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Solution to Problems in Chapter 17, Section 17.10 
 
17.1.  In words, the conservation relation is: 
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Using a rectangular control volume and the definition of the system energy per unit mass 
(Equation (17.2.3)) and energy flux (Equation (17.2.4)) 
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Dividing by the volume element ΔxΔyΔz, taking the limit as the volume goes to zero and using 
the definition of the derivative yields: 
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Using the definition of the divergence of a vector (Equation (A.3.10), Equation (S17.1.1) 
becomes 
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Using the definition of e, Equation (17.2.4), the divergence of e  is: 
   

 
!ie = !i "Êv + q( ) = "Ê!iv + vi!"Ê +!iq    (S17.1.3) 

For an incompressible fluid,  !iv = 0  and ρ is a constant.  As a result, Equation (S17.1.3) 
reduces to: 
   

 
!ie = !i "Êv + q( ) = "vi!Ê +!iq     (S17.1.4) 

Inserting Equation (S17.1.4) into Equation (S17.1.2) 

   
 

!
"Ê
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Moving both terms with the system energy to the left hand side of Equation (S17.1.5) yields: 
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Lastly, the total rate of work represents work done by fluid stresses 
(
 
!i " iv( ) = #!i pv( ) +!i $ iv( ) ), body forces ( Fiv ) and other types of mechanical work by the 

body ( !W ).  Inserting these terms into Equation  (S17.1.5) yields Equation (17.2.6) 
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17.2.  The work is: 
 
W = Findx! = Fdx! since the force and unit outward normal are 

both positive.  Normally, a protein is present in a specific conformation which is much 
less than the maximum length, know as the contour length, L.  The contour length is the 
length of the polymer if each chain  element were aligned along a line.   
 
Substituting for the wormlike chain model: 
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This result is shown in the graph below.  At low extensions, the relation is linear.  
However, as x approaches L, the work increases dramatically.  The flexibility of the 
polymer arises from the arrangement of the chains.  As the polymer elongates, more work 
must be done to extend the polymer to overcome the tendency for the chains to move 
freely and to extend each element. 
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17.3.  Note: The equation listed in the problem statement should be: 
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The shear stress tensor for a Newtonian fluid is: 
 
   ! = µ "v + "v( )

T( )       (S17.3.1) 
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Using the summation convention for vectors and tensors 
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Since  eie j : ekel = e j iek( ) ei iel( ) = ! jk! il , Equation (S17.3.3) becomes: 
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For fully developed steady, laminar flow in a cylindrical tube of radius R,  
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Using the symmetry property of the shear stress, τij = τji: 
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For laminar flow in a tube 
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The velocity gradient is maximum at r = R.  Thus, the maximum value of viscous dissipation is: 
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In terms of flow rate  
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For the data given: 
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!!
v max

=
16 0.01 g cm-1  s-1( ) 83.3 cm3  s-1( )

2

"
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6
= 22.22 g cm-1  s-3

= 2.22  kg m-1  s-3  
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To compute the maximum heating in blood arising from viscous dissipation, assume steady 
radial conduction with viscous dissipation.  From Equations (17.2.8), (17.2.9), (17.2.12) and 
(S17.3.6b), the following result is obtained. 
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The boundary conditions are that for r = 0, the flux is zero and at r = R, T = T0.  Integrating 
Equation (S17.3.9) once yields: 
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From the boundary condition at r = 0, C = 0.  Integrating Equation (S17.3.10) yields: 
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From the boundary condition at r = R, C2 is 
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The temperature profile is: 
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The maximum temperature difference occurs between r = 0 and r = R: 
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For the value of the viscous dissipation obtained above and the thermal conductivity of blood 
(Table 17.2): 

   !T
max

=
2.22 W  m

-3( ) 0.015 m( )
2

0.642 W  m
-1
K

-1
= 0.00078 K   (S17.3.15) 

 
Thus, viscous dissipation has a very minor effect on the temperature of blood and can be 
neglected. 
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17.4.  For steady conduction for a spherical surface of radius R, Equation (17.2.14c) simplifies 
to: 
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The boundary conditions are at r = R, T = T0 and as r —> ∞, T = T∞.  Integrating equation 
(S17.4.1) twice yields: 
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From the boundary condition as r —> ∞,  C2 = T∞.  At r = R 
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The temperature profile is: 
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To obtain the Nusselt number, compute the flux at r = R and apply the definition of the heat 
transfer coefficient: 
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The heat transfer coefficient for conduction is: 
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Using this result in the definition of the Nusselt number: 
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17.5.  The definition of β is given by Equation (17.4.7) 
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From the ideal gas relationship, PV = nRT.  For a fixed number of moles, V=nRT/P and the 
derivative in Equation (S17.5.1) is: 
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since T = PV/nR for an ideal gas. 
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17.6.  For this problem, assume unsteady conduction in a tissue of thickness 2L.  Based upon 
analogy with unsteady diffusion in a region of half thickness of L, the time to reach steady state 
is 2L2/α.  While specific thermal diffusivities for tissue are not provided in Table 17.2, a 
reasonable value, between water and fat, is 1.1 x 10-7 m2 s-1.  For the half-thickness of 125 µm =  
1.25 x 10-4 m, the time to reach steady state is 0.284 s.  So, one would expect uniform 
temperatures in well perfused tissues.  
 
17.7.  Note:  The phase change during freezing is discussed in Section 17.3.4, not Section 17.3.3. 
 

The rate of growth of the ice front is 
dX

dt
.  X is given by Equation (17.3.26b).  Thus, 
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C is dimensionless and is provided by solving Equation (17.3.31) or Equation (17.3.33).  Values 
of C are tabulated in Table 17.3 for several different values of Tm-T0 and αS is given in Table 
17.2 as 1.06 x 10-6 m2 s-1.  For a value of Tm-T0 =10 C, C = 0.183 and the derivative in Equation 
(S17.7.1) is (1.8448 x 10-4)t-1/2 m s-1. 
 
17.8.  This problem is a modification of the problem presented in Example 6.6.  Thus, Equation 
(6.7.25) applies for the distribution of vapor concentration in a column of height δ. 
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The boundary conditions are that, at y = h, x = xa which is the vapor pressure at the given 
temperature and pressure.  At  y = h + δ, x = xs, the relative humidity in the air.  Integrating 
Equation (S17.8.1) once yields: 
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Integrating again,  
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Applying the boundary conditions: 
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Subtracting (S17.8.4b) from Equation (S17.8.4a) 
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Inserting Equation (S17.8.4c) in Equation (S17.8.4b) and solving for C2 yields; 

    ln 1! x
a( ) = ! ln

1! x
s

1! x
s

"

#$
%

&'
h + (
(

"
#$

%
&'
+ C

2
  (S17.8.4d) 

 



 233 

    C
2
= ln 1! x

a( ) + ln
1! x

s

1! x
a

"

#$
%

&'
h + (
(

"
#$

%
&'

   (S17.8.4d) 

 
The solution is: 
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Add the term ln((1-xa)/(1-xs)) to each side: 
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Collect terms 
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Raising each side to the power e: 
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17.9.  The vapor flux is given by Equation (17.5.11) 

  Ny=h =
cDw,air
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where xs is the partial pressure of water in air at saturation (vapor pressure/total air pressure) and 
xa is the partial pressure of water/total air pressure.  The quantity xa can be expressed as xHxs, 
where xH is the relative humidity.  Using the data for Problem 17.10 and a total air pressure of 
101,325 Pa.  The quantity c =  ptot/RT = 101,325 Pa/(8.314 N m K-1 mol-1)(298 K) = 40.90 mole 
m-3.  The diffusivity of water in air is provided in the text, p. 797, as 2.6 x 10-5 m2 s-1.  Thus, xs = 
0.0310 at 25 C and 0.0728 at 40 C.  For 20% relative humidity at 25 C. 
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For 80% relative humidity, the flux is 0.00050 mol m-2 s-1. 
 
17.10.  The error can be computed from the ratio of Equations (17.5.12) to Equation (17.5.13): 
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At 25 C the error is -0.000226  and at 40 C the error rises to  -0.00128.  Thus, Equation (17.5.13) 
is a good approximation.   
 
17.11.  Since the enthalpy of vaporization is a function of temperature, application of Equation 
(17.5.25) or Equation (17.5.26) is done iteratively.  That is, the enthalpy of vaporization is 
updated, once the temperature at the air-sweat interface is calculated. The flux for the 
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evaporating liquid is temperature independent and was found to be 0.001 mol m-2 s-1 for 60% 
relative humidity.  For the calculation reported in the text, Equation (17.5.5a) was used and 
!H

vap
 was determined for a temperature of 25 C.  Using  T equal to 37 C, !H

vap
= 54047.6 J 

mol-1.  The temperature drop is 0.444 C and the energy flux is 54.05 J m-2 s-1.  Updating the 
values at T = 309.7 K, the temperature drop is 0.444 C and the energy flux is 54.15 J m-2 s-1.  
These values are within 1% of the values obtained for T = 310.00 K.    
 
17.12.  Use Equation (17.4.3) to calculate the Nusselt number.  The Prandtl number does not 
vary significantly with temperature and a value of 0.72 is commonly used for air.  The kinemtic 
viscosity of air 0.1327 cm2 s-1 = 1.327 x 10-5 m2 s-1.  As noted on page 797, a characteristic 
diameter for a typical female is 0.304 m.  The following table lists values of Re, Nu, h and q for 
various wind speeds.  The energy flux can be quite substantial and is reduced significantly by 
clothing.   
 

v, miles/h v, m/s Re Nu h, W m-2 K-1  q, W m-2 
1 0.447 10241 54.64 4.49 143.80 
2 0.894 20482 80.86 6.65 212.79 
5 2.235 51206 140.33 11.54 369.30 

10 4.470 102412 220.05 18.10 579.08 
25 11.176 256029 420.46 34.58 1106.48 

 
 
17.13.  Start with the definition of the Grashof number, Equation (17.4.22) 

Gr =
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The definition of β in terms of the density is given by Equation (17.4.6) 
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17.14.  For free convection, Equation (17.4.5) is used for flow over a sphere.  The viscosity ratio  
is 0.900 and Pr = 0.72. 

 v, miles/h v, m/s Diameter, m Re  Nu 
adult 10 4.47 0.178 60050 164.29 
child 10 4.47 0.124 41820 133.60 

 
For free convection, the Grashof number is calculated using Equation (17.4.22) with L  equal to 
the diameter and β = 1/T where T is the air temperature (273.15 K).  Equation (17.4.24) is used 
to determine the Nusselt number for a flat plate.  The correlation for spheres is found in reference 
[18], page  301. 
    Nu = 2.0 + 0.43(PrGr)

1/4  
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 Diameter, m Gr Nu, flat plate Nu, sphere 
adult 0.178 42697290 38.57 34.02 
child 0.124 14422151 29.40 26.41 

 
For radiation, the energy flux is given by Equation (17.2.19c).  Treating the absorptivity and 
emissivity as the same, the flux equals q = σe(Tb

4-Tair
4).  A heat transfer coefficient can be 

defined as h=q/ΔT and a Nussel number determined.  Results are: 
 
qrad h Nu adult Nu child 

193.44 5.23 37.22 25.93 
 
Comparing results, the free convection and radiation terms are comparable and are about 20% of 
the value for forced convection.   
 
 
17.15.  Note, there is a typographical error in the text and Equation (17.5.25) should be: 
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Begin with Equation (17.5.21) for air and Equation (17.5.24) for the liquid.   

    Ta =
a1Cvapka
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exp
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    Tl = a3y + a4       (17.5.24) 
 
The boundary conditions are: 
 y = 0   Tl = Tb       (S17.15.1a) 
 y = h   Tl = Ta       (S17.15.1b) 

    ka
dTa

dy
y=h

! kl
dTl

dy
y=h

= "H
vap
Ny=h    (S17.15.1c) 

 y = h+δ  Ta = Tair      (S17.15.1a) 
 
From the boundary condition at y = 0 
    a

4
=T

b
       (S17.15.2a) 

and     Tl = a3y + Tb       (S17.15.2b) 
 
From the boundary condition at  y = h+δ, 
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Equating Equations (S17.15.2b) and (S17.15.3b) at  y = h, 
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where !T=T

b
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The liquid temperature is 
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Use Equations (S17.15.3b) and (S17.15.5) to compute the derivatives of the temperature. The 
boundary condition, Equation (S17.15.1c), becomes: 
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Solving for a1: 

a1 =

exp !
"Ĉp

Cvapka

Ny=hh
#

$
%

&

'
( )H vap

Ny=h !
kl)T
h

#
$%

&
'(

ka  !
klCvapka

hNy=h"Ĉp
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Inserting this expression for a1 into Equation (S17.15.3b) yields the final result for the air 
temperature. 
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Rearrange to yield the correct form of Equation (17.5.25) 
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At y = h, Equation (17.5.25) is: 
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The group 
hNy=h!Ĉp

Cvapka

 can be rewritten as  the following by using Equation (17.5.17): 
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The thermal Peclet number for air is 0.20, which is larger than the value for sweat, but still much 
less than 1.  For the case of conduction only, energy transport through the liquid is unchanged.  
Equation (17.5.17) for the air simplifies to: 
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After integration we obtain: 
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Ta = a1 y ! h + "( )( ) + Tair  
 
Tl = a3y + Tb  
 
Equating the air and sweat temperatures at  y = h: 
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Use these results for Ta and Tl to compute the derivatives in Equation (S17.15.1c) 
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Solving for a1: 
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The resulting expression for the air temperature is: 
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for y = h 
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For values of h (0.005 m) and δ (0.0136 m) provided in Section 17.5 and thermal conductivities 

of air and water in Table 17.2, !
k
a

k
l

"
#$

%
&'
h + !

= 0.985 .  Thus, the approximation presented in 

Equation (17.5.26) is reasonable.  Further, Equation (17.5.26) arises as a limiting value of 
Equation (17.5.25) when ka/klPe << 1. 
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If vaporization does not occur, then !H vap

= 0  and Equation (17.5.27) results.   
 
17.16.  From Table 2.4, the blood vessel diameters range from 6 x 10-6 m to 5 x 10-5 m.  
Corresponding  mean velocities range from 2 x 10-4 to 0.001 m s-1. The Pe ranges from 0.0068 to 
0.284.  Blood vessel densities range from 2.0 x 108 vessels m-2 to 2.22 x 109 vessels m-2.  The 
ratio of thermal conductivities between blood and tissue range from 1.5 to 3.  From Equation 
(17.7.4), keff/ktissue ranges from 1.00 to 5.21.   
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