Full Download: http://testbanklive.com/download/navigating-through-mathematics-1st-edition-collins-solutions-manual/

INSTRUCTOR NAVIGATION GUIDE

2.1 Early & Modern Numeration Systems

KEY TERMS	
Additive System	An additive system is a numeration system where the number represented is the sum of the values of each individual numeral.
Babylonian System	The Babylonian system is one of the oldest place-value systems and uses a base of 60 with 2 cuneiform numerals to represent each number.
Base 10 System	A base 10 decimal system has place values increasing by powers of ten and is called positional because the value of the symbol is understood by its position in the number.
Chinese System	The Chinese system of numeration uses separate symbols for the numerals 0–9 as well as separate symbols for various multiples of ten. It is a multiplicative system.
Cuneiform	Cuneiform is one of the earliest forms of writing where a stylus made of reed was used to form symbols in either wood or a wet clay tablet.
Decimal System	A number system that has place values increasing by powers of ten and is positional.
Egyptian System	The Egyptian system of numeration is an additive base 10 system using hieroglyphs to represent the digits 0–9 as well as the powers of ten.
Expanded form	Expanded form is a way to write a number to show the value of each digit. It is shown as a sum of each digit multiplied by its matching place value (ones, tens, hundreds, etc.)
Hieroglyphs	Hieroglyphs are Images used to represent numerals in the Egyptian system of numeration.

	<u>г</u>					
	The Hindu-Arabic numeration system is composed of ten symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) named for the Indian					
Hindu-Arabic System	scholars who invented it at least as early as 800 BC and for the Arabs who transmitted it to the western world.					
	It is a Base 10 or Decimal system.					
Multiplicative System	A multiplicative system is a numeration system that consists of two sets of numerals, one set representing the digits and the other set representing positions.					
Numerals	Numerals are the symbols used to represent a number.					
Numeration System	A numeration system consists of a set of symbols (numerals) to represent numbers along with a set of rules for combining numerals.					
Place Value	The place value assigns a value to a digit depending on its place or position in a numeral.					
Roman System	The Roman system is an additive base 10 numeration system with single numerals representing the powers of ten as well as the halves of each power of ten.					
Tally System	The tally system is a numeration system where the value of a certain number (i.e. 4) is the sum of the values of each individual numeral (or tally marks).					

Objective 1 Understand and Use the Hindu-Arabic System

Oncept video questions and answers

1. What are the key features of the Hindu-Arabic number system?

- o Ten symbols called digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- o Place value
- Numbers can be written in expanded form

2. Fill in the following place value chart:

01			
Millions	Millions Thousands		

EXAMPLE 1	Write a Hindu-Arabic Number in Expanded Form
Write 13.448	in expanded form.

Each digit represents a power of 10:

1	3	4	4	8
104	10 ³	10 ²	10 ¹	10^{0}
10,000	1,000	100	10	1

Multiplying each digit by the corresponding value:

13,448 = 1(10,000) + 3(1,000) + 4(100) + 4(10) + 8(1)

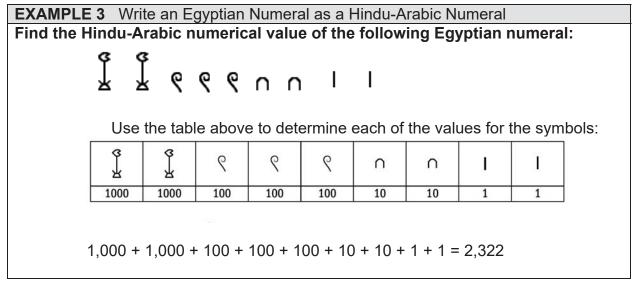
Additional problem

1. Write 27,777 in expanded form. 2(10,000) + 7(1,000) + 7(100) + 7(10) + 7(1)

EXAMPLE 2 Change from Expanded Form into a Hindu-Arabic Numeral Write $3(10^4) + 0(10^3) + 7(10^2) + 9(10^1) + 0(10^0)$ as a Hindu-Arabic numeral. $3(10^4) + 0(10^3) + 7(10^2) + 9(10^1) + 0(10^0)$ = 3(10,000) + 0(1,000) + 7(100) + 9(10) + 0(1) = 30,000 + 0 + 700 + 90 + 0= 30,790

🔏 In-class activity

First choose a list of numbers. Use index cards to create a template like the one below. Make sure the answer for the "who has" is the next card's "I have". Make sure the last card's "who has" corresponds to the first card's "I have."


l have 335	I have 231
Who has 2(100) + 3(10) + 1	Who has 5(1000) + 7(100) + 0(10) + 5
I have 5,705	I have 9,880
Who has 9(1000) + 8(100) + 8(10) + 0	Who has 3(100) + 3(10) + 5

Hand out a card to each student. Some students may need to have 2 depending upon how many in a set. It is important to use all the cards in a set.

Randomly pick a student to start. They will say "I have 335, who has 2 times 100 plus 3 times 10 plus 1? The student with the matching value to the "who has" will say "I have 231, who has 5 times 1000 plus 7 times 700 plus 0 times 10 plus 5?" This will continue until every student has gone.

Hindu-Arabic	Egyptian	
Numeral	Numeral	Description
1	I	Staff
10	Ω	Heel bone
100	9	Scroll
1,000	с К	Lotus flower
10,000	Ø	Pointed finger
100,000	S or	Tadpole or frog
1,000,000	E.	Astonished person

Objective 2 Understand and Use the Egyptian System

1. Find the Hindu-Arabic numeral for the following Egyptian numeral

۴	٩	9	9	9	9	ኖ	Λ	Λ	Ι	Ι	Ι	Ι	Ι	Ι	I	Ι

728

EXAMPLE 4 Write a Hindu-Arabic Numeral as an Egyptian Numeral Write 10,454 as an Egyptian numeral.

10,454 in expanded form is:

10,000 + 400 + 50 + 41(10,000) + 0(1,000) + 4(100) + 5(10) + 4(1)

Now determine the symbols needed for each power of 10:

Hindu-Arabic Numeral	Egyptian Numeral	Description
1	1	Staff
10	Ω	Heel bone
100	9	Scroll
1,000	R G	Lotus Flower
10,000	ß	Pointed Finger
100,000	S of	Tadpole or Frog
1,000,000	Y	Astonished Person

Hindu-Arabic	Egyptian
1(10,000)	ß
4(100)	9999
5(10)	0 0 0 0 0
4(1)	

10,454 is equivalent to

1 1 1 1 1 1 1 9 9 9 9 9

1. Write 12,144 as an Egyptian numeral

Roman Numeral I V X L С D M **Hindu-Arabic Numeral** 50 1,000 1 5 10 100 500 $\overline{\mathbf{V}}$ $\overline{\mathbf{X}}$ ĪV ĪX **Roman Numeral** Hindu-Arabic Numeral 4,000 5,000 9,000 10,000

Objective 3 Understand and use the Roman system

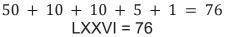
EXAMPLE 5 Write a Roman Numeral as a Hindu-Arabic Numerala) Write the Hindu-Arabic number that LXXVI represents.

L	X	X	V	Ι

We want to use the following table to determine the corresponding Hindu-Arabic numerals:

Roman Numeral			Ι	V	X	L	С	D	Μ
Hindu-Arabic Numeral		1	5	10	50	100	500	1000	
•				•					
	X	X	V						
L	~	~		•					

Because each symbol goes in decreasing order, we just add each Hindu-Arabic numeral to get the corresponding value.


$$50 + 10 + 10 + 5 + 1 = 76$$

LXXVI = 76

We want to use the following table to determine the corresponding Hindu-Arabic numerals:

Roman Numeral	Ι	V	X	L	С	D	Μ
Hindu-Arabic Numeral	1	5	10	50	100	500	1,000

L	X	X	V	Ι
50	10	10	5	1

Because each symbol goes in decreasing order, we just add each Hindu-Arabic numeral to get the corresponding value.

We wai	nt to us	e the fo	ollowing	table to	determ	ine the	corresp	onding	Hindu-A	rabic numerals:
Romar	n Numera	ıl	I	V	X	L	C	D	М	
Hindu-	Arabic N	umeral	1	5	10	50	100	500	1,000	
D	X	L	Ι	Х						
500	10	40	1	10						
corresp	oonding	values	before	we can			ding ord (each o			to use subtraction to determine t
D	X	L	Ι	Х			40 + 9			
500	10	50	1	10		200			5.40	
	50 - 10) = 40	10 - 1	- 0			DX	LIX =	549	

- 1. Write the Hindu-Arabic numeral MCMXC represents 1,990
- 2. Write the Hindu-Arabic numeral MDXXIV represents.1,524

KAMPLE 6 Write a H	lindu-Aı	rabic N	lumeral	as a Ro	man Nu	umeral			
Write 254 as a Rom	-								
Break apart into expanded form:									
= 200 + 50 + 4									
				=	100 + 1	00 + 50) + 5 -	- 1	
					100 1	00 1 50	, , ,	1	
Using the followir	ng table	e:							
	0								
Roman Numeral		Ι	V	X	L	С	D	Μ	
Hindu-Arabic Nume	eral	1	5	10	50	100	500	1,000	
Hindu-Arabic Nume		1 ing syr		10	50	100	500	1,000	
								1,000	
We have the corre	espond		mbols:			100 = CCLIV		1,000	

reak apart into	. =	10,000	0 + 3,0	00 + 40				
= 10(1,0	000) + 3	(1,000) + (50	00 - 10	0) + (50 - 10) + (5 + 3)
sing the followi	ng table:							
Roman Numeral		I	V	X	L	С	D	М
Hindu-Arabic Numeral		1	5	10	50	100	500	1,000
			abalar					
Ve have the cor 10(1,000)	respond 3,000	0,		-100	50-	-10	5	+ 3

- 1. Write 89 as a Roman numeral **LXXXIX**
- **2.** Write 6,893 as a Roman numeral. $\overline{\text{VI}\text{DCCCXCIII}}$

Depending on the source, when working with values over 3,000, you may find different ways to write it. For example, some sources have 4,000 as MMMM whereas others will write it as \overline{IV} .

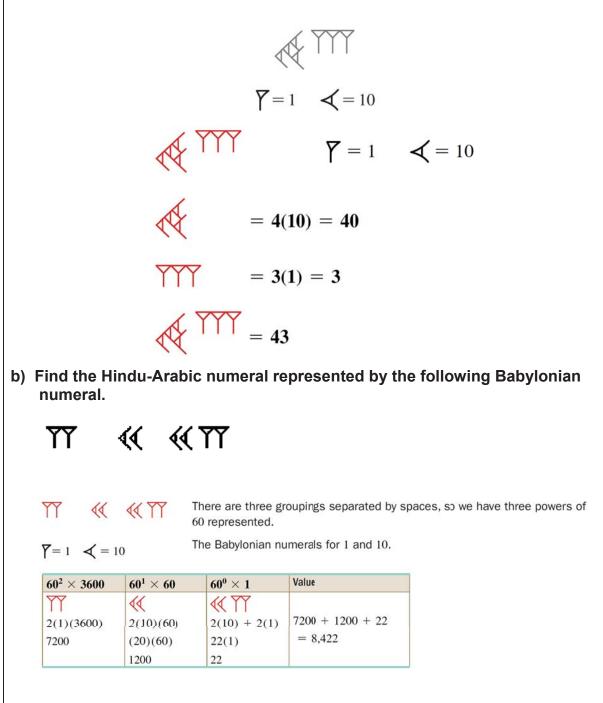
Objective 4 Understand and use the Babylonian system

Concept video question and answer

1. How would a Babylonian distinguish between the Babylonian numeral for 60 and the Babylonian numeral for 1?

Counting was done in a context, so a person would know if they were counting just 1 item or 60.

Babylonian Numerals


$$\nabla = 1$$
 $\checkmark = 10$

Converting from Hindu-Arabic to Babylonian

- 1. Determine the highest power of the Babylonian base 60 that will divide into the given Hindu-Arabic numeral at least once and then divide.
- 2. Keep the whole number part and divide the remainder by the next lower power of base 60.
- 3. Repeat steps 1 and 2 until the remainder is 0.
- 4. The number in base 60 will be each of the quotients from the highest power of base 60 descending to the quotient when dividing by 1.
- 5. Write the symbols for each quotient in separate columns.

EXAMPLE 7 Write a Babylonian Numeral as a Hindu-Arabic Numeral

a) Find the Hindu-Arabic numeral represented by the following Babylonian numeral.

1. Find the Hindu-Arabic numeral represented by the following Babylonian numeral.

1,218

2. Find the Hindu-Arabic numeral represented by the following Babylonian numeral.

39,064

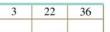
EXAMPLE 8 Write a Hindu-Arabic Numeral as a Babylonian Numeral

a) Write 12,156 as a Babylonian numeral.

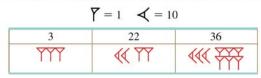
1. Determine the highest power of the Babylonian base 60 that will divide into given Hindu-Arabic numeral at least once and then divide.

The power of 60 less than 12,156 is $60^2 = 3,600$

$60^3 = 216,000$	$60^2 = 3,600$	$60^1 = 60$	$60^0 = 1$
Too big			


- 2. Divide. Keep the whole number part and divide the remainder by the next lower power of base 60.
- 3. Repeat step 2 until the remainder is zero.

	$60^2 = 3,600$	$60^1 = 60$	$60^0 = 1$
	12,156 ÷ 3,600	1,356 ÷ 60	36 ÷ 1
Quotient	3	22	36
Remainder	1,356	36	0


4. The number in base 60 will be each of the quotients from the highest power of base 60 descending to the quotient when dividing by 1.

	$60^2 = 3,600$	$60^1 = 60$	$60^0 = 1$
	$12,156 \div 3,600$	1,356 ÷ 60	36 ÷ 1
Quotient	3	22	36
Remainder	1,356	36	0

5. Arrange the quotients in order along with the last remainder.

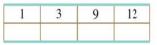
6. Use the Babylonian symbols that correspond to each of the quotients.

b) Write 227,352 as a Babylonian numeral.

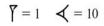
1. Determine the highest power of the Babylonian base 60 that will divide into the given Hindu-Arabic numeral at least once and then divide.

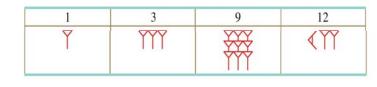
The power of 60 less than 227,352 is $60^3 = 216,0000$

$60^4 = 12,960,000$	$60^3 = 216,000$	$60^2 = 3,600$	$60^1 = 60$	$60^0 = 1$
Too big				


- 2. Divide. Keep the whole number part and divide the remander by the next lower power cf base 60.
- 3. Repeat step 2 until the remainder is zero.

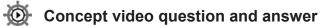
	$60^3 = 216,000$	$60^2 = 3,600$	$60^1 = 60$	$60^0 = 1$
	227,352 ÷ 216,000	$11,352 \div 3,600$	552 ÷ 60	12 ÷ 1
Quotient	1	3	9	12
Remainder	11,352	552	12	0

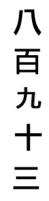

4. The number in base 60 will be each of the quotients from the highest power of base 60 descending to the quotient when dividing by I.


	$60^3 = 216,000$	$60^2 = 3,600$	$60^1 = 60$	$60^0 = 1$
	227,352 ÷ 216,000	$11,352 \div 3,600$	552 ÷ 60	12 ÷ 1
Quotient	1	3	9	12
Remainder	11,352	552	12	0

5. Arrange the quotients in order along with the last remainder

6. Use the Babylonian symbols that correspond to each of the quotients.




 Write 13,221 as Babylonian numeral. P P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
 Write 291,995 as Babylonian numeral. P ✓ ✓ P Y ✓ ✓ P Y P Y Y Y Y Y Y

Objective 5 Understand and use the Traditional Chinese System

Digits		Position	
Chinese	Hindu-Arabic	+	= 10
零/〇	=0	百	=100
	=1		= 1000
=	= 2	Ŧ	- 1000
Ξ	= 3	萬	= 10,000
四	=4		
五	= 5		
六	=6		
七	=7		
Л	= 8		
九	=9		

1. How would you write the Hindu-Arabic numeral 893 in the Chinese system?

EXAMPLE 9 Write a Hindu-Arabic Numeral as a C	hinese	Numera	
Write 4,254 as a Chinese numeral			
4,254 = 4,000 + 200 + 50 + 4			
4,254 = 4(1000) + 2(100) + 5(10) + 4			
Write the digit symbol and position symbol for	or each	with Chi	nese numerals.
	4.000	∫ 4	四
	4,000	$\left\{ {\begin{array}{*{20}c} 4 \\ 1,000 \end{array} \right.$	千
	200	∫ 2	=
	200	$\begin{cases} 2 \\ 100 \end{cases}$	百
	50	∫5	五
	50	$\begin{cases} 5\\ 10\\ 4 \end{cases}$	+
	4	4	四

- 1. Write 737 as Chinese numeral.
 - 七 百
 - Ξ +

 - 七
- 2. Write 10,302 as Chinese numeral
 - .— <mark>萬</mark>三百二

EXA	MPLE 10	Write a Chin	ese Numeral as	s a Hindu	I-Arabic Numeral
Write	e the Hindu	I-Arabic nu	meral represer	ited by th	he following Chinese
nume	erals:				
			=		
			=		
			Ŧ	-	
			_	-	
			百	ī	
			ー		
			+	-	
			<u>рт</u>	1	
	Digits		D	osition	
	Chinese	Hindu-Arabic			= 10
	零/〇	= 0		+	= 100
		= 1		百	
	—	= 2	_	千	= 1,000
	 	= 3		萬	= 10,000
	四	= 4		= 3	
	五	= 5			$3 \times 1,000 = 3,000$
	六	= 6	-	F = 1,00	J0 5 A 1,000 5,000
	七	= 7	-	- = 1	
	ハ	= 8	Ē	E = 100	$1 \times 100 = 100$
	九	= 9	7	、 = 6	
			-	- = 10	$6 \times 10 = 60$
			D	प = 4	4
			-		3,000 + 100 + 60 + 4 = 3,164

- 1. Write the Hindu-Arabic numeral $\neq \equiv$ represents. **1,003**
- 2. Write the Hindu-Arabic numeral 六千几百几十三 represents. 6,883

h class activity

Source: <u>https://maya.nmai.si.edu/maya-sun/maya-math-game</u> Introduce the Mayan number system.

Number System Bingo

Have each student create a bingo card using the numbers 1 – 100 in whichever number system you would like (Roman, Egyptian, Chinese, or Babylonian) Call out a number and if they have the matching symbol, they can mark it off. Winner can be to blackout or just one line.

2.2 Base Number Systems

_ _ _ _ _ _ _ _

KEY TERMS	
Binary	The binary system is a base 2 number system used in computer operations where 1 represents "on" and 0 represents "off".
Hexadecimal	A hexadecimal system is a base 16 number system used in computer operations.
Octal	An octal system is a base 8 number system used in computer operations.

Objective 1 Convert Other Base Numbers to Base 10

Oncept Video - Characteristics of Different Base Systems

- 1. How do you count to 5 in base 5? 1, 2, 3, 4, 10
- 2. Fill in the following chart showing the letters which represent the numbers 10 - 35.

Α	В	С	D	E	F	G	Н	I	J	К	L	Μ
10	11	12	13	14	15	16	17	18	19	20	21	22
Ν	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
23	24	25	26	27	28	29	30	31	32	33	34	35

- Go to the following website: <u>http://www.shodor.org/interactivate/activities/NumberBaseClocks/</u>
- Click on "Learner" tab and then print out "Number Base Clocks Exploration Questions" for each student.
- Use a camera projection to go through the activity with your students, or if they have access to computers do with a partner and then have a whole class discussion.

EXAMPLE 1 Converting From Base 5 to Base 10 Convert 3224₅ to base 10.

Step 1: Write each digit of the given number along with the corresponding power of the given base. The powers should increase going from right to left, starting at a power of zero.

5 ³	5 ²	5 ¹	50
3	2	2	4

Step 2: Multiply each digit by the corresponding power.

5 ³	5 ²	5 ¹	5 ⁰
3	2	2	4
3(5 ³)	$2(5^2)$	2(5 ¹)	$4(5^0)$
3(125)	2(25)	2(5)	4(1)
375	50	10	4

Step 3: Add the products together to get the result in base 10.

$$375 + 50 + 10 + 4 = 439$$

$$3224_5 = 439$$

- 1. Convert 3405 to base 10. **95**
- 2. Convert 11112_3 to base 10.122

EXAMPLE 2 Converting From Base 16 to Base 10 Convert 5ED8₁₆ to base 10.

Step 1: Write each digit of the given number along with the corresponding power of the given base. The powers should increase going from right to left, starting at a power of zero.

16 ³	16 ²	16 ¹	16 ⁰
5	Е	D	8

Because we are in base 16, we need 16 numerals to represent each digit. For numbers greater than 9, we use letters:

Α	B	С	D	E	F	G	H	I	J	K	L	Μ
10	11	12	13	14	15	16	17	18	19	20	21	22
Ν	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
23	24	25	26	27	28	29	30	31	32	33	34	35

16 ³	16 ²	16 ¹	16^{0}
5	E = 14	D = 13	8

Step 2: Multiply each digit by the corresponding power.

16 ³	16 ²	16 ¹	16^{0}
5	E = 14	D = 13	8
5(16 ³)	$14(16^2)$	13(16 ¹)	8(16 ⁰)
5(4,096)	14(256)	13(16)	8(1)
20,480	3,584	208	8

Step 3: Add the products together to get the result in base 10.

$$20,480 + 3,584 + 208 + 8 = 24,280$$

$$5ED8_{16} = 24,280$$

Additional problems

- 1. Convert 8A2112 to base 10. 15,289
- 2. Convert 9B47₁₄ to base 10. 26,915

Objective 2 Convert Base 10 Numbers to Numbers in Other Bases

Or Concept video question and answer

1. How do you write 105 base 10 in base 5?

4105

Converting from Base 10 to Base b

- 1. Determine the highest power of the base *b* that will divide into the given number at least once and then divide.
- 2. Keep the whole number part and divide the remainder by the next lower power of the base *b*.
- 3. Repeat steps 1 and 2 until the remainder is being divided by 1.
- 4. The number in base b will be each of the quotients from the highest power of base b descending to the quotient when dividing by 1.

EXAMPLE 3 Converting from Base 10 to Base 2

Write 97 in base 2.

 Determine the highest power of base 2 that will divide into the given numeral at least once and then divide. The power of 2 that is less than 97 is 26 = 64 because 27 = 128 is too big.

$2^7 = 128$	$2^6 = 64$	$2^5 = 32$	$2^4 = 16$	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
Too big							

- 2. Divide. Keep the whole number part and divide the remainder by the next lower power of base 2.
- 3. Repeat step 2 until the remainder is zero.

	$2^6 = 64$	$2^5 = 32$	$2^4 = 16$	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
	97 ÷ 64	33 ÷ 32	1 ÷ 16	$1 \div 8$	$1 \div 4$	$1 \div 2$	1 ÷ 1
Quotient	1	1	0	0	0	0	1
Remainder	33	1	1	1	1	1	0

97 converted to base 2 can be written by writing each of the quotients from left to right starting at the highest power of the base.

 $97 = 1100001_2$

Additional problems

- 1. Write 743 in base nine. 10159
- 2. Write 1345 in base six. 101216

EXAMPLE 4 Converting from Base 10 to Base 16

Write 19,442 in base 16.

1. Determine the highest power of base 16 that will divide into the given base 10 number at least once and then divide. The power of 16 that is less than 19,442 is 163 = 4,096 because 164 = 65,536 is too big.

$16^4 = 65,536$	$16^3 = 4,096$	$16^2 = 256$	$16^1 = 16$	$16^0 = 1$
Too big				

- 2. Divide. Keep the whole number part and divide the remainder by the next lower power of base 16.
- 3. Repeat step 2 until the remainder is zero.

	$16^3 = 4,096$	$16^2 = 256$	$16^1 = 16$	$16^0 = 1$
	19,442 ÷ 4,096	3,058 ÷ 256	242 ÷ 16	$2 \div 1$
Quotient	4	11	15	2
Remainder	3,058	242	2	0

Use the following chart to evaluate the quotients that are greater than 9.

Α	B	C	D	E	F	G	Н	Ι	J	K	L	M
10	11	12	13	14	15	16	17	18	19	20	21	22
Ν	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
23	24	25	26	27	28	29	30	31	32	33	34	35
			$\frac{6^3 = 4}{442 \div 4}$			= 256 ÷ 256	-	$6^1 = 16$ $42 \div 16$		$\frac{16^0}{2 \div}$		
	0	19,	442 ÷ 4	4,095							1	
Quotien	t		4		11 :	= B	1	15 = F		2		
Remain	der		3,058		24	42		2		0		

19,442 converted to base 16 can be written by writing each of the quotients from left to right starting at the highest power of the base.

 $19,442 = 4BF2_{16}$

- 1. Write 1345 in base fifteen. 5EA₁₅
- 2. Write 1345 in base thirteen. 7C613

Objective 3 Convert between Binary and Octal and Binary and Hexadecimal Number Systems

-	
Octal	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Hexadecimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Hexadecimal to Binary Table

The game of Nim

Source: <u>http://ocw.mit.edu/courses/urban-studies-and-planning/11-124-</u> <u>introduction-to-education-looking-forward-and-looking-back-on-education-fall-2011/math-science-education/week-7/MIT11 124F11 nim handout.pdf</u>

Source: http://education.jlab.org/nim/s_gamepage.html

h class discussion

Source: <u>http://www.businessinsider.com/the-martian-hexidecimal-language-</u>2015-9

The link above is to an article talking about the use of hexadecimal in the 2015 movie *The Martian*. If you have the movie you can show the clip and talk about how this was used to relay messages from Mars to Earth by Mark Watney.

EXAMPLE 5 Convert Between Binary and Octal	
Convert 1101110011 ₂ to octal.	
Separate the base 2 number from right to left in zeros if necessary.	to groups of three digits, adding
1101110001101110	011 011
Use the table below to change each group of th numbers.	ree binary numbers to octal
OctalBinary0000	
1 001	
2 010	
3 011	
4 100	
5 101	
6 110	
7 111	
Binary Number 1	101 110 011
Binary Number (zeros added) 001	101 110 011
Corresponding Octal Number 1	5 6 3
$1101110011_2 = 1,$	563 ₈

- 1. Convert 110001101₂ to octal. **615**₈
- 2. Convert 10000100001₂ to octal.2041₈

EXAMPLE 6 Convert Between Binary and Hexadecimal

Convert 1101110011₂ to hexadecimal.

When going from base 2 to hexadecimal, we want to separate the base 2 number into groups of four digits, going from right to left adding zeros as necessary.

Base 2 Number	0011	0111	0011
Corresponding	3	7	3
hexadecimal number			

Hexadecimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Hexadecimal to Binary Table

 $1101110011_2 = 373_{16}$

Source: http://cse4k12.org/binary/bitmaps.html

Source: http://csunplugged.org/binary-numbers/

If you have the space for a physical activity, have two (or more) teams (of 4 or 5 students each) line up.

- Each student represents a bit, with the student on one end being the bit in the 1's place, the next student representing the 2's place, the next the 4's place, etc.
- The students start in a standing position, which represents neither 1 nor 0. To represent a 1, the student's arms must be stretched straight overhead; to represent a 0, the student must squat down.
- You then call a number (one that can be represented using that many bits). The two teams then race to get their team to represent that number. The first team to have it correct gets a point. They normalize (all stand with no arms up) and a new number is called.
- Ask them about patterns they find during the game. (The 1's place student should notice that if the number is odd, their arms are up, but if the number is even, they are squatting. The student representing the highest bit should notice that their arms are up if the number is larger than or equal to their place value.)

http://cse4k12.org/

Several activities for converting between binary and octal and binary and hexadecimal.

_ _ _ _ _ _ _ _ _

2.3 Computation in Other Bases

KEY TERMS	
Dividend	A dividend is the quantity to be divided.
Divisor	A divisor is the quantity by which another quantity, the dividend, is to be divided by.
Quotient	A quotient is the answer to a division problem.
Regrouping	Regrouping is a process of shifting a place value of the base from one place value column to the next. Regrouping is also called carrying or borrowing
Remainder	A remainder is the amount left over after division.

Objective 1 Add in Bases Other than 10

Adding in Bases Other than 10

When ADDING with other bases, follow these steps:

- 1. If the numbers are not already arranged vertically, place them vertically, with each place value in the same column.
- 2. Add the ones digits first, just as in base 10.
- 3. Evaluate the sum.
 - a. If the sum is less than the base, write it under that column.
 - b. If the sum is greater than or equal to the base, we must carry.

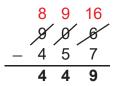
Find the remainder after dividing by the base and write it under the column.

To find the amount to carry, find out how many times the base will go into the sum evenly.

4. Continue adding the next digits as described in step 2 until all numbers are added. Remember to add in any carried numbers.

EXAMPLE 1 Add in Different Bases: Add 376 ₈ + 334 _{8.}	: Base 8
Add 57 68 + 5548.	
	3 7 68
	$+ 3 3 4_8$
Step 1:	1
6 + 4 = 10	3 7 68
10 > 8	$+ 3 3 4_8$
$10 \div 8 = 1 R2$	$\frac{1}{2_8}$
Step 2:	1 1
1 + 7 + 3 = 11	3 7 68
11 > 8	+ 3 3 4 ₈
$11 \div 8 = 1 R3$	3 28
Step 3:	1 1
1 + 3 + 3 = 7	3 7 6 ₈
7 < 8	+ 3 3 4 ₈
	7 3 28

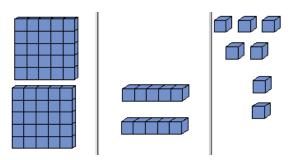
- 1. 146317 + 65327 **24463**7
- 2. $101101_2 + 110010_2$ **1011111_2**


						4 5 ₁₂ A 6 ₁₂							
Step 1:							_						
5 + 6 = 11	A	B	C	D	E	F	G	H	I	J	K	L	M
11 < 12, so we can	10 N	11 0	12 P	13	14 R	15 S	16 T	17 U	18 V	19 W	20 X	21 Y	22 Z
ust write the value.	23	24	25	Q 26	27	28	29	30	31	32	33	34	35
11 corresponds to B.	25	24	23	20	21	20	29	50	51	52	55	54	55
					4	4 512							
						A 612							
						B ₁₂							
Step 2:	A	В	C	D	Е	F	G	Н	I	J	K	L	M
4 + A	10	11	12	13	14	15	16	17	18	19	20	21	22
	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
	23	24	25	26	27	28	29	30	31	32	33	34	35
A corresponds to 10					1								
					4	4 5 ₁₂							
4 + 10 = 14					+ 3	A 6 ₁₂							
4 + 10 = 14 14 > 12						2 B ₁₂	-						
4 + 10 = 14 14 > 12 $14 \div 12 = 1 R2$													
14 > 12					1								
14 > 12 $14 \div 12 = 1 R2$					1	4 5 ₁₂							

Additional problems

- 1. AB1₁₂ + 315₁₂ **1206₁₂**
- 2. 8C51₁₆ + 947B₁₆ **120CC₁₆**

Objective 2 Subtract in Bases Other Than 10


Subtract 906 – 457 without a calculator showing your steps:

Concept video questions and answers

1. Draw the model for 232₅ labeling the columns.

2. When regrouping (or borrowing) what are you doing? Taking a group that is the size of the base to add to another place value column.

Subtracting in Bases Other Than 10

When SUBTRACTING with other bases, follow these steps:

- 1. Align the numbers vertically, with each place value in the same column.
- 2. Subtract the ones digits first, just as in base 10. If you need to borrow from the first nonzero digit, make sure to borrow the amount of the base each time.
- 3. Borrow in the amount of the base until each digit in the top row is greater than the digits in the bottom row.
- 4. Subtract each column.
- 5. Check using addition in the given base.

EXAMPLE 3 Subtract in Different Bases: Base 5

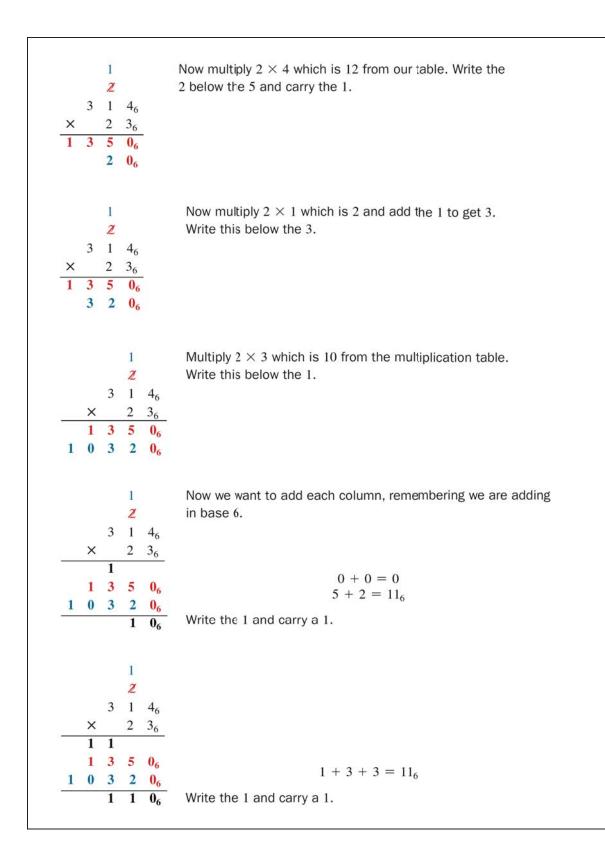
	25's	5's	1's	In base 5 our place value columns are 1's, 5's and 25's. Each time we borrow we are
	3	5		borrowing a group of 5.
	4	5+0	0	1) Right most column - do you need to borrow?
_	2	4	4	A. Because 4 is more than 0 we need to borrow.
				B. We cannot take anything from the 5's column because it is 0.
	25's	5's	1's	C. We have to borrow from the 4 in the 25's column.
	23.0	4		D. Take one from the 4. This turns the 4 into a 3. We are adding $5-5$'s to the 0 in the 5's
	3	8	5	column, giving us 5 in this column.
	4	5+0	5+0	E. Take one from the 5 in the 5's column. This turns the 5 into a 4. We are adding $5-1$'s
	2	4	4	to the ones column, giving us 5.
	25's	5's	1's	2) Subtract each column.
	20 3	4	1 3	A. $5 - 4 = 1$
	3	8	5	B. $4 - 4 = 0$
	4	5+0	5+0	C.3 - 2 = 1
_	2	4	4	
	1	0	1	

- 1. 1001₂ 110₂
- 2. 4768 2678

Α	В	С	D	Е	F	G	Н	Ι	J	K	L	M
10	11	12	13	14	15	16	17	18	19	20	21	22
N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
23	24	25	26	27	28	29	30	31	32	33	34	35
						1	5 7	16 + 16 + 16 + 16 + 16 + 16 + 16 + 16 +				

- 1. 4C6₁₆ 198₁₆ 32E₁₆
- $2. \quad 97A_{12} 3B8_{12} \ \textbf{582_{12}}$

Objective 3 Multiply in Bases Other than 10


Multiplying in Bases Other Than 10

When MULTIPLYING with other bases, follow these steps:

- 1. If numbers are not already arranged vertically, place them vertically, aligning each one's place.
- 2. Carry out the multiplication for each column using the base multiplication table and carrying when necessary.
- 3. Add each product to get the final answer.

Step 1:	Comple	ete a m	ultiplicat	tion tab	le for th	e base	n which you are multiplying.
X	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	1	2	3	4	5	
2	0	2	4	10	12	14	
3	0	3	10	13	20	23	
4	0	4	12	20	24	32	
5	0	5	14	23	32	41	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Multiply	3 × 1	= 3 an	d add 1	ne 2 to get 5.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	Multiply then bri				n our table. We write 13 and r zero.

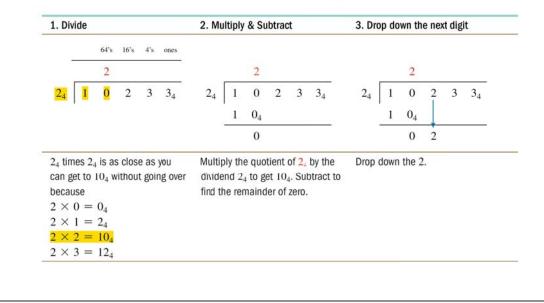
Copyright © 2017 Pearson Education, Inc. 116

1 2 3 1 46 2 36 × 1 1 1 3 5 06 $1 + 1 = 2_6$ 1 0 3 2 06 1 2 1 1 06 Bring down the last 1. ALTERNATE METHOD Convert both numbers to base 10, multiply them normally, then convert that number back to the desired base. $314_6 \times 23_6$ Convert each number to base 10. $314_6 = 3(6^2) + 1(6) + 4 = 118$ $23_6 = 2(6) + 3 = 15$ Multiply the base 10 numbers. • $118 \times 15 = 1,770$ Convert the answer back to base 6. $1,770 = 12110_6$

- 1. 21₃ x 2₃ 112₃
- 2. 6A3₁₆ x 24₁₆ EEEC₁₆

Objective 4 Divide in Bases Other Than 10

Dividing in Bases Other Than 10


When DIVIDING with other bases, follow these steps:

- 1. Determine how many times the divisor can divide into the dividend without going over and write this quotient in the correct place value column.
- 2. Multiply the quotient by the divisor and write the answer under the dividend.
- 3. Subtract and bring down the next digit on the right.
- 4. Repeat until there are no more digits to bring down. There will be a remainder if, after the last subtraction, the difference is not equal to zero.
- 5. Check by multiplying the quotient by the divisor and adding the remainder in the given base.

EXAMPLE 6 Divide in Different Bases: Base 4 **Divide 10233**₄ **by 2**₄

Find all the multiplication facts for 2_4 . Because this problem is in base 4 which only includes the numbers 0, 1, 2, and 3, we will only need the multiplication facts up to 2×3 .

 $\begin{array}{l} 2 \,\times\, 0 \,=\, 0_4 \\ 2 \,\times\, 1 \,=\, 2_4 \\ 2 \,\times\, 2 \,=\, 10_4 \\ 2 \,\times\, 3 \,=\, 12_4 \end{array}$

1. Divide	2. Multiply & Subtract	3. Drop down the next digit
2 1	2 1	2 1
2 ₄ 1 0 2 3 3	3_4 2 ₄ 1 0 2 3 3 ₄	2_4 1 0 2 3 3_4
1 04	1 04	1 04
0 2	0 2	0 2
		2
	0	0 3
can bet to 2_4 without going or because $2 \times 0 = 0_4$ $2 \times 1 = 2_4$ $2 \times 2 = 10_4$ $2 \times 3 = 12_4$	ver dividend 2 ₄ to get 2 ₄ . Subtract to find the remainder of zero.	
. Divide	2. Multiply & Subtract	3. Drop down the next digit
2 1 1	2 1 1	2 1 1
	$3_4 2_4 1 0 2 3 3_4$	$2_4 1 0 2 3 3_4$
2_4 1 0 2 3 3	1 0	
1 04	$- \frac{1 0_4}{0 2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2	0 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 2 - 2	0 2 - 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 2	0 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$- \frac{0}{2}$ - $\frac{2}{0}$ 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

1. Div	ide					2. Mi	ultiply	& SI	btrac	t		3. Dro	op do	wn th	e nex	t digi	it
		2	1	1	3			2	1	1	3			2	1	1	3
24	1	0	2	3	34	2_4	1	0	2	3	34	24	1	0	2	3	34
	1	04					1	04					1	04			
		0	2					0	2					0	2		
	-	2	2				-	2 <u>1</u>	2				_		2	-	
			0	3					0	3					0	3	
		-		2				_		2				-		2	5
				1	3					1	3					1	3
									-	1	2				-	1	2
											1						1
2_4 tim can ge becau $2 \times ($ 2×1 2×2 2×2	$\begin{array}{l} \text{et to} \\ \text{ise} \\ \text{o} = \\ 1 = \\ 2 = \end{array}$	13 ₄ w 0 ₄ 2 ₄ 10 ₄			you 1g over	divide	end o	$f 2_4 t d$	get	12 ₄ . T	by the hen of 1.	There The q) drop down ı.

Source: <u>http://www.dozenal.org/articles/DSA-Mult.pdf</u> This is a pdf of several different base multiplication tables to use as a reference.

EXAMPLE 7 Divide in Different Bases: Base 6	
Divide 24306 by 46	
To divide 2430 base 6 by 4 base 6, we want to first write the problem as a long division where 4 base 6 is the divisor and goes on the outside, and 2430 base 6 is the dividend and goes under the division bar.	$4_6 \boxed{2 4 3 0_6}$
Find all the multiplication facts for 4_6 . We only need to go up to 4×5 because we are working in base 6 which only uses the values 0, 1, 2, 3, 4, and 5.	$4 \times 0 = 0_6$ $4 \times 1 = 4_6$ $4 \times 2 = 12_6$ $4 \times 3 = 20_6$ $4 \times 4 = 24_6$ $4 \times 5 = 32_6$
Looking at the table, we see $4 \times 4 = 24_6$,	$4 \times 0 = 0_6$ $4 \times 1 = 4_6$ $4 \times 2 = 12_6$ $4 \times 3 = 20_6$ $4 \times 4 = 24_6$ $4 \times 5 = 32_6$
4 base 6 divides into 24 base 6 four times. Multiplying 4 times 4 in base 6 is 24. We write this below and then subtract 24 minus 24 to get 0. Now, we want to bring down the 3.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4 base 6 cannot divide into 3, so we write a zero and bring down the zero.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4 base 6 divides into 30 four times. It cannot go five times because 32 is bigger than 30.	$4 \times 0 = 0_6$ $4 \times 1 = 4_6$ $4 \times 2 = 12_6$ $4 \times 3 = 20_6$ $4 \times 4 = 24_6$ $4 \times 5 = 32_6$

Copyright © 2017 Pearson Education, Inc.

Multiplying 4 times 4 gives us 24 in base 6. We write this below the 30 and subtract.			4	0	4
	4 ₆	2	4	3	0
	-	2	4		
			0	3	0
		-		2	4
We can't subtract 4 from zero, so we will need to borrow. Remember when you are doing the subtraction that you are doing this in base 6, so when you borrow, you are borrowing groups of 6. When we borrow 1 from	4 ₆ -	22	4 4 4	0	4
the 3, it becomes 2, but then we need to add a group of 6 to the ones place.			0	2 3	6+0
			-	2	4
Adding 6 and zero then subtracting 4 gives us a remainder of 2.					2
Dividing 2430 base 6 by 4 base 6 give us 404_6R2_6 .					

Additional problems

- 1. $1110_4 \div 3_4$ **130**₄ 2. $D80C_{16} \div B_{16}$ **13A4**₁₆

2.4 Early Computational Methods

KEY TERMS	
Egyptian Algorithm for Multiplication	The Egyptian algorithm for multiplication is a procedure for multiplying two numbers which uses only the ability
· .	to add and multiply by two.
Lattice	A lattice is a grid used in lattice multiplication, which is constructed based on the number of digits being multiplied.
Lattice Method	The lattice method is an alternative way to multiply numbers using a lattice that is constructed based on the number of digits being multiplied.
Multiplicand	A multiplicand is the number that gets multiplied.
Multiplier	A multiplier is the number that gets multiplied to the multiplicand.
Napier's Rods	Napier's rods (bones) use the multiplication tables embedded in the rods to reduce multiplication to addition operations.
Russian Peasant Method	The Russian peasant method for multiplication involves a process of halving the multiplicand while doubling the multiplier to determine a product of two numbers.
Standard Algorithm	The standard algorithm is the algorithm for multiplication known as long multiplication.

Objective 1 Multiply Using the Egyptian Algorithm

Egyptian Algorithm for Multiplication

 $A \times B$

- 1. Create two columns with one number (A) at the top of the first column and the other number (B) at the top of the second column. In this example, A = 21, B = 18.
- 2. Below the first number (*A*), write all of the powers of 2 that are smaller than or equal to the first number starting with 1.
- 3. Below the second number (*B*), double the second number until you reach the same row corresponding to the highest power of 2.

21	\times	18	=	378
1		18		
2		36		
4		72		
8		144		
16		288		

- 4. In column A, find the numbers that sum to A, using each number at most once. In this example, the number at the top of column A is 21, 21 = 16 + 4 + 1
- Mark the rows in column A and the corresponding numbers in column B. In this example, we have 1, 4, 16 in column A corresponding to 18, 72, and 288 in column B.
- 6. Sum the marked numbers from column B.

1	8
7	2
8	8
7	8

Itiply 13 x 23 using the Egyptian algorithm.1323To multiply 13×23 using the Egyptian algorithm, we will first create two columns with 13 in the first column and 23 in the 2nd column.1323Below 13 we will write all of the powers of 2 that are smaller than or equal to 13. Each time you are just multiplying by 2.481323Below 23, we will start with 23 and double each number until we get to the last row.24649281841323Now we want to go back to the first column and figure out what numbers add up to give us 13. In this case we have $8 + 4 + 1 = 13$. These are highlighted.1323Finally we will add the corresponding values in the 2^{nd} column to get $23 + 92 + 184 = 299$.1323Using the Egyptian algorithm we get $13 \times 23 = 299$.	AMPLE	1 Multiply	using the Egyptian Algorithm
1323Below 13 we will write all of the powers of 2 that are smaller than or equal to 13. Each time you are just multiplying by 2.123Below 23, we will start with 23 and double each number until we get to the last row.1323Below 23, we will start with 23 and double each number until we get to the last row.24649281841323246492818413232464928184132312324649281841323123246492818413232464922464922464922464922464922464922464922464923Using the Egyptian algorithm we get $13 \times 23 = 299$.	Itiply 13	s x 23 using	I the Egyptian algorithm.
1smaller than or equal to 13. Each time you are just multiplying by 2.48132312324649281841323246492818413232464928184132324649281841323123246123246492246492246492246492246492246492Using the Egyptian algorithm we get $13 \times 23 = 299$.	13	23	we will first create two columns with 13 in the first
13 23 Below 23, we will start with 23 and double each number until we get to the last row. 2 46 4 92 8 184 13 23 2 46 4 92 2 46 4 92 8 184 13 23 2 46 4 92 8 184 13 23 1 23 2 46 4 92 8 184 13 23 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92 2 46 4 92	1 2	23	smaller than or equal to 13. Each time you are just
123246492818413231232464928132464928184132312324649281841323246492246492246492246492Using the Egyptian algorithm we get $13 \times 23 = 299$.		22	Delew 22, we will start with 22 and double peak
12324649281841323123246492818413231232464928184132312324649281841323246492246492Using the Egyptian algorithm we get $13 \times 23 = 299$.		2	
49281841323123246492818413231232461232461232461232464923231232464923Using the Egyptian algorithm we get $13 \times 23 = 299$.			
818413231232464928184 Finally we will add the corresponding values in the 2 nd column to get $23 + 92 + 184 = 299$. Using the Egyptian algorithm we get $13 \times 23 = 299$.			
1323Now we want to go back to the first column and figure out what numbers add up to give us 13. In this case we have $8 + 4 + 1 = 13$. These are highlighted.123246492818413231232464928184132312324649292Using the Egyptian algorithm we get $13 \times 23 = 299$.			
123246492818413231232464924924929Using the Egyptian algorithm we get $13 \times 23 = 299$.	8	184	
123out what numbers add up to give us 13. In this case we have $8 + 4 + 1 = 13$. These are highlighted.24649281841323123246492Using the Egyptian algorithm we get $13 \times 23 = 299$.	13	23	Now we want to go back to the first column and figure
24649281841323123246492Using the Egyptian algorithm we get $13 \times 23 = 299$.	1	23	
81841323123246492Using the Egyptian algorithm we get $13 \times 23 = 299$.	2	46	we have $8 + 4 + 1 = 13$. These are highlighted.
81841323123246492Using the Egyptian algorithm we get $13 \times 23 = 299$.		92	
1323Finally we will add the corresponding values in the 2^{nd} 123column to get $23 + 92 + 184 = 299$.24649213 \times 23 = 299.	8		
1 23 2 46 4 92 Using the Egyptian algorithm we get $13 \times 23 = 299$.			
$\begin{array}{ccc} 1 & 23 \\ 2 & 46 \\ 4 & 92 \\ \end{array}$ Using the Egyptian algorithm we get $13 \times 23 = 299$.	13	23	Finally we will add the corresponding values in the 2 nd
4 92 Using the Egyptian algorithm we get $13 \times 23 = 299$.	1	23	column to get $23 + 92 + 184 = 299$.
Using the Egyptian algorithm we get $13 \times 23 = 299$.	2	46	
	4	92	Using the Eduction electric we get $12 \times 22 = 200$
	8	184	Using the Egyptian algorithm we get $13 \times 23 = 299$.

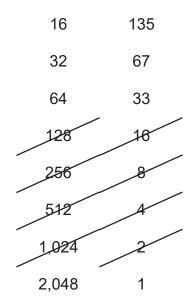
2. 34 x 105 **3570**

34	105
1	105
2	<mark>210</mark>
4	420
8	840
16	1680
<mark>32</mark>	<mark>3360</mark>

Objective 2 Multiply Using the Russian Peasant Method

Russian Peasant Method of Multiplication

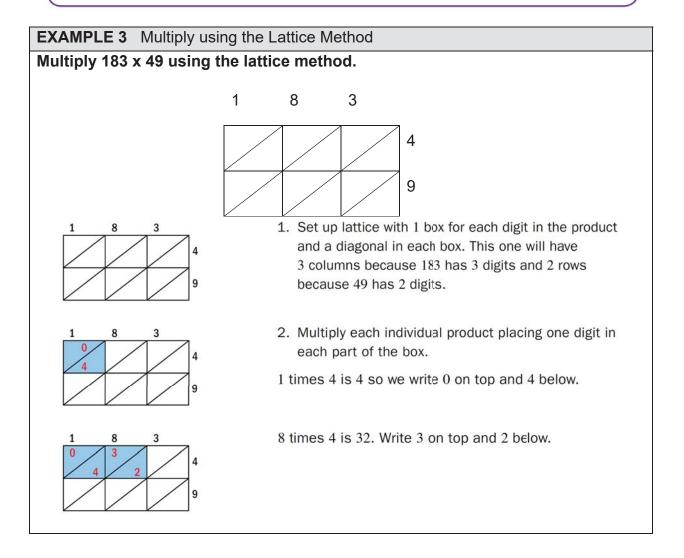
 $A \times B$

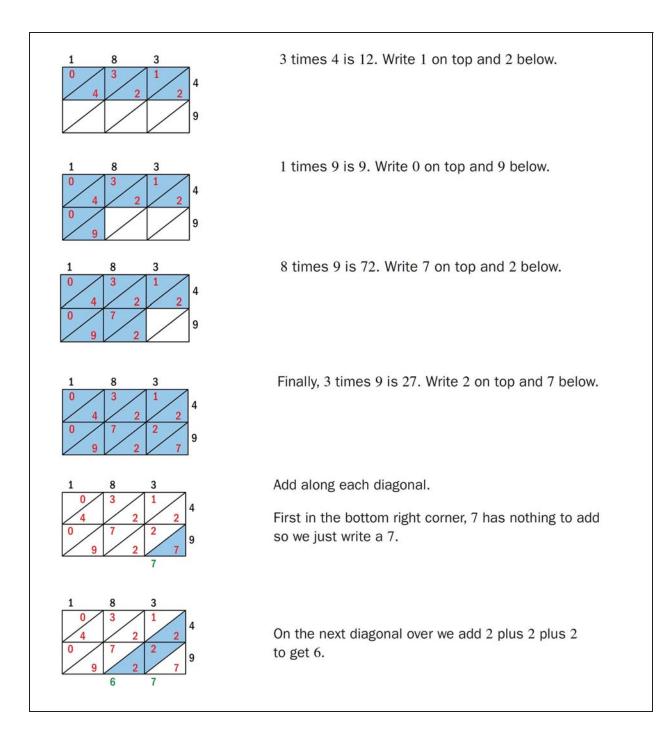

- 1. Write each number (A and B) at the top of its own column
- 2. Double the number in the first column and halve the number in the second column. If the number in the second column is odd, divide it by two and drop the remainder.
- 3. If the number in the first column is even, cross out that entire row.
- 4. Keep doubling, halving, and crossing out until the number in the second column is 1.
- 5. Add up the remaining numbers in the second column, including the number at the top of column B. The total is the product of your original numbers.

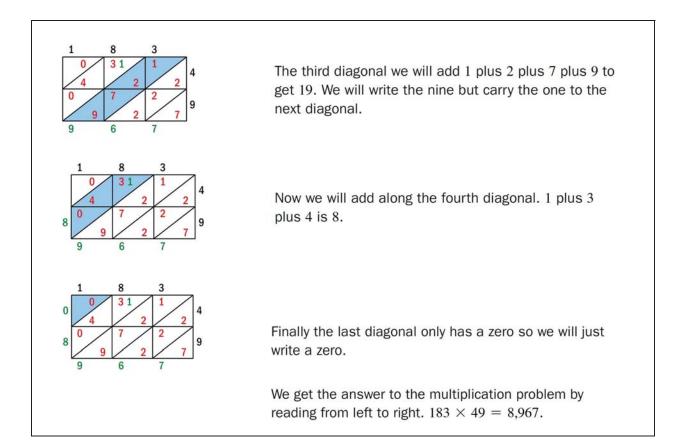
EXAMPLE 2	Multiply Using the	Russian Peasant Method
Multiply 29	x 49 using the Rus	sian Peasant method.
	29 imes 49 using the peasant method.	Write each number at the top of a column in a table. 49 is odd so we will keep the 1 st row.
29	49	
<u>29</u> 58	49 24	We want to double the number in the first column, and halve the number in the second column, dropping any remainder. Our goal is to get to 1 in the second column.
29	49	24 is even so we will cross out the entire row.
58	24	
29	49	We will double 58 and halve 24 to get 116 and 12.
58	24	Again, 12 is even so we will cross off the entire row.
146	12	

29	49	Doubling 116 we get 232 and halving 12 we get 6.
58	24	6 is also even so we cross out the entire row.
146	12	
232	ø	
29	49	Doubling 232 we get 464 and halving 6 we get 3.
58	24	Three is not even so we will not cross out the row
116	12	this time.
232	ø	
464	3	
29	49	Doubling 464 we get 928 and halving 3 but dropping
58	24	the remainder, we get 1.
116	12	Now that the second column is at 1 we are done and
232	ø	can add up each number in the 1 st column that is not
464	3	crossed out.
928	1	
29	49	29 + 464 + 928 = 1,421
58	24	$29 \times 49 = 1,421.$
116	12	$29 \land 49 = 1,421$
232	6	
464	3	
928	1	

2. 16 x 135 **2,160**

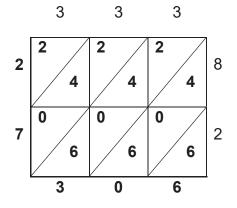


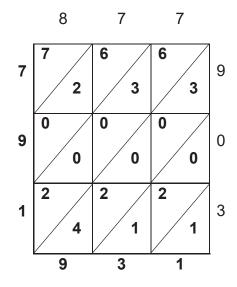

Objective 3 Multiply Using the Lattice Method


Lattice Method of Multiplication

 $A \times B$

- 1. Draw a grid with one box for each digit in the product and a diagonal through each box from the upper right corner to the lower left corner (see **lattice**).
- 2. Write one multiplier across the top and the other down the right side, lining the digits up with the boxes.
- 3. Record each partial product as a two-digit number with the tens digit in the upper left and the ones digit in the lower right of each box. If the product does not have a tens digit, record a zero in the tens triangle.
- 4. When all partial products are complete, sum the numbers along the diagonals.
- 5. Carry double digits to the next place and record the answer.





1. 333 x 82 27,306

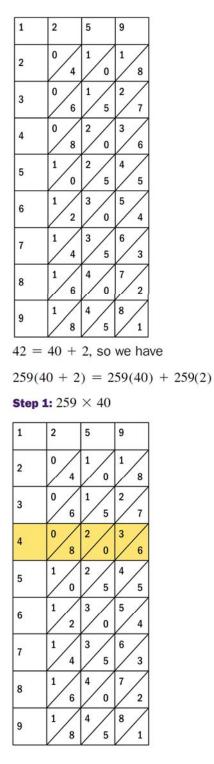
2. 877 x 903 **791,931**

Objective 4 Multiply Using Napier's Rods

S Concept video question and answer

1. Explain how to multiply 497 \times 7 using Napier's rods.

Select the rods 4, 9, and 7 and place them next to the index rod.

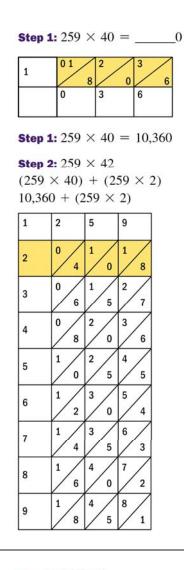

In the 7 row, the number on the very right is the ones digit for our answer.

The next two numbers are together inside a parallelogram, and added together will form the tens digit, which will be 4 + 3 = 7.

The sum of the next two numbers, also in a parallelogram forms the hundreds digit. In this case, 6 + 8 = 14 and is not just one single digit. So, we keep the 4 and carry the 1 to the next diagonal.

The last digit plus the 1 we carried is the thousands digit. So we have 1 + 2 which is 3. Reading from left to right, the result of 497 times 7 is 3,479

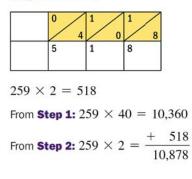
EXAMPLE 4 Multiply Using Napier's Rods Multiply 259 x 42 using Napier's rods.



To multiply using Napier's bones, we want to select the rods 2, 5, and 9 and place them next to the index rod.

We are multiplying by 42 so we want to think about this as 40 plus 2.

Look at the row that has 4 in it. We will use this to complete the first multiplication of 259 times 40.

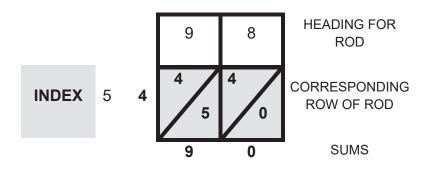

We have 1 zero at the end of 40 so we will write the zero

Now we will add each of the diagonals starting at the right. We have 6, then 3 plus 0 is 3. 2 plus 8 is 10 so we will write a 0 and carry the 1. 1 plus 0 is 1. So 259 times 40 is 10,360

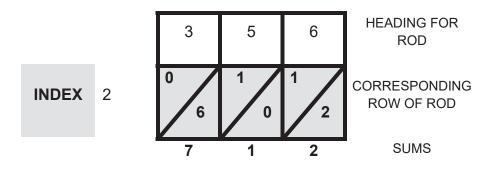
Now we want to multiply 259 times 2 so we look at the row that has 2.

Adding each of the diagonals going from right to left we first have 8.

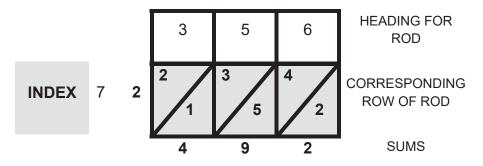
Adding 1 plus 0 we get 1.


Adding 1 plus 4 we get 5.

259 times 2 is 518.


Adding the results from each step we add 10,360 plus 518 to get 10,878.

 $259 \times 42 = 10,878$



2. 27 x 356 9,612

Because you are multiplying by 20 and not just 2, the answer for this part is 7,120

Adding together the results of both to get 7,120 + 2,492 = 9,612

Copyright © 2017 Pearson Education, Inc. 138

Napier's Rods cutouts

1	1	2	3	4	5	6	7	8	9	0
2	0 2	0 4	0 6	0 8	1 0	1 2	1 4	1 6	1 8	0 0
3	0	0	0	1	1	1	2	2	$\frac{2}{7}$	0
4	3 0	6 0	9	2	2 2	8 2	/ 1 2 /	4	3	0
5	4	8	2	/ 6 2 /	/ 0 2 /	4	8	/ 2 4 /	6 4	0
	5	0	5	0	5	0	5	/ 0 4	5	0
6	6	2	8	4	0	6	2	8	4	0
7	0 7	1 4	$\frac{2}{1}$	2 8	3 5	4 2	4 9	56	6	0 0
8	0 8	1 6	2 4	3 2	4	4 8	5 6	6 4	7 2	0 0
9	0 9	1 8	2 7	3 6	4 5	5 4	6	7 /2	8 1	0 0

Navigating Through Mathematics MODULE 2 REVIEW - NUMERATION

1 Express the given Hindu-Arabic numeral in expanded . form: 1,588 2 Express the given Hindu-Arabic numeral in expanded . form: 17,474 3 Express the given expanded numeral as a Hindu-Arabic 3. _____ numeral. $(3 \times 10^1) + (0 \times 1)$ 4 Express the given expanded numeral as a Hindu-Arabic 4. _____ numeral. $(4 \times 10^2) + (0 \times 10^1) + (7 \times 1)$ 5. _____ 5 Using the table, write the given Egyptian numeral as a Hindu-Arabic numeral. ŝX P 6) R 100 1000 10,000 100,000 1,000,000 1 10 ୭୭୭ 6 Using the table, write the given Egyptian numeral as a 6. Hindu-Arabic numeral. Š P ୦ A 10 100 1000 10,000 100,000 1,000,000

୳ୣ୳୷୷୶୭୭୭୭୦୦୦୦

7. Using the table, write 332 as an Egyptian numeral.

	\cap	9	с Х	ſ	Q	Ŷ
1	10	100	1000	10,000	100,000	1,000,000

8. Using the table, write 32,305 as an Egyptian numeral.

	\cap	9	ŝX	ſ	Q	Ŷ
1	10	100	1000	10,000	100,000	1,000,000

9. Use the table to write **CXLV** as a Hindu-Arabic numeral.

Roman Numerals	I	V	Х	L	С	D	М
Hindu-Arabic Numerals	1	5	10	50	100	500	1000

10. Use the table to write **MMMCLIV** as a Hindu-Arabic numeral.

Roman Numerals	I	V	Х	L	С	D	М
Hindu-Arabic Numerals	1	5	10	50	100	500	1000

11. Use the table to write $\overline{\mathbf{X}}$ CDLXVIII as a Hindu-Arabic numeral.

 Roman Numerals
 I
 V
 X
 L
 C
 D
 M

 Hindu-Arabic Numerals
 1
 5
 10
 50
 100
 500
 1000

10. _____

11. _____

9._____

12. Use the table to write **VIIICMLII** as a Hindu-Arabic numeral. 12.

Roman Numerals	I	٧	Х	L	С	D	М
Hindu-Arabic Numerals	1	5	10	50	100	500	1000

13. Use the table to express the following Babylonian numeral 13. as a Hindu-Arabic numeral:

Babylonian numerals	Ŷ	<
Hindu-Arabic	1	10
numerals		

«T 🕁

14. Use the table to express the following Babylonian numeral 14. as a Hindu-Arabic numeral:

Babylonian numerals	Y	<
Hindu-Arabic numerals	1	10

15. Using the table, write the Hindu-Arabic numeral 1,278 as a Babylonian numeral.

Babylonian numerals	Ŷ	<
Hindu-Arabic numerals	1	10

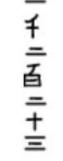
16. Use the table to write 498 as a Chinese Numeral.

-	-	E		五	六	t	ヽ	л	+	百	Ŧ
1	2	3	4	5	6	7	8	9	10	100	1000

17. Use the table to write 9,408 as a Chinese Numeral.

-	1	Ы	ß	五	六	t	ヽ	አ	+	百	Ŧ
1	2	3	4	5	6	7	8	9	10	100	1000

 Use the table to write the following Chinese Numeral as a Hindu-Arabic Numeral.


18.

-	-	E	ß	五	六	t	ヽ	л	+	百	¥
1	2	3	4	5	6	7	8	9	10	100	1000

17.

18. Use the table to write the following Chinese Numeral as a 18. Hindu-Arabic Numeral.

Ι	II	Ы	ß	五	大	t	く	አ	+	百	Ŧ
1	2	3	4	5	6	7	8	9	10	100	1000

- 19. Convert 14335 to a numeral in base ten.
- 20. Convert 9C51₁₆ to a numeral in base ten.

21. Convert 477 to base three.

22. Convert 6,565 to base seven.

22. _____

21. _____

19. _____

20.

23.	Convert the number 1001011001 ₂ from binary form	23.	
	to octal form.		

24.	Convert the number 1010111001 ₂ from binary form	24.	
	to octal form.		

25. Convert the number 10000111001₂ from binary 25. _____ form to hexadecimal form.

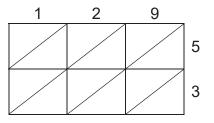
26. Convert the number 11100001011001₂ from binary 26. ______ form to hexadecimal form.

27. Add the given numbers in the indicated base. 27. _____ $5142_8 + 1756_8$

28. Add the given numbers in the indicated base. 28. _____ $101101_2 + 110010_2$ 29. Subtract the given numbers in the indicated base. 29. $32_7 - 6_7$ 30. Subtract the given numbers in the indicated base. 30. $1001_3 - 121_3$ 31. Multiply the given numbers in the indicated base. 31. $457_8 \times 5_8$ 32. Multiply the given numbers in the indicated base. 32. $3122_4 \times 23_4$

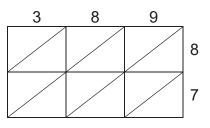
33. Divide the given numbers in the indicated base. 33. $534_7 \div 4_7$

34. Divide the given numbers in the indicated base. 34. ______ $1343_5 \div 4_5$

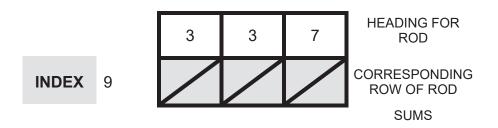

35. Use the Egyptian algorithm to find the product. 35. $16 \cdot 187$

36. Use the Egyptian algorithm to find the product. 36. $27 \cdot 235$

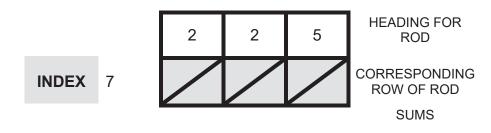
37. Multiply 51 × 12 using the Russian peasant37.method.


38.Multiply 233 × 17 using the Russian peasant38.method.38.

 39. Multiply 129 ×53 using the lattice method.
 39.



Copyright © 2017 Pearson Education, Inc. 148


40. Multiply 389×87 using the lattice method.

41. Multiply 9×337 using Napier's rods.

42. Multiply 7×225 using Napier's rods.

Copyright © 2017 Pearson Education, Inc. 149

40. _____

Module 2 Review Answers

- 1. 1(1,000) + 5(100) + 8(10) + 8
- 2. 1(10,000) + 7(1,000) + 4(100) + 7(10) + 4
- 3. 30
- 4. 407
- 5. 341
- 6. 2,300,432

- 8.
- 9. 145
- 10. 3,154
- 11. 10,448
- 12. 8,952
- 13. 1,267
- 14. 84,332

16. 四 百九十八 17. 九千

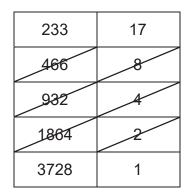
四 百 零

- <mark>八</mark>
- 18. 1,223
- 19. 243
- 20. 40,017
- 21. 1222003
- 22. 250667
- 23. 11318
- 24. 12718
- **25**. **439**₁₆
- **26**. 3859₁₆
- 27. 7120₈
- $28. \ 1011111_2$
- 29. 237
- **30**. 110₃
- 31. 27538
- 32. 2111324
- 33. 1247 R27

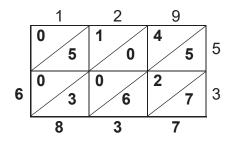
34. 2105 R35

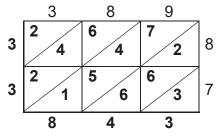
35. 2,992

16	187
1	187
2	374
4	748
8	1496
<mark>16</mark>	<mark>2992</mark>


36. 6,345

27	235
1	<mark>235</mark>
2	<mark>470</mark>
4	940
8	<mark>1880</mark>
<mark>16</mark>	<mark>3760</mark>


37. 612


38. 3,961

39. 6,837

40. 33,843

	gating Through Mathem OULE 2 TEST - NUMER/			ME ASS DAY/TII	ME				
1.	Express the given Hindu-Arabic numeral in expanded form: . 901								
2.	Write the Hindu-Arabic	c numeral in exp	panded form:	10,721					
3.	numeral.	anded numeral $5 \times 10^1) + (9 \times$		rabic	3				
4.	I. Express the given expanded numeral as a Hindu-Arabic numeral.4. $(8 \times 10^2) + (6 \times 10^1) + (7 \times 1)$								
5.	Using the table, write t Arabic numeral.	he given Egypt	ian numeral a	s a Hindu-	5				
	∩ ⑤ 1 10 100	± 1000 10,00	0 100,000	1,000,000					
	99999900000								

6. Using the table, write 2,441 as an Egyptian numeral.

	\cap)	ঙ্গ্ব	ſ	Ŷ.	₹⊐
1	10	100	1000	10,000	100,000	1,000,000

7. Use the table to write **DV** as a Hindu-Arabic numeral.

Roman Numerals		V	Х	L	С	D	М
Hindu-Arabic Numerals	1	5	10	50	100	500	1000

8. Use the table to write $\overline{\mathbf{V}}$ CDLXVI as a Hindu-Arabic numeral.

Roman Numerals	I	V	Х	L	С	D	М
Hindu-Arabic Numerals	1	5	10	50	100	500	1000

- 9. Use the table to express the following Babylonian numeral 9. _____ as a Hindu-Arabic numeral:

8. _____

TTT	≪ 11
-----	-------------

Babylonian numerals	Ŷ	<
Hindu-Arabic numerals	1	10

10. Write 1,3476 as a Babylonian numeral.

Babylonian numerals	Ŷ	<
Hindu-Arabic numerals	1	10

11. Use the table to write 567 as a Chinese Numeral.

—	-	Ξ		五	六	t	ハ	л	+	百	Ŧ
1	2	3	4	5	6	7	8	9	10	100	1000

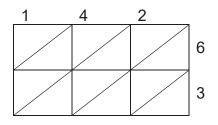
12. Use the table to write the following Chinese Numeral as a Hindu-Arabic Numeral.

_ Ξ t 五 六 л + 百 ハ ¥ 2 3 4 5 6 7 8 9 10 100 1000 1

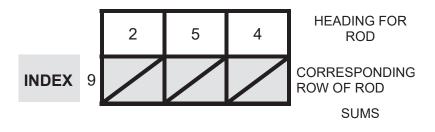
百三十四五

13. Convert 8A21₁₂ to a numeral in base ten:

14. Convert 3,248 to base eight.


12. _____

13. _____


15.	Convert the number 10000100001₂ from binary form to octal form.	15.	
16.	Convert the number 100111001 ₂ from binary form to hexadecimal form.	16.	
17.	Add the given numbers in the indicated base. $7632_9 + 1656_9$	17.	
18.	Subtract the given numbers in the indicated base. $4C6_{16} - 198_{16}$	18.	
19.	Multiply the given numbers in the indicated base. $513_6 \times 23_6$	19.	

20. Divide the given numbers in the indicated base.
 $424_5 \div 3_5$ 20. ______21. Use the Egyptian algorithm to find the product.
 $32 \cdot 119$ 21. ______22. Multiply 42×13 using the Russian peasant method.22. ______

23. Multiply 142×63 using the lattice method.

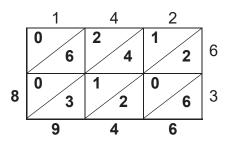
24. Multiply 9×254 using Napier's rods.

- 1. 9(100) + 0(10) + 1
- 2. 1(10,000) + 0(1,000) + 7(100) + 2(10) + 1
- 3. 59
- 4. 867
- 5. 632

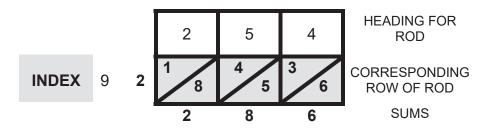
- 6.
- 7. 505
- 8. 5,446
- 9. 12,120

(₹¥¥)

- 10.
- 11. 五 百 六 十 七
- 12. 135
- 13. 15,289
- 14. 62608
- 15. 20418
- **16. 139**₁₆
- 17. 93889


- 18. 32E₁₆
- 19. 21043₆
- 20. 1235
- 21. 3,808

32	119
1	119
2	238
4	476
8	952
<mark>16</mark>	<mark>3808</mark>


22. 546

42	13
84	6
168	3
408	1

23. 8,946

24. 2,286

				AR
-	-	-	-	 -

Module 2 – Project

Numeration Systems

Computers deal in numbers, not letters. To get computers to work, each character needs to be represented as a sequence of numbers. In order for text files to be reliably stored and processed by computers, it is important that the data is interpreted in the same way. The **A**merican **S**tandard **C**ode for Information Interchange (ASCII) is used to encode characters of the alphabet as binary numbers. Each character is assigned an eight-digit binary number written in two groups of four digits. The capital letters A - 0 start with 0100 and the letters P - Z start with 0101. Lowercase letters a - 0 start with 0110 and lowercase letters p - z start with 0111.

Letter	ASCII Code	Binary	Letter	ASCII Code	Binary
а	097	01100001	A	065	01000001
b	098	01100010) В	066	01000010
С	099	01100011	С	067	01000011
d	100	01100100) D	068	01000100
е	101	01100101	E	069	01000101
f	102	01100110) F	070	01000110
g	103	01100111	G	071	01000111
h	104	01101000) Н	072	01001000
i	105	01101001		073	01001001
j	106	01101010) J	074	01001010
k	107	01101011	K	075	01001011
I	108	01101100) L	076	01001100
m	109	01101101	Μ	077	01001101
n	110	01101110) N	078	01001110

Copyright © 2017 Pearson Education, Inc.

0	111	01101111	0	079	01001111
р	112	01110000	Ρ	080	01010000
q	113	01110001	Q	081	01010001
r	114	01110010	R	082	01010010
S	115	01110011	S	083	01010011
t	116	01110100	Т	084	01010100
u	117	01110101	U	085	01010101
V	118	01110110	V	086	01010110
W	119	01110111	W	087	01010111
х	120	01111000	Х	088	01011000
У	121	01111001	Y	089	01011001
Z	122	01111010	Ζ	090	01011010

- 1) Write your first name (Capitalize the first letter of your first name).
- 2) Write your first name in ASCII binary (base 2) code.
- 3) Now change your entire first name from base 2 to base 16 (hexadecimal) Recall the following conversions:

0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

4) Change the first letter from base 2 (binary) to base 10.

- 5) Write the number in the Egyptian, Babylonian, Roman, and traditional Chinese.
- 6) Pick your two favorite 4-digit base 10 number and convert them to base 5.
- 7) Add and subtract the two numbers from #6 while they are still in base 5.
- 8) Make up your own 3 digit by 2 digit multiplication problem and show the answer to that problem using
 - a. Egyptian algorithm
 - b. Russian peasant method
 - c. Lattice method and
 - d. Napier's rods.

Module 2 – Project Sample Answers

Numeration Systems

Computers deal in numbers, not letters. To get computers to work, each character needs to be represented as a sequence of numbers. In order for text files to be reliably stored and processed by computers, it is important that the data is interpreted in the same way. The **A**merican **S**tandard **C**ode for Information Interchange (ASCII) is used to encode characters of the alphabet as binary numbers. Each character is assigned an eight-digit binary number written in two groups of four digits. The capital letters A - 0 start with 0100 and the letters P - Z start with 0101. Lowercase letters a - 0 start with 0110 and lowercase letters p - z start with 0111.

Letter	ASCII Code	Binary	Letter	ASCII Code	Binary
а	097	01100001	Α	065	01000001
b	098	01100010) В	066	01000010
С	099	01100011	С	067	01000011
d	100	01100100) D	068	01000100
е	101	01100101	E	069	01000101
f	102	01100110) F	070	01000110
g	103	01100111	G	071	01000111
h	104	01101000) Н	072	01001000
i	105	01101001	I	073	01001001
j	106	01101010) J	074	01001010
k	107	01101011	K	075	01001011
Ι	108	01101100) L	076	01001100
m	109	01101101	M	077	01001101
n	110	01101110) N	078	01001110

ASCII - Binary Character Table

Copyright © 2017 Pearson Education, Inc.

0	111	01101111	0	079	01001111
р	112	01110000	Ρ	080	01010000
q	113	01110001	Q	081	01010001
r	114	01110010	R	082	01010010
S	115	01110011	S	083	01010011
t	116	01110100	Т	084	01010100
u	117	01110101	U	085	01010101
V	118	01110110	V	086	01010110
W	119	01110111	W	087	01010111
х	120	01111000	Х	088	01011000
у	121	01111001	Y	089	01011001
z	122	01111010	Ζ	090	01011010

- 1) Write your first name (Capitalize the first letter of your first name). **Ron**
- 2) Write your first name in ASCII binary (base 2) code. 01010010111110
- 3) Now change your entire first name from base 2 to base 16 (hexadecimal) Recall the following conversions:

0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

12276

4) Change the first letter from base 2 (binary) to base 10.
 01010010₂ = 82

Full Download: http://testbanklive.com/download/navigating-through-mathematics-1st-edition-collins-solutions-manual/

5) Write the number in the Egyptian, Babylonian, Roman, and traditional Chinese.

Egyptian	Babylonian	Roman	Chinese
	<u> </u>	LXXXII	八 十 二

- 6) Pick your two favorite 4-digit base 10 number and convert them to base 5.
 8888 = 241023₅ 2121 = 31441₅
- 7) Add and subtract the two numbers from #6 while they are still in base 5.
 - a. Addition: 323014₅
 - b. Subtraction: 2040325
- 8) Make up your own 3 digit by 2 digit multiplication problem and show the answer to that problem using
 - a. Egyptian algorithm
 - b. Russian peasant method
 - c. Lattice method and
 - d. Napier's rods.

See instructor's resource manual for section 2.4 for examples