Full Download: https://testbanklive.com/download/statistics-and-data-analysis-for-nursing-research-2nd-edition-polit-test-bank/

Chapter 1 *Introduction to Data Analysis in an Evidence-Based Practice Environment*

- 1.1. Statistical skills can play an important role in nursing because they help nurses to:
 - a. Calculate appropriate doses and clinical measurements
 - b. Generate clinical questions
 - *c. Evaluate and generate research evidence for nursing practice
 - d. Make better use of computers and the Internet
- 1.2. In the context of a quantitative study, a concept is called a(n):
 - a. Operational definition
 - *b. Variable
 - c. Statistic
 - d. Parameter
- 1.3. An example of a variable is:
 - *a. Systolic blood pressure
 - b. Pi (π)
 - c. 52.5 kilograms
 - d. Number of seconds in a minute
- 1.4. An example of a datum is:
 - a. Systolic blood pressure
 - b. Pi (π)
 - *c. 52.5 kilograms
 - d. Number of seconds in a minute
- 1.5. Which of the following is not a component of a research question?
 - a. An independent variable
 - b. A population
 - *c. A sample
 - d. A dependent variable

1.6. Identify the dependent variable in the following: In elderly men, what is the effect of chronic fatigue on level of depression?

- a. Age
- b. Sex
- c. Chronic fatigue
- *d. Depression
- 1.7. Which of the following is a continuous variable?
 - a. Number of pages in a book
 - *b. Age at death
 - c. Falls during hospitalization
 - d. Number of times married

Test Bank for Polit, Statistics and Data Analysis for Nursing Research 2nd Edition

Page 1

Full download all chapters instantly please go to Solutions Manual, Test Bank site: TestBankLive.com

1.8. Measurement is the assignment of numbers to characteristics of people or objects according to specified ______. (Fill in the blank.)

*a. Rules

- b. Definitions
- c. Concepts
- d. Parameters

1.9. The measurement level that classifies attributes, indicates magnitude, and has equal intervals between values, but does not have a rational zero, is:

a. Nominal

b. Ordinal

*c. Interval

d. Ratio

1.10. The measurement level that is sometimes called *categorical* or *qualitative* is:

- *a. Nominal
- b. Ordinal
- c. Interval
- d. Ratio

1.11. It is not meaningful to calculate an arithmetic average with data from which of the following?

- a. Nominal measures
- b. Ordinal measures

*c. Nominal and ordinal measures

d. All measures can be meaningfully averaged.

1.12. Degree of pain measured as *none, a little*, or *a lot* is measured on which of the following scales?

- a. Nominal
- *b. Ordinal
- c. Interval
- d. Ratio

1.13. Body temperature is measured on which of the following scales?

- a. Nominal
- b. Ordinal
- *c. Interval
- d. Ratio

1.14. Type of birth (vaginal or cesarean) is measured on the:

- *a. Nominal scale
- b. Ordinal scale
- c. Interval scale
- d. Ratio scale

- 1.15. Which of the following is a ratio-level measure?
 - *a. Dietary cholesterol intake (mg)
 - b. Cognitive impairment on a 50-item scale
 - c. Pain on a 10-point scale
 - d. Military rank
- 1.16. Ratio-level measures are different than any other level by virtue of which property?
 - a. Classification
 - b. Equal intervals between values
 - *c. A true, rational zero
 - d. Indication of magnitude
- 1.17. Which level of measurement communicates the most information?
 - a. Nominal
 - b. Ordinal
 - c. Interval
 - *d. Ratio

1.18. Researchers typically collect data from a _____ and hope to generalize their results to a _____. (Fill in the blanks.) a. Population, sample

- b. Statistic, parameter
- c. Sample, statistic
- *d. Sample, population

1.19. If the average amount of sleep for all people in the United States was 7.6 hours per night, this average would be a(n) ______ of the population of U.S. residents. (Fill in the blank.)

- a. Variable
- *b. Parameter
- c. Statistic
- d. Datum

1.20. If a nurse researcher measured the anxiety level of 100 hospitalized children, the children's average score on an anxiety scale would be a(n):

- a. Variable
- b. Parameter
- *c. Statistic
- d. Operational definition

1.21. Statistical methods that are used to draw conclusions about a population are called:

- *a. Inferential statistics
- b. Descriptive statistics
- c. Univariate statistics
- d. Multivariate statistics

Chapter 2 Frequency Distributions: Tabulating and Displaying Data

- 2.1. A major purpose of constructing a frequency distribution with sample data is to:
 - a. Estimate a population parameter
 - b. Test a research hypothesis
 - *c. Get an organized view of an entire set of scores
 - d. Get experience with statistical software
- 2.2. In a frequency distribution, the two key informational components are:
 - *a. Score values (*X*), frequencies (*f*)
 - b. A horizontal (X) axis, a vertical (Y) axis
 - c. Frequencies (f), percentages (%)
 - d. Participant ID number (*id*), score values (X)
- 2.3. In a frequency distribution, which of the following is true?
 - a. $\Sigma N = \%$ b. $\Sigma N = f$ c. $\Sigma f = \%$ *d. $\Sigma f = N$
- 2.4. In the equation $\Sigma \% = 100.0$, the symbol Σ signifies:
 - a. A percentage
 - *b. The sum of
 - c. A data value
 - d. A frequency
- 2.5. In a frequency distribution, percentages are sometimes called:
 - a. Proportions
 - b. Relative proportions
 - *c. Relative frequencies
 - d. Cumulative proportions

2.6. Data for which of the following variables is most likely to be presented in a grouped frequency distribution?

- a. Nursing specialty area
- *b. Daily cholesterol intake
- c. Number of abortions
- d. Number of pets owned
- 2.7. The level of measurement for data appropriately presented in a bar graph is:
 - a. Interval or ratio
 - b. Nominal only
 - c. Interval only
 - *d. Nominal or ordinal

2.8. In a frequency distribution graph, frequencies are typically presented on the _____ and data values are presented on the _____ (Fill in the blanks.)

*a. Y axis, X axis
b. X axis, Y axis
c. f axis, N axis
d. N axis, f axis

2.9. Which of the following sets of data is *not* unimodal?

2.10. Which of the following variables is most likely to be negatively skewed in a general population?

a. Number of times arrested

*b. Age at retirement

c. Number of times married

d. Age at birth

2.11. A normal distribution is *not*:

- a. Skewed
- b. Leptokurtic
- c. Platykurtic
- *d. All of the above
- 2.12. A wild code is:
 - *a. A value that is impossible given the coding scheme
 - b. An outlier or high value
 - c. A code for which there is a very low frequency
 - d. A code for which there is a very high frequency

The next eight questions pertain to the following table (Table 2):

Table 2			
Number of	Frequency	Percentage	Cumulative
Pregnancies of Study			Percentage
Participants			
0	24	11.1	11.1
1	29	13.5	24.6
2	78	36.3	60.9
3	46	21.4	82.3
4	22	10.2	92.5
5	11	5.1	97.6
6	4	1.9	99.5
7	1	0.4	100.0
Total	215	100.0	

2.13 In Table 2, the variable is _____ and the measurement level is _____. (Fill in the blanks.)

- a. Discrete, interval
- *b. Discrete, ratio
- c. Continuous, interval
- d. Continuous, ratio

2.14. Table 2 is an example of a:

- *a. Frequency distribution
- b. Grouped frequency distribution
- c. Class interval
- d. Data matrix

2.15. In Table 2, the value of N is:

- a. 24
- b. 100.0
- *c. 215
- d. 7

2.16. In Table 2, the cumulative relative frequency for five or fewer pregnancies is:

- a. 210
- b. 199
- c. 92.5
- *d. 97.6

2.17. The best way to graph information in Table 2 would be to construct:

- *a. A histogram
- b. A pie chart
- c. A bar graph
- d. Either a pie chart or a bar graph
- 2.18. In Table 2, the distribution of data would be described as:
 - a. Symmetric
 - *b. Positively skewed
 - c. Negatively skewed
 - d. It cannot be determined.

2.19. In Table 2, the distribution of data would be described as:

- *a. Unimodal
- b. Bimodal
- c. Multimodal
- d. It cannot be determined.

2.20. In Table 2, the most likely number to be an outlier is:

- a. 0
- b. 1
- *c. 7

d. 24 Chapter 3 Central Tendency, Variability, and Relative Standing

3.1. A distribution of data values can be described in terms of all of the following characteristics *except:*

- a. Central tendency
- b. Variability
- *c. Relative standing
- d. Shape

3.2. Central tendency indexes are all of the following *except* which of the following statements?

a. They are descriptive statistics.

- *b. They summarize how dispersed a set of scores is.
- c. They provide information about a value around which scores cluster.
- d. They are appropriate for interval- and ratio-level measures.

3.3. In the following distribution (10 11 12 13 14 15 15 15 15) the mode is:

- a. 11
- b. 12
- c. 14
- *d. 15

3.4. In the following distribution (10 11 12 13 14 15 15 15 15) the median is:

- a. 11
- b. 12
- *c. 14
- d. 15
- 3.5. The median is all of the following *except*:
 - a. The 50th percentile
 - b. The point that divides a distribution in half
 - c. *Q*₂

*d. The most popular score in the distribution

3.6. For which of the following set of numbers are the mean, median, and mode the same value?

- *a. 1 2 3 3 4 4 4 4 4 5 5 6 7 b. 1 1 2 2 3 3 4 4 5 5 6 7 7 c. 1 1 1 2 3 3 4 4 5 5 6 7 7 7 d. All of the above
- 3.7. In which type of distribution is the mean a higher value than the median or mode?

a. A leptokurtic distribution

*b. A positively skewed distribution

- c. A negatively skewed distribution
- d. A normal distribution
- 3.8. If there are outliers at either end of a distribution that is symmetric, a researcher might:
 - *a. Calculate a trimmed mean
 - b. Report the median rather than the mean
 - c. Report the mode rather than the mean
 - d. Omit the variable from further analyses

3.9. Which of the following indexes of dispersion is *not* in the original units of measurement of the variable?

- a. Range
- b. Interquartile range
- c. Standard deviation
- *d. Variance

3.10. Which of the following indexes of dispersion tends to be least stable—most likely to fluctuate from one sample to another from the same population?

- *a. Range
- b. *IQR*
- c. Standard deviation
- d. Variance

3.11. Which of the following indexes involves the calculation of deviation scores (x)?

- a. Range b. *IQR* *c. *SD*
- d. *M*

3.12. Which of the following indexes involves the calculation of percentiles?

a. *z* *b. *IQR* c. *SD* d. *M*

3.13. Which of the following statistical symbols does not belong with the others?

a. *SD* b. *IQR* c. *M* *d. μ

3.14. What percentage of cases for a normally distributed variable lies within 1 *SD* above and below the mean?

a. 34% b. 50% *c. 68%

Statistics and Data Analysis for Nursing Research 2nd edition Polit Test Bank

Full Download: https://testbanklive.com/download/statistics-and-data-analysis-for-nursing-research-2nd-edition-polit-test-bank/

d. 95%

3.15. In calculating standard scores, which two descriptive statistics are needed?

- a. Median, *IQR*
- b. Median, percentiles
- c. Mean, Range
- *d. Mean, SD

3.16. A *z* score of 0.00 corresponds to an original score that:

- a. Could not be used in the calculation of the mean
- *b. Is the same as the mean in the original distribution
- c. Is the lowest score in the original distribution
- d. Is an outlier

3.17. A *z* score of -1.00 corresponds approximately to a score for a normally distributed variable that is at the:

- a. 1st percentile b. 10th percentile *c. 16th percentile
- d. 84th percentile

3.18. An extreme outlier is:

- a. More than 3 SDs above the mean
- b. Equivalent to a z score of -3.0 or lower, or +3.0 or higher
- c. More than three times the value of the mean
- *d. More than 3 times the *IQR*, below Q_1 or above Q_3
- 3.19. In a boxplot, information about a distribution is depicted in terms of:
 - *a. Percentiles
 - b. Standard deviation units
 - c. z scores
 - d. *T* scores
- 3.20. The number 100 can always be thought of as:
 - a. A mean of a distribution when the SD is 15
 - b. A value equivalent to the 10th percentile
 - *c. A number whose real limits are 99.5 and 100.5
 - d. An outlier