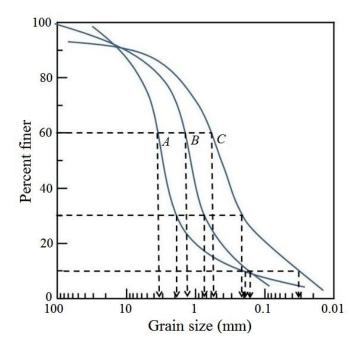
Chapter 2


2.1
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.48}{0.11} = 4.36$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.25^2}{(0.48)(0.11)} = 1.18$

Since $C_u > 4$ and C_c is between 1 and 3, the soil is **well graded**.

2.2
$$C_u = \frac{D_{60}}{D_{10}} = \frac{1.1}{0.18} = \textbf{6.11}; \ C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.41^2}{(1.1)(0.18)} = 0.727 \approx \textbf{0.73}$$

Although $C_u > 6$, C_c is not between 1 and 3. The soil is **poorly graded**.

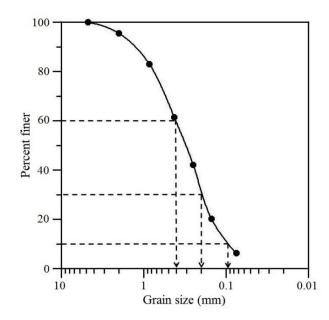
2.3 The D_{10} , D_{30} , and D_{60} for soils A, B, and C are obtained from the grain-size distribution curves.

Soil A:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{3.5}{0.2} = 17.5$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{1.95^2}{(3.5)(0.2)} = 5.43$

Although $C_u > 6$, C_c is not between 1 and 3. The sand is **poorly graded**.

Soil B:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{1.5}{0.17} = 8.82$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.75^2}{(1.5)(0.17)} = 2.2$

 $C_u > 6$ and C_c is between 1 and 3. The sand is **well graded**.


Soil C:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.55}{0.032} = 17.2; C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.22^2}{(0.55)(0.032)} = 2.75$$

 $C_u > 6$ and C_c is between 1 and 3. The sand is **well graded**.

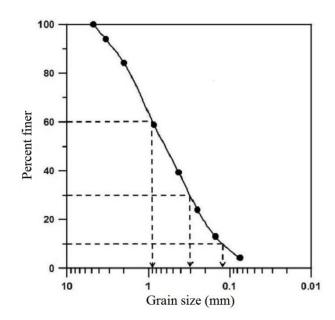
2.4 a.

Sieve	Mass of soil retained	Percent retained	Percent
No.	on each sieve (g)	on each sieve	finer
4	0.0	0.0	100.0
10	18.5	4.4	95.6
20	53.2	12.6	83.0
40	90.5	21.5	61.5
60	81.8	19.4	42.1
100	92.2	21.9	20.2
200	58.5	13.9	6.3
Pan	26.5	6.3	0
	Σ421.2 g		

The grain-size distribution is shown in the figure.

b.
$$D_{60} = 0.4 \text{ mm}$$
; $D_{30} = 0.2 \text{ mm}$; $D_{10} = 0.095 \text{ mm}$

c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.4}{0.095} = 4.21$$


d.
$$C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.2)^2}{(0.4)(0.095)} = 1.05$$

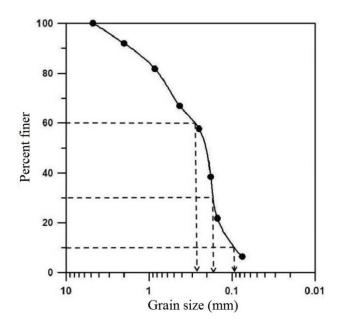
2.5 a.

Sieve	Mass of soil retained	Percent retained	Percent
No.	on each sieve (g)	on each sieve	finer
4	0	0.0	100
6	30	6.0	94.0
10	48.7	9.74	84.26
20	127.3	25.46	58.80
40	96.8	19.36	39.44
60	76.6	15.32	24.12
100	55.2	11.04	13.08
200	43.4	8.68	4.40
Pan	22	4.40	0

 $\sum 500 \text{ g}$

The grain-size distribution is shown in the figure.

b. $D_{10} = 0.13 \text{ mm}$; $D_{30} = 0.3 \text{ mm}$; $D_{60} = 0.9 \text{ mm}$


c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.9}{0.13} = 6.923 \approx 6.92$$

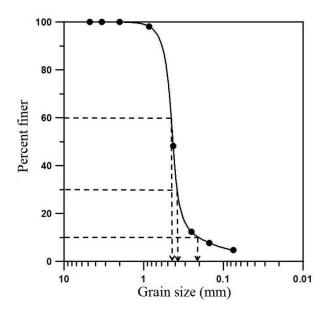
d.
$$C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.3^2}{(0.9)(0.13)} = \mathbf{0.769} \approx \mathbf{0.77}$$

2.6 a

Sieve	Mass of soil retained	Percent retained	Percent
No.	on each sieve (g)	on each sieve	finer
4	0	0	100
10	44	7.99	92.01
20	56	10.16	81.85
40	82	14.88	66.97
60	51	9.26	57.71
80	106	19.24	38.47
100	92	16.70	21.77
200	85	15.43	6.34
Pan	35	5.34	0
	∑551 g		

The grain-size distribution is shown in the figure.

b. $D_{60} = 0.28 \text{ mm}$; $D_{30} = 0.17 \text{ mm}$; $D_{10} = 0.095 \text{ mm}$


c.
$$C_u = \frac{0.28}{0.095} = 2.95$$

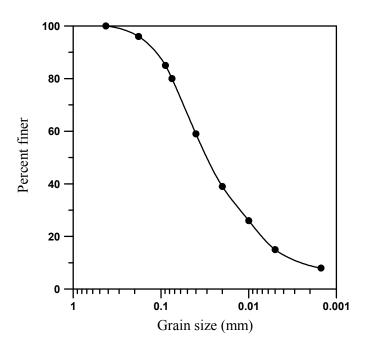
d.
$$C_c = \frac{(0.17)^2}{(0.095)(0.28)} = 1.09$$

2.7 a.

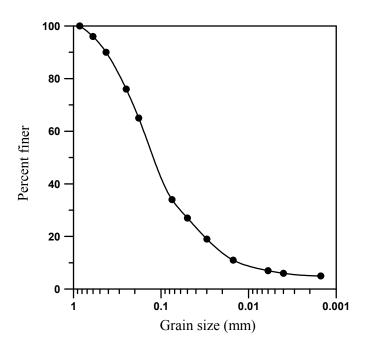
Sieve	Mass of soil retained	Percent retained	Percent
No.	on each sieve (g)	on each sieve	finer
4	0	0.0	100
6	0	0.0	100
10	0	0.0	100
20	9.1	1.82	98.18
40	249.4	49.88	48.3
60	179.8	35.96	12.34
100	22.7	4.54	7.8
200	15.5	3.1	4.7
Pan	23.5	4.7	0
	∑500 g		


The grain-size distribution is shown in the figure.

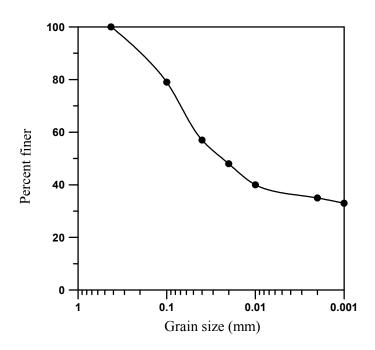
b.
$$D_{10} = 0.21 \text{ mm}$$
; $D_{30} = 0.39 \text{ mm}$; $D_{60} = 0.45 \text{ mm}$


c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.45}{0.21} = 2.142 \approx 2.14$$

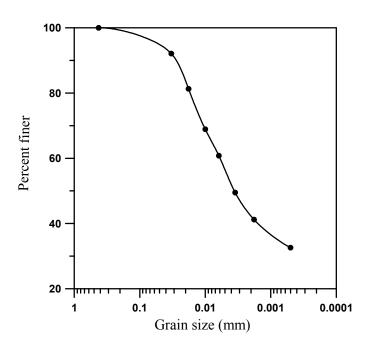
- d. $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.39^2}{(0.45)(0.21)} = 1.609 \approx 1.61$
- 2.8 a. The grain-size distribution curve is shown in the figure


- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 84 Percent passing 0.002 mm = 11
- GRAVEL: 100 100 = 0%SAND: 100 - 84 = 16%SILT: 84 - 11 = 73%CLAY: 11 - 0 = 11%
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 80 Percent passing 0.002 mm = 11
- GRAVEL: 100 100 = 0%SAND: 100 - 80 = 20%SILT: 80 - 11 = 69%CLAY: 11 - 0 = 11%
- d. Percent passing 2 mm = 100 Percent passing 0.075 mm = 90 Percent passing 0.002 mm = 11
- GRAVEL: 100 100 = **0%** SAND: 100 – 90 = **10%** SILT: 90 – 11 = **79%** CLAY: 11 – 0 = **11%**

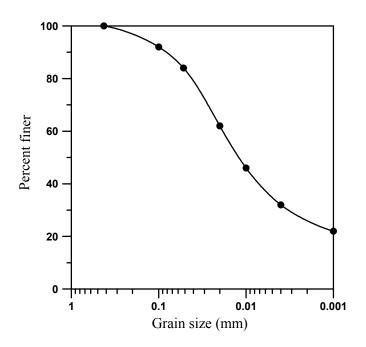
2.9 a. The grain-size distribution curve is shown in the figure.


- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 73 Percent passing 0.002 mm = 9
- GRAVEL: 100 100 = 0%SAND: 100 - 73 = 27%SILT: 73 - 9 = 64%CLAY: 9 - 0 = 9%
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 68 Percent passing 0.002 mm = 9
- GRAVEL: 100 100 = 0%SAND: 100 - 68 = 32%SILT: 68 - 9 = 59%CLAY: 9 - 0 = 9%
- d. Percent passing 2 mm = 100
 Percent passing 0.075 mm = 80
 Percent passing 0.002 mm = 9
- GRAVEL: 100 100 = 0%SAND: 100 - 80 = 20%SILT: 80 - 9 = 71%CLAY: 9 - 0 = 9%

2.10 a. The grain-size distribution curve is shown in the figure.


- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 30 Percent passing 0.002 mm = 5
- GRAVEL: 100 100 = 0%SAND: 100 - 30 = 70%SILT: 30 - 5 = 25%CLAY: 5 - 0 = 5%
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 28 Percent passing 0.002 mm = 5
- GRAVEL: 100 100 = 0%SAND: 100 - 28 = 72%SILT: 28 - 5 = 23%CLAY: 5 - 0 = 5%
- d. Percent passing 2 mm = 100
 Percent passing 0.075 mm = 34
 Percent passing 0.002 mm = 5
- GRAVEL: 100 100 = 0%SAND: 100 - 34 = 66%SILT: 34 - 5 = 29%CLAY: 5 - 0 = 5%

2.11 a. The grain-size distribution curve is shown in the figure.


- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 65 Percent passing 0.002 mm = 35
- GRAVEL: 100 100 = 0%SAND: 100 - 65 = 35%SILT: 65 - 35 = 30%CLAY: 35 - 0 = 35%
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 62 Percent passing 0.002 mm = 35
- GRAVEL: 100 100 = 0%SAND: 100 - 62 = 38%SILT: 62 - 35 = 27%CLAY: 35 - 0 = 35%
- d. Percent passing 2 mm = 100
 Percent passing 0.075 mm = 70
 Percent passing 0.002 mm = 35
- GRAVEL: 100 100 = **0%** SAND: 100 – 70 = **30%** SILT: 70 – 35 = **35%** CLAY: 35 – 0 = **35%**

2.12 a. The grain-size distribution curve is shown in the figure.

- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 96 Percent passing 0.002 mm = 42
- GRAVEL: 100 100 = **0%** SAND: 100 – 96 = **4%** SILT: 96 – 42 = **54%** CLAY: 42 – 0 = **42%**
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 95 Percent passing 0.002 mm = 42
- GRAVEL: 100 100 = 0%SAND: 100 - 95 = 5%SILT: 95 - 42 = 53%CLAY: 42 - 0 = 42%
- d. Percent passing 2 mm = 100 Percent passing 0.075 mm = 97 Percent passing 0.002 mm = 42
- GRAVEL: 100 100 = 0%SAND: 100 - 97 = 3%SILT: 97 - 42 = 55%CLAY: 42 - 0 = 42%

2.13 a. The grain-size distribution curve is shown below.

- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 84 Percent passing 0.002 mm = 28
- GRAVEL: 100 100 = 0%SAND: 100 - 84 = 16%SILT: 84 - 28 = 56%CLAY: 28 - 0 = 28%
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 83 Percent passing 0.002 mm = 28
- GRAVEL: 100 100 = **0%** SAND: 100 – 83 = **17%** SILT: 83 – 28 = **55%** CLAY: 28 – 0 = **28%**
- d. Percent passing 2 mm = 100 Percent passing 0.075 mm = 90 Percent passing 0.002 mm = 28
- GRAVEL: 100 100 = 0%SAND: 100 - 90 = 10%SILT: 90 - 28 = 62%CLAY: 28 - 0 = 28%
- 2.14 $G_s = 2.65$; temperature = 26°C; time = 45 min.; L = 10.4 cm.

Eq. (2.6):
$$D \text{ (mm)} = K \sqrt{\frac{L \text{ (cm)}}{t \text{ (min)}}}$$

From Table 2.9 for $G_s = 2.65$ and temperature = 26°C, K = 0.01272

$$D = 0.01272 \sqrt{\frac{10.4}{45}} = 0.006 mm$$

2.15 $G_s = 2.75$; temperature = 21°C; time = 88 min.; L = 11.7 cm

Eq. (2.6):
$$D \text{ (mm)} = K \sqrt{\frac{L \text{ (cm)}}{t \text{ (min)}}}$$

From Table 2.6 for $G_s = 2.75$ and temperature = 21°C, K = 0.01309

$$D = 0.01309 \sqrt{\frac{11.7}{88}} =$$
0.0047 mm

CRITICAL THINKING PROBLEMS

2.C.1 a. Soil A:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{11}{0.6} = 18.33; C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{5^2}{(11)(0.6)} = 3.78$$

Soil B:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{7}{0.2} = 35$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{2.1^2}{(7)(0.2)} = 3.15$

Soil C:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{4.5}{0.15} = 30$$
; $C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{1^2}{(4.5)(0.15)} = 1.48$

- b. Soil *A* is coarser than Soil *C*. A higher percentage of soil *C* is finer than any given size compared to Soil *A*. For example, about 15% is finer than 1 mm for Soil *A*, whereas almost 30% is finer than 1 mm for Soil *C*.
- c. Particle segregation may take place in aggregate stockpiles such that there is a separation of coarser and finer particles. This makes representative sampling difficult. Therefore, Soils *A*, *B*, and *C* demonstrate quite different particle size distribution.

d. Soil *A*

Percent passing 4.75 mm = 29 GRAVEL: 100 - 29 = 71%

Percent passing 0.075 mm = 1 SAND: 29 - 1 = 28%FINES: 1 - 0 = 1%

Soil B

Percent passing 4.75 mm = 45 GRAVEL: 100 - 45 = 55%

Percent passing 0.075 mm = 2 SAND: 45 - 2 = 43%FINES: 2 - 0 = 2%

Soil C

Percent passing 4.75 mm = 53 GRAVEL: 100 - 53 = 47%

Percent passing 0.075 mm = 3 SAND: 53 - 3 = 50%

FINES: 3 - 0 = 3%

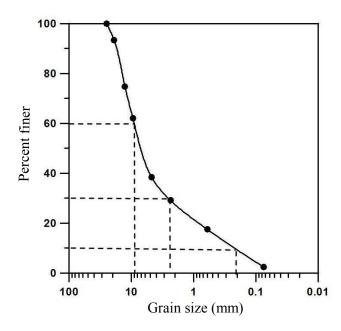
2.C.2 a. Total mass in the ternary mix = $8000 \times 3 = 24,000 \text{ kg}$

Percent of each soil in the mix = $\frac{8,000}{24,000} \times 100 = 33.33\%$

Mass of each soil used in the sieve analysis, $\sum m_A = \sum m_B = \sum m_C = 500 \text{ g}$

If a sieve analysis is conducted on the ternary mix using the same set of sieves, the percent of mass retained on each sieve, $m_M(\%)$, can be computed as follows:

$$m_M(\%) = 0.333 \left(\frac{m_A}{500} \times 100\right) + 0.333 \left(\frac{m_B}{500} \times 100\right) + 0.333 \left(\frac{m_C}{500} \times 100\right)$$


The calculated values are shown in the following table.

Sieve	Mass retained			Percent	
size	$m_{\scriptscriptstyle A}$	m_B	m_C	m_{M}	passing for
(mm)	(g)	(g)	(g)	(%)	the mixture
25.0	0.0	0	0	0.0	100
19.0	60	10	30	6.66	93.34
12.7	130	75	75	18.65	74.69
9.5	65	80	45	12.65	62.04
4.75	100	165	90	23.64	38.4
2.36	50	25	65	9.32	29.08
0.6	40	60	75	11.65	17.43
0.075	50	70	105	14.98	2.45
Pan	5	15	15	2.33	≈ 0

Principles of Geotechnical Engineering 9th Edition Das Solutions Manual

Full Download: http://testbanklive.com/download/principles-of-geotechnical-engineering-9th-edition-das-solutions-manual/

b. The grain-size distribution curve for the mixture is drawn below.

From the curve, $D_{10} = 0.21$; $D_{30} = 2.5$; $D_{60} = 9.0$

$$C_u = \frac{D_{60}}{D_{10}} = \frac{9.0}{0.21} = 42.85; \quad C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{2.5^2}{(9.0)(0.21)} = 3.31$$