Structural Dynamics Theory And Applications 1st Edition Tedesco Solutions Manual

Full Download: https://testbanklive.com/download/structural-dynamics-theory-and-applications-1st-edition-tedesco-solutions-man

Solutions Manual

to accompany

STRUCTURAL DYNAMICS Theory and Applications

Solutions Manual

to accompany

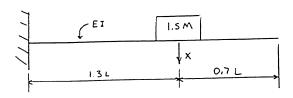
STRUCTURAL DYNAMICS Theory and Applications

by

Joseph W. Tedesco
Auburn University

Prentice Hall, Upper Saddle River, NJ 07458

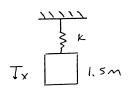
		·		

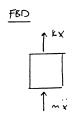


SOLUTION

d'ALEMBERTS PRINCIPLE

\(\int \text{(FORCES)}_X - mx = 0 \)



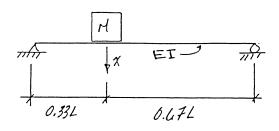


$$\frac{1}{x} + \frac{k}{m} x = 0$$
 EQUATION OF MOTION

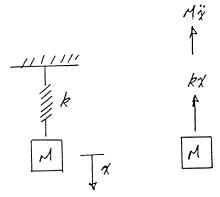
$$K = \frac{3EI}{(1.3L)^3}$$

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{3E\Gamma}{1.5M(1.3L)^3}} = 0.954\sqrt{\frac{E\Gamma}{ML^3}}$$

2.2



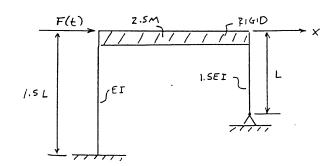
Solution:



Equation of motion:
$$MX+kx=0$$
 or $X+\frac{k}{M}x=0$

$$k = \frac{CEIL}{(0.33L)(L-0.33L)[7L(0.33L)-(0.33L)^2-(0.33L)^2]}$$

$$k = \frac{(1.37EI)}{L^2}$$
Notural Frequency: $\omega = \sqrt{\frac{k}{M}} = 7.834\sqrt{\frac{EI}{ML^3}}$



SOLUTION

$$F(t) = \frac{FBD}{\sum_{k \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \sum_$$

$$Z(forces)_{x} - m\dot{y} = 0$$

$$F(t) - kx - m\dot{x} = 0$$

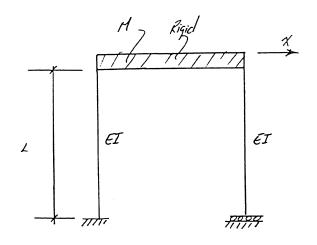
$$\ddot{x} + \frac{L}{m}x = \frac{F(t)}{m}$$
Equation of motion

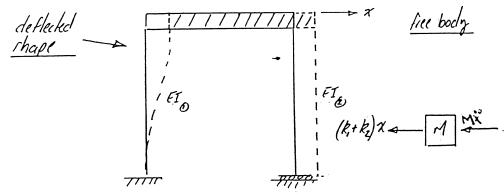
$$K = \frac{12EI}{(1.5L)^3} + \frac{3(1.5EI)}{L^3}$$

$$= \frac{12(30\times10^6)(150)}{(1.5\times12\times12.0)^3} + \frac{3(1.5)(30\times10^6)(150)}{(12.0\times12)^3}$$

$$= 12,140 \text{ Le}/N$$

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{12,140 \, lo/_{1N}}{2.5(1.0 \, lo see/_{N})}} = 69.7 \, rad/sec$$

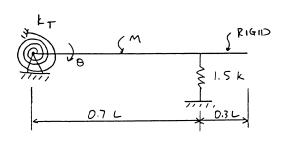




equation of motion: $M\ddot{x} + kx = 0$ or $\ddot{x} + \frac{k}{M}x = 0$ Als

o L' nation fieg

$$\omega = \sqrt{\frac{k}{M}} \cdot \left(\frac{12EI}{ML^3}\right)^{\frac{1}{2}} ANS$$



2.5 Cont.

SOLUTION

$$\frac{\partial}{\partial t} + \frac{3\left[k(0.7L)^2 + K_T\right]}{mL^2} \theta = 0$$

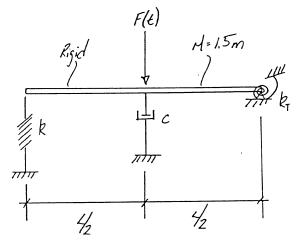
$$\omega = \sqrt{\frac{3 \left(0.7 L\right)^2 + 3 k_T}{m L^2}}$$

$$I = \frac{mL^2}{3} \quad (ABOUT PIVOT FT)$$

EQUATION OF MOTION

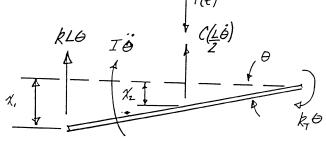
NATURAL FREQUENCY

2.6



Solution:

free body



1, = Lsin6 small disp = 16

$$\gamma_z = \frac{\angle}{2} \dot{\Theta}$$

2.6 Cont.

$$I = \frac{ML^2}{3} = \frac{1.5mL^2}{3} = \frac{mL^2}{2}$$
equation of motion:

$$k_{f}\theta + k_{1}\theta(L) + I\ddot{\theta} + C(\frac{L}{2}\dot{\theta})(\frac{L}{2}) = F(\xi)(\frac{L}{2})$$

$$k_{f}\theta + k_{L}^{2}\theta + I\ddot{\theta} + CL^{2}\dot{\theta} = F(\xi)(\frac{L}{2})$$

$$I\ddot{\theta} + CL^{2}\dot{\theta} + (k_{L}^{2} + k_{f})\theta = F(\xi)(\frac{L}{2})$$

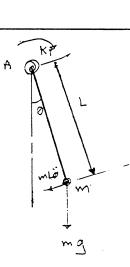
$$\left(\frac{mL^2}{2}\right)\ddot{\theta} + \frac{(L^2\theta + (kL^2 + k_T)\theta = F(t)(\frac{L}{2})}{4}$$

$$\frac{\partial}{\partial t} + \frac{C}{2m} \frac{\partial}{\partial t} + \frac{2(kL^2 + k_T)}{mL^2} \frac{\partial}{\partial t} = F(t)(\frac{1}{mL})$$
ANS

natural frequency:

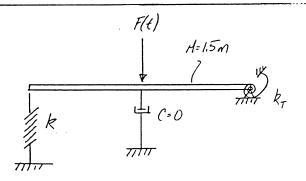
$$\omega = \sqrt{\frac{2(kL^2 + k_T)}{ML^2}}$$

ANI



For small values of
$$\emptyset$$

 $\sin \theta = \emptyset$
 $m \stackrel{?}{=} 0 + (mg \stackrel{L}{=} + k_{E}) 0 = 0$
 $0 \stackrel{?}{=} + (\frac{g}{L} + \frac{k_{E}}{mL^{2}}) 0 = 0$
 $W = \sqrt{\frac{g}{l} + \frac{k_{E}}{mL^{2}}}$



Assume a consurvative system (i.e. no damping)

Solution:

file body

$$\frac{1}{2}k(2e)^{2} + H(1) + H(1) + H(1)$$

$$1.5 m/L$$

$$\frac{1}{2}e \cdot x_{2} + H(1) + H(1)$$

$$\frac{1}{2}e \cdot x_{2} + H(1)$$

7.8 cont.

$$V = \frac{1}{2}k(1\theta)^{2} + \frac{1}{2}k_{T}\theta^{2} - F(t)(\frac{1}{2})\theta$$

$$\frac{mL^{2}\Theta^{2}}{4} + \frac{1}{2}k(L\Theta)^{2} + \frac{1}{2}k_{T}\Theta^{2} - F(t)(\frac{L}{2})\Theta = Constant$$

$$\frac{d(T+V)}{d\theta} = 0 = \frac{mL^2 \ddot{\theta} + kL^2 \dot{\theta} \theta + k_{\tau} \dot{\theta} \theta - F(t)(\frac{L}{2}) \dot{\delta}$$

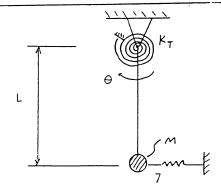
equation of motion:

$$\frac{mL^2\theta + (kL^2 + k_r)\theta = F(t)(\frac{L}{z})}{2}$$

$$\frac{\partial}{\partial t} + \frac{2(kL^2 + k_T)}{mL^2} \partial t = F(t)(\frac{1}{mL})$$
ANS

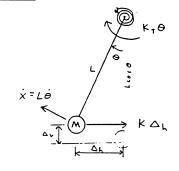
nahual frequency:

$$\omega = \sqrt{\frac{2(kl^2 + k_T)}{mL^2}}$$



2.9 cont.

SOLUTION



$$\Delta_{h} = L \sin \theta = L\theta$$

$$\Delta_{v} = L - L \cos \theta = L (1 - \cos \theta)$$

$$\frac{|\text{Linetic Energy}}{T = \frac{1}{2}mx^{2}} = \frac{1}{2}m (L\theta)^{2}$$

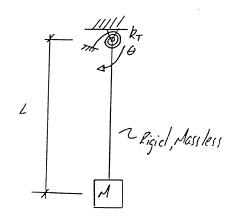
$$\frac{|\text{Potential Energy}}{V = mg \Delta v} + \frac{1}{2}k \Delta_{h}^{2} + \frac{1}{2}k_{T}\theta^{2}$$

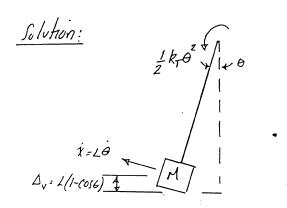
$$= mg L (1 - \cos \theta) + \frac{1}{2}k (L\theta)^{2} + \frac{1}{2}k_{T}\theta^{2}$$

$$\frac{ENERCY\ METHOP}{T+V=constANT}$$

$$\frac{d}{dt}(T+V)=0$$

$$\frac{\partial}{\partial t} + \left(\frac{MgL + kL^2 + kT}{ML^2}\right)\theta = 0$$
 EQUATION OF MOTION





Kinehic Energy
$$(T)$$
 $\frac{1}{2}mv^2$

$$\frac{1}{2}M(L\dot{\theta})^2$$
Roknhal energy: (V)

$$Mg L(I-cos\theta) + \frac{1}{2}k_7\theta^2$$

$$\frac{Tom L Work:}{2}(T+V)$$

$$\frac{1}{2}ML^2\dot{\theta}^2 + \frac{1}{2}k_7\theta^2 + MgL(I-cos\theta) = constant$$

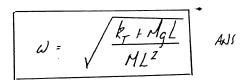
$$\frac{d(T+V)}{d\theta} = 0 = ML^2\ddot{\theta}\ddot{\theta} + k_7\ddot{\theta}\dot{\theta} + MgLsyld\ddot{\theta}$$

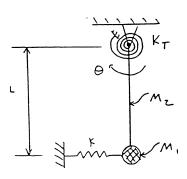
$$ML^2\ddot{\theta} + k_7\theta + MgL\theta = 0$$

$$ML^2\ddot{\theta} + (k_7 + MgL)\theta = 0$$

$$\frac{\ddot{\theta}}{d\theta} + (\frac{k_7 + MgL}{ML^2})\theta = 0$$
All

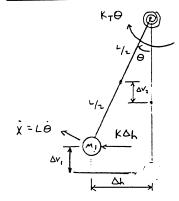
natural frequency.





2.11 Cont.

SOLUTION



$$\Delta h = L \sin \theta \approx L \theta$$

$$\Delta V_{1} = L(1-\cos \theta)$$

$$\Delta V_{2} = \frac{1}{2}(1-\cos \theta)$$

$$T = \frac{1}{2} m_{1} \dot{x}^{2} + \frac{1}{2} I_{0} \dot{\theta}^{2}$$

$$= \frac{1}{2} m_{1} (L \dot{\theta})^{2} + \frac{1}{2} (\frac{1}{3} m_{2} L^{2}) \dot{\theta}^{2}$$

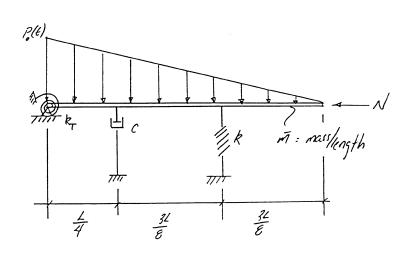
$$= \frac{1}{2} m_{1} L^{2} \dot{\theta}^{2} + \frac{1}{6} m_{2} L^{2} \dot{\theta}^{2}$$

$$V = m_{1} g \Delta V_{1} + m_{2} g \Delta V_{2} + \frac{1}{2} k \Delta h^{2} + \frac{1}{2} k (L \theta)^{2} + \frac{1}{2} l_{1} \theta^{2}$$

$$= m_{1} g L (1-\cos \theta) + m_{2} g \frac{1}{2} (1-\cos \theta) + \frac{1}{2} k (L \theta)^{2} + \frac{1}{2} l_{1} \theta^{2}$$

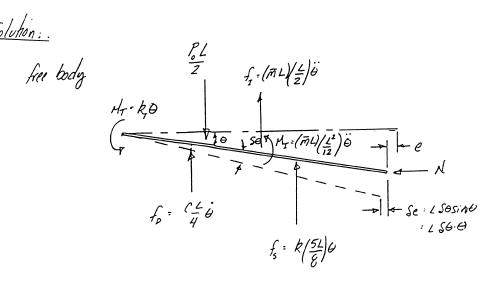
ENERGY METHOD
$$T + V = CONSTANT$$

$$d_1(T+V) = 0$$



Full Download: https://testbanklive.com/download/structural-dynamics-theory-and-applications-1st-edition-tedesco-solutions-man

2.12 cont.



equation of Aution:

$$-\int_{S} \left(\frac{3}{8}S\Theta\right) - \int_{D} \left(\frac{1}{4}S\Theta\right) - M_{1}S\Theta + MSC + \frac{P_{0}I}{2}\left(\frac{1}{3}S\Theta\right)$$

$$-\int_{T} \left(\frac{1}{2}S\Theta\right) - M_{1}S\Theta = 0$$

$$-\frac{25}{4H}L^{2}K\ThetaS\Theta - CL^{2}\ThetaS\Theta - R_{1}\ThetaS\Theta + MLOS\Theta + \frac{P_{0}I^{2}}{4}S\Theta$$

$$-\frac{m}{1}\frac{1}{9}\ThetaS\Theta - \frac{m}{1}\frac{1}{9}\ThetaS\Theta = 0$$

$$\frac{\bar{m}L^{3}\dot{\theta} - \frac{CL^{2}\dot{\theta}}{16}\dot{\theta} - \left(\frac{25}{64}kL^{2} + k_{T} - NL\right)\dot{\theta} + \frac{P_{0}L^{2}}{6} = 0}{\frac{\bar{m}L^{3}\dot{\theta}}{3}\dot{\theta} + \frac{CL^{2}\dot{\theta}}{16}\dot{\theta} + \left(\frac{25}{64}kL^{2} + k_{T} - NL\right)\dot{\theta} - \frac{P_{0}L^{2}}{6}}{\frac{25}{64}kL^{2} + k_{T} - NL}\dot{\theta} = \frac{P_{0}L^{2}}{6}$$
ANS

Natural frequency: W= 1 km

$$\omega : \sqrt{\frac{25 kL^2 + k_T - \lambda L}{\frac{\tilde{m}L^3}{3}}}$$