intercept and the asymptotes have *y*-coordinates of -2and 2. Use the two consecutive asymptotes, x = 0and x = 4, to graph one full period of

 $y = -2 \cot \frac{\pi}{4} x$. The curve is repeated along the *x*-

axis one full period as shown.

23. Solve the equations

$$x + \frac{\pi}{2} = 0 \qquad \text{and} \qquad x + \frac{\pi}{2} = \pi$$
$$x = 0 - \frac{\pi}{2} \qquad \qquad x = \pi - \frac{\pi}{2}$$
$$x = -\frac{\pi}{2} \qquad \qquad x = \frac{\pi}{2}$$

Two consecutive asymptotes occur at $x = -\frac{\pi}{2}$ and

$$x=\frac{\pi}{2}\,.$$

x-intercept = $\frac{-\frac{\pi}{2} + \frac{\pi}{2}}{2} = \frac{0}{2} = 0$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the cotangent is 3, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of 3 and -3.

Use the two consecutive asymptotes, $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$, to graph one full period of $y = 3\cot\left(x + \frac{\pi}{2}\right)$.

The curve is repeated along the *x*-axis one full period as shown.

24. Solve the equations

$$x + \frac{\pi}{4} = 0 \qquad \text{and} \qquad x + \frac{\pi}{4} = \pi$$
$$x = 0 - \frac{\pi}{4} \qquad \qquad x = \pi - \frac{\pi}{4}$$
$$x = -\frac{\pi}{4} \qquad \qquad x = \frac{3\pi}{4}$$

Two consecutive asymptotes occur at $x = -\frac{\pi}{4}$ and

$$x = \frac{3\pi}{4}.$$

x-intercept = $\frac{-\frac{\pi}{4} + \frac{3\pi}{4}}{2} = \frac{\frac{2\pi}{4}}{2} = \frac{\pi}{4}$

An *x*-intercept is $\frac{\pi}{4}$ and the graph passes through

 $\left(\frac{\pi}{4}, 0\right)$. Because the coefficient of the cotangent is

3, the points on the graph midway between an xintercept and the asymptotes have y-coordinates of 3 and -3. Use the two consecutive asymptotes,

$$x = -\frac{\pi}{4}$$
 and $x = \frac{3\pi}{4}$, to graph one full period of
 $y = 3\cot\left(x + \frac{\pi}{4}\right)$. The curve is repeated along the x-

axis one full period as shown.

25. The *x*-intercepts of $y = -\frac{1}{2}\sin\frac{x}{2}$ corresponds to vertical asymptotes of $y = -\frac{1}{2}\csc\frac{x}{2}$. Draw the vertical asymptotes, and use them as a guide to sketch the graph of $y = -\frac{1}{2}\csc\frac{x}{2}$.

$$\begin{pmatrix} -2\pi & -2\pi & -2\pi & 4\pi & (3\pi, \frac{1}{2}) \\ (-\pi, \frac{1}{2}) & -2\pi & 4\pi & (3\pi, \frac{1}{2}) \\ (-3\pi, -\frac{1}{2}) & -2\pi & 4\pi & (3\pi, \frac{1}{2}) \\ y = -\frac{1}{2} \sin \frac{x}{2} & y = -\frac{1}{2} \sin \frac{x}{2} \\ (\pi, -\frac{1}{2}) & y = -\frac{1}{2} \csc \frac{x}{2} & y = -\frac{1}{2} -\frac$$

26. The *x*-intercepts of $y = 3\sin 4x$ correspond to vertical asymptotes of $y = 3\csc 4x$. Draw the vertical asymptotes, and use them as a guide to sketch the graph of $y = 3\csc 4x$.

27. The *x*-intercepts of $y = \frac{1}{2}\cos 2\pi x$ corresponds to vertical asymptotes of $y = \frac{1}{2}\sec 2\pi x$. Draw the vertical asymptotes, and use them as a guide to sketch the graph of $y = \frac{1}{2}\sec 2\pi x$.

28. The *x*-intercepts of $y = -3\cos\frac{\pi}{2}x$ correspond to vertical asymptotes of $y = -3\sec\frac{\pi}{2}x$. Draw the vertical asymptotes, and use them as a guide to sketch the graph of $y = -3\sec\frac{\pi}{2}x$.

$$(-2, 3)$$

$$(0, -3)$$

$$(-4, -3)$$

$$y = -3 \sec \frac{\pi}{2} x$$

$$(-4, -3)$$

$$y = -3 \sec \frac{\pi}{2} x$$

29. Graph the reciprocal sine function, $y = 3\sin x$. The equation is of the form $y = A\sin Bx$ with A = 3 and B = 1.

amplitude: |A| = |3| = 3period: $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$

Use quarter-periods, $\frac{\pi}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$, and 2π . Evaluating the function at each value of *x*, the key points are (0, 0),

$$\left(\frac{\pi}{2}, 3\right)$$
, $(\pi, 0)$, $\left(\frac{3\pi}{2}, -3\right)$, and $(2\pi, 0)$. Use

these key points to graph $y = 3\sin x$ from 0 to 2π . Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*- intercepts, and use them as guides to graph $y = 3\csc x$.

30. Graph the reciprocal sine function, $y = 2 \sin x$. The equation is of the form $y = A \sin Bx$ with A = 2 and B = 1. amplitude: |A| = |2| = 2

period:
$$\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$$

Use quarter-periods, $\frac{\pi}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$, and 2π . Evaluating the function at each value of *x*, the key points are

$$(0, 0), \left(\frac{\pi}{2}, 2\right), (\pi, 0), \left(\frac{3\pi}{2}, -2\right), \text{ and } (2\pi, 0).$$

Use these key points to graph $y = 2 \sin x$ from 0 to 2π . Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = 2 \csc x$.

$$\begin{pmatrix} \frac{\pi}{2}, 3 \end{pmatrix} \xrightarrow{y} \begin{pmatrix} \frac{y}{2}, \frac{1}{2}, \frac{y}{2} \end{pmatrix}$$

$$\begin{pmatrix} \frac{3\pi}{2}, -3 \end{pmatrix} \xrightarrow{y} \begin{pmatrix} \frac{y}{2}, \frac{1}{2}, \frac{1}{2} \end{pmatrix}$$

$$y = 2 \csc x \qquad \begin{pmatrix} \frac{7\pi}{2}, -3 \end{pmatrix}$$

31. Graph the reciprocal sine function, $y = \frac{1}{2}\sin\frac{x}{2}$. The equation is of the form $y = A\sin Bx$ with $A = \frac{1}{2}$ and

$$B=\frac{1}{2}.$$

amplitude: $|A| = \left|\frac{1}{2}\right| = \frac{1}{2}$

period:
$$\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$$

Use quarter-periods, π , to find *x*-values for the five key points. Starting with x = 0, the *x*-values are 0, π , 2π , 3π , and 4π . Evaluating the function at each

value of x, the key points are
$$(0, 0)$$
, $\left(\pi, \frac{1}{2}\right)$, $(2\pi, 0)$.

$$\left(3\pi, -\frac{1}{2}\right)$$
, and $(4\pi, 0)$. Use these key points to
graph $y = \frac{1}{2}\sin\frac{x}{2}$ from 0 to 4π .

Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use

them as guides to graph
$$y = \frac{1}{2}\csc\frac{x}{2}$$
.
 $(\pi, \frac{1}{2})$
 $(\pi, \frac{1}{2})$
 $(3\pi, -\frac{1}{2})$
 $(3\pi, -\frac{1}{2})$
 $y = \frac{1}{2}\csc\frac{x}{2}$
 $(7\pi, -\frac{1}{2})$

32. Graph the reciprocal sine function, $y = \frac{3}{2}\sin\frac{x}{4}$. The equation is of the form $y = A\sin Bx$ with $A = \frac{3}{2}$ and

$$B=\frac{1}{4}.$$

amplitude:
$$|A| = \left|\frac{3}{2}\right| = \frac{3}{2}$$

period: $\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{4}} = 2\pi \cdot 4 = 8\pi$

Use quarter-periods, 2π , to find *x*-values for the five key points. Starting with x = 0, the *x*-values are 0, 2π , 4π , 6π , and 8π . Evaluating the function at each value of *x*, the key points are

$$(0, 0), \left(2\pi, \frac{3}{2}\right), (4\pi, 0), \left(6\pi, -\frac{3}{2}\right), \text{ and } (8\pi, 0).$$

Use these key points to graph $y = \frac{3}{2}\sin\frac{x}{4}$ from 0 to 8π . Extend the graph one cycle to the right.

Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph

$$y = \frac{3}{2}\csc\frac{x}{4}.$$

$$\begin{pmatrix} 2\pi, \frac{3}{2} \end{pmatrix} \xrightarrow{y} \begin{pmatrix} y \\ 2\pi, \frac{3}{2} \end{pmatrix} \xrightarrow{y} \begin{pmatrix} 10\pi, \frac{3}{2} \end{pmatrix} \\ y = \frac{3}{2}\sin\frac{x}{4} \\ (6\pi, -\frac{3}{2}) \xrightarrow{4\pi} \begin{pmatrix} 10\pi, \frac{3}{2} \end{pmatrix} \\ y = \frac{3}{2}\sin\frac{x}{4} \\ (14\pi, -\frac{3}{2}) \\ y = \frac{3}{2}\csc\frac{x}{4} \end{pmatrix}$$

33. Graph the reciprocal cosine function, $y = 2\cos x$. The equation is of the form $y = A\cos Bx$ with A = 2and B = 1. amplitude: |A| = |2| = 2period: $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$ Use quarter-periods, $\frac{\pi}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are 0, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π . Evaluating the function at each value of *x*, the key points are (0, 2), $(\frac{\pi}{2}, 0)$, $(\pi, -2)$, $(\frac{3\pi}{2}, 0)$, and $(2\pi, 2)$. Use these key points to graph $y = 2\cos x$ from 0 to 2π . Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes

through the x-intercepts, and use them as guides to

graph
$$y = 2 \sec x$$
.

 $y = (2\pi, 2)$
 $(0, 2)$
 $(0, 2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$
 $(1, -2)$

34. Graph the reciprocal cosine function, $y = 3\cos x$. The equation is of the form $y = A\cos Bx$ with A = 3 and B = 1.

amplitude: |A| = |3| = 3

period:
$$\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$$

Use quarter-periods, $\frac{\pi}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$, and 2π . Evaluating the function at each value of *x*, the key points are $(0, 3), \left(\frac{\pi}{2}, 0\right), (\pi, -3), \left(\frac{3\pi}{2}, 0\right), (2\pi, 3)$.

Use these key points to graph $y = 3\cos x$ from 0 to 2π . Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function.

Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = 3 \sec x$.

35. Graph the reciprocal cosine function, $y = \cos \frac{x}{3}$. The equation is of the form $y = A \cos Bx$ with A = 1 and

$$B = \frac{1}{3}$$
.
amplitude: $|A| = |1| = 1$

period:
$$\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{3}} = 2\pi \cdot 3 = 6\pi$$

Use quarter-periods, $\frac{6\pi}{4} = \frac{3\pi}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are 0, $\frac{3\pi}{2}$, 3π , $\frac{9\pi}{2}$, and 6π . Evaluating the function

at each value of x, the key points are $(0, 1), \left(\frac{3\pi}{2}, 0\right)$,

 $(3\pi, -1), \ \left(\frac{9\pi}{2}, 0\right), \text{ and } (6\pi, 1)$. Use these key

points to graph $y = \cos \frac{x}{3}$ from 0 to 6π . Extend the

graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as

guides to graph
$$y = \sec \frac{x}{3}$$
.
y (6 π , 1)
(0, 1)
 3π
 $(3\pi, -1)$
 $y = \sec \frac{x}{3}$
 $y = \sec \frac{x}{3}$

36. Graph the reciprocal cosine function, $y = \cos \frac{x}{2}$. The equation is of the form $y = A \cos Bx$ with A = 1 and

$$B = \frac{1}{2}.$$

amplitude: $|A| = |1| = 1$
period: $\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$

Use quarter-periods, π , to find *x*-values for the five key points. Starting with x = 0, the *x*-values are 0, π , 2π , 3π , and 4π . Evaluating the function at each value of *x*, the key points are $(0, 1), (\pi, 0), (2\pi, -1), (3\pi, 0)$, and $(4\pi, 1)$.

Use these key points to graph $y = \cos \frac{x}{2}$ from 0 to

 4π . Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts,

and use them as guides to graph
$$y = \sec \frac{x}{2}$$
.

37. Graph the reciprocal sine function, $y = -2\sin \pi x$. The equation is of the form $y = A\sin Bx$ with A = -2and $B = \pi$.

amplitude: |A| = |-2| = 2

period: $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$ Use quarter-periods, $\frac{2}{4} = \frac{1}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are 0, $\frac{1}{2}$, 1, $\frac{3}{2}$, and 2. Evaluating the function at each value of *x*, the key points are (0, 0), $\left(\frac{1}{2}, -2\right)$, (1, 0), $\left(\frac{3}{2}, 2\right)$, and (2, 0). Use these key points to graph $y = -2\sin \pi x$ from 0 to 2. Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function.

Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = -2 \csc \pi x$.

$$\begin{pmatrix} \frac{3}{2}, 2 \end{pmatrix} \xrightarrow{y} \begin{pmatrix} \frac{7}{2}, 2 \end{pmatrix} \\ \begin{pmatrix} \frac{3}{2}, 2 \end{pmatrix} \xrightarrow{z} \begin{pmatrix} \frac{5}{2}, 2 \end{pmatrix} \\ \begin{pmatrix} \frac{1}{2}, -2 \end{pmatrix} \xrightarrow{z} \begin{pmatrix} \frac{1}{2}, 2 \end{pmatrix} \\ \begin{pmatrix} \frac{1}{2}, -2 \end{pmatrix} \\ \begin{pmatrix} \frac{1}{2}, -2 \end{pmatrix} \\ y = -2 \csc \pi x \end{pmatrix}$$

38. Graph the reciprocal sine function, $y = -\frac{1}{2}\sin \pi x$. The equation is of the form $y = A\sin Bx$ with

$$A = -\frac{1}{2} \text{ and } B = \pi.$$

amplitude: $|A| = \left| -\frac{1}{2} \right| = \frac{1}{2}$
period: $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$

Use quarter-periods, $\frac{2}{4} = \frac{1}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are $0, \frac{1}{2}, 1, \frac{3}{2}$, and 2. Evaluating the function at each value of *x*, the key points are

$$(0, 0), \left(\frac{1}{2}, -\frac{1}{2}\right), (1, 0), \left(\frac{3}{2}, \frac{1}{2}\right), \text{ and } (2, 0).$$

Use these key points to graph $y = -\frac{1}{2}\sin \pi x$ from 0

to 2. Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function.

Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = -\frac{1}{2}\csc \pi x$.

39. Graph the reciprocal cosine function, $y = -\frac{1}{2}\cos \pi x$. The equation is of the form $y = A\cos Bx$ with

$$A = -\frac{1}{2} \text{ and } B = \pi.$$

amplitude: $|A| = \left| -\frac{1}{2} \right| = \frac{1}{2}$
period: $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$
Use quarter-periods, $\frac{2}{4} = \frac{1}{2}$, to find *x*-values for the
five key points. Starting with $x = 0$, the *x*-values are
 $0, \frac{1}{2}, 1, \frac{3}{2}, \text{ and } 2$. Evaluating the function at each
value of *x*, the key points are $\left(0, -\frac{1}{2}\right)$,
 $\left(\frac{1}{2}, 0\right), \left(1, \frac{1}{2}\right), \left(\frac{3}{2}, 0\right), \left(2, -\frac{1}{2}\right)$. Use these key
points to graph $y = -\frac{1}{2}\cos \pi x$ from 0 to 2. Extend
the graph one cycle to the right. Use the graph to
obtain the graph of the reciprocal function. Draw
vertical asymptotes through the
x-intercepts, and use them as guides to graph

$$y = -\frac{1}{2} \sec \pi x .$$

$$(1, \frac{1}{2})$$

$$(1, \frac{1}{2}$$

40. Graph the reciprocal cosine function, $y = -\frac{3}{2}\cos \pi x$.

The equation is of the form $y = A \cos Bx$ with

$$A = -\frac{3}{2} \text{ and } B = \pi.$$

amplitude: $|A| = \left| -\frac{3}{2} \right| = \frac{3}{2}$
period: $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$

Use quarter-periods, $\frac{2}{4} = \frac{1}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are $0, \frac{1}{2}, 1, \frac{3}{2}$, and 2. Evaluating the function at each value of *x*, the key points are

$$\left(0, -\frac{3}{2}\right), \left(\frac{1}{2}, 0\right), \left(1, \frac{3}{2}\right), \left(\frac{3}{2}, 0\right), \left(2, -\frac{3}{2}\right)$$

Use these key points to graph $y = -\frac{3}{2}\cos \pi x$ from 0

to 2. Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts,

and use them as guides to graph $y = -\frac{3}{2} \sec \pi x$.

41. Graph the reciprocal sine function, $y = \sin(x - \pi)$. The equation is of the form $y = A\sin(Bx - C)$ with A = 1, and B = 1, and $C = \pi$. amplitude: |A| = |1| = 1

period:
$$\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$$

phase shift: $\frac{C}{B} = \frac{\pi}{1} = \pi$

Use quarter-periods, $\frac{2\pi}{4} = \frac{\pi}{2}$, to find *x*-values for the five key points. Starting with $x = \pi$, the *x*-values are π , $\frac{3\pi}{2}$, 2π , $\frac{5\pi}{2}$, and 3π . Evaluating the function at each value of *x*, the key points are $(\pi, 0), (\frac{3\pi}{2}, 1), (2\pi, 0), (\frac{5\pi}{2}, -1), (3\pi, 0)$. Use these key points to graph $y = \sin(x - \pi)$ from π to 3π . Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function.

Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = \csc(x - \pi)$.

42. Graph the reciprocal sine function, $y = \sin\left(x - \frac{\pi}{2}\right)$. The equation is of the form $y = A\sin(Bx - C)$ with

 $A = 1, B = 1, \text{ and } C = \frac{\pi}{2}.$ amplitude: |A| = |1| = 1period: $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$ phase shift: $\frac{C}{B} = \frac{\pi}{2} = \frac{\pi}{2}$ Use quarter-periods, $\frac{\pi}{2}$, to find *x*-values for the five key points. Starting with $x = \frac{\pi}{2}$, the *x*-values are $\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \text{ and } \frac{5\pi}{2}$. Evaluating the function at each value of *x*, the key points are $\left(\frac{\pi}{2}, 0\right), (\pi, 1), \left(\frac{3\pi}{2}, 0\right), (2\pi, -1), \text{ and } \left(\frac{5\pi}{2}, 0\right).$ Use these key points to graph $y = \sin\left(x - \frac{\pi}{2}\right)$ from

 $\frac{\pi}{2}$ to $\frac{5\pi}{2}$. Extend the graph one cycle to the right.

Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph

$$y = \csc\left(x - \frac{\pi}{2}\right).$$

$$(\pi, 1)$$

$$y = \sin\left(x - \frac{\pi}{2}\right)$$

$$(2\pi, -1)$$

$$y = \csc\left(x - \frac{\pi}{2}\right)$$

$$(4\pi, -1)$$

$$y = \csc\left(x - \frac{\pi}{2}\right)$$

43. Graph the reciprocal cosine function,

 $y = 2\cos(x + \pi)$. The equation is of the form $y = A\cos(Bx + C)$ with A = 2, B = 1, and $C = -\pi$. amplitude: |A| = |2| = 2

period:
$$\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$$

phase shift: $\frac{C}{B} = \frac{-\pi}{1} = -\pi$

Use quarter-periods, $\frac{2\pi}{4} = \frac{\pi}{2}$, to find *x*-values for the five key points. Starting with $x = -\pi$, the *x*values are $-\pi$, $-\frac{\pi}{2}$, $0, \frac{\pi}{2}$, and π . Evaluating the function at each value of *x*, the key points are $(-\pi, 2), (-\frac{\pi}{2}, 0), (0, -2), (\frac{\pi}{2}, 0), \text{ and } (\pi, 2)$.

Use these key points to graph $y = 2\cos(x + \pi)$ from $-\pi$ to π . Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = 2\sec(x + \pi)$.

44. Graph the reciprocal cosine function,

$$y = 2\cos\left(x + \frac{\pi}{2}\right).$$
 The equation is of the form

$$y = A\cos(Bx + C) \text{ with } A = 2 \text{ and } B = 1, \text{ and}$$

$$C = -\frac{\pi}{2}.$$
amplitude: $|A| = |2| = 2$
period: $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$
phase shift: $\frac{C}{B} = \frac{-\frac{\pi}{2}}{1} = -\frac{\pi}{2}$

Use quarter-periods, $\frac{\pi}{2}$, to find *x*-values for the five key points. Starting with $x = -\frac{\pi}{2}$, the *x*-values are $-\frac{\pi}{2}$, 0, $\frac{\pi}{2}$, π , and $\frac{3\pi}{2}$.

Evaluating the function at each value of *x*, the key points are

$$\left(-\frac{\pi}{2}, 2\right), (0, 0), \left(\frac{\pi}{2}, -2\right), (\pi, 0), \left(\frac{3\pi}{2}, 2\right).$$

Use these key points to graph $y = 2\cos\left(x + \frac{\pi}{2}\right)$

from $-\frac{\pi}{2}$ to $\frac{3\pi}{2}$. Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to

graph
$$y = 2 \sec\left(x + \frac{\pi}{2}\right)$$
.
 $y_{1}\left(\frac{3\pi}{2}, 2\right)\left(\frac{7\pi}{2}, 2\right)$
 $\left(-\frac{\pi}{2}, 2\right)\left(\frac{\pi}{2}, 2\right)$
 $\left(\frac{\pi}{2}, -2\right)$
 $y = 2 \sec\left(x + \frac{\pi}{2}\right)$
 $y = 2 \sec\left(x + \frac{\pi}{2}\right)$

 $= 2 \cot\left(x + \frac{\pi}{6}\right) - 1$

v

- 55. Use a graphing utility with $y_1 = \tan x$ and $y_2 = -1$. For the window use $X\min = -2\pi$, $X\max = 2\pi$, $Y\min = -2$, and $Y\max = 2$. $x = -\frac{5\pi}{4}, -\frac{\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4}$ $x \approx -3.93, -0.79, 2.36, 5.50$
- 56. Use a graphing utility with $y_1 = 1/\tan x$ and $y_2 = -1$. For the window use $X\min = -2\pi$, $X\max = 2\pi$, $Y\min = -2$, and $Y\max = 2$. $x = -\frac{5\pi}{4}$, $-\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{7\pi}{4}$ $x \approx -3.93$, -0.79, 2.36, 5.50
- 57. Use a graphing utility with $y_1 = 1/\sin x$ and $y_2 = 1$. For the window use Xmin = -2π , Xmax = 2π , Ymin = -2, and Ymax = 2. $x = -\frac{3\pi}{2}, \frac{\pi}{2}$ $x \approx -4.71, 1.57$
- 58. Use a graphing utility with $y_1 = 1/\cos x$ and $y_2 = 1$. For the window use Xmin = -2π , Xmax = 2π , Ymin = -2, and Ymax = 2. $x = -2\pi$, 0, 2π $x \approx -6.28$, 0, 6.28
- **59.** $d = 12 \tan 2\pi t$
 - **a.** Solve the equations

$$2\pi t = -\frac{\pi}{2} \quad \text{and} \quad 2\pi t = \frac{\pi}{2}$$
$$t = \frac{-\frac{\pi}{2}}{2\pi} \quad t = \frac{\frac{\pi}{2}}{2\pi}$$
$$t = -\frac{1}{4} \quad t = \frac{1}{4}$$

Thus, two consecutive asymptotes occur at

$$x = -\frac{1}{4}$$
 and $x = \frac{1}{4}$.
x-intercept $= \frac{-\frac{1}{4} + \frac{1}{4}}{2} = \frac{0}{2} = 0$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is 12, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -12 and 12. Use the two consecutive asymptotes, $x = -\frac{1}{4}$ and $x = \frac{1}{4}$, to

graph one full period of $d = 12 \tan 2\pi t$. To

graph on [0, 2], continue the pattern and extend the graph to 2. (Do not use the left hand side of the first period of the graph on [0, 2].)

- **b.** The function is undefined for t = 0.25, 0.75, 1.25, and 1.75. The beam is shining parallel to the wall at these times.
- **60.** In a right triangle the angle of elevation is one of the acute angles, the adjacent leg is the distance d, and the opposite leg is 2 mi. Use the cotangent function.

$$\cot x = \frac{d}{2}$$

d = 2 cot x
Use the equations $x = 0$ and $x = \pi$.

Two consecutive asymptotes occur at x = 0 and

 $x = \pi$. Midway between x = 0 and $x = \pi$ is $x = \frac{\pi}{2}$.

An *x*-intercept is $\frac{\pi}{2}$ and the graph passes through

 $\left(\frac{\pi}{2}, 0\right)$. Because the coefficient of the cotangent is

2, the points on the graph midway between an *x*intercept and the asymptotes have *y*-coordinates of -2and 2. Use the two consecutive asymptotes, x = 0and $x = \pi$, to graph $y = 2 \cot x$ for $0 < x < \pi$.

61. Use the function that relates the acute angle with the hypotenuse and the adjacent leg, the secant function.

$$\sec x = \frac{d}{10}$$

 $d = 10 \sec x$ Graph the reciprocal cosine function, $y = 10 \cos x$.

The equation is of the form $y = A \cos Bx$ with A = 10and B = 1.

amplitude: |A| = |10| = 10period: $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$ For $-\frac{\pi}{2} < x < \frac{\pi}{2}$, use the *x*-values $-\frac{\pi}{2}$, 0, and $\frac{\pi}{2}$ to find the key points $\left(-\frac{\pi}{2}, 0\right)$, (0, 10), and $\left(\frac{\pi}{2}, 0\right)$.

Connect these points with a smooth curve, then draw vertical asymptotes through the *x*-intercepts, and use

them as guides to graph $d = 10 \sec x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

62. Graphs will vary.

63.

64. Graphs will vary.

- **65. 76.** Answers may vary.
- **77.** period: $\frac{\pi}{B} = \frac{\pi}{\frac{1}{4}} = \pi \cdot 4 = 4\pi$

Graph
$$y = \tan \frac{x}{4}$$
 for $0 \le x \le 8\pi$.

78. period:
$$\frac{\pi}{B} = \frac{\pi}{4}$$

Graph
$$y = \tan 4x$$
 for $0 \le x \le \frac{\pi}{2}$.

79. period: $\frac{\pi}{B} = \frac{\pi}{2}$ Graph $y = \cot 2x$ for $0 \le x \le \pi$.

80. period: $\frac{\pi}{B} = \frac{\pi}{\frac{1}{2}} = \pi \cdot 2 = 2\pi$

Graph
$$y = \cot \frac{x}{2}$$
 for $0 \le x \le 4\pi$

82. Solve the equations

$$\pi x + 1 = -\frac{\pi}{2} \quad \text{and} \quad \pi x + 1 = \frac{\pi}{2}$$
$$\pi x = -\frac{\pi}{2} - 1 \qquad \pi x = \frac{\pi}{2} - 1$$
$$x = \frac{\frac{-\pi}{2} - 1}{\pi} \qquad x = \frac{\frac{\pi}{2} - 1}{\pi}$$
$$x = \frac{-\pi - 2}{2\pi} \qquad x = \frac{\pi - 2}{2\pi}$$
$$x \approx -0.82 \qquad x \approx 0.18$$

period: $\frac{\pi}{B} = \frac{\pi}{\pi} = 1$

Thus, we include $-0.82 \le x \le 1.18$ in our graph of

83. period:
$$\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$$

Graph the functions for $0 \le x \le 8\pi$.

84. period: $\frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{3}} = 2\pi \cdot \frac{3}{\pi} = 6$

Graph the functions for $0 \le x \le 12$.

85. period: $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$ phase shift: $\frac{C}{B} = \frac{\frac{\pi}{6}}{2} = \frac{\pi}{12}$ Thus, we include $\frac{\pi}{12} \le x \le \frac{25\pi}{12}$ in our graph, and graph for $0 \le x \le \frac{5\pi}{2}$. 86. period: $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$ phase shift: $\frac{C}{B} = \frac{\frac{\pi}{6}}{\pi} = \frac{\pi}{6} \cdot \frac{1}{\pi} = \frac{1}{6}$ Thus, we include $\frac{1}{6} \le x \le \frac{25}{6}$ in our graph, and graph for $0 \le x \le \frac{9}{2}$. 1.5 420 87. 30 The graph shows that carbon dioxide concentration

rises and falls each year, but over all the concentration increased from 1990 to 2008.

The graph is oscillating between 1 and -1. The oscillation is faster as *x* gets closer to 0. Explanations may vary.

89. makes sense

- 90. makes sense
- **91.** does not make sense; Explanations will vary. Sample explanation: To obtain a cosecant graph, you can use a sine graph.
- **92.** does not make sense; Explanations will vary. Sample explanation: To model a cyclical temperature, use sine or cosine.
- **93.** The graph has the shape of a cotangent function with consecutive asymptotes at

$$x = 0 \text{ and } x = \frac{2\pi}{3}. \text{ The period is } \frac{2\pi}{3} - 0 = \frac{2\pi}{3}. \text{ Thus,}$$
$$\frac{\pi}{B} = \frac{2\pi}{3}$$
$$2\pi B = 3\pi$$
$$B = \frac{3\pi}{2\pi} = \frac{3}{2}$$

The points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of 1 and -1. Thus, A = 1. There is no phase shift. Thus,

- C = 0. An equation for this graph is $y = \cot \frac{3}{2}x$.
- 94. The graph has the shape of a secant function. The reciprocal function has amplitude |A| = 1. The

period is
$$\frac{8\pi}{3}$$
. Thus, $\frac{2\pi}{B} = \frac{8\pi}{3}$
 $8\pi B = 6\pi$
 $B = \frac{6\pi}{8\pi} = \frac{3}{4}$

There is no phase shift. Thus, C = 0. An equation for the reciprocal function is $y = \cos \frac{3}{4}x$. Thus, an equation for this graph is $y = \sec \frac{3}{4}x$.

95. The range shows that A = 2.

Since the period is 3π , the coefficient of *x* is given

by *B* where
$$\frac{2\pi}{B} = 3\pi$$

 $\frac{2\pi}{B} = 3\pi$
 $3B\pi = 2\pi$
 $B = \frac{2}{3}$

Thus, $y = 2\csc\frac{2x}{3}$

96. The range shows that $A = \pi$.

Since the period is 2, the coefficient of x is given by

B where
$$\frac{2\pi}{B} = 2$$

 $\frac{2\pi}{B} = 2$
 $2B = 2\pi$
 $B = \pi$
Thus, $y = \pi \csc \pi x$

97. a. Since A=1, the range is
$$(-\infty, -1] \cup [1, \infty)$$

Viewing rectangle: $\left[-\frac{\pi}{6}, \pi, \frac{7\pi}{6}\right]$ by $\left[-3, 3, 1\right]$

b. Since
$$A=3$$
, the range is $(-\infty, -3] \cup [3, \infty)$
Viewing rectangle: $\left[-\frac{1}{2}, \frac{7}{2}, 1\right]$ by $\left[-6, 6, 1\right]$

98. $y = 2^{-x} \sin x$

 2^{-x} decreases the amplitude as x gets larger. Examples may vary.

/ \

99. a.

$$\begin{pmatrix} -\frac{\pi}{2}, -1 \end{pmatrix} \xrightarrow{y} \begin{pmatrix} \frac{\pi}{2}, 1 \\ 1, 25 \\ \frac{\pi}{2}, \frac{\pi}{2} \\ 1, 25 \\ \frac{\pi}{2}, \frac{\pi}{2} \\ \frac{\pi$$

- **b.** yes; Explanations will vary.
- c. The angle is $-\frac{\pi}{6}$.

This is represented by the point
$$\left(-\frac{\pi}{6}, -\frac{1}{2}\right)$$
.

100. a.

$$y = \cos x, 0 \le x \le \pi$$

b. yes; Explanations will vary.

c. The angle is
$$\frac{5\pi}{6}$$
.

This is represented by the point
$$\left(\frac{5\pi}{6}, -\frac{\sqrt{3}}{2}\right)$$

101. a.

$$(0, 0)$$

$$(0, 0)$$

$$(-\frac{\pi}{4}, -1)$$

$$y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2}$$

$$(0, 0)$$

$$(-\frac{\pi}{4}, -1)$$

- **b.** yes; Explanations will vary.
- c. The angle is $-\frac{\pi}{3}$.

This is represented by the point $\left(-\frac{\pi}{3}, -\sqrt{3}\right)$.

Mid-Chapter 2 Check Point

1. The equation $y = 4\sin 2x$ is of the form $y = A\sin Bx$ with A = 4 and B = 2. Thus, the

amplitude is |A| = |4| = 4. The period is

 $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points and evaluate the function at each value of *x*.

x	$y = 4\sin 2x$	coordinates
0	$4\sin(2\cdot 0) = 4\cdot 0$ $= 0$	(0, 0)
$\frac{\pi}{4}$	$4\sin\left(2\cdot\frac{\pi}{4}\right) = 4\cdot 1$ $= 4$	$\left(\frac{\pi}{4},4\right)$
$\frac{\pi}{2}$	$4\sin\left(2\cdot\frac{\pi}{2}\right) = 4\cdot0$ $= 0$	$\left(\frac{\pi}{2},0\right)$
$\frac{3\pi}{4}$	$4\sin\left(2\cdot\frac{3\pi}{4}\right) = 4(-1)$ $= -4$	$\left(\frac{3\pi}{4},-4\right)$
π	$4\sin(2\cdot\pi) = 4\cdot0$ $= 0$	$(\pi, 0)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

2. The equation $y = \frac{1}{2}\cos\frac{\pi}{3}x$ is of the form $y = A\cos Bx$ with $A = \frac{1}{2}$ and $B = \frac{\pi}{3}$. The amplitude is $|A| = \left|\frac{1}{2}\right| = \frac{1}{2}$. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{3}} = 6$. The quarter-period is $\frac{6}{4} = \frac{3}{2}$. Add

quarter-periods to generate *x*-values for the key points and evaluate the function at each value of *x*.

x	$y = \frac{1}{2}\cos\frac{\pi}{3}x$	coordinates
0	$\frac{1}{2}\cos\left(\frac{\pi}{3}\cdot 0\right) = \frac{1}{2}(1) = \frac{1}{2}$	$\left(0,\frac{1}{2}\right)$
$\frac{3}{2}$	$\frac{1}{2}\cos\frac{\pi}{3}\left(\frac{3}{2}\right) = \frac{1}{2}(0) = 0$	$\left(\frac{3}{2},0\right)$
3	$\frac{1}{2}\cos\left(\frac{\pi}{3}\cdot 3\right) = \frac{1}{2}(-1) = -\frac{1}{2}$	$\left(3,-\frac{1}{2}\right)$
$\frac{9}{2}$	$\frac{1}{2}\cos\left(\frac{\pi}{3}\cdot\frac{9}{2}\right) = \frac{1}{2}(0) = 0$	$\left(\frac{9}{2},0\right)$
6	$\frac{1}{2}\cos\left(\frac{\pi}{3}\cdot 6\right) = \frac{1}{2}(1) = \frac{1}{2}$	$\left(6,\frac{1}{2}\right)$

Connect the five points with a smooth curve and graph one complete cycle of the given function.

3. The equation $y = 3\sin(x - \pi)$ is of the form $y = A\sin(Bx - C)$ with A = 3, B = 1, and $C = \pi$. The amplitude is |A| = |3| = 3. The period is

$$\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$$
. The phase shift is $\frac{C}{B} = \frac{\pi}{1} = \pi$. The

quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The cycle begins at $x = \pi$. Add quarter-periods to generate *x*-values for the key

points and evaluate the function at each value of x.

x	$y = 3\sin(x - \pi)$	coordinates
π	$3\sin(\pi - \pi) = 3\sin(0)$ $= 3 \cdot 0$ $= 0$	$(\pi, 0)$
$\frac{3\pi}{2}$	$3\sin\left(\frac{3\pi}{2} - \pi\right) = 3\sin\left(\frac{\pi}{2}\right)$ $= 3 \cdot 1$ $= 3$	$\left(\frac{3\pi}{2},3\right)$
2π	$3\sin(2\pi - \pi) = 3\sin(\pi)$ $= 3 \cdot 0$ $= 0$	(2π, 0)
$\frac{5\pi}{2}$	$3\sin\left(\frac{5\pi}{2} - \pi\right) = 3\sin\left(\frac{3\pi}{2}\right)$ $= 3(-1)$ $= -3$	$\left(\frac{5\pi}{2},-3\right)$
3π	$3\sin(3\pi - \pi) = 3\sin(2\pi)$ $= 3 \cdot 0$ $= 0$	$(3\pi, 0)$

Connect the five points with a smooth curve and graph one complete cycle of the given function.

4. The equation $y = 2\cos\left(2x - \frac{\pi}{4}\right)$ is of the form $y = A\cos(Bx - C)$ with A = 2, and B = 2, and $C = \frac{\pi}{4}$. Thus, the amplitude is |A| = |2| = 2. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{\frac{\pi}{4}}{2} = \frac{\pi}{8}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = \frac{\pi}{4}$.

Add quarter-periods to generate *x*-values for the key points and evaluate the function at each value of *x*.

x	coordinates
$\frac{\pi}{8}$	$\left(\frac{\pi}{8},2\right)$
$\frac{3\pi}{8}$	$\left(\frac{3\pi}{8},0\right)$
$\frac{5\pi}{8}$	$\left(\frac{5\pi}{8},-2\right)$
$\frac{7\pi}{8}$	$\left(\frac{7\pi}{8},0\right)$
$\frac{9\pi}{8}$	$\left(\frac{9\pi}{8},2\right)$

Connect the five points with a smooth curve and graph one complete cycle of the given function

5. The graph of $y = \cos 2x + 1$ is the graph of $y = \cos 2x$ shifted one unit upward. The amplitude for both functions is |1| = 1. The period for both functions is $\frac{2\pi}{2} = \pi$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points and evaluate the function at each value of *x*.

x	$y = \cos 2x + 1$	coordinates
0	$y = \cos(2 \cdot 0) + 1 = 2$	(0, 2)
$\frac{\pi}{4}$	$y = \cos\left(2 \cdot \frac{\pi}{4}\right) + 1 = 1$	$\left(\frac{\pi}{4},1\right)$
$\frac{\pi}{2}$	$y = \cos\left(2 \cdot \frac{\pi}{2}\right) + 1 = 0$	$\left(\frac{\pi}{2},0\right)$
$\frac{3\pi}{4}$	$y = \cos\left(2 \cdot \frac{3\pi}{4}\right) + 1 = 1$	$\left(\frac{3\pi}{4},1\right)$
π	$y = \cos(2 \cdot \pi) + 1 = 2$	(<i>π</i> , 2)

By connecting the points with a smooth curve we obtain one period of the graph.

6. Select several values of *x* over the interval.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = 2\sin x$	0	1.4	2	1.4	0	-1.4	-2	-1.4	0
$y_2 = 2\cos x$	2	1.4	0	-1.4	-2	-1.4	0	1.4	2
$y = 2\sin x + 2\cos x$	2	2.8	2	0	-2	-2.8	-2	0	2

7. Solve the equations

$$\frac{\pi}{4}x = -\frac{\pi}{2} \quad \text{and} \quad \frac{\pi}{4}x = \frac{\pi}{2}$$
$$x = \left(-\frac{\pi}{2}\right)\frac{4}{\pi} \quad x = \left(\frac{\pi}{2}\right)\frac{4}{\pi}$$
$$x = -2 \quad x = 2$$

Thus, two consecutive asymptotes occur at x = -2 and x = 2.

x-intercept =
$$\frac{-2+2}{2} = \frac{0}{2} = 0$$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is 2, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -2 and 2. Use the two consecutive asymptotes,

x = -2 and x = 2, to graph one full period of $y = 2 \tan \frac{\pi}{4} x$ from -2 to 2.

Continue the pattern and extend the graph another full period to the right.

$$x = -2 \quad y \quad x = 2 \quad x = 6$$
(1, 2)
(0, 0)
(-1, -2)
(0, 0)
(-1, -2)
(0, 0)
(0, 0)
(0, 0)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1,

8. Solve the equations 2x = 0 and $2x = \pi$ x = 0 $x = \frac{\pi}{2}$

Two consecutive asymptotes occur at x = 0 and $x = \frac{\pi}{2}$.

 $x-\text{intercept} = \frac{0+\frac{\pi}{2}}{2} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{4}$ An *x*-intercept is $\frac{\pi}{4}$ and the graph passes through $\left(\frac{\pi}{4}, 0\right)$. Because the coefficient of the cotangent is 4, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of 4 and -4. Use the two consecutive asymptotes, x = 0 and $x = \frac{\pi}{2}$, to graph one full period of $y = 4 \cot 2x$. The curve is repeated along the *x*-axis one full period as shown.

$$x = \frac{\pi}{2}$$

$$x = \pi$$

$$\left(\frac{5\pi}{8}, 4\right)$$

$$\left(\frac{\pi}{8}, 4\right)$$

$$\left(\frac{\pi}{4}, 0\right)$$

$$\left(\frac{\pi}{8}, -4\right)$$

$$y = 4 \cot 2x$$

$$\left(\frac{7\pi}{8}, -4\right)$$

9. Graph the reciprocal cosine function, $y = -2\cos \pi x$. The equation is of the form $y = A\cos Bx$ with A = -2 and $B = \pi$. amplitude: |A| = |-2| = 2

period: $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$ Use quarter-periods, $\frac{2}{4} = \frac{1}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are

0, $\frac{1}{2}$, 1, $\frac{3}{2}$, and 2. Evaluating the function at each value of *x*, the key points are

$$(0, -2), (\frac{1}{2}, 0), (1, 2), (\frac{3}{2}, 0), (2, -2).$$

Use these key points to graph $y = -2\cos \pi x$ from 0 to 2. Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = -2 \sec \pi x$.

10. Graph the reciprocal sine function, $y = 3\sin 2\pi x$. The equation is of the form $y = A\sin Bx$ with A = 3 and $B = 2\pi$. amplitude: |A| = |3| = 3

period: $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$

Use quarter-periods, $\frac{1}{4}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are $0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, and 1. Evaluating the function at each value of *x*, the key points are $(0, 0), (\frac{1}{4}, 3), (\frac{1}{2}, 0), (\frac{3}{4}, 3)$, and (1, 0).

Use these key points to graph $y = 3\sin 2\pi x$ from 0 to 1. Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = 3\csc 2\pi x$.

Section 2.3

Check Point Exercises

- 1. Let $\theta = \sin^{-1} \frac{\sqrt{3}}{2}$, then $\sin \theta = \frac{\sqrt{3}}{2}$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta = \frac{\sqrt{3}}{2}$ is $\frac{\pi}{3}$. Thus, $\theta = \frac{\pi}{3}$, or $\sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{3}$. 2. Let $\theta = \sin^{-1} \left(-\frac{\sqrt{2}}{2}\right)$, then $\sin \theta = -\frac{\sqrt{2}}{2}$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\cos \theta = -\frac{\sqrt{2}}{2}$ is $-\frac{\pi}{4}$. Thus $\theta = -\frac{\pi}{4}$, or $\sin^{-1} \left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$. 3. Let $\theta = \cos^{-1} \left(-\frac{1}{2}\right)$, then $\cos \theta = -\frac{1}{2}$. The only angle in the interval $[0, \pi]$ that satisfies $\cos \theta = -\frac{1}{2}$ is $\frac{2\pi}{3}$. Thus, $\theta = \frac{2\pi}{3}$, or $\cos^{-1} \left(-\frac{1}{2}\right) = \frac{2\pi}{3}$.
- 4. Let $\theta = \tan^{-1}(-1)$, then $\tan \theta = -1$. The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta = -1$ is $-\frac{\pi}{4}$. Thus

$$\theta = -\frac{\pi}{4}$$
 or $\tan^{-1}\theta = -\frac{\pi}{4}$.

5.

	Scientific Calculator Solution					
	Function	Mode	Keystrokes	Display (rounded to four places)		
a.	$\cos^{-1}\left(\frac{1}{3}\right)$	Radian	$1 \div 3 = COS^{-1}$	1.2310		
b.	$\tan^{-1}(-35.85)$	Radian	$35.85 + TAN^{-1}$	-1.5429		
			Graphing Calculator Solution			
	Function	Mode	Keystrokes	Display (rounded to four places)		
a.	$\cos^{-1}\left(\frac{1}{3}\right)$	Radian	$\boxed{\text{COS}^{-1}} (1 \div 3) \text{ENTER}$	1.2310		
b.	$\tan^{-1}(-35.85)$	Radian	TAN ⁻¹ – 35.85 ENTER	-1.5429		

6. a. $\cos(\cos^{-1} 0.7)$

x = 0.7, x is in [-1,1] so $\cos(\cos^{-1} 0.7) = 0.7$

b. $\sin^{-1}(\sin \pi)$

 $x = \pi$, x is not in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. x is in the domain of sin x, so sin⁻¹(sin π) = sin⁻¹(0) = 0

- c. $\cos(\cos^{-1}\pi)$ $x = \pi$, x is not in [-1,1] so $\cos(\cos^{-1}\pi)$ is not defined.
- 7. Let $\theta = \tan^{-1}\left(\frac{3}{4}\right)$, then $\tan \theta = \frac{3}{4}$. Because $\tan \theta$ is positive, θ is in the first quadrant.

Use the Pythagorean Theorem to find *r*. $r^2 = 3^2 + 4^2 = 9 + 16 = 25$ $r = \sqrt{25} = 5$

Use the right triangle to find the exact value.

$$\sin\left(\tan^{-1}\frac{3}{4}\right) = \sin\theta = \frac{\text{side opposite }\theta}{\text{hypotenuse}} = \frac{3}{5}$$

8. Let
$$\theta = \sin^{-1}\left(-\frac{1}{2}\right)$$
, then $\sin \theta = -\frac{1}{2}$. Because $\sin \theta$

is negative, θ is in quadrant IV.

$$r = 2$$

Use the Pythagorean Theorem to find *x*. $x^{2} + (-1)^{2} = 2^{2}$

$$x^2 + 1 = 4$$
$$x^2 - 3$$

$$x = \sqrt{3}$$

Use values for *x* and *r* to find the exact value. \sqrt{r}

$$\cos\left[\sin^{-1}\left(-\frac{1}{2}\right)\right] = \cos\theta = \frac{x}{r} = \frac{\sqrt{3}}{2}$$

9. Let $\theta = \tan^{-1} x$, then $\tan \theta = x = \frac{x}{1}$.

$$x = \sqrt{x^2 + 1}$$

Use the Pythagorean Theorem to find the third side, *a*. $a^2 = x^2 + 1^2$

 $a = \sqrt{x^2 + 1}$ Use the right triangle to write the algebraic expression.

$$\sec(\tan^{-1} x) = \sec \theta = \frac{\sqrt{x^2 + 1}}{1} = \sqrt{x^2 + 1}$$

Concept and Vocabulary Check 2.3

1.
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
; $\sin^{-1} x$
2. $0 \le x \le \pi$; $\cos^{-1} x$
3. $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$; $\tan^{-1} x$
4. $[-1,1]$; $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
5. $[-1,1]$; $[0,\pi]$
6. $(-\infty,\infty)$; $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
7. $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
8. $[0,\pi]$
9. $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

10. false

Exercise Set 2.3

- 1. Let $\theta = \sin^{-1}\frac{1}{2}$, then $\sin \theta = \frac{1}{2}$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta = \frac{1}{2}$ is $\frac{\pi}{6}$. Thus, $\theta = \frac{\pi}{6}$, or $\sin^{-1}\frac{1}{2} = \frac{\pi}{6}$.
- 2. Let $\theta = \sin^{-1} 0$, then $\sin \theta = 0$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ that satisfies $\sin \theta = 0$ is 0. Thus $\theta = 0$, or $\sin^{-1} 0 = 0$.
- 3. Let $\theta = \sin^{-1} \frac{\sqrt{2}}{2}$, then $\sin \theta = \frac{\sqrt{2}}{2}$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta = \frac{\sqrt{2}}{2}$ is $\frac{\pi}{4}$. Thus $\theta = \frac{\pi}{4}$, or $\sin^{-1} \frac{\sqrt{2}}{2} = \frac{\pi}{4}$.
- 4. Let $\theta = \sin^{-1} \frac{\sqrt{3}}{2}$, then $\sin \theta = \frac{\sqrt{3}}{2}$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta = \frac{\sqrt{3}}{2}$ is $\frac{\pi}{3}$. Thus $\theta = \frac{\pi}{3}$, or $\sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{3}$.
- 5. Let $\theta = \sin^{-1}\left(-\frac{1}{2}\right)$, then $\sin \theta = -\frac{1}{2}$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta = -\frac{1}{2}$ is $-\frac{\pi}{6}$. Thus $\theta = -\frac{\pi}{6}$, or $\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$.

6. Let
$$\theta = \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
, then $\sin \theta = -\frac{\sqrt{3}}{2}$.
The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta = -\frac{\sqrt{3}}{2}$ is $-\frac{\pi}{3}$. Thus $\theta = -\frac{\pi}{3}$,
or $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$.

- 7. Let $\theta = \cos^{-1} \frac{\sqrt{3}}{2}$, then $\cos \theta = \frac{\sqrt{3}}{2}$. The only angle in the interval $[0, \pi]$ that satisfies $\cos \theta = \frac{\sqrt{3}}{2}$ is $\frac{\pi}{6}$. Thus $\theta = \frac{\pi}{6}$, or $\cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}$. 8. Let $\theta = \cos^{-1} \frac{\sqrt{2}}{2}$, then $\cos \theta = \frac{\sqrt{2}}{2}$. The only angle in the interval $[0, \pi]$ that satisfies $\cos \theta = \frac{\sqrt{2}}{2}$ is $\frac{\pi}{4}$. Thus $\theta = \frac{\pi}{4}$, or $\cos^{-1} \frac{\sqrt{2}}{2} = \frac{\pi}{4}$.
- 9. Let $\theta = \cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$, then $\cos \theta = -\frac{\sqrt{2}}{2}$. The only angle in the interval $[0, \pi]$ that satisfies

$$\cos\theta = -\frac{\sqrt{2}}{2} \text{ is } \frac{3\pi}{4} \text{ . Thus } \theta = \frac{3\pi}{4} \text{ , or}$$
$$\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4} \text{ .}$$

10. Let
$$\theta = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
, then $\cos\theta = -\frac{\sqrt{3}}{2}$.

The only angle in the interval $[0, \pi]$ that satisfies $\cos \theta = -\frac{\sqrt{3}}{2}$ is $\frac{5\pi}{6}$. Thus $\theta = \frac{5\pi}{6}$, or $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$.

- 11. Let $\theta = \cos^{-1} 0$, then $\cos \theta = 0$. The only angle in the interval $[0, \pi]$ that satisfies $\cos \theta = 0$ is $\frac{\pi}{2}$.
- Thus $\theta = \frac{\pi}{2}$, or $\cos^{-1} \theta = \frac{\pi}{2}$. **12.** Let $\theta = \cos^{-1} \theta$, then $\cos \theta = 1$. The only angle in the interval $[0, \pi]$ that satisfies $\cos \theta = 1$ is θ .

Thus
$$\theta = 0$$
, or $\cos^{-1} 1 = 0$.

13. Let
$$\theta = \tan^{-1} \frac{\sqrt{3}}{3}$$
, then $\tan \theta = \frac{\sqrt{3}}{3}$. The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta = \frac{\sqrt{3}}{3}$ is $\frac{\pi}{6}$. Thus $\theta = \frac{\pi}{6}$, or $\tan^{-1} \frac{\sqrt{3}}{3} = \frac{\pi}{6}$.

14. Let $\theta = \tan^{-1} 1$, then $\tan \theta = 1$. The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta = 1$ is $\frac{\pi}{4}$. Thus $\theta = \frac{\pi}{4}$, or $\tan^{-1} 1 = \frac{\pi}{4}$.

15. Let $\theta = \tan^{-1} 0$, then $\tan \theta = 0$. The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta = 0$ is 0. Thus $\theta = 0$, or $\tan^{-1} 0 = 0$.

16. Let $\theta = \tan^{-1}(-1)$, then $\tan \theta = -1$. The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta = -1$ is $-\frac{\pi}{4}$. Thus $\theta = -\frac{\pi}{4}$, or $\tan^{-1}(-1) = -\frac{\pi}{4}$.

17. Let $\theta = \tan^{-1}(-\sqrt{3})$, then $\tan \theta = -\sqrt{3}$. The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta = -\sqrt{3}$ is $-\frac{\pi}{3}$. Thus $\theta = -\frac{\pi}{2}$, or $\tan^{-1}(-\sqrt{3}) = -\frac{\pi}{2}$.

18. Let
$$\theta = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$$
, then $\tan \theta = -\frac{\sqrt{3}}{3}$. The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta = -\frac{\sqrt{3}}{3}$ is $-\frac{\pi}{6}$.
Thus $\theta = -\frac{\pi}{6}$, or $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6}$.

1	9.
	-•

		Scientific Calculator Solution	
Function	Mode	Keystrokes	Display (rounded to two places)
$\sin^{-1} 0.3$	Radian	0.3 SIN ⁻¹	0.30

	Graphing Calculator Solution						
Function	Mode	Keystrokes	Display (rounded to two places)				
$\sin^{-1} 0.3$	Radian	SIN ⁻¹ 0.3 ENTER	0.30				

20.

		Scientific Calculator Solution	
Function	Mode	Keystrokes	Display (rounded to two places)
$\sin^{-1} 0.47$	Radian	0.47 SIN ⁻¹	0.49

	Graphing Calculator Solution					
Function	Mode	Keystrokes	Display (rounded to two places)			
$\sin^{-1} 0.47$	Radian	SIN ⁻¹ 0.47 ENTER	0.49			

Scientific Calculator SolutionFunctionModeKeystrokesDisplay
(rounded to two places) $sin^{-1}(-0.32)$ Radian0.32 $\frac{+}{-}$ SIN^{-1} -0.33

Graphing Calculator Solution					
Function	Mode	Keystrokes	Display (rounded to two places)		
$\sin^{-1}(-0.32)$	Radian	$\overline{\text{SIN}^{-1}}$ – 0.32 ENTER	-0.33		

22.

		Scientific Calculator Solution	
Function	Mode	Keystrokes	Display (rounded to two places)
$\sin^{-1}(-0.625)$	Radian	0.625 $+/_{-}$ SIN ⁻¹	-0.68

	Graphing Calculator Solution					
Function	Mode	Keystrokes	Display (rounded to two places)			
$\sin^{-1}(-0.625)$	Radian	SIN ⁻¹ – 0.625 ENTER	-0.68			

Scientific Calculator SolutionFunctionModeKeystrokesDisplay
(rounded to two places) $\cos^{-1}\left(\frac{3}{8}\right)$ Radian $3 \div 8 \equiv \boxed{\text{COS}^{-1}}$ 1.19

Graphing Calculator Solution					
Function	Mode	Keystrokes	Display (rounded to two places)		
$\cos^{-1}\left(\frac{3}{8}\right)$	Radian	$\boxed{\text{COS}^{-1}} (3 \div 8) \text{ENTER}$	1.19		

24.

	Scientific Calculator Solution				
Function	Mode	Keystrokes	Display (rounded to two places)		
$\cos^{-1}\left(\frac{4}{9}\right)$	Radian	$4 \div 9 = COS^{-1}$	1.11		

Function	Mode	Keystrokes	Display (rounded to two places)
$\cos^{-1}\left(\frac{4}{9}\right)$	Radian	$\boxed{\text{COS}^{-1}} (4 \div 9) \text{ENTER}$	1.11

25.

	Scientific Calculator Solution				
Function	Mode	Keystrokes	Display (rounded to two places)		
$\cos^{-1}\frac{\sqrt{5}}{7}$	Radian	5 \div 7 $=$ COS^{-1}	1.25		

	Graphing Calculator Solution				
Function	Mode	Keystrokes	Display (rounded to two places)		
$\cos^{-1}\frac{\sqrt{5}}{7}$	Radian	$\boxed{\text{COS}^{-1}} (\boxed{\sqrt{5} \div 7}) \text{ENTER}$	1.25		

26.

Scientific Calculator Solution

Function	Mode	Keystrokes	Display (rounded to two places)
$\cos^{-1}\frac{\sqrt{7}}{10}$	Radian	$7\sqrt{-10} \div 10 = COS^{-1}$	1.30

Graphing Calculator Solution				
Function	Mode	Display (rounded to two places)		
$\cos^{-1}\frac{\sqrt{7}}{10}$	Radian	$\boxed{\text{COS}^{-1}}$ ($\sqrt{7}$ \div 10) ENTER	1.30	

27.

		Scientific Calculator Solution	
Function	Mode	Keystrokes	Display (rounded to two places)
$\tan^{-1}(-20)$	Radian	20 $+/_{-}$ TAN ⁻¹	-1.52

Function	Mode	Keystrokes	Display (rounded to two places)
$\tan^{-1}(-20)$	Radian	TAN ^{-1} $-$ 20 ENTER	-1.52

28.

Function	Mode	Keystrokes	Display (rounded to two places)
$\tan^{-1}(-30)$	Radian	30 $+/_$ TAN ⁻¹	-1.54

Function	Mode	Keystrokes	Display (rounded to two places)
$\tan^{-1}(-30)$	Radian	TAN ^{-1} $-$ 30 ENTER	-1.54

Scientific Calculator SolutionFunctionModeKeystrokesDisplay
(rounded to two places) $\tan^{-1}(-\sqrt{473})$ Radian $473\sqrt{1/2}$ -1.52

Graphing Calculator Solution				
Function	Mode	Keystrokes	Display (rounded to two places)	
$\tan^{-1}\left(-\sqrt{473}\right)$	Radian	$TAN^{-1} (- \sqrt{473}) ENTER$	-1.52	

30.

Scientific Calculator Solution			
Function	Mode	Keystrokes	Display (rounded to two places)
$\tan^{-1}\left(-\sqrt{5061}\right)$	Radian	$5061\sqrt{+/-}$ TAN ⁻¹	-1.56

Graphing Calculator Solution			
Function	Mode	Keystrokes	Display (rounded to two places)
$\tan^{-1}\left(-\sqrt{5061}\right)$	Radian	TAN ⁻¹ ($ $ 5061) ENTER	-1.56

31. $\sin(\sin^{-1} 0.9)$

x = 0.9, x is in [-1, 1], so $sin(sin^{-1} 0.9) = 0.9$

32. $\cos(\cos^{-1} 0.57)$

x = 0.57, x is in [-1, 1], so $\cos(\cos^{-1} 0.57) = 0.57$

33. $\sin^{-1}\left(\sin\frac{\pi}{3}\right)$ $x = \frac{\pi}{3}, x \text{ is in } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \text{ so } \sin^{-1}\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$

34.
$$\cos^{-1}\left(\cos\frac{2\pi}{3}\right)$$

 $x = \frac{2\pi}{3}, x \text{ is in } [0, \pi],$
so $\cos^{-1}\left(\cos\frac{2\pi}{3}\right) = \frac{2\pi}{3}$

35.
$$\sin^{-1}\left(\sin\frac{5\pi}{6}\right)$$

 $x = \frac{5\pi}{6}, x \text{ is not in } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], x \text{ is in the domain of } \sin x, \text{ so } \sin^{-1}\left(\sin\frac{5\pi}{6}\right) = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$

36.
$$\cos^{-1}\left(\cos\frac{4\pi}{3}\right)$$

 $x = \frac{4\pi}{3}, x \text{ is not in } [0, \pi],$
 $x \text{ is in the domain of } \cos x,$
 $\cos \cos^{-1}\left(\cos\frac{4\pi}{3}\right) = \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$

37. $\tan(\tan^{-1} 125)$

x = 125, x is a real number, so $tan(tan^{-1} 125) = 125$

38. $\tan(\tan^{-1} 380)$ x = 380, x is a real number, so $\tan(\tan^{-1} 380) = 380$

39.
$$\tan^{-1}\left[\tan\left(-\frac{\pi}{6}\right)\right]$$

 $x = -\frac{\pi}{6}, x \text{ is } \ln\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \text{ so}$
 $\tan^{-1}\left[\tan\left(-\frac{\pi}{6}\right)\right] = -\frac{\pi}{6}$

40.
$$\tan^{-1}\left[\tan\left(-\frac{\pi}{3}\right)\right]$$

 $x = -\frac{\pi}{3}, x \text{ is } \sin\left(-\frac{\pi}{2}, \frac{\pi}{2}\right),$
so $\tan^{-1}\left[\tan\left(-\frac{\pi}{3}\right)\right] = -\frac{\pi}{3}$

41.
$$\tan^{-1}\left(\tan\frac{2\pi}{3}\right)$$

 $x = \frac{2\pi}{3}, x \text{ is not in } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), x \text{ is in the domain of}$
 $\tan x, \text{ so } \tan^{-1}\left(\tan\frac{2\pi}{3}\right) = \tan^{-1}\left(-\sqrt{3}\right) = -\frac{\pi}{3}$

42.
$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$

 $x = \frac{3\pi}{4}, x \text{ is not } \ln\left(-\frac{\pi}{2}, \frac{\pi}{2}\right),$
 $x \text{ is in the domain of } \tan x$
so $\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}(-1) = -\frac{\pi}{4}$

43. $\sin^{-1}(\sin \pi)$

 $x = \pi$, x is not in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, x is in the domain of sin x, so $\sin^{-1}(\sin \pi) = \sin^{-1}0 = 0$

- 44. $\cos^{-1}(\cos 2\pi)$ $x = 2\pi$, x is not in [0, π], x is in the domain of $\cos x$, so $\cos^{-1}(\cos 2\pi) = \cos^{-1} 1 = 0$
- **45.** $\sin(\sin^{-1}\pi)$

 $x = \pi$, x is not in [-1, 1], so $\sin(\sin^{-1}\pi)$ is not defined.

- 46. $\cos(\cos^{-1} 3\pi)$ $x = 3\pi$, x is not in [-1, 1] so $\cos(\cos^{-1} 3\pi)$ is not defined.
- 47. Let $\theta = \sin^{-1}\frac{4}{5}$, then $\sin \theta = \frac{4}{5}$. Because $\sin \theta$ is positive, θ is in the first quadrant.

 $\frac{3}{5}$

$$r = 5$$

$$(3, 4)$$

$$4$$

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + 4^{2} = 5^{2}$$

$$x^{2} = 25 - 16 = 9$$

$$x = 3$$

$$\cos\left(\sin^{-1}\frac{4}{5}\right) = \cos\theta = \frac{x}{r} = 1$$

48. Let
$$\theta = \tan^{-1} \frac{7}{24}$$
, then $\tan \theta = \frac{7}{24}$.

Because $\tan \theta$ is positive, θ is in the first quadrant.

$$r = 25$$

$$\frac{7}{24}$$

$$r^{2} = x^{2} + y^{2}$$

$$r^{2} = 7^{2} + 24^{2}$$

$$r^{2} = 625$$

$$r = 25$$

$$\sin\left(\tan^{-1}\frac{7}{24}\right) = \sin\theta = \frac{y}{r} = \frac{7}{25}$$

49. Let $\theta = \cos^{-1} \frac{5}{13}$, then $\cos \theta = \frac{5}{13}$. Because $\cos \theta$ is positive, θ is in the first quadrant.

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + y^{2} = 13^{2}$$

$$y^{2} = 169 - 25$$

$$y^{2} = 144$$

$$y = 12$$

$$\tan\left(\cos^{-1}\frac{5}{13}\right) = \tan\theta = \frac{y}{x} = \frac{12}{5}$$

50. Let
$$\theta = \sin^{-1} \frac{5}{13}$$
 then $\sin \theta = \frac{5}{13}$.
because $\sin \theta$ is positive, θ is in the first quadrant.

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + 5^{2} = 13^{2}$$

$$x^{2} = 144$$

$$x = 12$$

$$\cot\left(\sin^{-1}\frac{5}{13}\right) = \cot\theta = \frac{x}{y} = \frac{12}{5}$$
51. Let $\theta = \sin^{-1}\left(-\frac{3}{5}\right)$, then $\sin\theta = -\frac{3}{5}$. Because $\sin\theta$
is negative, θ is in
quadrant IV.
$$4$$

$$4$$

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + (-3)^{2} = 5^{2}$$

$$x^{2} = 16$$

$$x = 4$$

$$\tan\left[\sin^{-1}\left(-\frac{3}{5}\right)\right] = \tan\theta = \frac{y}{x} = -\frac{3}{4}$$
52. Let $\theta = \sin^{-1}\left(-\frac{4}{5}\right)$, then $\sin\theta = -\frac{4}{5}$.
Because $\sin\theta$ is negative, θ is in quadrant IV.
$$4$$

$$4$$

$$x = 4$$

$$\tan\left[\sin^{-1}\left(-\frac{4}{5}\right)\right] = \tan\theta = \frac{y}{x} = -\frac{3}{4}$$

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + (-4)^{2} = 5^{2}$$

$$x^{2} = 9$$

$$x = 3$$

$$\cos\left[\sin^{-1}\left(-\frac{4}{5}\right)\right] = \cos\theta = \frac{x}{r} = \frac{3}{5}$$

53. Let,
$$\theta = \cos^{-1} \frac{\sqrt{2}}{2}$$
, then $\cos \theta = \frac{\sqrt{2}}{2}$. Because $\cos \theta$

is positive, θ is in the first quadrant.

$$x^{2} + y^{2} = r^{2}$$

$$(\sqrt{2}, \sqrt{2})$$

$$x^{2} + y^{2} = r^{2}$$

$$(\sqrt{2})^{2} + y^{2} = 2^{2}$$

$$y^{2} = 2$$

$$y = \sqrt{2}$$

$$\sin\left(\cos^{-1}\frac{\sqrt{2}}{2}\right) = \sin\theta = \frac{y}{r} = \frac{\sqrt{2}}{2}$$

54. Let
$$\theta = \sin^{-1} \frac{1}{2}$$
, then $\sin \theta = \frac{1}{2}$.
Because $\sin \theta$ is positive, θ is in the first quadrant.

$$r = 2$$

$$(\sqrt{3}, 1)$$

$$1$$

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + 1^{2} = 2^{2}$$

$$x^{2} = 3$$

$$x = \sqrt{3}$$

$$\cos\left(\sin^{-1}\frac{1}{2}\right) = \cos\theta = \frac{x}{r} = \frac{\sqrt{3}}{2}$$

55. Let
$$\theta = \sin^{-1}\left(-\frac{1}{4}\right)$$
, then $\sin \theta = -\frac{1}{4}$. Because $\sin \theta$ is negative, θ is in quadrant IV.

$$r = 4$$

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + (-1)^{2} = 4^{2}$$

$$x^{2} = 15$$

$$x = \sqrt{15}$$

$$\sec\left[\sin^{-1}\left(-\frac{1}{4}\right)\right] = \sec\theta = \frac{r}{x} = \frac{4}{\sqrt{15}} = \frac{4\sqrt{15}}{15}$$

56. Let
$$\theta = \sin^{-1}\left(-\frac{1}{2}\right)$$
, then $\sin \theta = -\frac{1}{2}$.

Because $\sin \theta$ is negative, θ is in quadrant IV.

$$y = \sqrt{3} + \sqrt{3$$

57. Let
$$\theta = \cos^{-1}\left(-\frac{1}{3}\right)$$
, then $\cos \theta = -\frac{1}{3}$. Because $\cos \theta$ is negative, θ is in

quadrant II.

$$(-1, 2\sqrt{3})$$

$$r = 3$$

$$2\sqrt{3}$$

$$\theta$$

$$1$$

$$x^{2} + y^{2} = r^{2}$$

$$(-1)^{2} + y^{2} = 3^{2}$$

$$y^{2} = 8$$

$$y = \sqrt{8}$$

$$y = 2\sqrt{2}$$

Use the right triangle to find the exact value.

$$\tan\left[\cos^{-1}\left(-\frac{1}{3}\right)\right] = \tan\theta = \frac{y}{x} = \frac{2\sqrt{2}}{-1} = -2\sqrt{2}$$

58. Let
$$\theta = \cos^{-1}\left(-\frac{1}{4}\right)$$
, then $\cos \theta = -\frac{1}{4}$.

Because $\cos\theta$ is negative, θ is in quadrant II.

$$(-1, \sqrt{15}) = 4$$

$$\sqrt{15}$$

$$\frac{y^{2}}{1} = r^{2}$$

$$(-1)^{2} + y^{2} = 4^{2}$$

$$y^{2} = 15$$

$$y = \sqrt{15}$$

$$\tan\left[\cos^{-1}\left(-\frac{1}{4}\right)\right] = \tan\theta = \frac{y}{x} = \frac{\sqrt{15}}{-1} = -\sqrt{15}$$

59. Let $\theta = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$, then $\cos \theta = -\frac{\sqrt{3}}{2}$. Because

 $\cos\theta$ is negative, θ is in quadrant II.

$$r = 2$$

$$r^{2}$$

$$(-\sqrt{3})^{2} + y^{2} = 2^{2}$$

$$y^{2} = 1$$

$$y = 1$$

$$\csc\left[\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right] = \csc \theta = \frac{r}{y} = \frac{2}{1} = 2$$

60. Let
$$\theta = \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$
, then $\sin \theta = -\frac{\sqrt{2}}{2}$

Because $\sin \theta$ is negative, θ is in quadrant IV.

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + \left(-\sqrt{2}\right)^{2} = 2^{2}$$

$$x^{2} = 2$$

$$x = \sqrt{2}$$

$$\sec\left[\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right] = \sec\theta = \frac{r}{x} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

61. Let $\theta = \tan^{-1}\left(-\frac{2}{3}\right)$, then $\tan \theta = -\frac{2}{3}$. Because $\tan \theta$ is negative, θ is in quadrant IV.

Because
$$\tan \theta$$
 is negative, θ is in quadrant in
 $r = \sqrt{13}$
 $r^2 = x^2 + y^2$
 $r^2 = 3^2 + (-2)^2$
 $r^2 = 9 + 4$
 $r^2 = 13$
 $r = \sqrt{13}$
 $\cos\left[\tan^{-1}\left(-\frac{2}{3}\right)\right] = \cos \theta = \frac{x}{r} = \frac{3}{\sqrt{13}} = \frac{3\sqrt{13}}{13}$

62. Let $\theta = \tan^{-1}\left(-\frac{3}{4}\right)$, then $\tan \theta = -\frac{3}{4}$.

Because $\tan \theta$ is negative, θ is in quadrant IV.

63. Let
$$\theta = \cos^{-1} x$$
, then $\cos \theta = x = \frac{x}{1}$.

$$b = \sqrt{1 - x^2}$$

Use the Pythagorean Theorem to find the third side, *b*.

$$x^{2} + b^{2} = 1^{2}$$
$$b^{2} = 1 - x^{2}$$
$$b = \sqrt{1 - x^{2}}$$

Use the right triangle to write the algebraic expression.

$$\tan\left(\cos^{-1}x\right) = \tan\theta = \frac{\sqrt{1-x^2}}{x}$$

64. Let
$$\theta = \tan^{-1} x$$
, then $\tan \theta = x = \frac{x}{1}$.

Use the Pythagorean Theorem to find the third side, *c*. $c^2 = x^2 + 1^2$

$$c = \sqrt{x^2 + 1}$$

Use the right triangle to write the algebraic expression. $sin(tan^{-1}) = sin \theta$

$$= \frac{x}{\sqrt{x^2 + 1}}$$
$$= \frac{x}{\sqrt{x^2 + 1}} \cdot \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$$
$$= \frac{x\sqrt{x^2 + 1}}{x^2 + 1}$$

65. Let $\theta = \sin^{-1} 2x$, then $\sin \theta = 2x$ y = 2x, r = 1Use the Pythagorean Theorem to find x. $x^2 + (2x)^2 = 1^2$ $x^2 = 1 - 4x^2$ $x = \sqrt{1 - 4x^2}$ $\cos(\sin^{-1} 2x) = \sqrt{1 - 4x^2}$ 66. Let $\theta = \cos^{-1} 2x$. Use the Pythagorean Theorem to find the third side, b.

opp

$$\frac{2x}{(2x)^2 + b^2} = 1^2$$

$$b^2 = 1 - 4x^2$$

$$b = \sqrt{1 - 4x^2}$$

$$sin(cos^{-1} 2x) = \frac{\sqrt{1 - 4x^2}}{1} = \sqrt{1 - 4x^2}$$
67. Let $\theta = sin^{-1}\frac{1}{x}$, then $sin \theta = \frac{1}{x}$.

$$a = \sqrt{x^2 - 1}$$

Use the Pythagorean Theorem to find the third side, *a*.

$$a2 + 12 = x2$$
$$a2 = x2 - 1$$
$$a = \sqrt{x2 - 1}$$

Use the right triangle to write the algebraic expression.

$$\cos\left(\sin^{-1}\frac{1}{x}\right) = \cos\theta = \frac{\sqrt{x^2 - 1}}{x}$$

68. Let
$$\theta = \cos^{-1} \frac{1}{x}$$
, then $\cos \theta = \frac{1}{x}$.

Use the Pythagorean Theorem to find the third side, *b*.

$$1^{2} + b^{2} = x^{2}$$
$$b^{2} = x^{2} - 1$$
$$b = \sqrt{x^{2} - 1}$$

Use the right triangle to write the algebraic expression.

$$\sec\left(\cos^{-1}\frac{1}{x}\right) = \sec\theta = \frac{x}{1} = x$$

$$69. \quad \cot\left(\tan^{-1}\frac{x}{\sqrt{3}}\right) = \frac{\sqrt{3}}{x}$$

$$70. \quad \cot\left(\tan^{-1}\frac{x}{\sqrt{2}}\right) = \frac{\sqrt{2}}{x}$$

71. Let
$$\theta = \sin^{-1} \frac{x}{\sqrt{x^2 + 4}}$$
, then $\sin \theta = \frac{x}{\sqrt{x^2 + 4}}$.
 $\sqrt{x^2 + 4}$

Use the Pythagorean Theorem to find the third side, *a*.

4

$$a^{2} + x^{2} = \left(\sqrt{x^{2} + 4}\right)^{2}$$
$$a^{2} = x^{2} + 4 - x^{2} =$$
$$a = 2$$

Use the right triangle to write the algebraic expression.

$$\sec\left(\sin^{-1}\frac{x}{\sqrt{x^2+4}}\right) = \sec\theta = \frac{\sqrt{x^2+4}}{2}$$

72. Let
$$\theta = \sin^{-1} \frac{\sqrt{x^2 - 9}}{x}$$
, then $\sin \theta = \frac{\sqrt{x^2 - 9}}{x}$.

Use the Pythagorean Theorem to find the third side, *a*.

$$a^{2} + \left(\sqrt{x^{2} - 9}\right)^{2} = x^{2}$$
$$a^{2} = x^{2} - x^{2} + 9 = 9$$
$$a = 3$$

Use the right triangle to write the algebraic expression.

$$\cot\left(\sin^{-1}\frac{\sqrt{x^2-9}}{x}\right) = \frac{3}{\sqrt{x^2-9}}$$
$$= \frac{3}{\sqrt{x^2-9}} \cdot \frac{\sqrt{x^2-9}}{\sqrt{x^2-9}} = \frac{3\sqrt{x^2-9}}{x^2-9}$$

73. a. $y = \sec x$ is the reciprocal of $y = \cos x$. The *x*-values for the key points in the interval $[0, \pi]$

are
$$0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$$
, and π . The key points are $(0, 1), \left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right), \left(\frac{\pi}{2}, 0\right), \left(\frac{3\pi}{4}, -\frac{\sqrt{2}}{2}\right)$, and $(\pi - 1)$. Draw a vertical asymptote at $r = \frac{\pi}{2}$.

 $(\pi, -1)$, Draw a vertical asymptote at $x = \frac{1}{2}$. Now draw our graph from (0, 1) through $\left(\frac{\pi}{4}, \sqrt{2}\right)$ to ∞ on the left side of the asymptote. From $-\infty$ on the right side of the asymptote through $\left(\frac{3\pi}{4}, -\sqrt{2}\right)$ to $(\pi, -1)$.

b. With this restricted domain, no horizontal line intersects the graph of $y = \sec x$ more than

once, so the function is one-to-one and has an inverse function.

c. Reflecting the graph of the restricted secant function about the line y = x, we get the graph

74. a. Two consecutive asymptotes occur at x = 0 and $x = \pi$. Midway between x = 0 and $x = \pi$ is x = 0 and $x = \pi$. An *x*-intercept for the graph

is
$$\left(\frac{\pi}{2}, 0\right)$$
. The graph goes through the points $\left(\frac{\pi}{2}, 1\right) = \left(\frac{3\pi}{2}, 1\right)$

$$\left(\frac{\pi}{4}, 1\right)$$
 and $\left(\frac{5\pi}{4}, -1\right)$. Now graph the

function through these points and using the asymptotes.

b. With this restricted domain no horizontal line intersects the graph of $y = \cot x$ more than once, so the function is one-to-one and has an inverse function. Reflecting the graph of the restricted cotangent function about the line y = x, we get the graph of $y = \cot^{-1} x$.

domain:
$$[-1, 1];$$

range: $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$

domain: [-2, 0]; range: [0, *π*]

domain: $(-\infty, \infty)$; range: $(-\pi, \pi)$

80.

81.

domain: (1, 3]; range: $[-\pi, 0]$

82.

domain: [-2, 2]; range: [0, *π*]

84.

domain: [-2, 2];range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

- **85.** The inner function, $\sin^{-1} x$, accepts values on the interval [-1,1]. Since the inner and outer functions are inverses of each other, the domain and range are as follows. domain: [-1,1]; range: [-1,1]
- **86.** The inner function, $\cos^{-1} x$, accepts values on the interval [-1,1]. Since the inner and outer functions are inverses of each other, the domain and range are as follows. domain: [-1,1]; range: [-1,1]
- 87. The inner function, cos x, accepts values on the interval (-∞,∞). The outer function returns values on the interval [0, π] domain: (-∞,∞); range: [0, π]
- **88.** The inner function, sin *x*, accepts values on the interval $(-\infty, \infty)$. The outer function returns values on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ domain: $(-\infty, \infty)$; range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

89. The inner function, $\cos x$, accepts values on the interval $(-\infty, \infty)$. The outer function returns values

on the interval
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

domain: $\left(-\infty, \infty\right)$; range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

- **90.** The inner function, $\sin x$, accepts values on the interval $(-\infty, \infty)$. The outer function returns values on the interval $[0, \pi]$ domain: $(-\infty, \infty)$; range: $[0, \pi]$
- **91.** The functions $\sin^{-1} x$ and $\cos^{-1} x$ accept values on the interval [-1,1]. The sum of these values is always $\frac{\pi}{2}$.

domain: $\left[-1,1\right]$; range: $\left\{\frac{\pi}{2}\right\}$

92. The functions $\sin^{-1} x$ and $\cos^{-1} x$ accept values on the interval [-1,1]. The difference of these values

range from
$$-\frac{\pi}{2}$$
 to $\frac{3\pi}{2}$
domain: $[-1,1]$; range: $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$

93.
$$\theta = \tan^{-1} \frac{33}{x} - \tan^{-1} \frac{8}{x}$$

$$\frac{x}{5} \frac{\theta}{5} \frac{1}{5} \tan^{-1} \frac{33}{5} - \tan^{-1} \frac{8}{5} \approx 0.408 \text{ radians}$$
10 $\tan^{-1} \frac{33}{10} - \tan^{-1} \frac{8}{10} \approx 0.602 \text{ radians}$
15 $\tan^{-1} \frac{33}{15} - \tan^{-1} \frac{8}{15} \approx 0.654 \text{ radians}$
20 $\tan^{-1} \frac{33}{20} - \tan^{-1} \frac{8}{20} \approx 0.645 \text{ radians}$
25 $\tan^{-1} \frac{33}{25} - \tan^{-1} \frac{8}{25} \approx 0.613 \text{ radians}$

94. The viewing angle increases rapidly up to about 16 feet, then it decreases less rapidly; about 16 feet; when x = 15, $\theta = 0.6542$ radians; when x = 17, $\theta = 0.6553$ radians.

95.
$$\theta = 2 \tan^{-1} \frac{21.634}{28} \approx 1.3157$$
 radians;
1.3157 $\left(\frac{180}{\pi}\right) \approx 75.4^{\circ}$

96.
$$\theta = 2 \tan^{-1} \frac{21.634}{300} \approx 0.1440$$
 radians;
 $0.1440 \left(\frac{180}{\pi}\right) \approx 8.2^{\circ}$

- 97. $\tan^{-1} b \tan^{-1} a = \tan^{-1} 2 \tan^{-1} 0$ ≈ 1.1071 square units
- **98.** $\tan^{-1} b \tan^{-1} a = \tan^{-1} 1 \tan^{-1} (-2)$ ≈ 1.8925 square units

110.
$$y = \sin^{-1} x$$

 $y = \sin^{-1} x + 2$

The graph of the second equation is the graph of the first equation shifted up 2 units.

111. The domain of $y = \cos^{-1} x$ is the interval

[-1, 1], and the range is the interval $[0, \pi]$. Because the second equation is the first equation with 1 subtracted from the variable, we will move our *x*

max to
$$\pi$$
, and graph in a $\left[-\frac{\pi}{2}, \pi, \frac{\pi}{4}\right]$ by $[0, 4, 1]$

viewing rectangle.

The graph of the second equation is the graph of the first equation shifted right 1 unit.

112.
$$y = \tan^{-1} x$$

 $y = -2 \tan^{-1} x$
 -10

The graph of the second equation is the graph of the first equation reversed and stretched.

113. The domain of $y = \sin^{-1} x$ is the interval

[-1, 1], and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Because the

second equation is the first equation plus 1, and with 2 added to the variable, we will move our y max to 3, and move our x min to $-\pi$, and graph in a

$$\left[-\pi,\frac{\pi}{2},\frac{\pi}{2}\right]$$
 by

[-2, 3, 1] viewing rectangle.

The graph of the second equation is the graph of the first equation shifted left 2 units and up 1 unit.

114. $y = \tan^{-1} x$

Observations may vary.

116. does not make sense; Explanations will vary. Sample explanation: The cosine's inverse is not a function over that interval.

- **117.** does not make sense; Explanations will vary. Sample explanation: Though this restriction works for tangent, it is not selected simply because it is easier to remember. Rather the restrictions are based on which intervals will have inverses.
- 118. makes sense
- **119.** does not make sense; Explanations will vary. Sample explanation:

$$\sin^{-1}\left(\sin\frac{5\pi}{4}\right) = \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$$

120.
$$y = 2\sin^{-1}(x-5)$$

 $\frac{y}{2} = \sin^{-1}(x-5)$
 $\sin\frac{y}{2} = x-5$
 $x = \sin\frac{y}{2} + 5$
121. $2\sin^{-1}x = \frac{\pi}{4}$
 $\sin^{-1}x = \frac{\pi}{8}$
 $x = \sin\frac{\pi}{8}$

122. Prove: If x > 0, $\tan^{-1} x + \tan^{-1} \frac{1}{x} = \frac{\pi}{2}$

Since x > 0, there is an angle θ with $0 < \theta < \frac{\pi}{2}$ as shown in the figure.

$$\frac{\frac{\pi}{2} - \theta}{1} x$$

$$\tan \theta = x \text{ and } \tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{x} \text{ thus}$$

$$\tan^{-1} x = \theta \text{ and } \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} - \theta \text{ so}$$

$$\tan^{-1} x + \tan^{-1}\frac{1}{x} = \theta + \frac{\pi}{2} - \theta = \frac{\pi}{2}$$

123. Let α equal the acute angle in the smaller right triangle.

$$\tan \alpha = \frac{8}{x}$$

so $\tan^{-1} \frac{8}{x} = \alpha$
$$\tan(\alpha + \theta) = \frac{33}{x}$$

so $\tan^{-1} \frac{33}{x} = \alpha + \theta$
$$\theta = \alpha + \theta - \alpha = \tan^{-1} \frac{33}{x} - \tan^{-1} \frac{8}{x}$$

124. $\tan A = \frac{a}{b}$

$$\tan 22.3^\circ = \frac{a}{12.1}$$
$$a = 12.1 \tan 22.3^\circ$$
$$a \approx 4.96$$

$$\cos A = \frac{b}{c}$$
$$\cos 22.3^{\circ} = \frac{12.1}{c}$$
$$c = \frac{12.1}{\cos 22.3^{\circ}}$$
$$c \approx 13.08$$

125.
$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

 $\tan \theta = \frac{18}{25}$
 $\theta = \tan^{-1}\left(\frac{18}{25}\right)$
 $\theta \approx 35.8^{\circ}$

126.
$$10\cos\left(\frac{\pi}{6}x\right)$$

amplitude: $|10| = 10$
period: $\frac{2\pi}{\frac{\pi}{6}} = 2\pi \cdot \frac{6}{\pi} = 12$

Section 2.4

Check Point Exercises

1. We begin by finding the measure of angle *B*. Because $C = 90^{\circ}$ and the sum of a triangle's angles is 180° , we see that $A + B = 90^{\circ}$. Thus, $B = 90^{\circ} - A = 90^{\circ} - 62.7^{\circ} = 27.3^{\circ}$.

Now we find *b*. Because we have a known angle, a known opposite side, and an unknown adjacent side, use the tangent function.

$$\tan 62.7^\circ = \frac{8.4}{b}$$
$$b = \frac{8.4}{\tan 62.7^\circ} \approx 4.34$$

Finally, we need to find *c*. Because we have a known angle, a known opposite side and an unknown hypotenuse, use the sine function.

$$\sin 62.7^\circ = \frac{8.4}{c}$$

 $c = \frac{8.4}{\sin 62.7} \approx 9.45$
In summary, $B = 27.3^\circ$, $b \approx 4.34$, and $c \approx 9.45$.

2. Using a right triangle, we have a known angle, an unknown opposite side, *a*, and a known adjacent side. Therefore, use the tangent function.

$$\tan 85.4^\circ = \frac{a}{80}$$

 $a = 80 \tan 85.4^\circ \approx 994$
The Eiffel tower is approximately 994 feet high.

3. Using a right triangle, we have an unknown angle, *A*, a known opposite side, and a known hypotenuse. Therefore, use the sine function.

$$\sin A = \frac{6.7}{13.8}$$
$$A = \sin^{-1} \frac{6.7}{13.8} \approx 29.0^{\circ}$$

The wire makes an angle of approximately 29.0° with the ground.

4. Using two right triangles, a smaller right triangle corresponding to the smaller angle of elevation drawn inside a larger right triangle corresponding to the larger angle of elevation, we have a known angle, an unknown opposite side, *a* in the smaller triangle, *b* in the larger triangle, and a known adjacent side in each triangle. Therefore, use the tangent function.

$$\tan 32^\circ = \frac{a}{800}$$
$$a = 800 \tan 32^\circ \approx 499.9$$
$$\tan 35^\circ = \frac{b}{200}$$

$$800 \\ b = 800 \tan 35^\circ \approx 560.2$$

The height of the sculpture of Lincoln's face is 560.2 – 499.9, or approximately 60.3 feet.

- 5. a. We need the acute angle between ray OD and the north-south line through O. The measurement of this angle is given to be 25° . The angle is measured from the south side of the north-south line and lies east of the north-south line. Thus, the bearing from O to D is S 25° E.
 - **b.** We need the acute angle between ray *OC* and the north-south line through *O*. This angle measures $90^\circ - 75^\circ = 15^\circ$. This angle is measured from the south side of the north-south line and lies west of the north-south line. Thus the bearing from *O* to *C* is S 15° W.
- 6. a. Your distance from the entrance to the trail system is represented by the hypotenuse, *c*, of a right triangle. Because we know the length of the two sides of the right triangle, we find *c* using the Pythagorean Theorem. We have

$$c^{2} = a^{2} + b^{2} = (2.3)^{2} + (3.5)^{2} = 17.54$$

 $c = \sqrt{17.54} \approx 4.2$

You are approximately 4.2 miles from the entrance to the trail system.

b. To find your bearing from the entrance to the trail system, consider a north-south line passing through the entrance. The acute angle from this line to the ray on which you lie is $31^{\circ} + \theta$. Because we are measuring the angle from the south side of the line and you are west of the entrance, your bearing from the entrance is $S(31^{\circ} + \theta)$ W. To find θ , Use a right triangle and the tangent function.

$$\tan \theta = \frac{3.5}{2.3}$$

 $\theta = \tan^{-1} \frac{3.5}{2.3} \approx 56.7^{\circ}$

Thus, $31^{\circ} + \theta = 31^{\circ} + 56.7^{\circ} = 87.7^{\circ}$. Your bearing from the entrance to the trail system is S 87.7° W.

7. When the object is released (t = 0), the ball's distance, *d*, from its rest position is 6 inches down. Because it is down, *d* is negative: when t = 0, d = -6. Notice the greatest distance from rest position occurs at t = 0. Thus, we will use the equation with the cosine function, $y = a \cos \omega t$, to

model the ball's motion. Recall that |a| is the

maximum distance. Because the ball initially moves down, a = -6. The value of ω can be found using the formula for the period.

period =
$$\frac{2\pi}{\omega} = 4$$

 $2\pi = 4\omega$
 $\omega = \frac{2\pi}{4} = \frac{\pi}{2}$

Substitute these values into $d = a \cos wt$. The equation for the ball's simple harmonic motion is

$$d = -6\cos\frac{\pi}{2}t.$$

8. We begin by identifying values for a and ω .

$$d = 12\cos\frac{\pi}{4}t, a = 12 \text{ and } \omega = \frac{\pi}{4}.$$

- **a.** The maximum displacement from the rest position is the amplitude. Because a = 12, the maximum displacement is 12 centimeters.
- **b.** The frequency, *f*, is

$$f = \frac{\omega}{2\pi} = \frac{\frac{\pi}{4}}{2\pi} = \frac{\pi}{4} \cdot \frac{1}{2\pi} = \frac{1}{8}$$

The frequency is $\frac{1}{8}$ cm per second.

c. The time required for one cycle is the period.

period
$$=\frac{2\pi}{\omega}=\frac{2\pi}{\frac{\pi}{4}}=2\pi\cdot\frac{4}{\pi}=8$$

The time required for one cycle is 8 seconds.

Concept and Vocabulary Check 2.4

- 1. sides; angles
- 2. north; south

3. simple harmonic;
$$|a|$$
; $\frac{2\pi}{\omega}$; $\frac{\omega}{2\pi}$

Exercise Set 2.4

1. Find the measure of angle *B*. Because $C = 90^{\circ}, A + B = 90^{\circ}$. Thus, $B = 90^{\circ} - A = 90^{\circ} - 23.5^{\circ} = 66.5^{\circ}$. Because we have a known angle, a known adjacent side, and an unknown opposite side, use the tangent function.

$$\tan 23.5^\circ = \frac{a}{10}$$

$$a = 10 \tan 23.5^\circ \approx 4.35$$

Because we have a known angle, a known adjacent side, and an unknown hypotenuse, use the cosine function.

$$\cos 23.5^{\circ} = \frac{10}{c}$$

 $c = \frac{10}{\cos 23.5^{\circ}} \approx 10.90$
In summary, $B = 66.5^{\circ}$, $a \approx 4.35$, and $c \approx 10.90$.

2. Find the measure of angle *B*. Because $C = 90^{\circ}$, $A + B = 90^{\circ}$.

Thus,
$$B = 90^{\circ} - A = 90^{\circ} - 41.5^{\circ} = 48.5^{\circ}$$

Because we have a known angle, a known adjacent side, and an unknown opposite side, use the tangent function.

 $\tan 41.5^\circ = \frac{a}{20}$ $a = 20 \tan 41.5^\circ \approx 17.69$

Because we have a known angle, a known adjacent side, and an unknown hypotenuse, use the cosine function.

$$\cos 41.5^\circ = \frac{20}{c}$$
$$c = \frac{20}{\cos 41.5^\circ} \approx 26.70$$

In summary, $B = 48.5^{\circ}$, $a \approx 17.69$, and $c \approx 26.70$.

3. Find the measure of angle *B*. Because $C = 90^\circ$, $A + B = 90^\circ$. Thus, $B = 90^\circ - A = 90^\circ - 52.6^\circ = 37.4^\circ$. Because we have a known angle, a known hypotenuse, and an unknown opposite side, use the sine function.

$$\sin 52.6 = \frac{a}{54}$$
$$a = 54 \sin 52.6^\circ \approx 42.90$$

Because we have a known angle, a known hypotenuse, and an unknown adjacent side, use the cosine function.

 $\cos 52.6^{\circ} = \frac{b}{54}$ $b = 54 \cos 52.6^{\circ} \approx 32.80$ In summary, $B = 37.4^{\circ}$, $a \approx 42.90$, and $b \approx 32.80$. 4. Find the measure of angle *B*. Because $C = 90^{\circ}$, $A + B = 90^{\circ}$. Thus, $B = 90^{\circ} - A = 90^{\circ} - 54.8^{\circ} = 35.2^{\circ}$.

Because we have a known angle, a known hypotenuse, and an unknown opposite side, use the sine function.

$$\sin 54.8^\circ = \frac{a}{80}$$

 $a=80\sin 54.8^\circ\approx 65.37$

Because we have a known angle, a known hypotenuse, and an unknown adjacent side, use the cosine function.

$$\cos 54.8 = \frac{b}{80}$$

 $b = 80 \cos 54.8^{\circ} \approx 46.11$
In summary, $B = 35.2^{\circ}$, $a \approx 65.37$, and $c \approx 46.11$.

- 5. Find the measure of angle *A*. Because
 - $C = 90^{\circ}, A + B = 90^{\circ}.$

Thus, $A = 90^{\circ} - B = 90^{\circ} - 16.8^{\circ} = 73.2^{\circ}$. Because we have a known angle, a known opposite side and an unknown adjacent side, use the tangent function.

$$\tan 16.8^{\circ} = \frac{30.5}{a}$$
$$a = \frac{30.5}{\tan 16.8^{\circ}} \approx 101.02$$

Because we have a known angle, a known opposite side, and an unknown hypotenuse, use the sine function. 20.5

$$\sin 16.8^\circ = \frac{30.5}{c}$$

 $c = \frac{30.5}{\sin 16.8^\circ} \approx 105.52$
In summary, $A = 73.2^\circ$, $a \approx 101.02$, and

In summary,
$$c \approx 105.52$$
.

6. Find the measure of angle A. Because $C = 90^{\circ}$, $A + B = 90^{\circ}$.

Thus, $A = 90^{\circ} - B = 90^{\circ} - 23.8^{\circ} = 66.2^{\circ}$. Because we have a known angle, a known opposite side, and an unknown adjacent side, use the tangent function.

$$\tan 23.8^\circ = \frac{40.5}{a}$$

 $a = \frac{40.5}{\tan 23.8^\circ} \approx 91.83$

Because we have a known angle, a known opposite side, and an unknown hypotenuse, use the sine function.

$$\sin 23.8^{\circ} = \frac{40.5}{c}$$

$$c = \frac{40.5}{\sin 23.8^{\circ}} \approx 100.36$$
In summary, $A = 66.2^{\circ}$, $a \approx 01.83$, a

In summary, $A = 66.2^{\circ}$, $a \approx 91.83$, and $c \approx 100.36$.

7. Find the measure of angle *A*. Because we have a known hypotenuse, a known opposite side, and an unknown angle, use the sine function.

$$\sin A = \frac{30.4}{50.2}$$
$$A = \sin^{-1} \left(\frac{30.4}{50.2}\right) \approx 37.3^{\circ}$$

Find the measure of angle *B*. Because $C = 90^{\circ}, A + B = 90^{\circ}$. Thus, $B = 90^{\circ} - A \approx 90^{\circ} - 37.3^{\circ} = 52.7^{\circ}$. Use the Pythagorean Theorem. $a^{2} + b^{2} = c^{2}$ $(30.4)^{2} + b^{2} = (50.2)^{2}$ $b^{2} = (50.2)^{2} - (30.4)^{2} = 1595.88$ $b = \sqrt{1595.88} \approx 39.95$

In summary, $A \approx 37.3^\circ$, $B \approx 52.7^\circ$, and $b \approx 39.95$.

8. Find the measure of angle *A*. Because we have a known hypotenuse, a known opposite side, and an unknown angle, use the sine function.

$$\sin A = \frac{11.2}{65.8}$$
$$A = \sin^{-1} \left(\frac{11.2}{65.8} \right) \approx 9.8^{\circ}$$

Find the measure of angle *B*. Because $C = 90^{\circ}$, $A + B = 90^{\circ}$. Thus, $B = 90^{\circ} - A \approx 90^{\circ} - 9.8^{\circ} = 80.2^{\circ}$.

Thus, $B = 90^{\circ} - A \approx 90^{\circ} - 9.8^{\circ} = 6^{\circ}$ Use the Pythagorean Theorem.

$$a^{2} + b^{2} = c^{2}$$

$$(11.2)^{2} + b^{2} = (65.8)^{2}$$

$$b^{2} = (65.8)^{2} - (11.2)^{2} = 4204.2$$

$$b = \sqrt{4204.2} \approx 64.84$$

In summary, $A \approx 9.8^{\circ}$, $B \approx 80.2^{\circ}$, and $b \approx 64.84$.

9. Find the measure of angle *A*. Because we have a known opposite side, a known adjacent side, and an unknown angle, use the tangent function.

$$\tan A = \frac{10.8}{24.7}$$
$$A = \tan^{-1} \left(\frac{10.8}{24.7}\right) \approx 23.6^{\circ}$$

Find the measure of angle *B*. Because $C = 90^\circ$, $A + B = 90^\circ$. Thus, $B = 90^\circ - A \approx 90^\circ - 23.6^\circ = 66.4^\circ$. Use the Pythagorean Theorem. $c^2 = a^2 + b^2 = (10.8)^2 + (24.7)^2 = 726.73$ $c = \sqrt{726.73} \approx 26.96$ In summary, $A \approx 23.6^\circ$, $B \approx 66.4^\circ$, and $c \approx 26.96$. **10.** Find the measure of angle *A*. Because we have a known opposite side, a known adjacent side, and an unknown angle, use the tangent function.

$$\tan A = \frac{15.3}{17.6}$$
$$A = \tan^{-1} \left(\frac{15.3}{17.6} \right) \approx 41.0^{\circ}$$

Find the measure of angle *B*. Because $C = 90^{\circ}$, $A + B = 90^{\circ}$. Thus, $B = 90^{\circ} - A \approx 90^{\circ} - 41.0^{\circ} = 49.0^{\circ}$. Use the Pythagorean Theorem. $c^2 = a^2 + b^2 = (15.3)^2 + (17.6)^2 = 543.85$ $c = \sqrt{543.85} \approx 23.32$ In summary, $A \approx 41.0^{\circ}$, $B \approx 49.0^{\circ}$, and $c \approx 23.32$.

11. Find the measure of angle *A*. Because we have a known hypotenuse, a known adjacent side, and unknown angle, use the cosine function.

$$s A = \frac{2}{7}$$
$$A = \cos^{-1}\left(\frac{2}{7}\right) \approx 73.4^{\circ}$$

co

Find the measure of angle *B*. Because $C = 90^\circ$, $A + B = 90^\circ$. Thus, $B = 90^\circ - A \approx 90^\circ - 73.4^\circ = 16.6^\circ$. Use the Pythagorean Theorem. $a^2 + b^2 = c^2$ $a^2 + (2)^2 = (7)^2$ $a^2 = (7)^2 - (2)^2 = 45$ $a = \sqrt{45} \approx 6.71$ In summary, $A \approx 73.4^\circ$, $B \approx 16.6^\circ$, and $a \approx 6.71$.

12. Find the measure of angle *A*. Because we have a known hypotenuse, a known adjacent side, and an unknown angle, use the cosine function.

$$\cos A = \frac{4}{9}$$
$$A = \cos^{-1}\left(\frac{4}{9}\right) \approx 63.6^{\circ}$$

Find the measure of angle *B*. Because $C = 90^\circ$, $A + B = 90^\circ$. Thus, $B = 90^\circ - A \approx 90^\circ - 63.6^\circ = 26.4^\circ$. Use the Pythagorean Theorem. $a^2 + b^2 = c^2$ $a^2 + (4)^2 = (9)^2$ $a^2 = (9)^2 - (4)^2 = 65$ $a = \sqrt{65} \approx 8.06$

In summary, $A \approx 63.6^\circ$, $B \approx 26.4^\circ$, and $a \approx 8.06$.

- 13. We need the acute angle between ray *OA* and the north-south line through *O*. This angle measure $90^{\circ} 75^{\circ} = 15^{\circ}$. This angle is measured from the north side of the north-south line and lies east of the north-south line. Thus, the bearing from *O* and *A* is N 15° E.
- 14. We need the acute angle between ray *OB* and the north-south line through *O*. This angle measures $90^{\circ} 60^{\circ} = 30^{\circ}$. This angle is measured from the north side of the north-south line and lies west of the north-south line. Thus, the bearing from *O* to *B* is N 30° W.
- **15.** The measurement of this angle is given to be 80° . The angle is measured from the south side of the north-south line and lies west of the north-south line. Thus, the bearing from *O* to *C* is S 80° W.
- 16. We need the acute angle between ray *OD* and the north-south line through *O*. This angle measures $90^{\circ} 35^{\circ} = 55^{\circ}$. This angle is measured from the south side of the north-south line and lies east of the north-south line. Thus, the bearing from *O* to *D* is S 55° E.
- 17. When the object is released (t = 0), the object's distance, *d*, from its rest position is 6 centimeters down. Because it is down, *d* is negative: When t = 0, d = -6. Notice the greatest distance from rest position occurs at t = 0. Thus, we will use the equation with the cosine function, $y = a \cos \omega t$ to model the object's motion. Recall that |a| is the

maximum distance. Because the object initially moves down, a = -6. The value of ω can be found using the formula for the period.

period =
$$\frac{2\pi}{\omega} = 4$$

 $2\pi = 4\omega$
 $\omega = \frac{2\pi}{4} = \frac{\pi}{2}$

Substitute these values into $d = a \cos \omega t$. The equation for the object's simple harmonic motion is

$$d = -6\cos\frac{\pi}{2}t.$$

18. When the object is released (t = 0), the object's distance, *d*, from its rest position is 8 inches down. Because it is down, *d*, is negative: When t = 0, d = -8. Notice the greatest distance from rest position occurs at t = 0. Thus, we will use the equation with the cosine function, $y = a \cos \omega t$, to

model the object's motion. Recall that |a| is the maximum distance. Because the object initially moves down, a = -8. The value of ω can be found using the formula for the period.

period =
$$\frac{2\pi}{\omega} = 2$$

 $2\pi = 2\omega$
 $\omega = \frac{2\pi}{2} = \pi$

Substitute these values into $d = a \cos \omega t$. The equation for the object's simple harmonic motion is $d = -8 \cos \pi t$.

19. When t = 0, d = 0. Therefore, we will use the equation with the sine function, $y = a \sin \omega t$, to model the object's motion. Recall that |a| is the maximum distance. Because the object initially moves down, and has an amplitude of 3 inches, a = -3. The value of ω can be found using the formula for the period.

period =
$$\frac{2\pi}{\omega} = 1.5$$

 $2\pi = 1.5\omega$
 $\omega = \frac{2\pi}{1.5} = \frac{4\pi}{3}$

Substitute these values into $d = a \sin \omega t$. The equation for the object's simple harmonic motion is

$$d = -3\sin\frac{4\pi}{3}t.$$

20. When t = 0, d = 0. Therefore, we will use the equation with the sine function, $y = a \sin \omega t$, to model the

object's motion. Recall that |a| is the maximum

distance. Because the object initially moves down, and has an amplitude of 5 centimeters, a = -5. The value of ω can be found using the formula for the period.

period =
$$\frac{2\pi}{\omega} = 2.5$$

 $2\pi = 2.5\omega$
 $\omega = \frac{2\pi}{2.5} = \frac{4\pi}{5}$

Substitute these values into $d = a \sin \omega t$. The equation for the object's simple harmonic motion is

$$d = -5\sin\frac{4\pi}{5}t \; .$$

21. We begin by identifying values for a and ω .

$$d = 5\cos\frac{\pi}{2}t$$
, $a = 5$ and $\omega = \frac{\pi}{2}$

- **a.** The maximum displacement from the rest position is the amplitude. Because a = 5, the maximum displacement is 5 inches.
- **b.** The frequency, *f*, is

$$f = \frac{\omega}{2\pi} = \frac{\frac{\pi}{2}}{2\pi} = \frac{\pi}{2} \cdot \frac{1}{2\pi} = \frac{1}{4}$$

The frequency is $\frac{1}{4}$ inch per second.

c. The time required for one cycle is the period.

period =
$$\frac{2\pi}{\omega} = \frac{2\pi}{\frac{\pi}{2}} = 2\pi \cdot \frac{2}{\pi} = 4$$

The time required for one cycle is 4 seconds.

- 22. We begin by identifying values for *a* and ω . $d = 10 \cos 2\pi t$, a = 10 and $\omega = 2\pi$
 - $a = 10\cos 2\pi t$, a = 10 and $\omega = 2\pi$
 - **a.** The maximum displacement from the rest position is the amplitude. Because a = 10, the maximum displacement is 10 inches.
 - **b.** The frequency, f, is $f = \frac{\omega}{2\pi} = \frac{2\pi}{2\pi} = 1$.
 - The frequency is 1 inch per second. The time required for one cycle is the period.

period =
$$\frac{2\pi}{\omega} = \frac{2\pi}{2\pi} = 1$$

c.

The time required for one cycle is 1 second.

- 23. We begin by identifying values for *a* and ω . $d = -6\cos 2\pi t$, a = -6 and $\omega = 2\pi$
 - **a.** The maximum displacement from the rest position is the amplitude. Because a = -6, the maximum displacement is 6 inches.
 - **b.** The frequency, *f*, is

$$f = \frac{\omega}{2\pi} = \frac{2\pi}{2\pi} = 1.$$

The frequency is 1 inch per second.

c. The time required for one cycle is the period.

period =
$$\frac{2\pi}{\omega} = \frac{2\pi}{2\pi} = 1$$

The time required for one cycle is 1 second.

24. We begin by identifying values for a and ω .

$$d = -8\cos\frac{\pi}{2}t$$
, $a = -8$ and $\omega = \frac{\pi}{2}$

- **a.** The maximum displacement from the rest position is the amplitude. Because a = -8, the maximum displacement is 8 inches.
- **b.** The frequency, *f*, is $f = \frac{\omega}{2\pi} = \frac{\frac{\pi}{2}}{2\pi} = \frac{1}{4}$. The frequency is $\frac{1}{4}$ inch per second.
- **c.** The time required for one cycle is the period. period = $\frac{2\pi}{\omega} = \frac{2\pi}{\frac{\pi}{2}} = 2\pi \cdot \frac{2}{\pi} = 4$

The time required for one cycle is 4 seconds.

25. We begin by identifying values for *a* and ω .

$$d = \frac{1}{2}\sin 2t, a = \frac{1}{2}$$
 and $\omega = 2$

a. The maximum displacement from the rest position is the amplitude.

Because $a = \frac{1}{2}$, the maximum displacement is

$$\frac{1}{2}$$
 inch.

b. The frequency, *f*, is

$$f = \frac{\omega}{2\pi} = \frac{2}{2\pi} = \frac{1}{\pi} \approx 0.32.$$

The frequency is approximately 0.32 cycle per second.

c. The time required for one cycle is the period.

period = $\frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi \approx 3.14$ The time required for one cycle is approximately 3.14 seconds.

26. We begin by identifying values for a and ω .

$$d = \frac{1}{3}\sin 2t, a = \frac{1}{3} \text{ and } \omega = 2$$

a. The maximum displacement from the rest position is the amplitude. Because $a = \frac{1}{3}$, the maximum displacement is $\frac{1}{3}$ inch.

- **b.** The frequency, *f*, is $f = \frac{\omega}{2\pi} = \frac{2}{2\pi} = \frac{1}{\pi} \approx 0.32$. The frequency is approximately 0.32 cycle per second.
- **c.** The time required for one cycle is the period.

period =
$$\frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi \approx 3.14$$

The time required for one cycle is approximately 3.14 seconds.

27. We begin by identifying values for *a* and ω .

$$d = -5\sin\frac{2\pi}{3}t, a = -5 \text{ and } \omega = \frac{2\pi}{3}$$

- **a.** The maximum displacement from the rest position is the amplitude. Because a = -5, the maximum displacement is 5 inches.
- **b.** The frequency, *f*, is

$$f = \frac{\omega}{2\pi} = \frac{\frac{2\pi}{3}}{2\pi} = \frac{2\pi}{3} \cdot \frac{1}{2\pi} = \frac{1}{3}.$$

The frequency is $\frac{1}{3}$ cycle per second.

c. The time required for one cycle is the period.

period =
$$\frac{2\pi}{\omega} = \frac{2\pi}{\frac{2\pi}{3}} = 2\pi \cdot \frac{3}{2\pi} = 3$$

The time required for one cycle is 3 seconds.

28. We begin by identifying values for a and ω .

$$d = -4\sin\frac{3\pi}{2}t$$
, $a = -4$ and $\omega = \frac{3\pi}{2}$

- **a.** The maximum displacement from the rest position is the amplitude. Because a = -4, the maximum displacement is 4 inches.
- **b.** The frequency, *f*, is

$$f = \frac{\omega}{2\pi} = \frac{\frac{3\pi}{2}}{2\pi} = \frac{3\pi}{2} \cdot \frac{1}{2\pi} = \frac{3}{4}.$$

The frequency is $\frac{3}{4}$ cycle per second.

c. The time required for one cycle is the period. period = $\frac{2\pi}{\omega} = \frac{2\pi}{\frac{3\pi}{2}} = 2\pi \cdot \frac{2}{3\pi} = \frac{4}{3}$

The required time for one cycle is $\frac{4}{3}$ seconds.

- **29.** $x = 500 \tan 40^\circ + 500 \tan 25^\circ$ $x \approx 653$
- **30.** $x = 100 \tan 20^\circ + 100 \tan 8^\circ$ $x \approx 50$
- **31.** $x = 600 \tan 28^\circ 600 \tan 25^\circ$ $x \approx 39$
- 32. $x = 400 \tan 40^\circ 400 \tan 28^\circ$ $x \approx 123$

33.
$$x = \frac{300}{\tan 34^\circ} - \frac{300}{\tan 64^\circ}$$

 $x \approx 298$

34.
$$x = \frac{500}{\tan 20^\circ} - \frac{500}{\tan 48^\circ}$$

 $x \approx 924$

35.
$$x = \frac{400 \tan 40^\circ \tan 20^\circ}{\tan 40^\circ - \tan 20^\circ}$$

 $x \approx 257$

36.
$$x = \frac{100 \tan 43^\circ \tan 38^\circ}{\tan 43^\circ - \tan 38^\circ}$$

 $x \approx 482$

37

$$d = 4\cos\left(\pi t - \frac{\pi}{2}\right)$$

$$d_{1}\left(\frac{1}{2}, 4\right)$$

$$(0, 0) \left(\frac{1}{2}, 4\right)$$

$$(0, 0) \left(\frac{1}{2}, 4\right)$$

$$(0, 0) \left(\frac{1}{2}, 4\right)$$

$$d_{2}\left(\frac{1}{2}, 4\right)$$

$$d_{3}\left(\frac{3}{2}, -4\right)$$

$$d = 4\cos\left(\pi t - \frac{\pi}{2}\right)$$

a. 4 in.

b.
$$\frac{1}{2}$$
 in. per sec

c. 2 sec

d.
$$\frac{1}{2}$$

38.
$$d = 3\cos\left(\pi t + \frac{\pi}{2}\right)$$

$$d = 3\cos\left(\pi t + \frac{\pi}{2}\right)$$

$$d = 3\cos\left(\pi t + \frac{\pi}{2}\right)$$
a. 3 in.
b. $\frac{1}{2} \text{ in. per sec}$
c. $2 \sec$
d. $-\frac{1}{2}$
39. $d = -2\sin\left(\frac{\pi t}{4} + \frac{\pi}{2}\right)$

$$(2, 0)$$

$$d = -2\sin\left(\frac{\pi t}{4} + \frac{\pi}{2}\right)$$

$$(0, -2)$$

$$d = -2\sin\left(\frac{\pi t}{4} + \frac{\pi}{2}\right)$$
a. 2 in.
b. $\frac{1}{8} \text{ in. per sec}$
c. $8 \sec$
d. -2
40. $d = -\frac{1}{2}\sin\left(\frac{\pi t}{4} - \frac{\pi}{2}\right)$

$$\left(0, \frac{1}{2}\right)$$

$$d = -\frac{1}{2}\sin\left(\frac{\pi t}{4} - \frac{\pi}{2}\right)$$

$$\left(0, \frac{1}{2}\right)$$

$$d = -\frac{1}{2}\sin\left(\frac{\pi t}{4} - \frac{\pi}{2}\right)$$

$$\left(0, \frac{1}{2}\right)$$

$$d = -\frac{1}{2}\sin\left(\frac{\pi t}{4} - \frac{\pi}{2}\right)$$

a.
$$\frac{1}{2}$$
 in.
b. $\frac{1}{8}$ in. per sec
c. 8 sec
d. 2

41. Using a right triangle, we have a known angle, an unknown opposite side, a, and a known adjacent side. Therefore, use tangent function.

 $\tan 21.3^\circ = \frac{a}{5280}$ $a = 5280 \tan 21.3^{\circ} \approx 2059$ The height of the tower is approximately 2059 feet.

42. 30 yd
$$\cdot \frac{3 \text{ ft}}{1 \text{ yd}} = 90 \text{ ft}$$

Using a right triangle, we have a known angle, an unknown opposite side, a, and a known adjacent side. Therefore, use the tangent function.

$$\tan 38.7^\circ = \frac{a}{90}$$

 $a = 90 \tan 38.7^\circ \approx 72$
The height of the building is approximately 72 feet.

43. Using a right triangle, we have a known angle, a known opposite side, and an unknown adjacent side, *a*. Therefore, use the tangent function.

$$\tan 23.7^\circ = \frac{305}{a}$$
$$a = \frac{305}{\tan 23.7^\circ} \approx 695$$

The ship is approximately 695 feet from the statue's base.

44. Using a right triangle, we have a known angle, a known opposite side, and an unknown adjacent side, *a*. Therefore, use the tangent function.

$$\tan 22.3^\circ = \frac{200}{a}$$
$$a = \frac{200}{\tan 22.3^\circ} \approx 488$$

The ship is about 488 feet offshore.

 $\frac{1}{2}$

45. The angle of depression from the helicopter to point *P* is equal to the angle of elevation from point *P* to the helicopter. Using a right triangle, we have a known angle, a known opposite side, and an unknown adjacent side, *d*. Therefore, use the tangent function.

$$\tan 36^\circ = \frac{1000}{d}$$
$$d = \frac{1000}{\tan 36^\circ} \approx 1376$$

The island is approximately 1376 feet off the coast.

46. The angle of depression from the helicopter to the stolen car is equal to the angle of elevation from the stolen car to the helicopter. Using a right triangle, we have a known angle, a known opposite side, and an unknown adjacent side, *d*. Therefore, use the tangent function.

$$\tan 72^\circ = \frac{800}{d}$$
$$d = \frac{800}{\tan 72^\circ} \approx 260$$

The stolen car is approximately 260 feet from a point directly below the helicopter.

47. Using a right triangle, we have an unknown angle, *A*, a known opposite side, and a known hypotenuse. Therefore, use the sine function.

$$\sin A = \frac{6}{23}$$
$$A = \sin^{-1} \left(\frac{6}{23}\right) \approx 15.1^{\circ}$$

The ramp makes an angle of approximately 15.1° with the ground.

48. Using a right triangle, we have an unknown angle, *A*, a known opposite side, and a known adjacent side. Therefore, use the tangent function.

$$\tan A = \frac{250}{40}$$
$$A = \tan^{-1} \left(\frac{250}{40}\right) \approx 80.9^{\circ}$$

The angle of elevation of the sun is approximately 80.9° .

49. Using the two right triangles, we have a known angle, an unknown opposite side, a in the smaller triangle, b in the larger triangle, and a known adjacent side in each triangle. Therefore, use the tangent function.

$$\tan 19.2^\circ = \frac{a}{125}$$

$$a = 125 \tan 19.2^\circ \approx 43.5$$

$$\tan 31.7^\circ = \frac{b}{125}$$

$$b = 125 \tan 31.7^\circ \approx 77.2$$
The holloon rises approximately 77.2

The balloon rises approximately 77.2 - 43.5 or 33.7 feet.

50. Using two right triangles, a smaller right triangle corresponding to the smaller angle of elevation drawn inside a larger right triangle corresponding to the larger angle of elevation, we have a known angle, an unknown opposite side, *a* in the smaller triangle, *b* in the larger triangle, and a known adjacent side in each triangle. Therefore, use the tangent function.

$$\tan 53^\circ = \frac{a}{330}$$

$$a = 330 \tan 53^\circ = 437.9$$

$$\tan 63^\circ = \frac{b}{330}$$

$$b = 330 \tan 63^\circ \approx 647.7$$
The height of the flagpole is approximately
$$647.7 - 437.9, \text{ or } 209.8 \text{ feet (or } 209.7 \text{ feet).}$$

51. Using a right triangle, we have a known angle, a known hypotenuse, and unknown sides. To find the opposite side, *a*, use the sine function.

$$\sin 53^\circ = \frac{a}{150}$$

 $a = 150 \sin 53^\circ \approx 120$
To find the adjacent side, b, use the cosine function.
 $\cos 53^\circ = \frac{b}{150}$
 $b = 150 \cos 53^\circ \approx 90$

The boat has traveled approximately 90 miles north and 120 miles east.

52. Using a right triangle, we have a known angle, a known hypotenuse, and unknown sides. To find the opposite side, *a*, use the sine function.

$$\sin 64^\circ = \frac{a}{40}$$
$$a = 40\sin 64^\circ \approx 36$$

To find the adjacent side, b, use the cosine function.

$$\cos 64^\circ = \frac{b}{40}$$
$$b = 40\cos 64^\circ \approx 17.5$$

The boat has traveled about 17.5 mi south and 36 mi east.

53. The bearing from the fire to the second ranger is N 28° E. Using a right triangle, we have a known angle, a known opposite side, and an unknown adjacent side, *b*. Therefore, use the tangent function.

$$\tan 28^\circ = \frac{7}{b}$$
$$b = \frac{7}{\tan 28^\circ} \approx 13$$

The first ranger is 13.2 miles from the fire, to the nearest tenth of a mile.

.2

54. The bearing from the lighthouse to the second ship is N 34° E. Using a right triangle, we have a known angle, a known opposite side, and an unknown adjacent side, *b*. Therefore, use the tangent function.

$$\tan 34^\circ = \frac{9}{b}$$
$$b = \frac{9}{\tan 34^\circ} \approx 13.3$$

The first ship is about 13.3 miles from the lighthouse, to the nearest tenth of a mile.

55. Using a right triangle, we have a known adjacent side, a known opposite side, and an unknown angle, *A*. Therefore, use the tangent function.

$$\tan A = \frac{1.5}{2}$$
$$A = \tan\left(\frac{1.5}{2}\right) \approx 37^{\circ}$$

We need the acute angle between the ray that runs from your house through your location, and the north-south line through your house. This angle measures approximately $90^{\circ} - 37^{\circ} = 53^{\circ}$. This angle is measured from the north side of the north-south line and lies west of the north-south line. Thus, the bearing from your house to you is N 53° W. **56.** Using a right triangle, we have a known adjacent side, a known opposite side, and an unknown angle, *A*. Therefore, use the tangent function.

$$\tan A = \frac{6}{9}$$
$$A = \tan^{-1}\left(\frac{6}{9}\right) \approx 34^{\circ}$$

We need the acute angle between the ray that runs from the ship through the harbor, and the north-south line through the ship. This angle measures $90^{\circ} - 34^{\circ} = 56^{\circ}$. This angle is measured from the north side of the north-south line and lies west of the north-south line. Thus, the bearing from the ship to the harbor is N 56° W. The ship should use a bearing of N 56° W to sail directly to the harbor.

57. To find the jet's bearing from the control tower, consider a north-south line passing through the tower. The acute angle from this line to the ray on which the jet lies is $35^{\circ} + \theta$. Because we are measuring the angle from the north side of the line and the jet is east of the tower, the jet's bearing from the tower is N $(35^{\circ} + \theta)$ E. To find θ , use a right triangle and the

tangent function.

$$\tan \theta = \frac{7}{5}$$
$$\theta = \tan^{-1} \left(\frac{7}{5}\right) \approx 54.5^{\circ}$$

Thus, $35^{\circ} + \theta = 35^{\circ} + 54.5^{\circ} = 89.5^{\circ}$. The jet's bearing from the control tower is N 89.5° E.

58. To find the ship's bearing from the port, consider a north-south line passing through the port. The acute angle from this line to the ray on which the ship lies is $40^\circ + \theta$. Because we are measuring the angle from the south side of the line and the ship is west of the port, the ship's bearing from the port is S $(40^\circ + \theta)$ W. To find θ , use a right triangle and

the tangent function.

$$\tan \theta = \frac{11}{7}$$
$$\theta = \tan^{-1} \left(\frac{11}{7}\right) \approx 57.5^{\circ}$$

Thus, $40^\circ + \theta = 40^\circ + 57.5 = 97.5^\circ$. Because this angle is over 90° we subtract this angle from 180° to find the bearing from the north side of the north-south line. The bearing of the ship from the port is N 82.5° W.

59. The frequency, f, is $f = \frac{\omega}{2\pi}$, so

$$\frac{1}{2} = \frac{\omega}{2\pi}$$
$$\omega = \frac{1}{2} \cdot 2\pi = \pi$$

Because the amplitude is 6 feet, a = 6. Thus, the equation for the object's simple harmonic motion is $d = 6 \sin \pi t$.

60. The frequency, *f*, is $f = \frac{\omega}{2\pi}$, so

$$\frac{1}{4} = \frac{\omega}{2\pi}$$
$$\omega = \frac{1}{4} \cdot 2\pi = \frac{\pi}{2}$$

Because the amplitude is 8 feet, a = 8. Thus, the equation for the object's simple harmonic motion is

$$d=8\sin\frac{\pi}{2}t.$$

61. The frequency, f, is $f = \frac{\omega}{2\pi}$, so

$$264 = \frac{\omega}{2\pi}$$

 $\omega = 264 \cdot 2\pi = 528\pi$ Thus, the equation for the tuning fork's simple harmonic motion is $d = \sin 528\pi t$.

62. The frequency, f, is
$$f = \frac{\omega}{2\pi}$$
, so $98,100,000 = \frac{\omega}{2\pi}$

 $\omega = 98,100,000 \cdot 2\pi = 196,200,000\pi$ Thus, the equation for the radio waves' simple harmonic motion is $d = \sin 196,200,000\pi t$.

63. – 69. Answers may vary.

70.
$$y = 4e^{-0.1x} \cos 2x$$

3 complete oscillations occur.

71. $y = -6e^{-0.09x} \cos 2\pi x$

10 complete oscillations occur.

- 72. makes sense
- **73.** does not make sense; Explanations will vary. Sample explanation: When using bearings, the angle must be less than 90° .
- 74. does not make sense; Explanations will vary. Sample explanation: When using bearings, north and south are listed before east and west.
- **75.** does not make sense; Explanations will vary. Sample explanation: Frequency and Period are inverses of each other. If the period is 10 seconds then the frequency is $\frac{1}{10} = 0.1$ oscillations per second.
- 76. Using the right triangle, we have a known angle, an unknown opposite side, r, and an unknown hypotenuse, r + 112. Because both sides are in terms of the variable r, we can find r by using the sine function.

$$\sin 76.6^{\circ} = \frac{r}{r+112}$$

$$\sin 76.6^{\circ}(r+112) = r$$

$$r \sin 76.6^{\circ} + 112 \sin 76.6^{\circ} = r$$

$$r - r \sin 76.6^{\circ} = 112 \sin 76.6^{\circ}$$

$$r(1 - \sin 76.6^{\circ}) = 112 \sin 76.6^{\circ}$$

$$r = \frac{112 \sin 76.6^{\circ}}{1 - \sin 76.6^{\circ}} \approx 4002$$

The Earth's radius is approximately 4002 miles.

77. Let d be the adjacent side to the 40° angle. Using the right triangles, we have a known angle and unknown sides in both triangles. Use the tangent function.

$$\tan 20^\circ = \frac{h}{75+d}$$

$$h = (75+d) \tan 20^\circ$$
Also,
$$\tan 40^\circ = \frac{h}{d}$$

$$h = d \tan 40^\circ$$
Using the transitive property we have
$$(75+d) \tan 20^\circ = d \tan 40^\circ$$
75 tan 20° + d tan 20° = d tan 40°
d tan 40° - d tan 20° = 75 tan 20°
d (tan 40° - tan 20°) = 75 tan 20°
$$d = \frac{75 \tan 20^\circ}{\tan 40^\circ - \tan 20^\circ}$$

Thus, $h = d \tan 40^\circ$

$$= \frac{75 \tan 20^{\circ}}{\tan 40^{\circ} - \tan 20^{\circ}} \tan 40^{\circ} \approx 48$$

The height of the building is approximately 48 feet.

78. Answers may vary.

79.
$$\sec x \cot x = \frac{1}{\cos x} \cdot \frac{\cos x}{\sin x} = \frac{1}{\sin x}$$
 or $\csc x$

80.
$$\tan x \csc x \cos x = \frac{\sin x}{\cos x} \cdot \frac{1}{\sin x} \cdot \frac{\cos x}{1} = 1$$

81.
$$\sec x + \tan x = \frac{1}{\cos x} + \frac{\sin x}{\cos x} = \frac{1 + \sin x}{\cos x}$$

Chapter 2 Review Exercises

1.

The equation $y = 3\sin 4x$ is of the form $y = A\sin Bx$ with A = 3 and B = 4. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{4} = \frac{\pi}{2}$. The quarter-period is $\frac{\frac{\pi}{2}}{4} = \frac{\pi}{2} \cdot \frac{1}{4} = \frac{\pi}{8}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{\pi}{8} = \frac{\pi}{8}$ $x = \frac{\pi}{8} + \frac{\pi}{8} = \frac{\pi}{4}$ $x = \frac{\pi}{4} + \frac{\pi}{8} = \frac{3\pi}{8}$

 $x = \frac{3\pi}{8} + \frac{\pi}{8} = \frac{\pi}{2}$ Evaluate the function at each value of *x*.

x	coordinates
0	(0, 0)
$\frac{\pi}{8}$	$\left(\frac{\pi}{8},3\right)$
$\frac{\pi}{4}$	$\left(\frac{\pi}{4},0\right)$
$\frac{3\pi}{8}$	$\left(\frac{3\pi}{8},-3\right)$
$\frac{\pi}{2}$	(2 π , 0)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

- The equation $y = -2\cos 2x$ is of the form $y = A\cos Bx$ with A = -2 and B = 2. The amplitude is |A| = |-2| = 2. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$ $x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{4}$
 - $x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$ $x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$ $x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$

2.

Evaluate the function at each value of *x*.

x	coordinates
0	(0, -2)
$\frac{\pi}{4}$	$\left(\frac{\pi}{4},0\right)$
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},2\right)$
$\frac{3\pi}{4}$	$\left(\frac{3\pi}{4},0\right)$
π	$(\pi, -2)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

3. The equation $y = 2\cos\frac{1}{2}x$ is of the form $y = A\cos Bx$ with A = 2 and $B = \frac{1}{2}$. The amplitude is |A| = |2| = 2. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$. The quarter-period is $\frac{4\pi}{4} = \pi$. The cycle begins at x = 0. Add quarter-periods to generate x-values for the key points. x = 0 $x = 0 + \pi = \pi$ $x = \pi + \pi = 2\pi$ $x = 2\pi + \pi = 3\pi$ $x = 3\pi + \pi = 4\pi$ Evaluate the function at each value of x.

x	coordinates
0	(0, 2)
π	$(\pi, 0)$
2π	$(2\pi, -2)$
3π	(3 <i>π</i> , 0)
4π	(4 <i>π</i> , 2)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

4. The equation $y = \frac{1}{2}\sin\frac{\pi}{3}x$ is of the form $y = A\sin Bx$ with $A = \frac{1}{2}$ and $B = \frac{\pi}{3}$. The amplitude is $|A| = \left|\frac{1}{2}\right| = \frac{1}{2}$. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{3}} = 2\pi \cdot \frac{3}{\pi} = 6$. The quarter-period is $\frac{6}{4} = \frac{3}{2}$. The cycle begins at x = 0. Add quarterperiods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{3}{2} = \frac{3}{2}$

$$x = 0 + \frac{3}{2} = \frac{3}{2}$$
$$x = \frac{3}{2} + \frac{3}{2} = 3$$
$$x = 3 + \frac{3}{2} = \frac{9}{2}$$
$$x = \frac{9}{2} + \frac{3}{2} = 6$$

Evaluate the function at each value of *x*.

x	coordinates
0	(0, 0)
$\frac{3}{2}$	$\left(\frac{3}{2},\frac{1}{2}\right)$
3	(3, 0)
$\frac{9}{2}$	$\left(\frac{9}{2},-\frac{1}{2}\right)$
6	(6, 0)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

5. The equation $y = -\sin \pi x$ is of the form $y = A\sin Bx$ with A = -1 and $B = \pi$. The amplitude is |A| = |-1| = 1. The period is $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$. The quarter-period is $\frac{2}{4} = \frac{1}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{1}{2} = \frac{1}{2}$ $x = \frac{1}{2} + \frac{1}{2} = 1$

$$x = \frac{1}{2} + \frac{1}{2} = 1$$
$$x = 1 + \frac{1}{2} = \frac{3}{2}$$
$$x = \frac{3}{2} + \frac{1}{2} = 2$$

Evaluate the function at each value of *x*.

x	coordinates
0	(0, 0)
$\frac{1}{2}$	$\left(\frac{1}{2},-1\right)$
1	(1, 0)
$\frac{3}{2}$	$\left(\frac{3}{2},1\right)$
2	(2, 0)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

The equation $y = 3\cos\frac{x}{3}$ is of the form $y = A\cos Bx$ with A = 3 and $B = \frac{1}{3}$. The amplitude is |A| = |3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{1}{3}} = 2\pi \cdot 3 = 6\pi$. The quarterperiod is $\frac{6\pi}{4} = \frac{3\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0 $x = 0 + \frac{3\pi}{2} = \frac{3\pi}{2}$ $x = \frac{3\pi}{2} + \frac{3\pi}{2} = 3\pi$

$$x = 3\pi + \frac{3\pi}{2} = \frac{9\pi}{2}$$
$$x = \frac{9\pi}{2} + \frac{3\pi}{2} = 6\pi$$

6.

Evaluate the function at each value of *x*.

x	coordinates
0	(0, 3)
$\frac{3\pi}{2}$	$\left(\frac{3\pi}{2},0\right)$
3π	(3\pi, -3)
$\frac{9\pi}{2}$	$\left(\frac{9\pi}{2},0\right)$
6π	(6 <i>π</i> , 3)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

7. The equation $y = 2\sin(x - \pi)$ is of the form $y = A\sin(Bx - C)$ with A = 2, B = 1, and $C = \pi$. The amplitude is |A| = |2| = 2. The period is

$$\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi.$$
 The phase shift is $\frac{C}{B} = \frac{\pi}{1} = \pi.$ The quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}.$

The cycle begins at $x = \pi$. Add quarter-periods to generate *x*-values for the key points. $x = \pi$

$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$
$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$
$$x = 2\pi + \frac{\pi}{2} = \frac{5\pi}{2}$$
$$x = \frac{5\pi}{2} + \frac{\pi}{2} = 3\pi$$

Evaluate the function at each value of *x*.

x	coordinates
π	$(\pi, 0)$
$\frac{3\pi}{2}$	$\left(\frac{3\pi}{2},2\right)$
2π	(2 π , 0)
$\frac{5\pi}{2}$	$\left(\frac{5\pi}{2},-2\right)$
3π	(3 <i>π</i> , 0)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

8. $y = -3\cos(x + \pi) = -3\cos(x - (-\pi))$ The equation $y = -3\cos(x - (-\pi))$ is of the form $y = A\cos(Bx - C)$ with A = -3, B = 1, and $C = -\pi$. The amplitude is |A| = |-3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$. The phase shift is $\frac{C}{B} = \frac{-\pi}{1} = -\pi$. The quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The cycle begins at $x = -\pi$. Add quarter-periods to generate x-values for the key points. $x = -\pi$ $x = -\pi + \frac{\pi}{2} = -\frac{\pi}{2}$

$$x = -\frac{\pi}{2} + \frac{\pi}{2} = 0$$
$$x = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

Evaluate the function at each value of *x*.

x	coordinates
$-\pi$	$(-\pi, -3)$
$-\frac{\pi}{2}$	$\left(-\frac{\pi}{2},0\right)$
0	(0, 3)
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},0\right)$
π	(<i>π</i> , – 3)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

9. $y = \frac{3}{2}\cos\left(2x + \frac{\pi}{4}\right) = \frac{3}{2}\cos\left(2x - \left(-\frac{\pi}{4}\right)\right)$ The equation $y = \frac{3}{2}\cos\left(2x - \left(-\frac{\pi}{4}\right)\right)$ is of the form $y = A\cos(Bx - C)$ with $A = \frac{3}{2}$, B = 2, and $C = -\frac{\pi}{4}$. The amplitude is $|A| = \left|\frac{3}{2}\right| = \frac{3}{2}$. The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The phase shift is $\frac{C}{B} = \frac{-\pi}{2} = -\frac{\pi}{4} \cdot \frac{1}{2} = -\frac{\pi}{8}$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at $x = -\frac{\pi}{8}$. Add quarter-periods to generate x-values for the key points. $x = -\frac{\pi}{8}$ $x = -\frac{\pi}{8} + \frac{\pi}{4} = \frac{\pi}{8}$ $x = \frac{\pi}{8} + \frac{\pi}{4} = \frac{3\pi}{8}$

$$x = \frac{3\pi}{8} + \frac{\pi}{4} = \frac{5\pi}{8}$$
$$x = \frac{5\pi}{8} + \frac{\pi}{4} = \frac{7\pi}{8}$$

Evaluate the function at each value of *x*.

x	coordinates
$-\frac{\pi}{8}$	$\left(-\frac{\pi}{8},\frac{3}{2}\right)$
$\frac{\pi}{8}$	$\left(\frac{\pi}{8},0\right)$
$\frac{3\pi}{8}$	$\left(\frac{3\pi}{8},-\frac{3}{2}\right)$
$\frac{5\pi}{8}$	$\left(\frac{5\pi}{8},0\right)$
$\frac{7\pi}{8}$	$\left(\frac{7\pi}{8},\frac{3}{2}\right)$
Connect the five key points with a smooth curve and graph one complete cycle of the given function.

$$\begin{pmatrix} -\frac{\pi}{8}, \frac{3}{2} \end{pmatrix} \xrightarrow{y} \begin{pmatrix} \frac{7\pi}{8}, \frac{3}{2} \end{pmatrix}$$

$$\begin{pmatrix} -\frac{\pi}{8}, \frac{3}{2} \end{pmatrix} \xrightarrow{y} \begin{pmatrix} \frac{7\pi}{8}, \frac{3}{2} \end{pmatrix}$$

$$\begin{pmatrix} \frac{\pi}{8}, 0 \end{pmatrix} \xrightarrow{\pi} \begin{pmatrix} \frac{5\pi}{8}, 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{\pi}{8}, 0 \end{pmatrix} \xrightarrow{\pi} \begin{pmatrix} \frac{5\pi}{8}, 0 \end{pmatrix}$$

$$y = \frac{3}{2} \cos\left(2x + \frac{\pi}{4}\right)$$

- 10. $y = \frac{5}{2}\sin\left(2x + \frac{\pi}{2}\right) = \frac{5}{2}\sin\left(2x \left(-\frac{\pi}{2}\right)\right)$ The equation $y = \frac{5}{2}\sin\left(2x - \left(-\frac{\pi}{2}\right)\right)$ is of the form $y = A\sin(Bx - C)$ with $A = \frac{5}{2}$, B = 2 and $C = -\frac{\pi}{2}$. The amplitude is
 - $B = 2, \text{ and } C = -\frac{\pi}{2}.$ The amplitude is $|A| = \left| \frac{5}{2} \right| = \frac{5}{2}.$ The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi.$ The phase shift is $\frac{C}{B} = \frac{-\frac{\pi}{2}}{2} = -\frac{\pi}{2} \cdot \frac{1}{2} = -\frac{\pi}{4}.$ The quarter-period is $\frac{\pi}{4}.$

The cycle begins at $x = -\frac{\pi}{4}$. Add quarter-periods to generate *x*-values for the key points.

$$x = -\frac{\pi}{4}$$
$$x = -\frac{\pi}{4} + \frac{\pi}{4} = 0$$
$$x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$$
$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

Evaluate the function at each value of *x*.

x	coordinates						
$-\frac{\pi}{4}$	$(-\frac{\pi}{4},0)$						
0	$\left(0,\frac{5}{2}\right)$						
$\frac{\pi}{4}$	$\left(\frac{\pi}{4},0\right)$						
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},-\frac{5}{2}\right)$						
$\frac{3\pi}{4}$	$\left(\frac{3\pi}{4},0\right)$						

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

11. The equation $y = -3\sin\left(\frac{\pi}{3}x - 3\pi\right)$ is of the form $y = A\sin(Bx - C)$ with A = -3, $B = \frac{\pi}{3}$, and $C = 3\pi$. The amplitude is |A| = |-3| = 3. The period is $\frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{3}} = 2\pi \cdot \frac{3}{\pi} = 6$. The phase shift is $\frac{C}{B} = \frac{3\pi}{\frac{\pi}{3}} = 3\pi \cdot \frac{3}{\pi} = 9$. The quarter-period is $\frac{6}{4} = \frac{3}{2}$. The cycle begins at x = 9. Add quarterperiods to generate *x*-values for the key points.

$$x = 9$$

$$x = 9 + \frac{3}{2} = \frac{21}{2}$$

$$x = \frac{21}{2} + \frac{3}{2} = 12$$

$$x = 12 + \frac{3}{2} = \frac{27}{2}$$

$$x = \frac{27}{2} + \frac{3}{2} = 15$$

Evaluate the function at each value of *x*.

x	coordinates
9	(9, 0)
$\frac{21}{2}$	$\left(\frac{21}{2},-3\right)$
12	(12, 0)
$\frac{27}{2}$	$\left(\frac{27}{2},3\right)$
15	(15, 0)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

12. The graph of $y = \sin 2x + 1$ is the graph of $y = \sin 2x$ shifted one unit upward. The period for both functions is $\frac{2\pi}{2} = \pi$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at x = 0. Add quarter-periods to generate x-values for the key points. x = 0 $x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$

$$x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$$
$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$
$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$

Evaluate the function at each value of *x*.

x	coordinates
0	(0, 1)
$\frac{\pi}{4}$	$\left(\frac{\pi}{4},2\right)$
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},1\right)$
$\frac{3\pi}{4}$	$\left(\frac{3\pi}{4},0\right)$
π	(<i>π</i> , 1)

By connecting the points with a smooth curve we obtain one period of the graph.

13. The graph of $y = 2\cos\frac{1}{3}x - 2$ is the graph of $y = 2\cos\frac{1}{3}x$ shifted two units downward. The period for both functions is $\frac{2\pi}{\frac{1}{3}} = 2\pi \cdot 3 = 6\pi$. The quarter-period is $\frac{6\pi}{4} = \frac{3\pi}{2}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points. x = 0

$$x = 0$$

$$x = 0 + \frac{3\pi}{2} = \frac{3\pi}{2}$$

$$x = \frac{3\pi}{2} + \frac{3\pi}{2} = 3\pi$$

$$x = 3\pi + \frac{3\pi}{2} = \frac{9\pi}{2}$$

$$x = \frac{9\pi}{2} + \frac{3\pi}{2} = 6\pi$$

Evaluate the function at each value of *x*.

x	coordinates
0	(0, 0)
$\frac{3\pi}{2}$	$\left(\frac{3\pi}{2}, -2\right)$
3π	(3 <i>π</i> , -4)
$\frac{9\pi}{2}$	$\left(\frac{9\pi}{2}, -2\right)$
6π	(6 <i>π</i> , 0)

By connecting the points with a smooth curve we obtain one period of the graph.

		4	2	4	π	4	2	4	2π
$y_1 = 3\sin x \qquad 0$)	2.1	3	2.1	0	-2.1	-3	-2.1	0
$y_2 = \cos x$ 1		0.7	0	-0.7	-1	-0.7	0	0.7	1
$y = 3\sin x + \cos x 1$		2.8	3	1.4	-1	-2.8	-3	-1.4	1

14. Select several values of *x* over the interval.

15. Select several values of *x* over the interval.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = \sin x$	0	0.7	1	0.7	0	-0.7	-1	-0.7	0
$y_2 = \cos\frac{1}{2}x$		0.9	0.7	0.4	0	-0.4	-0.7	-0.9	-1
$y = \sin x + \cos \frac{1}{2}x$	1	1.6	1.7	1.1	0	-1.1	-1.7	-1.6	-1

$$y = \sin x$$

$$y = \sin x + \cos \frac{1}{2}x$$

$$y = \sin x + \cos \frac{1}{2}x$$

16. a. At midnight
$$x = 0$$
. Thus, $y = 98.6 + 0.3 \sin\left(\frac{\pi}{12} \cdot 0 - \frac{11\pi}{12}\right)$
 $= 98.6 + 0.3 \sin\left(-\frac{11\pi}{12}\right)$
 $\approx 98.6 + 0.3(-0.2588) \approx 98.52$

The body temperature is about 98.52°F.

b. period:
$$\frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{12}} = 2\pi \cdot \frac{12}{\pi} = 24$$
 hours

c. Solve the equation

$$\frac{\pi}{12}x - \frac{11\pi}{12} = \frac{\pi}{2}$$
$$\frac{\pi}{12}x = \frac{\pi}{2} + \frac{11\pi}{12} = \frac{6\pi}{12} + \frac{11\pi}{12} = \frac{17\pi}{12}$$
$$x = \frac{17\pi}{12} \cdot \frac{12}{\pi} = 17$$

The body temperature is highest for x = 17.

$$y = 98.6 + 0.3\sin\left(\frac{\pi}{12} \cdot 17 - \frac{11\pi}{12}\right)$$
$$= 98.6 + 0.3\sin\frac{\pi}{2} = 98.6 + 0.3 = 98.9$$

17 hours after midnight, which is 5 P.M., the body temperature is 98.9°F.

d. Solve the equation

$$\frac{\pi}{12}x - \frac{11\pi}{12} = \frac{3\pi}{2}$$
$$\frac{\pi}{12}x = \frac{3\pi}{2} + \frac{11\pi}{12} = \frac{18\pi}{12} + \frac{11\pi}{12} = \frac{29\pi}{12}$$
$$x = \frac{29\pi}{12} \cdot \frac{12}{\pi} = 29$$

The body temperature is lowest for x = 29.

$$y = 98.6 + 0.3 \sin\left(\frac{\pi}{12} \cdot 29 - \frac{11\pi}{12}\right)$$
$$= 98.6 + 0.3 \sin\left(\frac{3\pi}{2}\right)$$
$$= 98.6 + 0.3(-1) = 98.3^{\circ}$$

29 hours after midnight or 5 hours after midnight, at 5 A.M., the body temperature is 98.3°F.

- **e.** The graph of $y = 98.6 + 0.3 \sin\left(\frac{\pi}{12}x \frac{11\pi}{12}\right)$ is
 - of the form $y = D + A\sin(Bx C)$ with A = 0.3,

$$B = \frac{\pi}{12}, C = \frac{11\pi}{12}, \text{ and } D = 98.6.$$
 The

amplitude is |A| = |0.3| = 0.3. The period from part (b) is 24. The quarter-period is

$$\frac{24}{4} = 6.$$
 The phase shift is
$$\frac{C}{B} = \frac{\frac{11\pi}{12}}{\frac{\pi}{12}} = \frac{11\pi}{12} \cdot \frac{12}{\pi} = 11.$$
 The cycle begins at x

= 11. Add quarter-periods to generate *x*-values for the key points.

$$x = 11$$

$$x = 11 + 6 = 17$$

$$x = 17 + 6 = 23$$

$$x = 23 + 6 = 29$$

$$x = 29 + 6 = 35$$

Evaluate the function at each value of *x*. The key points are (11, 98.6), (17, 98.9), (23, 98.6), (29, 98.3), (35, 98.6). Extend the pattern to the left, and graph the function for $0 \le x \le 24$.

17. Blue:

This is a sine wave with a period of 480. Since the amplitude is 1, A = 1.

$$B = \frac{2\pi}{\text{period}} = \frac{2\pi}{480} = \frac{\pi}{240}$$

The equation is $y = \sin \frac{\pi}{240} x$.

Red:

This is a sine wave with a period of 640. Since the amplitude is 1, A = 1.

$$B = \frac{2\pi}{\text{period}} = \frac{2\pi}{640} = \frac{\pi}{320}$$

The equation is $y = \sin\frac{\pi}{320}x$.

18. Solve the equations

$$2x = -\frac{\pi}{2} \quad \text{and} \quad 2x = \frac{\pi}{2}$$
$$x = \frac{-\frac{\pi}{2}}{2} \qquad x = \frac{\pi}{2}$$
$$x = -\frac{\pi}{4} \qquad x = \frac{\pi}{4}$$

Thus, two consecutive asymptotes occur at

$$x = -\frac{\pi}{4}$$
 and $x = \frac{\pi}{4}$.
x-intercept $= \frac{-\frac{\pi}{4} + \frac{\pi}{4}}{2} = \frac{0}{2} = 0$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is 4, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -4 and 4.

Use the two consecutive asymptotes. $x = -\frac{\pi}{4}$ and

$$x = \frac{\pi}{4}$$
, to graph one full period of $y = 4 \tan 2x$ from
 $-\frac{\pi}{4}$ to $\frac{\pi}{4}$.

Continue the pattern and extend the graph another full period to the right.

19. Solve the equations

$$\frac{\pi}{4}x = -\frac{\pi}{2} \quad \text{and} \quad \frac{\pi}{4}x = \frac{\pi}{2}$$
$$x = -\frac{\pi}{2} \cdot \frac{4}{\pi} \quad x = \frac{\pi}{2} \cdot \frac{4}{\pi}$$
$$x = -2 \quad x = 2$$

Thus, two consecutive asymptotes occur at x = -2 and x = 2.

x-intercept
$$= \frac{-2+2}{2} = \frac{0}{2} = 0$$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is -2, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of 2 and -2.

Use the two consecutive asymptotes, x = -2 and x =

2, to graph one full period of $y = -2 \tan \frac{\pi}{4} x$ from -2

to 2. Continue the pattern and extend the graph another full period to the right.

20. Solve the equations

$$x + \pi = -\frac{\pi}{2} \quad \text{and} \quad x + \pi = \frac{\pi}{2}$$
$$x = -\frac{\pi}{2} - \pi \qquad x = \frac{\pi}{2} - \pi$$
$$x = -\frac{\pi}{2}$$
$$x = -\frac{\pi}{2}$$

Thus, two consecutive asymptotes occur at

$$x = -\frac{3\pi}{2}$$
 and $x = -\frac{\pi}{2}$.
x-intercept $= \frac{-\frac{3\pi}{2} - \frac{\pi}{2}}{2} = \frac{-2\pi}{2} = -\pi$

An *x*-intercept is $-\pi$ and the graph passes through $(-\pi, 0)$. Because the coefficient of the tangent is 1, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -1 and 1. Use the two consecutive asymptotes,

$$x = -\frac{3\pi}{2}$$
 and $x = -\frac{\pi}{2}$, to graph one full period of
 $y = \tan(x + \pi)$ from $-\frac{3\pi}{2}$ to $-\frac{\pi}{2}$.

Continue the pattern and extend the graph another full period to the right.

21. Solve the equations

$$x - \frac{\pi}{4} = -\frac{\pi}{2} \quad \text{and} \quad x - \frac{\pi}{4} = \frac{\pi}{2}$$
$$x = -\frac{\pi}{2} + \frac{\pi}{4} \quad x = \frac{\pi}{2} + \frac{\pi}{4}$$
$$x = -\frac{\pi}{4} \quad x = \frac{3\pi}{4}$$
Thus, two consecutive asymptotes occur at

$$x = -\frac{\pi}{4} \text{ and } x = -\frac{3\pi}{4}.$$

x-intercept $= \frac{-\frac{\pi}{4} - \frac{3\pi}{4}}{2} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{4}$
An x-intercept is $\frac{\pi}{4}$ and the graph passes through

 $\left(\frac{\pi}{4}, 0\right)$. Because the coefficient of the tangent is -1,

the points on the graph midway between an xintercept and the asymptotes have y-coordinates of 1 and -1. Use the two consecutive asymptotes,

$$x = -\frac{\pi}{4}$$
 and $x = \frac{3\pi}{4}$, to graph one full period of
 $y = -\tan\left(x - \frac{\pi}{4}\right)$ from $-\frac{\pi}{4}$ to $\frac{3\pi}{4}$. Continue the

pattern and extend the graph another full period to the right.

22. Solve the equations

3x = 0 and $3x = \pi$

$$x = 0 \qquad \qquad x = \frac{\pi}{3}$$

Thus, two consecutive asymptotes occur at

$$x = 0$$
 and $x = \frac{\pi}{3}$.
x-intercept $= \frac{0 + \frac{\pi}{3}}{2} = \frac{\pi}{3} = \frac{\pi}{6}$

An *x*-intercept is $\frac{\pi}{6}$ and the graph passes through

$$\left(\frac{\pi}{6}, 0\right).$$

Because the coefficient of the tangent is 2, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of 2 and -2. Use the

two consecutive asymptotes, x = 0 and $x = \frac{\pi}{3}$, to

graph one full period of $y = 2 \cot 3x$ from 0 to $\frac{\pi}{3}$. Continue the pattern and extend the graph another full period to the right.

23. Solve the equations

 $\frac{\pi}{2}$

$$x = 0$$
 and $\frac{\pi}{2}x = \pi$
 $x = 0$ $x = \pi \cdot \frac{2}{\pi}$
 $x = 2$

Thus, two consecutive asymptotes occur at x = 0 and x = 2.

x-intercept
$$= \frac{0+2}{2} = \frac{2}{2} = 1$$

An *x*-intercept is 1 and the graph passes through (1, 0). Because the coefficient of the cotangent is

 $-\frac{1}{2}$, the points on the graph midway between an x-

intercept and the asymptotes have y-coordinates of

 $-\frac{1}{2}$ and $\frac{1}{2}$. Use the two consecutive asymptotes,

x = 0 and x = 2, to graph one full period of $y = -\frac{1}{2}\cot\frac{\pi}{2}x$ from 0 to 2. Continue the pattern and extend the graph another full period to the right.

24. Solve the equations

$$x + \frac{\pi}{2} = 0 \qquad \text{and} \qquad x + \frac{\pi}{2} = \pi$$
$$x = 0 - \frac{\pi}{2} \qquad \qquad x = \pi - \frac{\pi}{2}$$
$$x = -\frac{\pi}{2} \qquad \qquad x = \frac{\pi}{2}$$

Thus, two consecutive asymptotes occur at

$$x = -\frac{\pi}{2}$$
 and $x = \frac{\pi}{2}$.
x-intercept $= \frac{-\frac{\pi}{2} + \frac{\pi}{2}}{2} = \frac{0}{2} = 0$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the cotangent is 2, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of 2 and -2.

Use the two consecutive asymptotes, $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$, to graph one full period of $y = 2\cot\left(x + \frac{\pi}{2}\right)$

from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$. Continue the pattern and extend the graph another full period to the right.

$$x = -\frac{\pi}{2}$$

$$x = \frac{\pi}{2}$$

$$x = \frac{3\pi}{2}$$

$$(-\frac{\pi}{4}, 2)$$

$$(0, 0)$$

$$(\frac{\pi}{4}, -2)$$

$$y = 2 \cot\left(x + \frac{\pi}{2}\right)$$

25. Graph the reciprocal cosine function, $y = 3\cos 2\pi x$. The equation is of the form $y = A\cos Bx$ with A = 3and $B = 2\pi$. amplitude: |A| = |3| = 3period: $\frac{2\pi}{B} = \frac{2\pi}{2\pi} = 1$

Use quarter-periods, $\frac{1}{4}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are 0, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, 1. Evaluating the function at each value of *x*,

the key points are
$$(0, 3)$$
,
 $\left(\frac{1}{4}, 0\right), \left(\frac{1}{2}, -3\right), \left(\frac{3}{4}, 0\right), (1, 3).$

Use these key points to graph $y = 3\cos 2\pi x$ from 0 to 1. Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = 3\sec 2\pi x$.

26. Graph the reciprocal sine function, $y = -2\sin \pi x$. The equation is of the form $y = A\sin Bx$ with A = -2 and $B = \pi$. amplitude: |A| = |-2| = 2

period: $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$ Use quarter-periods, $\frac{2}{4} = \frac{1}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are 0, $\frac{1}{2}$, 1, $\frac{3}{2}$, 2. Evaluating the function at each value of *x*, the key points are (0, 0), $\left(\frac{1}{2}, -2\right)$, (1, 0), $\left(\frac{3}{2}, 2\right)$, (2, 0). Use these key points to graph $y = -2\sin \pi x$ from 0 to 2. Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = -2\csc \pi x$.

27. Graph the reciprocal cosine function, $y = 3\cos(x + \pi)$. The equation is of the form $y = A\cos(Bx - C)$ with A = 3, B = 1, and $C = -\pi$.

 $y = A\cos(Bx - C)$ with A = 3, B = 1, and C = amplitude: |A| = |3| = 3

period:
$$\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$$

phase shift: $\frac{C}{B} = \frac{-\pi}{1} = -\frac{\pi}{1}$

Use quarter-periods, $\frac{2\pi}{4} = \frac{\pi}{2}$, to find

x-values for the five key points. Starting with

 $x = -\pi$, the x-values are $-\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi$.

Evaluating the function at each value of x, the key

points are
$$(-\pi, 3), \left(-\frac{\pi}{2}, 0\right), (0, -3),$$

$$\left(\frac{\pi}{2}, 0\right), (\pi, 3)$$
. Use these key points to graph

 $y = 3\cos(x + \pi)$ from $-\pi$ to π . Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = 3\sec(x + \pi)$.

28. Graph the reciprocal sine function, $y = \frac{5}{2}\sin(x - \pi)$. The equation is of the form $y = A\sin(Bx - C)$ with

$$A = \frac{5}{2}, \quad B = 1, \text{ and } C = \pi.$$

amplitude: $|A| = \left| \frac{5}{2} \right| = \frac{5}{2}$
period: $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$
phase shift: $\frac{C}{B} = \frac{\pi}{1} = \pi$
Use quarter-periods, $\frac{2\pi}{4} = \frac{\pi}{2}$, to find
x-values for the five key points. Starting with $x = \pi$,
the *x*-values are $\pi, \frac{3\pi}{2}, 2\pi, \frac{5\pi}{2}, 3\pi$. Evaluating the

function at each value of x, the key points

are
$$(\pi, 0)$$
, $\left(\frac{3\pi}{2}, \frac{5}{2}\right)$, $(2\pi, 0)$, $\left(\frac{5\pi}{2}, -\frac{5}{2}\right)$, $(3\pi, 0)$.

Use these key points to graph $y = \frac{5}{2}\sin(x-\pi)$ from

 π to 3π . Extend the graph one cycle to the right. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph

$$y = \frac{5}{2}\csc(x - \pi).$$

$$x = 2\pi \qquad x = 4\pi$$

$$x = \pi \qquad x = 3\pi \qquad x = 5\pi$$

$$(\frac{3\pi}{2}, \frac{5}{2}) \qquad (\frac{5\pi}{2}, -\frac{5}{2}) \qquad (\frac{5\pi}{2}, -\frac{5}{2}) \qquad (\frac{9\pi}{2}, -\frac{5}{2})$$

$$y = \frac{5}{2}\csc(x - \pi)$$

- **29.** Let $\theta = \sin^{-1} 1$, then $\sin \theta = 1$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ that satisfies $\sin \theta = 1$ is $\frac{\pi}{2}$. Thus $\theta = \frac{\pi}{2}$, or $\sin^{-1} 1 = \frac{\pi}{2}$.
- **30.** Let $\theta = \cos^{-1} 1$, then $\cos \theta = 1$. The only angle in the interval $[0, \pi]$ that satisfies $\cos \theta = 1$ is 0. Thus $\theta = 0$, or $\cos^{-1} 1 = 0$.
- **31.** Let $\theta = \tan^{-1} 1$, then $\tan \theta = 1$. The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta = 1$ is $\frac{\pi}{4}$. Thus $\theta = \frac{\pi}{4}$, or $\tan^{-1} 1 = \frac{\pi}{4}$. **32.** Let $\theta = \sin^{-1} \left(-\frac{\sqrt{3}}{2}\right)$, then $\sin \theta = -\frac{\sqrt{3}}{2}$. The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\sin \theta = -\frac{\sqrt{3}}{2}$ is $-\frac{\pi}{3}$. Thus $\theta = -\frac{\pi}{3}$, or $\sin^{-1} \left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$.

33. Let
$$\theta = \cos^{-1}\left(-\frac{1}{2}\right)$$
, then $\cos \theta = -\frac{1}{2}$

The only angle in the interval $[0, \pi]$ that satisfies

$$\cos\theta = -\frac{1}{2} \text{ is } \frac{2\pi}{3} \text{ . Thus } \theta = \frac{2\pi}{3} \text{ , or}$$
$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3} \text{ .}$$

34. Let $\theta = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$, then $\tan \theta = -\frac{\sqrt{3}}{3}$

The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies

$$\tan \theta = -\frac{\sqrt{3}}{3} \text{ is } -\frac{\pi}{6}.$$

Thus $\theta = -\frac{\pi}{6}$, or $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6}$

35. Let $\theta = \sin^{-1} \frac{\sqrt{2}}{2}$, then $\sin \theta = \frac{\sqrt{2}}{2}$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta = \frac{\sqrt{2}}{2}$ is $\frac{\pi}{4}$. Thus, $\cos\left(\sin^{-1} \frac{\sqrt{2}}{2}\right) = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$.

- 36. Let $\theta = \cos^{-1} 0$, then $\cos \theta = 0$. The only angle in the interval $[0, \pi]$ that satisfies $\cos \theta = 0$ is $\frac{\pi}{2}$. Thus, $\sin(\cos^{-1} 0) = \sin \frac{\pi}{2} = 1$.
- **37.** Let $\theta = \sin^{-1}\left(-\frac{1}{2}\right)$, then $\sin \theta = -\frac{1}{2}$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta = -\frac{1}{2}$ is $-\frac{\pi}{6}$. Thus, $\tan\left[\sin^{-1}\left(-\frac{1}{2}\right)\right] = \tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}$.

38. Let $\theta = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$, then $\cos \theta = -\frac{\sqrt{3}}{2}$. The only

angle in the interval $[0, \pi]$ that satisfies

$$\cos\theta = -\frac{\sqrt{3}}{2} \text{ is } \frac{5\pi}{6}.$$

Thus,
$$\tan\left[\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right] = \tan\frac{5\pi}{6} = -\frac{\sqrt{3}}{3}$$

39. Let $\theta = \tan^{-1} \frac{\sqrt{3}}{3}$, then $\tan \theta = \frac{\sqrt{3}}{3}$.

The only angle in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies

$$\tan \theta = \frac{\sqrt{3}}{3} \text{ is } \frac{\pi}{6}.$$

Thus $\csc\left(\tan^{-1}\frac{\sqrt{3}}{3}\right) = \csc\frac{\pi}{6} = 2.$

40. Let $\theta = \tan^{-1} \frac{3}{4}$, then $\tan \theta = \frac{3}{4}$ Because $\tan \theta$ is positive, θ is in the first quadrant.

Because
$$\tan \theta$$
 is positive, θ is in the fit
 $r = 5$
 $(4, 3)$
 3
 $r^2 = x^2 + y^2$
 $r^2 = 4^2 + 3^2$
 $r^2 = 25$

r = 5 $\cos\left(\tan^{-1}\frac{3}{4}\right) = \cos\theta = \frac{x}{r} = \frac{4}{5}$

41. Let $\theta = \cos^{-1} \frac{3}{5}$, then $\cos \theta = \frac{3}{5}$. Because $\cos \theta$ is positive, θ is in the first quadrant. y r = 5 (3, 4) 4 x $x^2 + y^2 = r^2$ $3^2 + y^2 = 5^2$ $y^2 = 25 - 9 = 16$

$$y = \sqrt{16} = 4$$
$$\sin\left(\cos^{-1}\frac{3}{5}\right) = \sin\theta = \frac{y}{r} = \frac{4}{5}$$

42. Let
$$\theta = \sin^{-1}\left(-\frac{3}{5}\right)$$
, then $\sin \theta = -\frac{3}{5}$

Because $\sin \theta$ is negative, θ is in quadrant IV.

$$\begin{array}{c}
4 \\
(4, -3) \\
r = 5 \\
x^{2} + (-3)^{2} = 5^{2} \\
x^{2} + y^{2} = r^{2} \\
x^{2} = 25 - 9 = 16 \\
x = \sqrt{16} = 4 \\
\tan\left[\sin^{-1}\left(-\frac{3}{5}\right)\right] = \tan\theta = \frac{y}{x} = -\frac{3}{4}
\end{array}$$

43. Let
$$\theta = \cos^{-1}\left(-\frac{4}{5}\right)$$
, then $\cos \theta = -\frac{4}{5}$
Because $\cos \theta$ is negative. θ is in

Because $\cos\theta$ is negative, θ is in quadrant II.

$$x^{2} + y^{2} = r^{2}$$

$$(-4)^{2} + y^{2} = 5^{2}$$

$$y^{2} = 25 - 16 = 9$$

$$y = \sqrt{9} = 3$$
Use the right triangle to find the exact value.
$$\tan\left[\cos^{-1}\left(-\frac{4}{5}\right)\right] = \tan\theta = -\frac{3}{4}$$

44. Let $\theta = \tan^{-1}\left(-\frac{1}{3}\right)$,

Because
$$\tan \theta$$
 is negative, θ is in quadrant IV and
 $x = 3 \text{ and } y = -1$.
 $r^2 = x^2 + y^2$
 $r^2 = 3^2 + (-1)^2$
 $r^2 = 10$
 $r = \sqrt{10}$
 $\sin\left[\tan^{-1}\left(-\frac{4}{5}\right)\right] = \sin \theta = \frac{y}{r} = \frac{-1}{\sqrt{10}} = -\frac{\sqrt{10}}{10}$
45. $x = \frac{\pi}{3}, x \text{ is in } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \text{ so } \sin^{-1}\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$

- 46. $x = \frac{2\pi}{3}$, x is not in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. x is in the domain of $\sin x$, so $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\frac{\sqrt{3}}{2} = \frac{\pi}{3}$
- 47. $\sin^{-1}\left(\cos\frac{2\pi}{3}\right) = \sin^{-1}\left(-\frac{1}{2}\right)$ Let $\theta = \sin^{-1}\left(-\frac{1}{2}\right)$, then $\sin\theta = -\frac{1}{2}$. The only angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin\theta = -\frac{1}{2}$ is $-\frac{\pi}{6}$. Thus, $\theta = -\frac{\pi}{6}$, or $\sin^{-1}\left(\cos\frac{2\pi}{3}\right) = \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$.

Use the right triangle to write the algebraic expression.

4

$$\cos\left(\tan^{-1}\frac{x}{2}\right) = \cos\theta = \frac{2}{\sqrt{x^2 + 4}} = \frac{2\sqrt{x^2 + 4}}{x^2 + 4}$$
49. Let $\theta = \sin^{-1}\frac{1}{x}$, then $\sin\theta = \frac{1}{x}$.

Use the Pythagorean theorem to find the third side, *b*. $1^2 + b^2 = x^2$ $b^2 = x^2$

$$b^2 = x^2 - 1$$
$$b = \sqrt{x^2 - 1}$$

Use the right triangle to write the algebraic expression.

$$\sec\left(\sin^{-1}\frac{1}{x}\right) = \sec\theta = \frac{x}{\sqrt{x^2 - 1}} = \frac{x\sqrt{x^2 - 1}}{x^2 - 1}$$

50. Find the measure of angle *B*. Because $C = 90^{\circ}$, $A + B = 90^{\circ}$. Thus,

 $B = 90^{\circ} - A = 90^{\circ} - 22.3^{\circ} = 67.7^{\circ}$

We have a known angle, a known hypotenuse, and an unknown opposite side. Use the sine function.

$$\sin 22.3^\circ = \frac{a}{10}$$
$$a = 10\sin 22.3^\circ \approx 3.79$$

We have a known angle, a known hypotenuse, and an unknown adjacent side. Use the cosine function.

 $\cos 22.3^{\circ} = \frac{b}{10}$ $b = 10\cos 22.3^{\circ} \approx 9.25$ In summary, $B = 67.7^{\circ}$, $a \approx 3.79$, and $b \approx 9.25$.

51. Find the measure of angle *A*. Because $C = 90^{\circ}$,

 $A + B = 90^{\circ}$. Thus, $A = 90^{\circ} - B = 90^{\circ} - 37.4^{\circ} = 52.6^{\circ}$

We have a known angle, a known opposite side, and an unknown adjacent side. Use the tangent function.

$$\tan 37.4^\circ = \frac{6}{a}$$
$$a = \frac{6}{\tan 37.4^\circ} \approx 7.85$$

We have a known angle, a known opposite side, and an unknown hypotenuse. Use the sine function.

$$\sin 37.4^\circ = \frac{6}{c}$$

$$c = \frac{6}{\sin 37.4^\circ} \approx 9.88$$
In summary $A = 52.6^\circ$ and 7.85 and

In summary, $A = 52.6^{\circ}$, $a \approx 7.85$, and $c \approx 9.88$.

52. Find the measure of angle *A*. We have a known hypotenuse, a known opposite side, and an unknown angle. Use the sine function.

$$\sin A = \frac{2}{7}$$
$$A = \sin^{-1} \left(\frac{2}{7}\right) \approx 16.6^{\circ}$$

Find the measure of angle *B*. Because $C = 90^{\circ}$, $A + B = 90^{\circ}$. Thus, $B = 90^{\circ} - A \approx 90^{\circ} - 16.6^{\circ} = 73.4^{\circ}$ We have a known hypotenuse, a known opposite side, and an unknown adjacent side. Use the Pythagorean theorem.

$$a^{2} + b^{2} = c^{2}$$

 $2^{2} + b^{2} = 7^{2}$
 $b^{2} = 7^{2} - 2^{2} = 45$
 $b = \sqrt{45} \approx 6.71$
In summary, $A \approx 16.6^{\circ}$, $B \approx 73.4^{\circ}$, and $b \approx 6.71$.

53. Find the measure of angle *A*. We have a known opposite side, a known adjacent side, and an unknown angle. Use the tangent function.

$$\tan A = \frac{1.4}{3.6}$$

$$A = \tan^{-1} \left(\frac{1.4}{3.6} \right) \approx 21.3^{\circ}$$

Find the measure of angle *B*. Because $C = 90^{\circ}$, $A + B = 90^{\circ}$. Thus,

$$B = 90^{\circ} - A \approx 90^{\circ} - 21.3^{\circ} = 68.7^{\circ}$$

We have a known opposite side, a known adjacent side, and an unknown hypotenuse.

Use the Pythagorean theorem.

$$c^2 = a^2 + b^2 = (1.4)^2 + (3.6)^2 = 14.92$$

 $c = \sqrt{14.92} \approx 3.86$
In summary, $A \approx 21.3^\circ$, $B \approx 68.7^\circ$, and $c \approx 3.86$.

54. Using a right triangle, we have a known angle, an unknown opposite side, h, and a known adjacent side. Therefore, use the tangent function.

$$\tan 25.6^\circ = \frac{h}{80}$$
$$h = 80 \tan 25.6^\circ$$
$$\approx 38.3$$
The building is about 38 fe

The building is about 38 feet high.

55. Using a right triangle, we have a known angle, an unknown opposite side, h, and a known adjacent side. Therefore, use the tangent function.

$$\tan 40^\circ = \frac{h}{60}$$

$$h = 60 \tan 40^\circ \approx 50 \text{ yd}$$

The second building is 50 yd

The second building is 50 yds taller than the first. Total height = 40 + 50 = 90 yd.

56. Using two right triangles, a smaller right triangle corresponding to the smaller angle of elevation drawn inside a larger right triangle corresponding to the larger angle of elevation, we have a known angle, a known opposite side, and an unknown adjacent side, *d*, in the smaller triangle. Therefore, use the tangent function.

$$\tan 68^\circ = \frac{125}{d}$$
$$d = \frac{125}{\tan 68^\circ} \approx 50.5$$

We now have a known angle, a known adjacent side, and an unknown opposite side, h, in the larger triangle. Again, use the tangent function.

$$\tan 71^\circ = \frac{h}{50.5}$$
$$h = 50.5 \tan h$$

The height of the antenna is 146.7 - 125, or 21.7 ft, to the nearest tenth of a foot.

 $71^{\circ} \approx 146.7$

- **57.** We need the acute angle between ray *OA* and the north-south line through *O*. This angle measures $90^{\circ} 55^{\circ} = 35^{\circ}$. This angle measured from the north side of the north-south line and lies east of the north-south line. Thus the bearing from *O* to *A* is N35°E.
- **58.** We need the acute angle between ray *OA* and the north-south line through *O*. This angle measures $90^{\circ} 55^{\circ} = 35^{\circ}$. This angle measured from the south side of the north-south line and lies west of the north-south line. Thus the bearing from *O* to *A* is S35°W.
- **59.** Using a right triangle, we have a known angle, a known adjacent side, and an unknown opposite side, *d*. Therefore, use the tangent function.

$$\tan 64^\circ = \frac{d}{12}$$
$$d = 12 \tan 64^\circ \approx 24.6$$

The ship is about 24.6 miles from the lighthouse.

a. Using the figure, $B = 58^{\circ} + 32^{\circ} = 90^{\circ}$ Thus, use the Pythagorean Theorem to find the distance from city *A* to city *C*. $850^{2} + 960^{2} = b^{2}$ $b^{2} = 722,500 + 921,600$ $b^{2} = 1,644,100$ $b = \sqrt{1,644,100} \approx 1282.2$

The distance from city A to city B is about 1282.2 miles.

b. Using the figure,

 $\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{960}{850} \approx 1.1294$ $A \approx \tan^{-1}(1.1294) \approx 48^{\circ}$ $180^{\circ} - 58^{\circ} - 48^{\circ} = 74^{\circ}$ The bearing from city A to city C is S74°E.

$$61. \quad d = 20\cos\frac{\pi}{4}t$$

$$a = 20$$
 and $\omega = \frac{\pi}{4}$

- **a.** maximum displacement: |a| = |20| = 20 cm
- **b.** $f = \frac{\omega}{2\pi} = \frac{\frac{\pi}{4}}{2\pi} = \frac{\pi}{4} \cdot \frac{1}{2\pi} = \frac{1}{8}$
frequency: $\frac{1}{8}$ cm per second

c. period:
$$\frac{2\pi}{\omega} = \frac{2\pi}{\frac{\pi}{4}} = 2\pi \cdot \frac{4}{\pi} = 8$$

The time required for one cycle is 8 seconds.

62.
$$d = \frac{1}{2}\sin 4t$$

 $a = \frac{1}{2}$ and $\omega = 4$

a. maximum displacement:

$$\left| a \right| = \left| \frac{1}{2} \right| = \frac{1}{2} \operatorname{cm}$$

- **b.** $f = \frac{\omega}{2\pi} = \frac{4}{2\pi} = \frac{2}{\pi} \approx 0.64$ frequency: 0.64 cm per second
- c. period: $\frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2} \approx 1.57$ The time required for one cycle is about 1.57 seconds.
- 63. Because the distance of the object from the rest position at t = 0 is a maximum, use the form

$$d = a \cos \omega t$$
. The period is $\frac{2\pi}{\omega}$ so,
 $2 = \frac{2\pi}{\omega}$
 $\omega = \frac{2\pi}{2} = \pi$

Because the amplitude is 30 inches, |a| = 30. because the object starts below its rest position a = -30. the equation for the object's simple harmonic motion is $d = -30\cos \pi t$.

64. Because the distance of the object from the rest position at t = 0 is 0, use the form $d = a \sin \omega t$. The

period is
$$\frac{2\pi}{\omega}$$
 so
 $5 = \frac{2\pi}{\omega}$
 $\omega = \frac{2\pi}{5}$

Because the amplitude is $\frac{1}{4}$ inch, $|a| = \frac{1}{4} \cdot a$ is negative since the object begins pulled down. The equation for the object's simple harmonic motion is

$$d = -\frac{1}{4}\sin\frac{2\pi}{5}t.$$

Chapter 2 Test

1. The equation $y = 3\sin 2x$ is of the form $y = A\sin Bx$ with A = 3 and B = 2. The amplitude is |A| = |3| = 3.

The period is $\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$. The quarter-period is $\frac{\pi}{4}$. The cycle begins at x = 0. Add quarter-periods to generate *x*-values for the key points.

$$x = 0$$

$$x = 0 + \frac{\pi}{4} = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$

Evaluate the function at each value of *x*.

x	coordinates
0	(0, 0)
$\frac{\pi}{4}$	$\left(\frac{\pi}{4},3\right)$
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},0\right)$
$\frac{3\pi}{4}$	$\left(\frac{3\pi}{4},-3\right)$
π	(<i>π</i> , 0)

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

2. The equation $y = -2\cos\left(x - \frac{\pi}{2}\right)$ is of the form $y = A\cos(Bx - C)$ with A = -2, B = 1, and $C = \frac{\pi}{2}$. The amplitude is |A| = |-2| = 2. The period is $\frac{2\pi}{B} = \frac{2\pi}{1} = 2\pi$. The phase shift is $\frac{C}{B} = \frac{\frac{\pi}{2}}{1} = \frac{\pi}{2}$. The quarter-period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The cycle begins at $x = \frac{\pi}{2}$. Add quarter-periods to generate x-values for the key points. π

$$x = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

$$x = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$

$$x = \frac{3\pi}{2} + \frac{\pi}{2} = 2\pi$$

$$x = 2\pi + \frac{\pi}{2} = \frac{5\pi}{2}$$

Evaluate the function at each value of *x*.

x	coordinates
$\frac{\pi}{2}$	$\left(\frac{\pi}{2},-2\right)$
π	$(\pi, 0)$
$\frac{3\pi}{2}$	$\left(\frac{3\pi}{2},2\right)$
2π	$(2\pi, 0)$
$\frac{5\pi}{2}$	$\left(\frac{5\pi}{2},-2\right)$

Connect the five key points with a smooth curve and graph one complete cycle of the given function.

3. Solve the equations

 $\frac{x}{2} = -\frac{\pi}{2} \quad \text{and} \quad \frac{x}{2} = \frac{\pi}{2}$ $x = -\frac{\pi}{2} \cdot 2 \quad x = \frac{\pi}{2} \cdot 2$ $x = -\pi \quad x = \pi$

Thus, two consecutive asymptotes occur at $x = -\pi$ and $x = \pi$.

x-intercept =
$$\frac{-\pi + \pi}{2} = \frac{0}{2} = 0$$

An *x*-intercept is 0 and the graph passes through (0, 0). Because the coefficient of the tangent is 2, the points on the graph midway between an *x*-intercept and the asymptotes have *y*-coordinates of -2 and 2. Use the two consecutive asymptotes, $x = -\pi$ and $x = \pi$, to graph one

full period of
$$y = 2 \tan \frac{x}{2}$$
 from $-\pi$ to π .

$$x = -\pi \quad y \quad x = \pi$$

$$(-\frac{\pi}{2}, -2) \quad (-\frac{\pi}{2}, -2) \quad (0, 0)$$

$$y = 2 \tan \frac{x}{2}$$

4. Graph the reciprocal sine function, $y = -\frac{1}{2}\sin \pi x$. The equation is of the form $y = A\sin Bx$ with $A = -\frac{1}{2}$ and $B = \pi$. amplitude: $|A| = \left| -\frac{1}{2} \right| = \frac{1}{2}$ period: $\frac{2\pi}{B} = \frac{2\pi}{\pi} = 2$ Use quarter-periods, $\frac{2}{4} = \frac{1}{2}$, to find *x*-values for the five key points. Starting with x = 0, the *x*-values are 0, $\frac{1}{2}$, 1, $\frac{3}{2}$, 2. Evaluating the function at each value of *x*, the key points are

$$(0, 3), \left(\frac{1}{2}, -\frac{1}{2}\right), (1, 0), \left(\frac{3}{2}, \frac{1}{2}\right), (2, 0).$$

Use these key points to graph $y = -\frac{1}{2}\sin \pi x$ from 0 to 2. Use the graph to obtain the graph of the reciprocal function. Draw vertical asymptotes through the *x*-intercepts, and use them as guides to graph $y = -\frac{1}{2}\csc \pi x$.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y_1 = \frac{1}{2}\sin x$	0	0.4	0.5	0.4	0	-0.4	-0.5	-0.4	0
$y_2 = 2\cos x$	2	1.4	0	-1.4	-2	-1.4	0	1.4	2
$y = \frac{1}{2}\sin x + 2\cos x$	2	1.8	0.5	-1.1	-2	-1.8	-0.5	1.1	2

5. Select several values of *x* over the interval.

$$y = \frac{1}{2} \sin x + 2 \cos x$$

$$y = \frac{1}{2} \sin x$$

$$y = \frac{1}{2} \sin x$$

$$y = \frac{1}{2} \sin x$$

$$y = 2 \cos x$$

$$(\pi, -2)$$

$$(3\pi, -1)$$

6. Let
$$\theta = \cos^{-1}\left(-\frac{1}{2}\right)$$
, then $\cos \theta = -\frac{1}{2}$.

Because $\cos\theta$ is negative, θ is in quadrant II.

$$x^{2} + y^{2} = r^{2}$$

(-1)² + y² = 2²
$$y^{2} = 4 - 1 = 3$$

$$y = \sqrt{3}$$

$$\tan\left[\cos^{-1}\left(-\frac{1}{2}\right)\right] = \tan\theta = \frac{y}{x} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$

7. Let
$$\theta = \cos^{-1}\left(\frac{x}{3}\right)$$
, then $\cos \theta = \frac{x}{3}$.
Because $\cos \theta$ is positive, θ is in quadrant I.

Because $\cos \theta$ is positive, θ is in quadrant $x^2 + y^2 = r^2$ $x^2 + y^2 = 3^2$

$$y^{2} = 9 - x^{2}$$
$$y = \sqrt{9 - x^{2}}$$
$$\sin\left[\cos^{-1}\left(\frac{x}{3}\right)\right] = \sin\theta = \frac{y}{r} = \frac{\sqrt{9 - x^{2}}}{3}$$

Trigonometry 1st Edition Blitzer Solutions Manual

Full Download: http://testbanklive.com/download/trigonometry-1st-edition-blitzer-solutions-manual/

Chapter 2 Test

8. Find the measure of angle *B*. Because $C = 90^{\circ}, A + B = 90^{\circ}.$ Thus, $B = 90^{\circ} - A = 90^{\circ} - 21^{\circ} = 69^{\circ}.$ We have a known angle, a known hypotenuse, and an unknown opposite side. Use the sine function. $\sin 21^{\circ} = \frac{a}{13}$

 $a = 13 \sin 21^\circ \approx 4.7$

We have a known angle, a known hypotenuse, and an unknown adjacent side. Use the cosine function.

 $\cos 21^\circ = \frac{b}{13}$ $b = 13\cos 21^\circ \approx 12.1$ In summary, $B = 69^\circ$, $a \approx 4.7$, and $b \approx 12.1$.

9. $x = 1000 \tan 56^\circ - 1000 \tan 51^\circ$

$$x \approx 247.7$$
 ft

- 10. We need the acute angle between ray *OP* and the north-south line through *O*. This angle measures $90^{\circ} 10^{\circ}$. This angle is measured from the north side of the north-south line and lies west of the north-south line. Thus the bearing from *O* to *P* is N80°W.
- 11. $d = -6\cos \pi t$

a = -6 and $\omega = \pi$

a. maximum displacement: |a| = |-6| = 6 in.

b.
$$f = \frac{\omega}{2\pi} = \frac{\pi}{2\pi} = \frac{1}{2}$$

frequency: $\frac{1}{2}$ in. per second

c. period = $\frac{2\pi}{\omega} = \frac{2\pi}{\pi} = 2$ The time required for one cycle is 2 seconds.