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Chapter 1 Solutions

1.1

i. Driving a car
Please see either jogging, cycling, stirred tank
heater, or household thermostat for a represen-
tative answer.

ii. Two sample favorite activities:

Jogging

(a) Objectives:

• Jog intensely (heart rate at 180bpm)
for 30 min.

• Smooth changes in jogging intensity
and speed.

(b) Input Variables:

• Jogging Rate – Manipulated input
• Shocking surprises (dogs, cars, etc.)–

Disturbance

(c) Output Variables:

• Blood Oxygen level – unmeasured
• Heart beat – measured
• Breathing rate – unmeasured

(d) Constraints:

• Hard: Max Heart Rate (to avoid heart
attack → death)

• Hard: Blood oxygen minimum and
maximum

• Soft: Time spent jogging

(e) Operating characteristics: Continuous dur-
ing period, Semi Batch when viewed over
larger time periods.

(f) Safety, environmental, economic factors:
Potential for injury, overexertion

(g) Control: Feedback/Feedforward system.
Oxygen level, heartbeat, fatigue all part of
determining action after the fact. Path,
weather are part of feedforward system

Cycling

(a) Objectives:

• Ensure stability (don’t crash)
• Enjoy ride
• Prevent mechanical failure

(b) Input Variables – Manipulated:

• Body Position
• Steering

• Braking Force
• Gear Selection

Input Variables – Disturbances:

• Weather
• Path Conditions
• Other people, animals

(c) Output Variables – Measured:

• Speed
• Direction
• Caloric Output (via electronic moni-

tor)

Output Variables – Unmeasured:

• Level of enjoyment
• Mechanical integrity of person and bi-

cycle
• Aesthetics (smoothness of ride)

(d) Constraints – Hard:

• Turning radius
• Mechanical limits of bike and person
• Maximum fatigue limit of person

Constraints – Soft:

• Steering dynamics that lead to instabil-
ity before mechanical failure (i.e. you
crash, the bike doesn’t break)

• Terrain and weather can limit enjoy-
ment level.

(e) Operation: Continuous: Steering, weight
distribution, terrain selection within a path,
pedal force Semi batch: Gear selection,
braking force Batch: Tire pressure, bike se-
lection, path selection

(f) Safety, environment, economics: Safety:
Stability and mechanical limits prevent in-
jury to rider and others Environment: Trail
erosion, noise Economics: Health costs,
maintenance costs

(g) Control Structure: Feedback: Levels of ex-
ertion, bike performance are monitored and
ride is adjusted after the fact FeedForward:
Path is seen ahead and ride is adjusted ac-
cordingly.

iii. A stirred tank heater

(a) Objectives

• Maintain Operating Temperature
• Maintain flow rate at desired level

(b) Input Variables:
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• Manipulated: Added heat to system
• Disturbance: Upstream flow rate and

conditions

(c) Output Variables – Measured: Tank fluid
temperature, Outflow

(d) Constraints:

• Hard: Max inflow and outflow as per
pipe size and valve limitations

• Soft: Fluid temperature for operating
objective

(e) Operating conditions: Continuous fluid
flow adjustment, continuous heating adjust-
ment

(f) Safety, Environmental, Economic consider-
ations: Safety: Tank overflow, failure could
cause injury Economics: Heating costs, spill
costs, process quality costs Environmental:
Energy consumption, contamination due to
spills of hot water

(g) Control System: Feedback: Temperature is
monitored, heating rate is adjusted Feed-
forward: Upstream flow velocity is used to
predict future tank state and input is ad-
justed accordingly.

iv. Beer fermentation
Please see either jogging, cycling, stirred tank
heater, or household thermostat for a represen-
tative answer.

v. An activated sludge process
Please see either jogging, cycling, stirred tank
heater, or household thermostat for a represen-
tative answer.

vi. A household thermostat

(a) Objectives:

• Maintain comfortable temperature
• Minimize energy consumption

(b) Input Variables:

• Manipulated: Temperature setting
• Disturbance: Outside temperature, en-

ergy transmission between house and
environment

(c) Output Variables:

• Measured: Thermostat reading
• Unmeasured: Comfort level

(d) Constraints:

• Hard: Max heating or cooling duty of
system

• Soft: Max or minimum temperature for
comfort

(e) Operating conditions: Continuous heating
adjustment, continuous temperature read-
ing.

(f) Safety, Environmental, Economic consider-
ations: Safety: heater may be an electri-
cal or burning hazard Economics: Heating
costs Environmental: Energy consumption.

(g) Control System: Feedback; temperature is
monitored, heating rate is adjusted after
the fact.

vii. Air traffic control
Please see either jogging, cycling, stirred tank
heater, or household thermostat for a represen-
tative answer.

1.2

a. Fluidized Catalytic Cracking Unit

i. Summary of paper:

A fluidized catalytic cracking unit (FCCU) is
one of the typical and complex processes in
petroleum refining. Its principal components are
a reactor and a generator. The reactor executes
catalytic cracking to produce lighter petro-oil
products. The regenerator recharges the cata-
lyst and feeds it back to the reactor. In this
paper, the authors test their control schemes on
a FCCU model. The model is a nonlinear multi-
input/multi-output (MIMO) which couples time
varying and stochastic processes. Considerable
computation is needed to use model predic-
tive process control algorithms (MPC). Stan-
dard PID control gives inferior performance. A
simplified MPC algorithm is able to reduce the
number of parameters and computational load
while still performing better than a PID control
method.

ii. Familiar Terms: Constraint, nonlinearity, con-
trol performance, MPC, unmeasured distur-
bance rejection, modeling, simulation.

b. Reactive Ion Etching
Please see FCCU for a representative answer.

c. Rotary Lime Kiln
Please see FCCU for a representative answer.

d. Continuous Drug Infusion
Please see FCCU for a representative answer.
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e. Anaerobic Digester
Please see FCCU for a representative answer.

f. Distillation
Please see FCCU for a representative answer.

g. Polymerization Reactor
Please see FCCU for a representative answer.

h. pH
Please see FCCU for a representative answer.

i. Beer Production
Please see FCCU for a representative answer.

j. Paper Machine Headbox
Please see FCCU for a representative answer.

k. Batch Chemical Reactor
Please see FCCU for a representative answer.

1.3

a. Vortex–shedding flow meters
The principal of vortex shedding can be seen in the
curling motion of a flag waving in the breeze, or the
eddies created by a fast moving stream. The flag
outlines the shape of air vortices as the flow past the
pole. Van Karman produced a formula describing the
phenomena in 1911. In the late 1960’s the first vortex
shedding meters appeared on the market. Turbulent
flow causes vortex formation in a fluid. The frequency
of vortex detachment is directly proportional to fluid
velocity in moderate to high flow regions. At low
velocity, algorithms exist to account for nonlinearity.
Vortex frequency is an input, fluid velocity is an out-
put.

b. Orifice–plate flow meters
Please see vortex–shedding flow meters for a repre-
sentative answer.

c. Mass flow meters
Please see vortex–shedding flow meters for a repre-
sentative answer.

d. Thermocouple based temperature measurements
Please see vortex–shedding flow meters for a repre-
sentative answer.

e. Differential pressure measurements
Please see vortex–shedding flow meters for a repre-
sentative answer.

f. Control valves
Please see vortex–shedding flow meters for a repre-

sentative answer.

g. pH
Please see vortex–shedding flow meters for a repre-
sentative answer.

1.4

No solutions are required to work through Module 1

1.5

a.
The main objective is to maintain the process fluid
outlet temperature at a desired setpoint of 300 C.

b.
The measured output is the process fluid outlet tem-
perature.

c.
The manipulated input is the fuel gas flowrate, specif-
ically the valve position of the fuel gas control valve.

d.
Possible disturbances include: process fluid flowrate,
process fluid inlet temperature, fuel gas quality, and
fuel gas upstream pressure.

e.
This is a continuous process.

f.
This is a feedback controller.

g.
The control valve should be fail-closed. Increasing
air pressure to the valve will then increase the valve
position and lead to an increase in flowrate. Loss of
air to the valve will cause it to close. The gain of the
valve is positive, because an increase in the signal to
the valve results in an increase in flow.

h.
It is important from a safety perspective to have a
fail-closed valve. if the valve failed open, there might
not be enough combustion air, causing a loss of the
flame - this could cause the furnace firebox to fill with
fuel gas, which could then re-ignite under certain con-
ditions. Although the combustion air is not shown, it
should be supplied with a small stoichiometric excess.
If there is too much excess combustion air, energy is
wasted in heating up air that is not combusted. If
there is too little excess air, combustion will not be
complete, causing fuel gas to be wasted and pollu-
tion to the atmosphere. The process fluid is flowing
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to another unit. If the process fluid is not at the
desired setpoint temperature, the performance of the
unit (reactor, etc) may not be as good as desired, and
therefore not as profitable.

i.
The control block diagram for the process furnace is
shown below in Figure 1. Where the the signals as

Figure 1-1: Control block diagram of process furnace

follows:

• Tsp: Temperature setpoint

• pv: Valve top pressure

• Fg: Fuel gas flowrate

• Fp: Process fluid flowrate

• Tp: Process fluid inlet temperature

• T: Temperature of process fluid outlet

• Tm: Measured temperature

1.6

The problem statement tells us that the gasoline is
worth $500,000 a day. A 2% increase in value is:

$500, 000
day

x 0.02 =
$10, 000

day

We are also given that the revamp will cost
$2,000,000. We can now calculate the time required
to payback the control system investment.

$2, 000, 000
$10,000

days

= 200days

Therefore, we know it will take 200 days to pay off
the investment.

1.7

2yrs · 4.4 million $/yr · 0.2% = $176, 000

1.8

We know from the problem statement that the inlet
(Fin) and outlet (Fout) flowrates can be represented
with the following equations:

Fin = 50 + 10 sin(0.1t)

Fout = 50

The change in volume as a function of time is

dV

dt
= Fin − Fout

substituting what we know:

dV

dt
= 50 + 10 sin(0.1t)− 50

Simplifying
dV

dt
= 10 sin(0.1t)

Rearranging the equation

dV = 10 sin(0.1t)dt

Taking the integral of both sides
∫

dV =
∫

10 sin(0.1t)dt

Using basic calculus to solve

V − V0 =
−10
0.1

cos(0.1t)|tt=0

We know the initial tank volume is 500 liters

V − 500 = −100 cos(0.1t)− 100 cos(0)

V − 500 = −100 cos(0.1t) + 100

V (t) = 600− 100 cos(0.1t)

The equation above tells us how the volume of the
tank will vary with time. This can also be seen visu-
ally in Figure 2 below.

1.9

a.
The objective is to maintain a desired blood glucose
concentration by insulin injection. Insulin is the ma-
nipulated input and blood glucose is the measured
output. As performed by injection, the input is re-
ally discrete and not continuous. Also, glucose is
not continuously measured, so the measured output
is discrete. Disturbances include meal consumption
and exercise. Feedforward action is used when a di-
abetic administers an injection to compensate for a
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Figure 1-2: Liquid volume as a function of time

meal. Feedback action occurs when a diabetic admin-
isters more or less insulin based on a blood glucose
measurement. It is important not to administer too
much insulin, because this could lead to too low of a
blood glucose level, resulting in hypoglycemia.

b.
A process and instrumentation diagram of an auto-
mated closed-loop system is shown in Figure 3 below.
For simplicity, this is shown as a pump and valve

Figure 1-3: P&ID of closed-loop insulin infusion

arrangement. In practice, the pump speed would
be varied. The associated control block diagram is
shown in Figure 4 below.

1.10

a.
An increase in the hot stream flowrate leads to an in-
crease in the cold stream outlet temperature, so the

Figure 1-4: control block diagram of closed-loop in-
sulin infusion

gain is positive. A fail-closed valve should be speci-
fied. If the valve failed-open, the cold stream outlet
temperature could become too high.

b.
An increase in the hot by-pass flow leads to a decrease
in the cold stream outlet temperature, so the gain is
negative. A fail-open valve should be specified.

c.
An increase in the cold by-pass flowrate leads to a
decrease in the outlet temperature, so the gain is neg-
ative. A fail-open valve should be specified, so that
the outlet temperature is not too high or the air pres-
sure is lost.

d.
Strategy (c), cold by-pass, will have the fastest dy-
namic behavior because the effect of changing the by-
pass flow will be almost instantaneous. The other
strategies have a dynamic lag through the heat ex-
changer.

1.11

The anesthesiologist attempts to maintain a desired
setpoint for blood pressure. This is done by manipu-
lating the drug flowrate. A major disturbance is the
effect of an anesthetic on blood pressure.

The control block diagram for the automated system
is show below in Figure 5, where, for simplicity, the
drug is shown being changed by a valve.

Figure 1-5: Control block diagram of drug delivery
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Chapter 2 Solutions

2.1

The modeling equation is

dP

dt
=

RT

V
qi − RT

V
β
√

P − Ph

At steady state

dP

dt
=

RT

V
qi − RT

V
β
√

P − Ph = 0

RT

V
β
√

Ps − Phs =
RT

V
qis

Ps = Phs +
q2
is

β2

Thus we can conclude that it is a self–regulating sys-
tem, as for a change in input it will attain a new
steady–state.

The sketch of the steady–state input–output curve
should look like figure 2-1.
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Figure 2-1: Plot for 2.1

2.2

The model equations are

dV

dt
= Fi − F

dT

dt
=

Fi

V
(Ti − T ) + Q

a. At steady–state, the volume will not change, as
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Euler integration vs. ode45

ode45
Euler

Figure 2-2: Plot for 2.2

the inlet and outlet flow rates are the same. Thus

Fi

V
(Ti − T ) + Q = 0

100
500

(20 − 40) + Q = 0

Q = 4◦C/min

b. For this part we need to integrate

dT

dt
=

100
500

(22 − T ) + 4

from an initial state of T = 40◦C. The Euler
formula is

xk+1 = xk + ∆tx′
k

x′
k = f(xk)

where f(·) is the right hand side of the differen-
tial equation, and x is the state, in this case T .
Using ∆t = 0.5, and for a total of 2 minutes, we
have

x0 = 40

x1 = 40 + 0.5
(

1
5
(22 − 40) + 4

)
= 40.2

x2 = 40.2 + 0.5
(

1
5
(22 − 40.2) + 4

)
= 40.38

x3 = 40.38 + 0.5
(

1
5
(22 − 40.38) + 4

)
= 40.542

x4 = 40.542 + 0.5
(

1
5
(22 − 40.542) + 4

)
= 40.6878

Figure 2-2 shows the curve of the solution found
using matlab’s ode45, with the circles marking
the points of the Euler solution.
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2.3

Since the model equations have only two states, Vl

and P , we have to assume the following are constant:
density of the liquid (ρ), temperature (T ), the ideal
gas constant (R) and the molecular weight of the gas
(MW ).

Starting with the balance of the liquid mass in the
system, we have

dMl

dt
=

dVlρ

dt
= Ffρ − Fρ

dVl

dt
= Ff − F

For the balance of the mass of gas

dnMW

dt
= qiMWi − qMW

dn

dt
= qi − q

From the ideal gas law PVg = nRT , where the vol-
ume of gas is Vg = V − Vl Then,

d(PVg)
dt

=
nRT

dt

P
d(V − Vl)

dt
+ (V − Vl)

dP

dt
= RT

dn

dt

and using the previously derived expressions for dn
dt

and Vl

dt

P
d(V − Vl)

dt
+ (V − Vl)

dP

dt
= RT

dn

dt

−P
dVl

dt
+ (V − Vl)

dP

dt
= RT (qi − q)

dP

dt
=

P

V − Vl
(Ff − F ) +

RT

V − Vl
(qi − q)

Thus our model equations are

dVl

dt
= Ff − F

dP

dt
=

P

V − Vl
(Ff − F ) +

RT

V − Vl
(qi − q)

2.4

Since we have a larger volume than the example, we
have to calculate the flow rate for a single reactor as
well. Our volume is V = 106.9444ft3. The equations
for the first tank are

dCA1

dt
=

F

V
(CAi − CA1) − kCA1

dCP1

dt
= −F

V
CP1 + kCA1

solving at steady–state, we get

CP1s
=

CAis

Fs

kV + 1

We need to meet a yearly production, so our final
constraint is

FsCP1s
S = 100x106lb/yr

Where S = 62lb/lbmol · 504000min/yr is our conver-
sion factor, assuming 350 days of operation in a year.
Then,

Fs
CAis

Fs

kV + 1
S = 100x106lb/yr

solving for the flowrate, we get Fs = 7.9256ft3/min.
Now we need to consider the second reactor in se-

ries, which will also change the flowrate needed to
meet production levels. The equations for the second
reactor are

dCA2

dt
=

F

V
(CA1 − CA2) − kCA2

dCP1

dt
=

F

V
(CP1 − CP2) + kCA2

Solving at steady–state, we get

CP2s
=

(
kV
Fs

) (
kV
Fs

+ 2
)

CAis(
kV
Fs

+ 1
)2

Again, we need to meet production levels, so

FsCP2s
S = 100x106lb/yr

kV
(

kV
Fs

+ 2
)

CAis(
kV
Fs

+ 1
)2 S = 100x106lb/yr

Solving for the flowrate, we get Fs = 6.5799ft3/min.
Thus we have a savings of 16.98% using the two re-
actors in series over a single one.

2.5

The resulting graph should be the same as figure 2-5,
except that the time range from -1 to 0 will not ap-
pear.

2.6

d(V Ca)
dt

= FinCAin
− kV CA

dV

dt
= Fin
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We need equations whose states are V and CA, then

d(V Ca)
dt

= FinCAin
− kV CA

V
dCa

dt
+ CA

d(V )
dt

= FinCAin
− kV CA

V
dCa

dt
= −CA

d(V )
dt

+ FinCAin
− kV CA

V
dCa

dt
= −CAFin + FinCAin

− kV CA

dCa

dt
=

Fin

V
(CAin

− CA) − kCA

our two equations are

dV

dt
= Fin

dCa

dt
=

Fin

V
(CAin

− CA) − kCA

2.7

a. The modeling equations are

dCw1

dt
=

F

V1
(Cwi − Cw1) − kC2

w1

dCw2

dt
=

F

V2
(Cw1 − Cw2) − kC2

w2

b. At steady–state we can solve the following equa-
tions

Fs

V1
(Cwis − Cw1s) − kC2

w1s = 0

Fs

V2
(Cw1s − Cw2s) − kC2

w2s = 0

Rearranging the first equation, we have the
quadratic

kC2
w1s +

Fs

V1
Cw1s − Fs

V1
Cwis = 0

the positive root gives us
Cw1s = 0.33333 mol/liter

Rearranging the second equation, we have the
quadratic

kC2
w2s +

Fs

V2
Cw2s − Fs

V2
Cw1s = 0

the positive root gives us
Cw2s = 0.0900521 mol/liter

c. To linearize, we have the functions

f1 =
dCw1

dt
=

F

V1
(Cwi − Cw1) − kC2

w1

f2 =
dCw2

dt
=

F

V2
(Cw1 − Cw2) − kC2

w2

and using the state and input variables as de-
fined, we have

a11 =
δf1

δx1

∣∣∣∣
ss

=
δ

δCw1

(
F

V1
(Cwi − Cw1) − kC2

w1

)∣∣∣∣
ss

= −Fs

V1
− 2kCw1s

a12 =
δf1

δx2

∣∣∣∣
ss

=
δ

δCw2

(
F

V1
(Cwi − Cw1) − kC2

w1

)∣∣∣∣
ss

= 0

a21 =
δf2

δx1

∣∣∣∣
ss

=
δ

δCw1

(
F

V2
(Cw1 − Cw2) − kC2

w2

)∣∣∣∣
ss

=
Fs

V2

a22 =
δf2

δx2

∣∣∣∣
ss

=
δ

δCw2

(
F

V2
(Cw1 − Cw2) − kC2

w2

)∣∣∣∣
ss

= −Fs

V2
− 2kCw2s

b11 =
δf1

δu1

∣∣∣∣
ss

=
δ

δF

(
F

V1
(Cwi − Cw1) − kC2

w1

)∣∣∣∣
ss

=
1
V1

(Cwis − Cw1s)

b12 =
δf1

δu2

∣∣∣∣
ss

=
δ

δCwi

(
F

V1
(Cwi − Cw1) − kC2

w1

)∣∣∣∣
ss

=
Fs

V1

b21 =
δf2

δu1

∣∣∣∣
ss

=
δ

δF

(
F

V2
(Cw1 − Cw2) − kC2

w2

)∣∣∣∣
ss

=
1
V2

(Cw1s − Cw2s)

b22 =
δf2

δu2

∣∣∣∣
ss

=
δ

δCwi

(
F

V2
(Cw1 − Cw2) − kC2

w2

)∣∣∣∣
ss

= 0

d. Evaluating these coefficients at our steady–state,
we have

A =
[−1.25 hr−1 0

0.05 hr−1 −0.320156 hr−1

]

B =
[

0.0016667 mol/l2 0.25 hr−1

0.000121641 mol/l2 0

]

e. Since �y = �x, it is straightforward to show that

C =
[
1 0
0 1

]
D =

[
0 0
0 0

]

f. Using matlab, the eigenvalues are −0.320156
and −1.25.
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analytically, we have

det (λI − A) = 0

det

[
λ + 1.25 0
−0.05 λ + 0.320156

]
= 0

(λ + 1.25)(λ + 0.320156) = 0

thus the eigenvalues are λ1 = −1.25 and λ2 =
−0.320156

g. Figure 2-3 shows the plot for the linear and non-
linear responses; as it can be seen, the extraction
requirements are still met.

0 2 4 6 8 10 12 14 16 18
0.33

0.335

0.34

0.345

0.35

0.355

time (hrs)

C
w

1 m
ol

/l

Response to a 10 l/min step change from steady state

0 2 4 6 8 10 12 14 16 18
0.09

0.092

0.094

0.096

time (hrs)

C
w

2 m
ol

/l

nonlinear
linear

nonlinear
linear

Figure 2-3: Plot for 2.7g

h. If the order of the reaction vessels is reversed,
the steady–state equations we have to solve are

Fs

V2
(Cwis − Cw1s) − kC2

w1s = 0

Fs

V1
(Cw1s − Cw2s) − kC2

w2s = 0

solving then we get Cw1s = 1
6 mol/l and Cw2s =

0.10301 mol/l. Thus, the extraction require-
ments are no longer met.

2.8

a. Solve the following two simultaneous equations
using the parameters and steady–state values
provided:

Fs

V
(Tis − Ts) +

UA

V ρcp
(Tjs − Ts) = 0

Fjs

Vj
(Tjins − Tjs) − UA

Vjρjcpj
(Tjs − Ts) = 0

then

UA = 183.9 Btu/(◦F·min)

Fjs = 1.5 ft3/min

b. Applying the equations for the elements of the
linearization matrices[

a11 a12

a21 a22

]
=

[−0.4 0.3
1.2 −1.8

]

B =
[

0 −7.5 0.1 0
20 0 0 0.6

]

C =
[
1 0
0 1

]

D =
[
0 0 0 0
0 0 0 0

]

c. heater.m file should be like the example in the
book (p. 73)

d. Using delJ = 0, run ode45 to solve the equa-
tions defined in heater.m, then plot the two
states vs. time. The result should be constant
values that match the steady states for all time.

e. To get the desired plots for the two step re-
sponses, the m–file shown in pages 74-75 can
be used, starting with the definition of the state
space linear model. Since the model is linear,
the output of the step response command can be
scaled accordingly for steps of different sizes by
just multiplying by delFj. Figures 4(a) and 4(b)
show the responses for a small (0.2% change in
Fj) and a large (10% change in Fj) steps, respec-
tively.

f. Since we know UA for the small vessel, and we
are assuming that U remains constant, we can
find the value of UA for a larger volume as

UAsmall · Alarge

Asmall
= UAlarge

Modeling the vessel as a cylinder, the volume is
V = π

2 D3, and the area is A = 2.25πD2. We can
then calculate the area of the small vessel as a
function of its volume, for which we get

Asmall = 2.25π

(
20
π

) 2
3

Similarly, we have the area of the larger vessel in
terms of its volume

Alarge = 2.25π

(
2V

π

) 2
3
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Figure 2-4: Plot for 2.8e (a) small step of 0.2% (b)
large step of 10%

And the ratio of the areas is

Alarge

Asmall
=

(
V

10

) 2
3

Applying this, we find that

UAlarge = 853.588 Btu/(◦F·min)

g. Solve the following two simultaneous equations
using the value of UA calculated for the large
vessel

Fs

V
(Tis − Ts) +

UA

V ρcp
(Tjs − Ts) = 0

Fjs (Tjins − Tjs) − UA

ρjcpj
(Tjs − Ts) = 0

then

Tjs = 178.86 ◦F

Fjs = 35.478 ft3/min

We can already see that the steady–state jacket
temperature has gone up, so we want to know
how large we can make the vessel before the
jacket temperature approaches the inlet jacket
temperature. We can solve the following equa-
tion, using Fs

V = 0.1 min−1, as we want to main-
tain the residence time. We also use the expres-
sion in terms of the volume that we found in
part f

Fs

V
(Tis − Ts) +

UA

V ρcp
(Tjs − Ts) = 0

0.1 (Tis − Ts) +
UAsmall

(
V
10

) 2
3

V ρcp
(Tjs − Ts) = 0

then V = 270 ft3.

h. Applying the equations for the elements of the
linearization matrices using the steady state for
the larger vessel, we have

A =
[−0.2392 0.1392

0.5570 −1.9761

]

B =
[

0 −0.75 0.1 0
0.8456 0 0 1.4191

]

C =
[
1 0
0 1

]

D =
[
0 0 0 0
0 0 0 0

]

The eigenvalues for the system with the large
vessel are at λ1 = −0.1957 and λ2 = −2.0197.
While for the system with the smaller vessel,
they are λ1 = −0.1780 and λ2 = −2.0220. They
are very close to each other, thus the speed of
the response will be similar for both vessels.

i. Figure 2-5 shows the response to a step of
0.1 ft3/min. Comparing this to figure 4(a), we
can see that both linear model responses are
practically the same as the nonlinear model re-
sponse. The change in temperatures is also mi-
nor, as the change in jacket flow rate is small
(0.2% of the steady state value in both cases).

j. Figure 2-6 shows the response to a step of 10% of
the steady state jacket flow rate. Comparing this
to figure 4(b), we can see that both linear model
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Figure 2-5: Plot for 2.8i

responses are close to the nonlinear model re-
sponse, but there is an offset in the steady state.
The change in temperatures is also more marked,
and larger in the case of the smaller reactor, as
would be expected due to the smaller volume.
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Chapter 4 Solutions

4.1

The maximum rate-of-change means taking a deriva-
tive. The output is:

y(t) = kp∆u{1 − exp(− t − θ

τp
)}

The derivative with respect to time is:

dy

dt
=

kp∆u

τp
exp(− t − θ

τp
)

Due to the negative sign, the largest that exp {− t−θ
τp

}
can be is 1. An exponential will give a value of 1 when
the argument is 0. That means the following is true:

t − θ

τp
= 0

Solving for θ gives
t = θ

To find the maximum slope, plug t = θ into the slope
equation:

dy

dt
=

kp∆u

τp
exp(−θ − θ

τp
)

Which simplifies down to a maximum slope of:

dy

dt
=

kp∆u

τp

4.2

The output response y(t) for a first order plus dead
time (FOPDT) model to a step change is:

y(t) = kp∆u{1 − exp(− t − θ

τp
)}

Recognizing that ∆y = kp∆u gives:

y(t) = ∆y{1 − exp(− t − θ

τp
)}

Substituting t1 = τp

3 + θ into the output equation:

y(t) = ∆y{1 − exp(−
τp

3 + θ − θ

τp
)}

Cancelling out terms gives:

y(t) = ∆y{1 − exp(−1
3
)}

Which simplifies down to:

y(t1) = 0.238∆y

Substituting t2 = τp + θ into the output equation:

y(t) = ∆y{1 − exp(−τp + θ − θ

τp
)}

Cancelling out terms gives:

y(t) = ∆y{1 − exp(−1)}

Which simplifies down to:

y(t1) = 0.632∆y

Use the equations for t1 and t2 to solve for θ and τp

t1 =
τp

3
+ θ

t2 = τp + θ

Solving for θ in the t2 equation gives:

θ = t2 − τp

Plugging that into the t1 equation:

t1 =
τp

3
+ t2 − τp

Solving for τp yields:

τp =
3
2
(t2 − t1)

4.3

The first technique to estimate the parameters in a
first order plus dead time (FOPDT) model is the
63.2% method. Find the gain using the formula:

kp =
∆y

∆u

kp =
68 − 50 ◦C
28 − 25 psig

= 6
◦C
psig

The time delay can be “eye balled” by looking at
when the output begins to change significantly, and
when the input change was applied. For this process:

θ = 5 min − 1 min = 4 min

The time constant is estimated using the 63.2%
method. First, calculate what 63.2% of the output
change is:

0.632∆y = 0.632(68 − 50) = 11.376 ◦C
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Looking at the output response, the time for the re-
sponse to reach 11.376 ◦C is 15 minutes. The time
constant can then be calculated using the formula
given in the chapter.

t63.2% = τ + θ

τ = t63.2% − θ = 15 − 4 = 11 min

The FOPDT can then be expressed as:

gp(s) =
6e−4s

10s + 1

The second technique to estimate the parameters in
a first order plus dead time (FOPDT) model is the
Maximum Slope method. Find the gain using the
formula:

kp =
∆y

∆u

kp =
68 − 50 ◦C
28 − 25 psig

= 6
◦C
psig

The time delay can be “eye balled” by looking at
when the output begins to change significantly, and
when the input change was applied. For this process:

θ = 5 min − 1 min = 4 min

The time constant can be estimated using the max-
imum slope of the output response. Looking at the
response, we can see that the maximum slope can be
calculated using:

slope =
58 − 50
15 − 5

= 0.8
◦C
min

The time constant can now be calculated using:

τp =
∆y

slope

τp =
6 ◦C

0.8 ◦C
min

= 7.5 min

The FOPDT can then be expressed as:

gp(s) =
6e−4s

7.5s + 1

The second technique to estimate the parameters in
a first order plus dead time (FOPDT) model is the
Two Point method. Find the gain using the formula:

kp =
∆y

∆u

kp =
68 − 50 ◦C
28 − 25 psig

= 6
◦C
psig

The time delay can be “eye balled” by looking at
when the output begins to change significantly, and
when the input change was applied. For this process:

θ = 5 min − 1 min = 4 min

The time constant can be estimated by first deter-
mining what 63.2% and 28.3% of the output is.

0.632∆y = (0.632)(18) = 11.376

0.283∆y = (0.283)(18) = 5.094

Looking at the response, the respective times to reach
those output values are t63.2 = 15 and t28.3 = 8.
The time constant can then be calculated using the
formula:

τp = 1.5(t63.2 − t28.3)

τp = 1.5(15 − 8) = 10.5 min

The FOPDT can then be expressed as:

gp(s) =
6e−4s

10.5s + 1

Note that all three methods give similar, but not iden-
tical FOPDT models.

4.4

An integrator plus dead time model has the form:

gp(s) =
kpe

−θs

s

We therefore need to estimate a gain and a time delay.
The time delay is estimated by looking at when the
output begins to change significantly, and subtracting
the time when the input change was made. For this
process:

θ = 3 min − 1 min = 2 min

To get the gain, we need to find both the slope of
the output and the change in input. Looking at the
figure, we see that:

∆u = 9.5 − 10.0 lps = −0.5 lps

slope =
0.3 − 1 m
10 − 3 min

= −0.1
m

min
We can then calculate the gain using the formula:

kp =
slope

∆u

kp =
−0.1 m

min

−0.5 lps
= 0.2

m
min · lps

The integrator plus dead time model is thus:

gp(s) =
0.2e−2s

s
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