
Physical Chemistry: Quantum Mechanics and Molecular
Interactions

Objectives Review Questions

Chapter 1

1.1 We use Eq. 1.1 to convert wavelength to frequency (taking advantage of the constant speed of light

c) and we use Eq. 1.2 to convert frequency to photon energy:

ν =
c

λ
=

2.998 · 108ms−1

1.0 · 10−3m
= 3.0 · 1011 s−1 by Eq. 1.1

Ephoton = hν = (6.626 · 10−34 J s)(3.0 · 1011 s−1) = 2.0 · 10−22 J. Eq. 1.2

1.2 The de Broglie wavelength (Eq. 1.3) is our yardstick (if you will) for the degree of quantum

character in our system. We calculate λdB and compare it to the domain to determine if we need

quantum mechanics to describe the physics. In this case, to find the de Broglie wavelength we need to

calculate the momentum p from the kinetic energy, but we can do that:

K =
mv2

2
=

p2

2m

p =
√
2mK =

√
2(1.008 amu)(1.661 · 10−27 kg amu−1)(4.0 · 10−21 J) = 3.66 · 10−24 kgm s−1

λdB =
h

p
=

6.626 · 10−34 J s

3.66 · 10−24 kgm s−1
= 1.8 · 10−10m = 1.8 Å.

Because 1.8 · 10−10m � 1.0μm = 1.0 · 10−6m, it is unlikely that quantum effects arising from this

motion will be significant.

1.3 The atom is in an n = 2 state, and we can use the Bohr model of the atom to calculate the correct

values of the energies. From Eq. 1.15 we can calculate the total energy, and from Eq. 3.7 we can

calculate the potential energy. The question does not specify units, and the most convenient units for

the total energy are Eh:

En = − Z2

2n2
Eh = − 22

2(22)
Eh = −0.5Eh.

The potential energy depends on the radius of the electron orbit in the Bohr model,

rn =
n2

Z
a0 =

22

2
a0 = 2a0,

which gives us

U = − Ze2

4πε0r
= − 2e2

(4πε0)(2a0)
= − e2

(4πε0)a0)
= −1.00Eh.

Chapter 2

2.1 We apply the operator to the function, and see if we can find the original function again afterward:

α̂f(x) =
1

x

d

dx

(
3x e2x

)
=

1

x

(
3e2x + 3x(2e2x)

)
=

1

x
3e2x + 2 · 3e2x =

(
1

x2
+

2

x

)
f(x).
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The result is equal to f(x) times another function of x, so this is not an eigenvalue equation.

α̂g(x) =
1

x

d

dx

(
3 e2x

2
)
=

1

x

(
3(4x)e2x

2
)

= 4 · 3e2x2

= 4f(x).

But g(x) is an eigenfunction of α̂, because the result is the original function g(x) times the eigenvalue

4.

2.2 We use the average value theorem, Eq. 2.10, integrating between 0 and a. The integral over

x4 sin(cx) can be found using a symbolic math program. Setting c = 2π/a for now to simplify the

notation, we have: ∫ a

o

ψ∗ (x4)ψ dx =
2

a

∫ a

0

sin2(cx)x4 dx = 0.176a4.

2.3 To write the Schrödinger equation we need the Hamiltonian, which consists of the kinetic energy

operator −(h̄2/2m)∂2/∂x2, and the potential energy function described in the problem. In this case,

the potential energy is given by the formula for a line, to which we assign a slope U0. We can also add

a constant, but it will have no effect on the relative energies or the wavefunctions, so we may as well set

it equal to zero. Our potential energy function therefore is U0x, and the Schrödinger equation becomes(
− h̄2

2m

∂2

∂x2
+ U0x

)
ψ = Eψ.

2.4 We use Eq. 2.41 to calculate the energy, with a mass mp and the volume given:

Enx,ny,nz =
h2

8mV 2/3
(n2
x + n2

y + n2
z) Eq. 2.41

E100,1,1 =
(6.626 · 10−34 J s)2

8(1.673 · 10−27 kg)(1.0 · 10−18m3)2/3
(1002 + 12 + 12)

= 3.28 · 10−25 J.

Chapter 3

3.1 We combine the radial and angular parts of the wavefunction as dictated by the quantum numbers,

and also substitute Z = 3 for lithium:

ψ3,1,−1(r, θ, φ) = R3,1(r)Y
−1
1 (θ, φ)

=
4
√
2

27
√
3

(
3

a0

)3/2(
3r

a0

)(
1− r

2a0

)
e−r/a0

√
3

8π
sin θ e−iφ.

3.2 We are using an integral to find an average value, so we use the average value theorem (Eq. 2.10),

where the operator is r (the distance from the nucleus) and the wavefunction is given by ψ3,1,−1(r, θφ)

with Z = 3 for lithium:

32

37

(
3

a0

)3 ∫ ∞

0

(
3r

a0

)2(
1− r

2a0

)2

e−2r/a0 r3 dr = 25a0/3.

3.3 The number of angular nodes is given by l, which is 1 for a p orbital, and the number of radial

nodes is equal to n− l − 1 = 3− 1− 1 = 1: 1 angular node, 1 radial node.

Chapter 4
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4.1 This ion has three electrons and an atomic number Z = 4. We need one kinetic energy term for

each electron, three terms for the attraction of each electron for the nucleus, and then three terms for

electron–electron repulsions, one for each distinct pairing of the electrons: 1 and 2, 2 and 3, and 1 and

3: − h̄2

2me

(∇(1)2 +∇(2)2 +∇(3)2)− 4e2

4πε0r1
− 4e2

4πε0r2
− 4e2

4πε0r3
+

e2

4πε0

(
1

r12
+

1

r23
+

1

r13

)
.

4.2 Neutral beryllium has 4 electrons, so Be+ has 3 electrons, which we place in the lowest energy

subshells 1s and 2s for an electron configuration 1s22s1. The zero-order energy is then the sum of the

energies we would calculate if each electron were alone in that subshell. That one-electron energy is

−Z2Eh/(2n
2). We have two n = 1 electrons and one n = 2 electron in the configuration, and Z = 4

for Be, so we arrive at

E0 = −42

2

(
1

12
+

1

12
+

1

22

)
Eh

=
16

2

(
9

4

)
= −18Eh.

4.3 We use Eq. 4.30, which calculates the effective atomic number by treating the electron as though

it were a single electron in an atom with a variable atomic number:

Zeff =

(
−2ε(i)n2

Eh

)1/2

=

(
2(0.182)Eh(3

2)

Eh

)1/2

= 1.81.

4.4 We reverse the labels 1 and 2 in the function and then check to see whether the function has

changed sign: Then we find that

P̂21ψ(1, 2) = cos(−x2) cos(y1)− cos(−x1) cos(y2) = − cos(−x1) cos(y2) + cos(−x2) cos(y1) = −ψ(1, 2).

Therefore, the function is antisymmetric.

4.5 According to the arrow diagrams, we have

ml = 0 ml ms ml = −1 0 1 ml ms ML MS

1s1 ↑ 0 +1/2 2p1 ↑ −1 +1/2 −1 +1 3P

↑ 0 +1/2 ↑ 0 +1/2 0 +1 3P

↑ 0 +1/2 ↑ +1 +1/2 +1 +1 3P

↑ 0 +1/2 ↓ −1 −1/2 −1 0 3P

↑ 0 +1/2 ↓ 0 −1/2 0 0 3P

↑ 0 +1/2 ↓ +1 −1/2 +1 0 3P

↓ 0 −1/2 ↑ −1 +1/2 −1 0 1P

↓ 0 −1/2 ↑ 0 +1/2 0 0 1P

↓ 0 −1/2 ↑ +1 +1/2 +1 0 1P

↓ 0 −1/2 ↓ −1 −1/2 −1 −1 3P

↓ 0 −1/2 ↓ 0 −1/2 0 −1 3P

↓ 0 −1/2 ↓ +1 −1/2 +1 −1 3P

where we found maximum values of L = 1 and S = 1 initially (based on the largest values of ML

and MS), and then after assigning the 9 3P states, we were left with three MS = 0 states, which gave

L = 1, S = 0 for the 1P term. Breaking the 3P into its component J values from L−S = 0 to L+S = 2,

and ordering according to Hund’s rules, the final list of states is 3P0,
3P1,

3P2,
1P1.
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Chapter 5

5.1 This molecular ion has 2 nuclei with ZLi = 3 and ZH = 1 and 3 electrons, for a total of 5 particles.

That means we should have 5 kinetic energy terms (one for each particle), 6 electron–nucleus attraction

terms, 1 nucleus–nucleus repulsion term, and 3 electron–electron repulsion terms. (The total number

of potential energy terms for N particles is always N(N − 1)/2, in this case 5 · 4/2 = 10, which gives

the number of distinct pairs of particles. There is a potential energy term for each pair of interacting

particles.) Using the standard form of the kinetic energy operator for each particle and the Coulomb

potential for each pair of particles, we end up with the following:

Ĥ = − h̄2

2me

(∇(1)2 +∇(2)2 +∇(3)2)+ e2

4πε0

[
− 3

rLi1
− 1

rH1
− 3

rLi2
− 1

rH2
− 3

rLi3
− 1

rH3

+
1

r12
+

1

r23
+

1

r13
+

3

RAB

]
− h̄2

2mLi
∇(Li)2 − h̄2

2mH
∇(H)2.

5.2 The orbital we’re constructing combines an s orbital (spherical) with a p orbital lying along the

bond axis. If we keep the same orientation of nuclei A and B with respect to the z axis direction that is

used elsewhere in the chapter, then the s and p orbitals have the same phase where they overlap, so we

will get constructive interference between the two nuclei. However, we expect a node (where the new

wavefunction will change sign) somewhere to the +z side of nucleus B, where the negative phase of the

p orbital cancels the positive phase of the exponentially decaying s orbital.

A B

5.3 The problem describes a curve such as Fig. 5.14, but a with minimum at R = 1.5 Å where the

potential energy reaches a value U = −200 kJmol−1.

−
1

(k
J 

m
ol

   
)

E

0

−200

1.5A
o

R

5.4 We can deduce from the orientation of the orbitals that (i) only the s, px, and py atomic orbitals are

involved (because the orbitals lie in the xy plane) and (ii) orbital 1 consists of only s and px character

(because it points along the x axis). All of the original px orbital density must be distributed somewhere

among all three hybrid orbitals, so if we increase the amount of px in orbital 1, then the px character

of orbitals 2 and 3 must decrease. The px orbital character tends to elongate the hybrid orbital along

the x axis. By removing that character from orbitals 2 and 3, we elongate them more along the y axis

instead, which will increase the angle between orbitals 2 and 3. (That angle approaches 180◦ in the

limit that only s and py character remains, because then you have an sp hybrid, rather than an sp2

hybrid.) As the angle between orbitals 2 and 3 diverges, the angles between 1 and 2 and between 1 and

3 decrease.

5.5 For the proton NMR, we have two chemical shifts, one at about δ = 3.0 for the protons adjacent to

the Br and another at about δ = 3.5 for the protons adjacent to the Cl. Each of these is then split into
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a triplet by the interaction with the two protons at the neighboring carbon atom. The actual chemical

shifts turn out to be shifted downfield (to higher δ) because we have two electronegative atoms relatively

close together: 1H: 2 triplets, equal intensity, δ ≈ 3.55, 3.75. For the 13C, we get two chemical shifts

(one for each carbon atom). The J-coupling to the protons is usually very large and potentially a

source of confusion, so 13C spectra are usually purposely gathered under conditions that eliminate the

J-coupling, resulting in singlets:
13C: 2 singlets, equal intensity, δ ≈ 25, 35.

Chapter 6

6.1 For this one, we can use the mathematical approach:

Î σ̂xyψ(x, y, z) = Îψ(x, y,−z) = ψ(−x,−y, z) = Ĉ2(z)ψ(x, y, z).

Therefore, Î σ̂xy = Ĉ2(z).

6.2

C C
Br

HBr

H
This molecule has a Ĉ2 symmetry axis along the C C bond and two vertical mirror planes that

contain that bond. Those and the identity are the only symmetry elements, so the point group is C2v

and the symmetry elements are Ê, Ĉ2, σ̂xz, σ̂yz.

6.3 1,1-Dibromoethene is in the point group C2v. We evaluate the results of the direct product Γi⊗Γμ,

where Γμ may be any of A1, B1, and B2 for electric dipole transitions (because these correspond to the

functions x, y, and z), or A1, A2, B1, and B2 for Raman transitions (because each of these corresponds

to some quadratic function such as x2 or xy). Therefore, the possible upper states for an electric dipole

transition would be 1A1,
1B1,

1B2 , and for a Raman transition would be 1A1,
1B1,

1B2,
1A2.

6.4 The molecule is in the point group C2h. The π bond lies perpendicular to the plane of the nuclei—

the xy plane. That π orbital must be symmetric under the Ĉ2 rotation of the molecule (which doesn’t

change what lies above or below the xy plane) but changes sign under inversion and under reflection

through the xy plane. The representation is therefore au.

Chapter 7

7.1 The molecule has 7 electrons, but 4 of them are in the 1s core orbitals and are not expected to

contribute to the bonding. In the ground state, we would put 2 of the remaining 3 electrons into the

2σg bonding orbital and the last electron in the 2σu antibonding orbital, predicting a bond order of

(2− 1)/2 = 1/2.

7.2 The molecule has 7 electrons, and we would predict the MO configuration 1σ2
g1σ

2
u2σ

2
g2σ

1
u.

7.3 Because the superscripts are not the same, the spins of the two states are not the same and the

transition is forbidden by the spin selection rule ΔS = 0.

7.4 The transition would be an emission transition, forbidden by the spin selection rule (because ΔS 	=
0). Therefore, the transition would occur by the process of phosphorescence.
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Chapter 8

8.1 According to Eq. 8.17,

Ev =

(
v +

1

2

)
ωe = (1450 cm−1)(2.5) = 3625 cm−1.

The wavefunction for the v = 2 state we can assemble from the normalization constant A2, the Hermite

polynomial H2(y), and the exponential function e−y
2/2 (Eq. 8.16):(

kμ

h̄2

)1/8(
1

8
√
π

)1/2

(4y2 − 2)e−y
2/2

where y = (R −Re)(kμ/h̄2)1/4.
8.2 The spacing increases with E (because the walls are steeper than in the harmonic oscillator poten-

tial), but more slowly than particle in box (because the walls are not infinitely steep). The wavefunctions

are similar to those in the harmonic oscillator, but with less variation in amplitude from the center to

the walls (because the bottom of the well is flatter). And because the walls are steeper than in the

harmonic oscillator, the tunneling does not extend as far.

8.3 The reduced mass μ of a diatomic is given by mAmB/(mA + mB), and if mA = mB (i.e., any

homonuclear diatomic), then μ = mA/2. For 39K2, where each atom has a mass of 39.098 amu, the

reduced mass is μ=19.55amu. To estimate the vibrational constant, we need a guess of the force

constant. Choosing k ≈ 12Nm−1, halfway between the values of 17Nm−1 for Na2 and 7Nm−1 for Cs2
in Table 8.2, we predict

ωe ( cm
−1) = 130.28

√
k (Nm−1)

μ ( amu)
≈ (130.28)

√
12

19.55
= 102 cm−1.

8.4 The point group is D∞h. There are two equivalent C H bonds. In group theory, we consider

all the equivalent bonds at the same time, so we can either have the two bonds move in phase to

get the symmetric stretch, which has σg symmetry, or they can move exactly out of phase to get the

antisymmetric stretch, which has symmetry σu. Checking the functions for whether these correspond

to functions for an IR active mode (x, y, or z) or a Raman active mode (any quadratic function of x,

y, and z), we obtain the following results, in summary: σg (Raman active), σu (IR active).

Chapter 9

9.1 We use Eq. 9.5, combining the reduced mass of 7.55 amu and the equilibrium bond length to get

Be ( cm
−1) =

16.858

μ ( amu)Re ( Å)2
=

16.858

(7.55)(1.128)2
= 1.755 cm−1.

9.2 From Table 9.2 we obtain the values A = B = 9.94 cm−1 and C = 6.30 cm−1, which corresponds

to an oblate top with energy levels given by Eq. 9.22:

Erot = K2
c (C −B) +BJ(J + 1) =

[
(12)(6.30− 9.94) + (9.94)(2)(3)

]
cm−1 = 56.0 cm−1.
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9.3 The rotational constant will increase, according to Eq. 9.16, as the moment of inertia decreases.

Of the three molecules, 12C16O has the lowest moment of inertia, because it has only two atoms (of the

same masses as the atoms that make up the CO2 molecules). Between the two CO2 isotopologues, the
18O-substituted molecule has the greater isotopic mass, so the greater moment of inertia. The ordering

is therefore 12C18O2,
12C16O2,

12C16O.

9.4 We fold the values of the rotational constants from Table 9.1 into Eqs. 9.8 and 9.9, setting v = 1, to

find the rotational energies for J = 2 and J = 3. The difference between those energies is the transition

energy ΔE that we’re looking for:

Bv=1 = Be −
(
v +

1

2

)
αe = [20.9557− (1.5) (0.798)] cm−1 = 19.759 cm−1

Erot = BvJ(J + 1)−Dv [J(J + 1)]
2

Erot(J = 2) = (19.759 cm−1)(2)(3)− (2.15 · 10−3 cm−1) [(2)(3)]
2

Erot(J = 3) = (19.759 cm−1)(3)(4)− (2.15 · 10−3 cm−1) [(3)(4)]
2

ΔE = Erot(J = 3)− Erot(J = 2) = 118.32 cm−1.

Chapter 10

10.1 Repulsion applies to all examples, and is expected to be roughly proportional to e−aR, although
other forms are used to model this (such as the R−12 repulsive term in the Lennard–Jones potential).

(a) dispersion: U(R) ∝ αAαB/R
6 (by Eq. 10.38). (b) H-bonding: U(R) ∝ μ2

Aμ
2
B/R

6 (by Eq. 10.19),

although a case can be made that hydrogen bonding is strong enough that the structures cannot be

treated as freely rotating at typical temperatures, in which case the μAμB/R
3 of Eq. 10.16 would be

more appropriate. In at least one popular model potential used to predict biochemical structure, the

distance-dependence of hydrogen bonding is given using either a Lennard–Jones 6-12 potential (as in

our Eq. 10.44) or a 10-12 potential (in which the distance dependence is a much more quickly decaying

R−10 [1]). (c) dipole–dipole, dipole–induced dipole: U(R) ∝ μ2
Aμ

2
B/R

6, μAαB/R
6 (Eqs. 10.19, 10.23).

The dipole–induced dipole is important here because CO is only very weakly polar, but has a relatively

high polarizability. Note the important distinction between these two terms: polar means the positive

and negative charges in the molecule are already well separated to create a permanent dipole moment,

while polarizable means that an external electric field can easily separate the charges, whether or not

they are already well separated. (d) dipole–dipole (non-rotating): U(R) ∝ μ2
AαB/R

3 (by Eq. 10.16).

You could make a good case that dipole–induced dipole is important here as well. I have only left it off

because the interaction between non-rotating dipoles, varying as R3, will tend to be more important if

only because it decays so much more slowly than the dipole–induced dipole interaction.

10.2 From Eq. 10.17, the interaction between a multipole of 2k charges and another of 2k
′
charges has

a potential energy proportional to R−k−k′−1. A quadrupole is formed by an arrangement of 4 charges,

for which k = 2, so the interaction between two quadrupoles will vary in proportion to R−2−2−1= R−5.

10.3 The dipole moment of HI is 0.45D and the polarizability of N2 is 0.20 Å
3
. Plugging these values

and the distance of 3.90 Å into Eq. 10.23 yields the following:

u2−2∗(R) = − 4μ2
Aα

(4πε0)R6

= −4(0.45D)2(3.3356 · 10−30 Cm/D)2(0.20 · 10−30m3)

(1.113 · 10−10C2 J−1m−1)(3.90 · 10−10m)6

= −4.60 · 10−24 J = −0.00277 kJmol−1.
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This interaction energy is quite weak, partly because the N2 polarizability is so small.

10.4 We can expect dispersion to be most important, because the bromine atoms are so large (and

consequently have high polarizabilities). The molecule should also be quite polar, given the electroneg-

ativity of the Br atom, and so dipole–dipole interactions will also run high. The dipole–induced dipole

attraction will also be present, but is usually weaker than the direct dipole–dipole interaction: b<a<c.

10.5 The well should extend from 3.61 Å to 5.42 Å and be 190K (132 cm−1) deep, as in the following

graph.

10.6 The degrees of freedom that couple most strongly are usually those that have the most similar

energy spacing. In this case, there is a transfer of energy away from vibrations in molecule A. Rotational

energy spacings tend to be at least two orders of magnitude smaller than the vibrational spacings, and

electronic transitions are typically an order of magnitude greater. Therefore, the likeliest place for

vibrational energy to go is into other vibrations. In this case, if A has lost vibrational energy, it is most

likely to have gone into vibrational excitation of B.

Chapter 11

11.1 The dispersion force binds CO2 molecules together in a cluster, because there is no monopole

(ionic charge) or dipole moment to bind them. As the cluster adds more units, the average binding

energy per molecule will generally decrease when the cluster is very small. For small clusters, removing

one unit reduces the overall binding significantly. But the effect depends on the cluster and the cluster

size. For larger clusters, the loss of one unit has little effect on the remaining cluster. We expect the

molecules at the surface of the cluster to be the most weakly bound, because they are not completely

surrounded by the stabilizing neighbors. As the cluster size increases, the ratio of the volume (pro-

portional to the cluster size N) to the surface area (proportional to N2/3) steadily increases, assuming

the cluster shape remains roughly spherical, so on average for large clusters the binding energy may

increase slightly with N .

11.2 The weak bonding interactions will be modeled by the van der Waals term (which includes disper-

sion forces) and the electrostatic potential energy term (which accounts for charge-charge interactions

across distances longer than the typical chemical bond): UvdW and Uelectrostatic.

Chapter 12

12.1 The pair correlation function for this system should resemble the curves shown for water in Figs.

12.3g–i. The oscillations should become smoother as we approach the boiling point.
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near boiling pointlow temp

1

R

G

1

R

G

12.2 Yes. Molecules of the two substances will attract one another, principally through dispersion.

Chapter 13

13.1 The unit cell has two square faces opposite one another, and the rest of the faces are equivalent

rectangles. There is one Ĉ4 principal rotation axis, a horizontal mirror plane, and four vertical mirror

planes. The crystallographic point group is therefore D4h.

13.2 No. The reason is that no charge separation can exist in a regular monatomic crystal, and

polarity is one of the requirements for piezoelectricity.

End of Chapter Problems

Chapter A

A.1 This problem uses a common manipulation, one of the features of logarithms that makes them so

useful:

pKa = − log10Ka = − log10 e−ΔG/(RT )

= −
[
−ΔG

RT

]
log10 e log xa = a log x

=
ΔG

RT
(0.434).

This shows, if you don’t mind us getting ahead of ourselves a little, that the pKa is directly proportional

to the free energy of dissociation, ΔG, and inversely proportional to the temperature, T .

A.2 The idea here is that, even if we think at first we have no idea what the number ought to be, a

closer look at the available choices makes it clear that we can spot some potentially ridiculous answers:

a. 2 · 1010ms−1 is faster than the speed of light.

b. 2 · 105ms−1 has no obvious objections.

c. 2m s−1 is the speed of a slow walk, and would imply, for example, that you could send an e-mail

message over a cable connection to a friend half a mile away, and then run the half-mile to arrive

and deliver the message in person before the e-mail finishes traveling through the wires.

When we have calculations that toss around factors of 10−34, for one example, this is a significant skill.

The correct answer is 2 · 105ms−1.

A.3 The volume is roughly 125 Å
3
, which we can show is not big enough to hold more than about 15

atoms. Chemical bonds, formed between overlapping atoms, are roughly 1 Å long, and so typical atomic

diameters are roughly 2 Å or more, and occupy a volume on the order of (2 Å)3 = 8 Å
3
. A volume of

125 Å
3
, therefore, cannot hold more than about 125/8 = 15.6 atoms. Among the choices, the only

reasonable value is 8.
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A.4 a. Chemical bond lengths in molecules are always in the range 0.6–4.0 Å, or 0.6 · 10−10 to

4.0 · 10−10m. 25 · 10−8m is much too large for a bond length. no

b. Six carbon atoms have a mass of 6 ·12 = 72 amu. With the added mass of a few hydrogen atoms

at 1 amu each, 78 amu is a reasonable value. yes

A.5 a. The derivatives d[A] and dt have the same units as the parameters [A] and t, respectively.

Both sides of the equation should therefore have units of mol L−1 s−1. That means that k needs

to provide the units of s−1 and cancel one factor of concentration units on the righthand side. k

has units of L s−1 mol−1.

b. The argument of the exponential function must be unitless, so kB must cancel units of energy

(J) in the numerator and temperature (K) in the denominator. The correct units are JK−1.

c. The units all cancel, and Keq is unitless.

d. Squaring both sides of the equation, we can solve for k: μω2 = k. k must therefore have units

of kg s−2.

A.6 There are two factors on the lefthand side, (2x+1)2 and e−ax
2

. For the product to be zero, at least

one of these factors must be zero. If (2x + 1) = 0, then x = − 1
2 . If e−ax

2

= 0, then x→ ± ∞ .

All three are valid solutions.

A.7 In general, for any complex number (a+ ib), the complex conjugate is (a+ b)∗ = a− ib. We look

for the imaginary component and and invert its sign:

a. x− iy : a = x b = −y, x + iy.

b. ix2y2 : a = 0 b = x2y2, −ix2y2 .

c. xy(x+ iy + z) : a = x2y + xyz b = xy2, x2y + xyz − ixy2, xy(x− iy + z).

d. a = x/z b = y/z, (x − iy)/z .

e.

eix = 1 + ix− x2 − ix3 + x4 + ix5 − . . .
a = 1− x2 + x4 − . . .
b = x− x3 + x5 − . . .

a− ib = 1− ix− x2 + ix3 + x4 − ix5 − . . . = e−ix.

f. 54.3: a = 54.3 b = 0, 54.3.

A.8 This problem tests a few algebraic operations involving vectors, particularly useful to know when

we look at angular momentum and (often related) magnetic field effects.

a. The length of a vector is calculated using the Pythagorean theorem: |�C| = √02 + 22 + 12 =√
5 .

b. We add vectors one coordinate at a time: �A+ �B = (1 + 1, 0 + 0, 0 + 1) = (2, 0, 1).

c. The dot product of two vectors multiplies the values for each coordinate of the two vectors and

sums the results: �A · �B = (1 · 1) + (0 · 0) + (0 · 1) = 1.
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d. In the case of perpendicular vectors, this gives us zero: �A · �C = (1 · 0) + (0 · 2) + (0 · 1) = 0.

e. The cross product involves a little more work, and yields a new vector, perpendicular to the two

original vectors: �A × �B = (0 · 1− 0 · 0, 0 · 1− 1 · 1, 1 · 0− 0 · 1) = (0,−1, 0).

A.9 If we accept that the Taylor series expansion is exact if we take it to infinite order, then the Euler

formula can be proven by the expansions of ex (Eq. A.25), sinx (Eq. A.26), and cosx (Eq. A.27):

eix =
∞∑
n=0

1

n!
(ix)n

= 1 + ix− 1
2x

2 − i

6
x3 +

1

24
x4 +

i

120
x5 − . . .

= (1− 1
2x

2 +
1

24
x4 − . . .) + i(x− 1

6
x3 +

1

120
x5 − . . .)

= cosx+ i sinx .

This equation is of practical importance to us, and is famous among mathematicians for tying together

three fundamental mathematical values—π, i, and e—in one equation:

eiπ = 1.

A.10 • Maple: After checking that all of the units are indeed consistent, enter the Maple command

solve((1.000-(3.716/Vˆ2))(V-0.0408)/(0.083145298.15),V);

The resulting solution, 24.8, is in the same units as b, namely 24.8 L mol−1.

• Successive approximation: There are several ways to solve this, corresponding to different

forms of the equation that leaves Vm on one side. One way to set up the equation quickly is to

recognize that (Vm− b) will vary rapidly compared to P − (a/V 2
m), so we can isolate Vm as follows:

(
P − a

V 2
m

)
(Vm − b)

RT
= 1(

P − a

V 2
m

)
(Vm − b) = RT

Vm − b = RT(
P − a

V 2
m

)
Vm =

RT(
P − a

V 2
m

) + b.

Substituting in the values for P , a, b, R, and T (making sure that the units are all compatible),

we can reduce the equation to the following:

Vm(L mol−1) =
24.943

1 + 3.716
V 2
m

+ 0.0408.
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Guessing an initial value of 1 L mol−1 yields the following series of approximations:

Vm =
24.943

1 + 3.716
12

+ 0.0408 = 5.330

Vm =
24.943

1 + 3.716
5.3302

+ 0.0408 = 22.099

Vm =
24.943

1 + 3.716
22.0992

+ 0.0408 = 24.796

Vm =
24.943

1 + 3.716
24.7962

+ 0.0408 = 24.834

Vm =
24.943

1 + 3.716
24.8342

+ 0.0408 = 24.835.

The series has converged to the three significant digits requested. The final value for Vm is

24.8 L mol−1.

A.11 Here we apply the rules of differentiation summarized in Table A.3.

a.

f(x) = (x+ 1)1/2

df

dx
= 1

2 (x+ 1)−1/2.

b.

f(x) = [x/(x+ 1)]1/2

df

dx
= 1

2

(
x

x+ 1

)−1/2 [
1

x+ 1

dx

dx
+ x

d

dx

(
1

x+ 1

)]

= 1
2

(
x

x+ 1

)−1/2 [
1

x+ 1
− x

(x+ 1)2

]
.

c.

df

dx
= exp

[
x1/2

] d

dx

(
x1/2

)
= 1

2x
−1/2 exp

[
x1/2

]
.

d.

df

dx
= exp

[
cos x2

] d
dx

(cos x2)

= exp
[
cos x2

]
(− sin x2)

d

dx
(x2)

= −2x sin x2 exp
[
cos x2

]
.

A.12 This problem tests our ability to use a few of the analytic integration results given in Table A.5.

a.
∫∞
0 e−axdx = − 1

ae
−ax|∞0 = − 1

a (0− 1) =
1

a
.
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b.
∫ 5

1
x2dx = 1

3x
3|51 = 1

3 (125− 1) =
124

3
.

c.
∫ 5

1
x−3/2dx = −2x−1/2|51 = −2( 1√

5
− 1).

d. r2
∫ 2π

0
dφ
∫ π
0

sin θdθ = r2 (φ)|2π0 (− cos θ)|π0 = r2(2π − 0)[−(−1)− (−1)] = 4πr2.

A.13 We use the Coulomb force law, Eq. A.41, using the charge of the electron −e for both charges

and r12 set to 1.00 Å:

FCoulomb =
e2

4πε0r2

=
(1.602 · 10−19C)2

(1.113 · 10−10C2 J−1m−1)(1.00 Å)2(10−10mÅ
−1

)2
= 2.31 · 10−8N .

A.14 This problem relies on the definitions of the linear momentum p and the kinetic energy K (Eq.

A.36):

p = mv

K = 1
2mv

2 = p2

2m
.

A.15 We’re calling the altitude r. Because the acceleration is downward but r increases in the upward

direction, the acceleration is negative: −9.80ms−2. We invoke the relationship between force and the

potential energy, and find that we have to solve an integral:

U(r) = −
∫ r

0

F (r′) dr′ = −
∫ r

0

(−mg) dr′ = mgr.

A.16

|FCoulomb| = e2

4πε0r2
=

(1.602 · 10−19C)2

(1.113 · 10−10C2 J−1 m−1)(0.529 Å)2(10−10 mÅ
−1

)2

= 8.23 · 10−8N

|Fgravity| = mHg

= (1.008 amu)(1.661 · 10−27 kg amu−1)
(
9.80ms2

)
= 1.64 · 10−26N.

Sure enough, the gravitational force is smaller than the Coulomb force by orders of magnitude, and

the motions of these particles will be dictated—as well as we can measure them—exclusively by the

Coulomb force.

A.17 We are proving an equation that depends on L and x and t and vx, which may look like too many

variables. If we use the definition of L to put this equation in terms of K and U , then we can at least
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put K in terms of speed. Then, because speed itself is a function of position and time, the number of

variables is quite manageable. Nonetheless, keeping things in terms of K and U is useful, because of

their straightforward dependence on only v and x, respectively.

To prove the equation, we could try working from both sides and seeing if the results meet in the

middle. First the lefthand side:

∂L

∂x
=
∂K

∂x︸︷︷︸
=0

−∂U
∂x

K not a function of x

= Fx = ma Fx = −dU/dx

= m
d2x

dt2
acceleration = d2x/dt2

Next the righthand side:

d

dt

∂L

∂vx
=

d

dt

[
1

2
m
∂v2x
∂vx
− ∂U

∂vx

]

=
d

dt

⎡
⎢⎢⎣mvx − ∂U

∂vx︸︷︷︸
=0

⎤
⎥⎥⎦ U not a function of vx

= m
dvx
dt

= m
d2x

dt2
.

And there we are. One of the useful features of the Lagrangian is that the equation proved here can be

made to hold for different choices of coordinates. This enables the mechanics problems to be written in

coordinates that take advantage of symmetry (for example, if the only force is a radial one, attracting

or repelling particles from a single point), and the Lagrangian then provides a starting point to develop

relationships between the positions and velocities of the particles.

A.18 The overall energy before the collision is the sum of the two kinetic energies:

K = 1
2m1v

2
1 +

1
2m2v

2
2 ,

and this must equal the energy after the collision:

K = 1
2m1v

′
1
2
+ 1

2m2v
′
2
2
.

Similarly, we may set the expressions for the linear momentum before and after the collision equal to

each other:

p = m1v1 +m2v2 = m1v
′
1 +m2v

′
2.

So there are two equations and two unknowns. At this point, the problem is ready to solve with a

symbolic math program.

Maple. The problem can be solved in a single step by asking Maple to solve the conservation of

energy and conservation of momentum equations simultaneously to get the final speeds (here vf [1] and

vf [2] in terms of the masses and initial speeds:

solve({m[1]*v[1]+m[2]*v[2] = m[1]*vf[1]+m[2]*vf[2], (1/2) * m[1] * v[1]ˆ2+(1/2) * m[2] *

v[2]ˆ2 = (1/2) * m[1] * vf[1]ˆ2+(1/2) * m[2]*vf[2]ˆ2}, [vf[1], vf[2]]);
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On paper. This last equation lets us eliminate one variable by writing, for example, the final speed

v′2 in terms of v′1:

v′2 =
m1v1 +m2v2 −m1v

′
1

m2
.

Now we can put this value into the equation for K, and solve for v′1:

K = 1
2m1v

2
1 +

1
2m2v

2
2 (a)

= 1
2m1v

′
1
2
+ 1

2m2v
′
2
2

= 1
2m1v

′
1
2
+ 1

2m2

(
m1v1 +m2v2 −m1v

′
1

m2

)2

.

This is going to be an equation that depends on v′1
2
and v′1, so we can solve it using the quadratic

formula. In that case, it’s easiest to put all the quantities on one side of the equation:

0 = 1
2m1v

′
1
2
+ 1

2m2

(
m1v1 +m2v2 −m1v

′
1

m2

)2

− ( 12m1v
2
1 +

1
2m2v

2
2

)
subtract (a) above

= 1
2m1v

′
1
2
+ 1

2m2

⎛
⎜⎜⎜⎜⎝

m2
1v

2
1 +m2

2v
2
2 +m2

1v
′
1
2

+2m1m2v1v2 − 2m2
1v1v

′
1 − 2m1m2v

′
1v2

m2
2

⎞
⎟⎟⎟⎟⎠ expand the square

− 1
2m1v

2
1 − 1

2m2v
2
2

= m1v
′
1
2
+
m2

1

m2
v21 +m2v

2
2 +

m2
1

m2
v′1

2
+ 2m1v1v2 divide by 1/2

− 2
m2

1

m2
v1v

′
1 − 2m1v

′
1v2 −m1v

2
1 −m2v

2
2

= v′1
2
(
m1 +

m2
1

m2

)
+ v′1

(
−2m

2
1

m2
v1 − 2m1v2

)
group by power of v′1

+

(
m2

1

m2
v21 +m2v

2
2 + 2m1v1v2 −m1v

2
1 −m2v

2
2

)

= v′1
2
(
m1 +

m2
1

m2

)
+ v′1

(
−2m

2
1

m2
v1 − 2m1v2

)

+

[(
m2

1

m2
−m1

)
v21 + 2m1v1v2

]

v′1 =

(
2m1 + 2

m2
1

m2

)−1{(
2
m2

1

m2
v1 + 2m1v2

)
quadratic formula

±
[(

2
m2

1

m2
v1 + 2m1v2

)2

− 4

(
m1 +

m2
1

m2

)[(
m2

1

m2
−m1

)
v21 + 2m1v1v2

]]1/2⎫⎬
⎭ .

To deal with this equation, we can expand the multiplication inside the square brackets:(
2
m2

1

m2
v1 + 2m1v2

)2

= 4
m4

1

m2
2

v21 + 8
m3

1

m2
v1v2 + 4m2

1v
2
2

−4
(
m1 +

m2
1

m2

)[(
m2

1

m2
−m1

)
v21 + 2m1v1v2

]
= −4m

3
1

m2
v21 − 4

m4
1

m2
2

v21 + 4m2
1v

2
1 + 4

m3
1

m2
v21
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− 8m2
1v1v2 − 8

m3
1

m2
v1v2.

Nearly all of these terms cancel when we add these two expressions together, leaving:

4m2
1v

2
2 + 4m2

1v
2
1 − 8m2

1v1v2.

In the quadratic equation, we have to take the square root of this, but that turns out to be easy:[
4m2

1v
2
2 + 4m2

1v
2
1 − 8m2

1v1v2
]1/2

= 2m1

[
v22 + v21 − 2v1v2

]1/2
= 2m1 (v2 − v1) .

Finally, putting this back into our equation for v′1, we get

v′1 =

(
2m1 + 2

m2
1

m2

)−1{(
2
m2

1

m2
v1 + 2m1v2

)
± 2m1 (v2 − v1)

}

=

(
1 +

m1

m2

)−1{(
m1

m2
v1 + v2

)
± (v2 − v1)

}
. divide out 2m1

This is correct as far as it goes, but we have two solutions, corresponding to either the + or − sign. If

we use the − sign, then we get

v′1 =

(
1 +

m1

m2

)−1{
m1

m2
v1 + v2 − v2 + v1

}
= v1.

This is the solution if the collision doesn’t occur; particle 1 just keeps moving at the same speed as

before. The + sign gives us the correct solution:

v′1 =

(
1 +

m1

m2

)−1{
m1

m2
v1 + v2 + v2 − v1

}

=

(
1 +

m1

m2

)−1 [(
m1

m2
− 1

)
v1 + 2v2

]
=

1

m1 +m2
[(m1 −m2) v1 + 2m2v2] .

We can now use the conservation of momentum to solve for v′2. I’m going to factor out a 1/(m1 +m2)

to get an equation similar to the one for v′1:

v′2 =
m1v1 +m2v2 −m1v

′
1

m2

=
1

m2

{
m1v1 +m2v2 − m1

m1 +m2
[(m1 −m2) v1 + 2m2v2]

}

=

(
m1

m2

)
v1 + v2 −

(
m1 −m2

m1 +m2

)(
m1

m2

)
v1 − 2

(
m1

m1 +m2

)
v2

=

(
1

m1 +m2

)[
m1(m1 +m2)

m2
v1 + (m1 +m2)v2 −

(
m1(m1 −m2)

m2

)
v1 − 2m1v2

]
=

1

m1 +m2
[(m2 −m1) v2 + 2m1v1] .
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Because there is nothing in the problem that determines which particle is labeled 1 and which is labeled

2, the equations for v′1 and v′2 must be exactly the same, with all the labels 1 and 2 switched.

If you haven’t seen this result or simply don’t remember it, it’s worthwhile to check a few values. For

example, if the two particles have equal mass (m1 = m2), then the final speeds are v′1 = v2 and v′2 = v1;

i.e., the particles simply exchange speeds. Another example: if particle 1 is initially at rest (v1 = 0),

then it picks up a speed 2m2v2/(m1 +m2) from the collision. In that case, if particle 2 dominates the

mass (m2  m1), then particle 1 will find itself with a final speed equal to 2v2. In contrast, if particle 1

is much more massive than 2, then the collision will hardly affect it (v′1 ≈ 0) and particle 2 will simply

reverse direction (v′1 ≈ −v2).
Note that the two particles don’t have to be moving in opposite directions. If particle 1 is behind 2

but moving faster and in the same direction, then they will strike each other, and particle 2 will acquire

particle 1’s higher speed.

A.19

K = U = − e2

4πε0r
=

(1.602 · 10−19C)2

(1.113 · 10−10C2 J−1m−1)(1.0 Å)(10−10mÅ
−1

)
= 2.31 · 10−18 J

L = |�r × �p| = rp, since �r ⊥ �p.

p =
√
2meK =

[
2(9.109 · 10−31 kg) · (2.31 · 10−18 J)

]1/2
= 2.05 · 10−24 kgm s−1

L = (1.0 Å)(10−10mÅ
−1

)(2.05 · 10−24 kgm s−1) = 2.05 · 10−34 kgm2 s−1 .

A.20 a. Find the center of mass positions �r
(0)
i at collision. Let’s call the center of mass of the

entire system the origin. The particles have equal mass, so the origin will always lie exactly in

between the two particles. At the time of the collision, we may draw a right triangle for each

particle, connecting the particle’s center of mass, the origin, and with the right angle resting on

the z axis. The hypotenuse of the triangle connects the center of mass to the point of contact

between the two particles, and must be of length d/2 (the radius of the particle). The other two

sides are of length (d/2) cos θ (along the z axis) and (d/2) sin θ (along the x axis), based on the

definitions of the sine and cosine functions in Eqs. A.5. These correspond to the magnitudes of

the z and x coordinates, respectively, of the particle centers of mass at the collision. The signs of

the values may be determined by inspection of the figure: at the time of the collision, x1 and z2
are positive while x2 and z1 are negative, so the position vectors are:

�r
(0)
1 = ((d/2) sin θ, 0,−(d/2) cos θ)
�r
(0)
2 = (−(d/2) sin θ, 0, (d/2) cos θ) .

b. Find the velocities �v′i after collision. Simple collisions obey a simple reflection law: the angle

of incidence is equal to the angle of reflection. These are the angles between the velocity vectors

and the normal vector—the line at angle θ from the z axis. (This is the normal vector because

it lies perpendicular to the plane that lies between the two spheres at the point of collision; this

plane is effectively the surface of reflection for the collision.) Therefore, the velocity vector after

the collision is at an angle 2θ from the z axis, and the velocity vectors after the collision are

�v′1 = v0(sin 2θ, 0,− cos2θ)

�v′2 = v0(− sin 2θ, 0, cos 2θ).

Notice that the speed after the collision is still v0 for each particle. Because they each began with

the same magnitude of linear momentum, the momentum transfer that takes place only affects

the trajectories.
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c. Show that �L is conserved before and after the collision. We now have position and velocity

vectors before and after the collision:

�r1 = ((d/2) sin θ, 0,−(d/2) cos θ) + �v1t �r2 = (−(d/2) sin θ, 0, (d/2) cos θ) + �v1t

�v′′1 = v0(0, 0, 1) �v′′2 = v0(0, 0,−1)
�v′1 = v0(sin 2θ, 0,− cos2θ) �v′2 = v0(− sin 2θ, 0, cos 2θ).

We take the cross products of these for each particle to get �L for each particle, and we add these

together to get the total angular momentum for the system. Before the collision,

�r′′1 = ((d/2) sin θ, 0,−(d/2) cos θ) + v0t(0, 0, 1)

�L′′
1 = m�r′′1 × �v′′1
= m

(
y′′1v

′′
z1 − z′′1 vy1, z′′1 v′′x1 − x′′1vz1, x′′1v′′y1 − y′′1 vx1

)
= m (0,−(dv0/2) sin θ, 0)

and similarly for �L′′
2 :

�L′′
2 = m (0,−(dv0/2) sin θ, 0)

and combining these yields:

�L′′ = �L′′
1 + �L′′

2 = −mdv0 (0, sin θ, 0).

All of the position or velocity vectors have only zero y components, and therefore only the y

component of the cross product survives. After the collision,

�r′1 = ((d/2) sin θ, 0,−(d/2) cos θ) + v0t(sin 2θ, 0,− cos2θ)

�L′
1 = m�r′1 × �v′1

which has a y component

�L′
y1 = m {−(d/2) cos θ sin 2θ − v0t cos 2θ sin 2θ − [(d/2) sin θ(− cos 2θ) + v0t sin 2θ(− cos 2θ)]}

and similarly for �L′
y2:

�L′
y1 = m {(d/2) cos θ(− sin 2θ) + v0t cos 2θ(− sin 2θ)− [−(d/2) sin θ cos 2θ − (−v0t sin 2θ) cos 2θ]} .

Adding the two components together we find that all the t-dependent terms cancel, and trigono-

metric identities from Table A.2 simplify the rest:

�L′
y = �L′

1y + �L′
2y

=
mdv0
2

[−2 cos θ sin 2θ + 2 sin θ cos 2θ]

sin 2θ = 2 sin θ cos θ

cos 2θ = 2 cos2 θ − 1

�L′
y =

2mdv0
2

[− cos θ (2 sin θ cos θ) + sin θ
(
2 cos2 θ − 1

)]
= mdv0

[−2 cos2 θ sin θ + 2 cos2 θ sin θ − sin θ
]

= −mdv0 sin θ.
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This is the y component of �L′, and the x and z components are again zero in the cross products,

so we have shown that both �L′ and �L′′ are equal to

�L = mdv0 (0, sin θ, 0).

If the particles hit head-on, then θ = 0 and the angular momentum is zero. As θ increases, L

increases to a maximum value of mdv0 when the two particles just barely touch each other in passing.

If we had used the conservation of L at the outset, we could have found this solution quickly. Because

the angular momentum does not depend on the size of the particles, we can replace our two objects

here with point masses. It won’t matter that they now won’t collide, because if L is conserved we have

to get the same answer before the collision takes place anyway. In fact, because L is conserved, we

can pick any point in time that’s convenient for us to calculate L, so I would pick the time when the

two particles reach z = 0. At this time, both particles are traveling on trajectories that are exactly

perpendicular to their position vectors (�vi is perpendicular to �ri). This makes the cross product for

each particle easy to evaluate:

�Li = m�ri × �vi = m(±(d/2) sin θ, 0, 0)× (0, 0,±v0) = mdv0/2(0, sin θ, 0),

where the minus sign applies to particle 2. There are two particles, so we multiply this vector by 2,

arriving at the same �L as above.

A.21 a. Write �E1 in vector form. The magnitude of the electric field generated by particle 1 is

given by F = q2E1, and this force must be equal to the Coulomb force F = −q1q2/(4πε0r2). The
force vector points along the axis separating the two particles, and we can include this direction-

dependence by multiplying the magnitude of the vector by �r/r. The Cartesian form of the vector

�r from particle 1 to 2, just working off part (b) of the figure, may be written (rv1/c, y2, 0) and

has length

r =

[(rv1
c

)2
+ y22

]1/2
.

Therefore, the force vector is

�F =

(
q1q2

4πε0r2

)
�r

r
=

q1q2
4πε0r3

(rv1/c, y2, 0)

and the electric field vector is

�E1 =
�F

q2
=

q1
4πε0r3

(rv1/c, y2, 0).

b. Write �B in vector form. Here we just have to be careful to correctly evaluate the cross product.

We are using the equation �B = 1
c2
�E1 × �v1, and we have an equation for �E2 already. The velocity

vector consists only of an x-velocity component: �v1 = (v1, 0, 0). Notice that because these two

vectors lie in the xy plane, their cross product—which is perpendicular to both vectors—will lie

along the z axis. The z component of the cross product �a×�b is equal to axby − aybx, so we have

�B =
1

c2
�E1 × �v1 =

q1
4πε0c2r3

(0, 0, v1y2) .

c. Find the magnetic force vector. Again, we take a cross product with the velocity. This time,

the �B vector lies along z, and �v1 lies along x, so the cross product lies along y:

�Fmag = q2�v1 × �B =
q1q2

4πε0c2r3
(0, v21y2, 0) .
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d. Calculate the difference between the actual and classical values of the Coulomb force. To compute

the actual Coulomb force, we use the distance r, so �F has a magnitude

F =
q1q2

4πε0r2
.

The classical Coulomb force would be

F ′ =
q1q2

4πε0y22
,

and the difference between the two forces is

F − F ′ =
q1q2
4πε0

[
1

r2
− 1

y22

]
.

We can simplify this by relating r2 and y2:

r2 =
(rv1
c

)2
+ y22

r2 = y22

[
1−
(v1
c

)2]−1

.

So, finally, we have

F − F ′ =
q1q2
4πε0

[
1

y2

[
1−
(v1
c

)2]
− 1

y22

]

=
q1q2

4πε0y22

[
−
(v1
c

)2]
= − q1q2v

2
1

4πε0c2y22
.

In comparison, the magnitude of the magnetic force we calculated from the standard equations is

Fmag = q1q2v
2
1y2/(4πε0c

2r3),

and for v � c, we can allow r ≈ y2, so that

Fmag = q1q2v
2
1/(4πε0c

2y22).

Magnetic forces are a natural result of the motion of electrical charge when special relativity is

taken into account. It was this relationship between electric and magnetic forces that was the basis of

Einstein’s original paper on special relativity.

Chapter 1

1.1 Radiation behaves more classically at large wavelengths, because the smaller frequency allows

smaller energy increments to be absorbed or emitted by matter. Therefore, the energy of long-

wavelength radiation appears more like a continuous, rather than quantized, variable. Radiation can

be expected to behave like a classical wave provided that its wavelength is long compared to the system

of interest. For example, radiofrequency radiation can be directed by reflection and refraction more

easily than the relatively particle-like x-ray and γ radiation. Therefore, a correspondence principle

would suggest that radiation must be treated by quantum mechanics as the wavelength becomes small

compared to the system of interest. (Furthermore, it turns out that photons do carry a momentum,

described exactly by de Broglie’s equation p = h/λ, and this decidedly non-classical property is most

apparent at short wavelengths.)
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1.2 The quantized picture, while accurate in some aspects, is the misleading one. Radiofrequency

photons, in particular, carry so little energy that single-photon detection at those wavelengths is quite

challenging. Related to this is the fact that, in order to maintain a detectable signal, our transmitter

must emit photons at an enormous rate. A tiny 100 W transmitter emits more than 1027 photons

per second at a frequency of 100 MHz. And these are big photons, with wavelengths of a few meters.

Even 10 km away from the source, nearly 1018 photons fly through each square meter of space every

second. The numbers are so big that as we move away from the transmitter, the signal appears to drop

continuously. Furthermore, as we get to very great distances, photons will continue to strike the source,

but at a reduced rate. Although the photon energy itself is a discrete quantity, the rate at which the

photons impinge on our antenna remains a continuous variable, and the signal deteriorates smoothly

until we can no longer detect it. That said, experiments that detect single photons are not rare, but

they are normally carried out with higher energy photons, such as in the visible or UV.

1.3 Although the electron beam leaving the source was incoherent (with random phases), the reflection

off the surface sets a boundary condition where the phase goes to zero, in the same way that the

wavefunction of our particle in a box goes to zero at the walls of the box. From that point on, the

electrons reflected towards the detector are coherent, and the interference pattern becomes observable.

1.4 Mass and energy and charge must each be conserved, at least in chemistry, so the electrons cannot

just disappear. Because they have wave-like character, the electrons are not constrained to a single

trajectory: they can be detected at angles other than the normal reflection angle for particles. If some

particular reflection angle corresponds to destructive interference—where no electron signal is detected

– then there will be other angles at which an excess signal be detected.

1.5 An exact value of λdB requires an exact value of the momentum, which the uncertainty principle

tells me is only possible for a particle with infinite uncertainty in position. So the answer is yes: if

particle 1 has a momentum that is known precisely, then it effectively has an infinite size (it is possible

for the particle to be detected anywhere). But this is true of both my measurement λdB in the laboratory

and the student’s measurement in the reference frame of particle 2. In practice, if I have any idea where

the particle is (so the position uncertainty is finite), then I can’t know exactly what the momentum is; in

other words, I will not always get the same value for p when I measure it. The student on particle 2 will

find the same thing—the measured momentum will cover a range of different values. The mean p values

(and therefore the apparent de Broglie wavelengths) will be different in the two sets of measurements,

but the student will always find that the mean value of λdB is finite.

1.6 a. The spectrum of the neutral helium atom.

b. The wavefunction of the electron in the neutral hydrogen atom.

c. The second ionization energy of the helium atom.

The Bohr model works only for one-electron atoms, and does not correctly predict the distribution

of the electron.

1.7 This should be more energy than for the same transition in the H atom, because the greater nuclear

charge on He+ makes the electron more tightly bound and harder to pull out to an excited state orbital.

The He atom has two electrons, and the He+ ion has one electron. He+ therefore obeys the equations
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for a one-electron atom, with the atomic number Z = 2.

En = − Z2

2n2
(1Eh)

E2 − E1 = −Z
2

2

(
1

22
− 1

12

)
Eh =

3

8
Z2Eh He+ : Z = 2

E2 − E1 = −3

8
22Eh = 1.5Eh = 6.54 · 10−18 J.

1.8 This will be a small transition energy, because the energy levels get very close together at high

n. What does that imply for the wavelength λ? That it will be long, because λ ∝ 1/Ephoton. The

wavelength, frequency, and energy of radiation are all related through Planck’s law E = hν and the

constancy of the speed of light ν = c/λ. For helium, Z = 2.

ΔE =
Z2

2

(
1

n′′2 −
1

n′2

)
Eh

= (2)

(
1

1002
− 1

1012

)
Eh

= 3.94 · 10−6Eh = 0.865 cm−1

λ =
1

ΔE( cm−1)
= 1.16 cm = 0.0116 m,

which is in the microwave.

1.9 Energy has been added to the atom by the first photon (to reach state n1) and removed with the

second photon (landing us in the final state n2), so the final energy change in the atom ΔEn2,n1 is equal

to the difference in energy of the two photons:

ΔEn2,n1 =
Z2

2

(
1

n2
1

− 1

n2
2

)
Eh

=
9

2

(
1− 1

n2
2

)
Eh Z = 3, n1 = 1

ΔEphoton =
hc

λ1
− hc

λ2

= (6.626 · 10−34 J s)(2.998 · 108ms−1)

(
1

10.4 · 10−9m
− 1

828 · 10−9m

)

= 1.89 · 10−17 J = 4.33Eh =
9

2

(
1− 1

n2
2

)
Eh

n2 =

[(
9

2
− 4.32

)
2

9

]−1/2

= 5.

Maple. By the time you’ve entered the constants and worked out the relationships, a symbolic math

program may not save you much effort on a problem like this, but the same setup can be applied to

numerous problems:

• First, declare the constants in the problem:

h := 0.66260755e-33: c := 299792468.: Eh:=4.35980e-18: Z:=3; n1:=1; lambda1 :=

10.4e-9; lambda2 := 828e-9;

• Define any equations that relate the variables and parameter values:

DeltaE :=(n1,n2)->((Zˆ2)/2)*((1/n1ˆ2)-(1/n2ˆ2))*Eh;
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• And use the solve function to extract the value you’re looking for:

solve(DeltaE(n1,n2)=h*c*(1/lambda1-1/lambda2),n2);

In this case, as with many others, there is more than one solution and you have to choose the one that

is valid. Here, the solutions are ±5, and you have to recognize that n2 must be positive.

1.10 The longest wavelength corresponds to the lowest transition energy:

λ =
hc

ΔE
,

and n = 2→ 3 is the lowest-energy absorption from n = 2.

ΔE = −Z
2

2

(
1

n2
2

− 1

n2
1

)
Eh

= −2
(
1

9
− 1

4

)
Eh

=
5

18
Eh = 0.278Eh.

1.11 [Thinking Ahead: Why are these energy values so close together? Based on the pattern of

energy levels for the one electron atom, this means that the upper state energies are approaching the

ionization energy. This means the upper state n values almost don’t matter – it’s enough to know that

they are large.]

ΔE = En − E1 = − Z2

2n2
(1 har)−

(−Z2

2

)
(1 har) 1Eh = 27.2 eV

The absorption energies differ by small fractions; therefore, n is a large number.

n large, ΔE ≈ −E1 =
Z2

2
(1 har) ≈ 1626 eV

Z ≈
√

2 · 1626 eV

(27.2 eV (1 har)
−1 = 10.93 Z = 11

The atom is Na10 .

1.12 Coulomb forces control almost all molecular interactions and structure. In total, these forces wield

sufficient strength, for example, to prevent the atoms of a car from sliding between the atoms of the

Brooklyn Bridge to fall into the East River. But these forces work individually over tiny, molecule-sized

areas. In order to add up to a macroscopic force over a large area, they need to be fairly strong individ-

ually. Quantitatively, with charges on the order of 10−19 C and distances of 10−10 m, the forces should

be of magnitude (don’t forget the 4πε0, which is about 10−10 in SI units) (10−19)2/(10−10)(10−10)2 =

10−8 N, larger than you might have expected.

Z = 1 r1 = a0 = 5.292 · 10−11m

FCoulomb = − Ze2

4πε0r2

= − (1)(1.602 · 10−19C)2

(1.113 · 10−10C2 J−1m−1)(5.292 · 10−11m)2

= −8.24 · 10−8 N .
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1.13 [Thinking Ahead: Is this a positive or negative number, and how does it compare to the 2Eh

ionization energy of He+? We’ve defined U = 0 for the ionized electron, and the n = 1 electron must be

at a lower potential energy in order to be bound to the nucleus, so U is a negative number. To ionize the

atom, we have to overcome the stabilization represented by this negative potential energy. The kinetic

energy of the n = 1 state is a positive number, so some of the negative potential energy is already

canceled before we ionize the He+. Therefore, U must be lower than −2Eh to begin with. We expect

to find that the potential energy is less than −2Eh.] This question takes advantage of the fact that the

distance r between the nucleus and the electron is a constant for each state n in the Bohr model. Since

the potential energy only depends on r, the potential energy of the electron is also constant:

Un = − Ze2

4πε0rn
= − Z2mee

4

(4πε0)2n2h̄2

because

rn =
4πε0n

2h̄2

Zmee2

n = 1. Z=2 for He+

Un=1 = − (2)2(9.109 · 10−31 kg)(1.602 · 10−19 C)4

(1.113 · 10−10C2 J−1m−1)2(1)2(1.055 · 10−34 J s)2

= −1.745 · 10−17 J

or, more quickly by using atomic units,

Un=1 = −Z
2

n2

(
mee

4

(4πε0)2h̄
2

)
= −4Eh.

1.14 [Thinking Ahead: Does kinetic energy decrease or increase with Z and with n? It increases

with Z (the electron has to move faster when the nucleus pulls on it more strongly) and decreases with n

(the electron requires less centripetal force to balance the weaker nuclear attraction at large distances).]

The kinetic energy is always mv2/2, which is a handy form in this case because we know the mass (me)

and the speed is obtainable from the Bohr model:

vn =
Ze2

4πε0nh̄

Kn =
mev

2
n

2
=
me

2

(
Ze2

4πε0nh̄

)2

=
Z2mee

4

2(4πε0)2n2h̄2
= −En.

The kinetic energy is equal to the total energy times −1. This result is predicted by the virial theorem:

for any stable, dynamic system involving a central force law (i.e., the force depends only on r), the

average kinetic and potential energies are related as follows:

U = −2K.

Since the total energy is the sum of these two contributions,

E = K + U = −K.
1.15 [Thinking Ahead: Do the changes in Z and n push these numbers in the same direction? No.

Increasing Z from 2 to 3 increases the attraction between electron and nucleus, decreasing r and U

24 Copyright c© 2014 Pearson Education, Inc.



(making it more negative) while increasing v. Increasing n from 2 to 3 pulls the electron further away,

having all the opposite effects. ] Given the values for He+ n = 2, we only need to know how Z and

n affect the equations for these parameters, and then substitute Z and n = 3 for Z and n = 2. The

radius rn varies as n2/Z (Eq. 1.13), vn varies as Z/n (Eq. 1.14), and the potential energy Un as Z/rn
or Z2/n2.

He+ n = 2 Li2+ n = 3

rn 1.06 Å 1.59 Å

vn 2.19 · 106 m s−1 2.19 · 106 m s−1

Un −4.36 · 10−18 J −4.36 · 10−18 J

1.16

−AμAμB

r4
= −mv

2

r
Fd−d = Fcentripetal

AμAμB = mv2r3 multiply through by r4

=
( r
m

)
m2v2r2 =

( r
m

)
L2 L = mvr for circular orbit

AμAμB =
( r
m

)
(nh̄)2 L = nh̄

rn =
AμAμBm

n2h̄2
.

This is a weird result if you look at it, because the orbit actually gets smaller as you increase n. Going

further and evaluating the total energy shows that the system is not stable under these assumptions.

1.17

rn =
4πε0 n

2h̄2

Zmee2

vn =
Ze2

4πε0 nh̄

Fn =
mev

2
n

rn

= me

(
Ze2

4πε0 nh̄

)2(
Zmee

2

4πε0 n2h̄2

)

=
Z3m2

ee
6

(4πε0)3n4h̄4
.

The centripetal force should decrease with n, because it takes less force to keep a particle in a circular

orbit when the circle is bigger. (You could also point out that the the Coulomb force, which is equal

to the centripetal force, is weaker at higher n because the orbital radius rn is bigger. Or simply that r

increases and v decreases with n, and therefore Fn = merv
2
n/rn must decrease.)

1.18
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parameter n = 1 n = 2

momentum (kgm s−1) 1.99 · 10−24 9.95 · 10−25 (p = mv, v ∝ 1/n)

de Broglie wavelength (nm) 0.333 0.666 (λdB ∝ 1/p ∝ n)
kinetic energy (Eh) 0.500 0.125 (K ∝ v2 ∝ 1/n2)

transition energy to n = 3 (Eh) 0.444 0.0694
For the transition energy in the last row,

ΔE = E3 − E2 = −Z
2

2
Eh

(
1

32
− 1

22

)
= 0.0694Eh.

1.19 We set the speed greater than 0.1 c and solve for Z:

vn =
Ze2

4πε0nh̄
> 0.1 c n = 1

Z >
0.1 (4πε0)h̄c

e2
=

0.1(1.113 · 10−10C2 J−1 m−1)(1.055 · 10−34 J s)(2.998 · 108ms−1)

(1.602 · 10−19C)2

= 13.7.

The smallest value of Z (rounding up to the nearest integer) is 14. So relativistic corrections are likely

to start becoming important for atoms beyond aluminum in the periodic table.

1.20 [Thinking Ahead: How does this transition energy compare to the ionization energy? Given

the ionization energy of Z2/2 = 2Eh for He+, this transition energy is a small fraction of the energy

range of the He+ quantum states. The transition must therefore be among the closely grouped, higher

energy n values.]

n = n′′ → n′′ + 1 Z = 2

ΔE = −Z
2

2

(
1

(n′′ + 1)2
− 1

n′′2

)
Eh

= 2

(
1

n′′2 −
1

(n′′ + 1)2

)
Eh

= 0.045Eh.

This can be solved numerically.

• Maple: A command to solve this equation for n′′ is
solve(2*((1/nˆ2)-(1/((n+1)ˆ 2)))=0.045,n);

• Iteration:

n′′ =
{
0.045

2
+

1

(n′′ + 1)2

}−1/2

Start with n′′ = 1 on the lefthand side; this predicts n′′ = 1.92. Plug this into the lefthand side,

and this predicts n′′ = 2.67, then 3.22, 3.56, 3.77, 3.88, converging to n′′ = 4.

The transition is n = 4→ 5.

1.21 The linear momentum p is mass times speed, and we have an equation for the speed (Eq. 1.14):

p = mevn me = 9.109 · 10−28 g

vn =
Ze2

4πε0nh̄
=

2(1.602 · 10−19C)2

(1.113 · 10−10C2 J−1 m−1)2(1.055 · 10−34 J s)
= 2.187 · 106ms−1

p = (9.109 · 10−31 kg)(2.187 · 106ms−1) = 1.99 · 10−24 kgm s−1
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1.22 [Thinking Ahead: Is this a high or low frequency, compared for example to radiofrequency?

High. The speed of the electron in a typical Bohr atom is a significant fraction of the speed of light,

and the distance to cover is microscopic. Therefore, the oscillation of the dipole moment would be quite

fast.] Radiation is emitted by an oscillating dipole because the electric field generated by the dipole

must also be oscillating, and that oscillation propagates through the surroundings at the speed of light.

Therefore, the frequency of the radiation – the frequency at which the electric field of the radiation

oscillates back and forth—is the same as the frequency at which the dipole oscillates back and forth.

For the Bohr atom, with a dipole arising from the separation between the positively charged nucleus

and the negatively charged electron, this frequency is the frequency at which the electron orbits the

nucleus. This we can obtain from the speed vn of the Bohr atom electron and the circumference 2πrn,

which gives the distance the electron travels in one orbit.

vn =
Ze2

4πε0nh̄
rn =

4πε0n
2h̄2

Zmee2
.

The time for one revolution of the electron around the nucleus is

τn =
2πrn
vn

=
2π(4πε0)

2n3h̄3

Z2mee4
,

so the frequency of oscillation, and the frequency of any emitted radiation, is

νn =
1

τn
=

Z2mee
4

2π(4πε0)2n3h̄3
.

For Li+2, Z = 3. With n = 4,

νn=4 =
(3)2(9.109 · 10−31 kg)(1.602 · 10−19C)4

2π(1.113 · 10−10C2 J−1 m−1)2(4)3(1.055 · 10−34 J s)3

= 9.247 · 1014 s−1,

which corresponds to near-ultraviolet radiation.

1.23 This is an application of Bohr’s expression for energy levels of one-electron atoms. The lower

quantum state is known (ground state, so n1 = 1) and the energy is known, so the upper quantum

states can be found: En = − Z2

2n2 Eh, where Z = 4 for Be.

ΔE(n→ n′) = En′ − En = −Z
2

2

(
1

n′2 −
1

n2

)

= −Z
2

2

(
1

n′2 − 1

)

n′ =
[
1− 2ΔE

Z2

]− 1
2

=

[
1− 2ΔE

16

]− 1
2

Z = 4

ΔE = 7.50Eh n′ = 4

ΔE = 7.68Eh n′ = 5

1.24 The n → ∞ transition energy gets smaller as n climbs, and the photon wavelength increases.

Therefore, we are looking for the lowest value of n′′ such that the photon wavelength is more than

27 Copyright c© 2014 Pearson Education, Inc.



1.0mm, where Z = 2 for He+:

ΔE = −Z
2

2

(
1

∞2
− 1

n2

)
Eh = −Z

2

2

(
− 1

n2

)
Eh =

Z2

2n2
Eh

λ =
hc

ΔE
=

hc

Z2Eh/(2n2)
=
hcn2

2Eh
≥ 1.0 · 10−3m

n2 ≥ 2(1.0 · 10−3m)Eh

hc

n ≥
(
2(1.0 · 10−3m)Eh

hc

)1/2

=

(
2(1.0 · 10−3m)(4.360 · 10−18 J)

(6.626 · 10−34 J s)(2.998 · 108ms−1)

)1/2

= 209.5.

So n is the smallest integer greater than 209.5, so n = 210.

1.25 [Thinking Ahead: What about the energy level distribution allows us to solve for two un-

known n values with a single equation? It’s the converging value of the energy as n increases. It is

straightforward to prove that no two values of n have the same energy spacing as any other two values.]

This problem approaches atomic spectroscopy from a more realistic perspective: when the transition

energy is measured, how does the spectroscopist determine the quantum states involved? The Li atom

has atomic number Z = 3, so Li+2 is a one-electron atom. This time we have the energy and need to

obtain n.

En = −Z
2

n2

mee
4

2(4πε0)2h̄
2

= − (3)2

n2

(9.109 · 10−31 kg)(1.602 · 10−19C)4

2(1.113 · 10−10C2 J−1 m−1)2(1.055 · 10−34 J s)2

= −1.96 · 10−17 J

n2

1.74 · 10−17 J = 1.96 · 10−17

[
1

n2
1

− 1

n2
2

]
1

n2
1

− 1

n2
2

=
1.74

1.96
= 0.888

We have one equation and two unknowns. However, the pattern of energy levels is such that all the

energy levels except n = 1 are crowded together within En=1/4 of zero. Therefore, transitions between

any two states n 	= 1 must have transition energy less than En=1/4. Since

1.74 · 10−17 J > −En=1

4
=

1.96 · 10−17

4
J,

then n1 = 1 , so

n2 = [−(0.888− 1)]−1/2 = 3.

1.26 These parameters are all related to the speed at which the electron travels the circumference of

its orbit, which can be calculated from Eqs. 1.13 and 1.14.

a. Time to complete one orbit τ = distance/speed:

τn =
2πrn
vn

=
(2π(4πε0)n

2h̄2/Zmee
2)

Ze2/(4πε0)nh̄)
=

2π(4πε0)
2n3h̄3

Z2mee4

Number of orbits per second = 1
τn
≡ fn: fn =

Z2mee
4

2π(4πε0)2n3h̄3
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b.

Δfn = f5 − f4 =
Z2mee

4

2π(4πε0)2h̄
3

(
1

53
− 1

43

)

=
(1)2(9.109 · 10−31 kg)(1.602 · 10−19C)4

2π(1.113 · 10−10C2 J−1m−1)2(1.055 · 10−34 J s)3
(−7.625 · 10−3)

= −5.01 · 1013 s−1

c.

ν =
ΔE

h
=
E5 − E4

h
= −Z

2(4.360 · 10−18 JE−1
h )

2h

(
1

52
− 1

42

)

= − (1)2(4.360 · 10−18 JE−1
h )

2(6.626 · 10−34 J s)
(−0.0225)

= 7.40 · 1013 s−1

This value and the magnitude of the answer in part (b) become more similar as n′′ and n′ increase.

1.27 [Thinking Ahead: Is this going to be high Z, given that the wavelength for the H atom

ionization is 91.1 nm? No. Increasing Z increases the energy as Z2 and shortens the wavelength for the

transition as 1/Z2. Here the wavelength is only about a factor of 4 lower.]

In units of Eh:

ΔE = En′ − En′′ = − Z2

2n′2 +
Z2

2n′′2

=
Z2

2

(
−1

9
+

1

1

)

=
4Z2

9

λ = 25.6 · 10−9m =
hc

ΔE
=

hc(
4Z2

9

)
(4.36 · 10−18 JE−1

h )

Z =

[
9(6.626 · 10−34 J s)(2.998 · 108ms−1)

4(4.36 · 10−18)(25.6 · 10−9)

]1/2
= 2.

The atom is He+.

1.28 This expression for Fgrav has the same dependence on distance as FCoulomb. The difference is

that the constants Ze2/(4πε0) have been replaced by m1m2G, where (since the masses are unchanged)

m1m2 = memp. We could follow the same steps used to obtain the Bohr energy expression, but since

all we have done is change one set of constants for another, we can just take the result for the Bohr

energy and change out those constants:

En = − Z2mee
4

2(4πε0)n2h̄2
real atom, Eq. 1.20

En = − (mempG)
2me

2n2h̄2
gravity atom

= −m
3
em

2
pG

2

2n2h̄2
.
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For the ground state, we set n = 1:

E1 = − (9.109 · 10−31 kg)3(1.673 · 10−27 kg)2(6.67 · 10−11m3 kg−1 s−2)2

2(1.055 · 10−34 J s)2
= −4.23 · 10−97 J.

Comparing this to the ground state energy using the charged particles (E1 = 2.18 · 10−18 J), you can

see why we never worry about gravity when solving the quantum mechanics of atoms and molecules.

Note: one topic of ongoing speculation among physicists is whether the gravitational force law stays the

same at all distance scales. Although gravitational forces have been measured for individual neutrons,

that was over distances of several micrometers—much larger than the distances separating subatomic

particles in an atom. For a further exercise, try calculating the radius of the orbit of the particles in

this gravity-atom.

1.29 If there’s only one electron, we need to know only the atomic number Z to identify the ion. From

Eqs. 1.13 and 1.14:

rn =
n2a0
Z

= 1.286a0 vn =
Ze2

4πε0nh̄
= 2.333

e2

4πε0h̄

n2

Z
= 1.286

Z

n
= 2.333

Z = (2.3332)(1.286) = 7.

The ion is N+6.

1.30 [Thinking Ahead: Is this longer or shorter than λdB for the electron in hydrogen? Shorter.

The heavier mass of the muon compared to the electron makes the system more classical, with wave

properties harder to measure. That implies a smaller λdB.] The solution will be identical to the Bohr

atom, except with the muon mass mμ substituted for me.

-e

p

+e

mμ

m

v =
Ze2

4πε0nh̄
Z = 1 n = 1

λdB =
h

mμv
=

4πε0hh̄

mμe2
=

(1.113 · 10−10C2 J−1 m−1)(6.626 · 10−34 J s)(1.055 · 10−34 J s)

(1.884 · 10−28 kg)(1.602 · 10−19C)2

= 1.61 · 10−12 m.

1.31 The total power is the sum of the contribution from each photon emitted, the product of the

number of photons per second and the energy per photon. Setting the average photon wavelength equal

to λ̄, the energy per photon is approximately given by

Ephoton ≈ hc

λ̄
=

(6.626 · 10−34 J s)(2.998 · 108ms−1)

590 · 10−9m

= 3.37 · 10−19 J/photon.
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