Full Download: https://testbanklive.com/download/mathematics-of-finance-canadian-8th-edition-brown-solutions-manual/

CHAPTER 2

EXERCISE 2.1 Part A

1.
$$S = 100(1.055)^5 = \$130.70$$
, Int. = $\$30.70$
2. $S = 500\left(1 + \frac{0.03}{12}\right)^{24} = \530.88 , Int. = $\$30.88$
3. $S = 220\left(1 + \frac{0.088}{4}\right)^{12} = \285.65 , Int. = $\$65.65$
4. $S = 1000(1.045)^{12} = \$1695.88$, Int. = $\$695.88$
5. $S = 50(1.005)^{48} = \$63.52$, Int. = $\$13.52$
6. $S = 800(1.0775)^{10} = \$1687.57$, Int. = $\$887.57$
7. $S = 300\left(1 + \frac{0.08}{52}\right)^{156} = \381.30 , Int. = $\$81.30$
8. $S = 1000\left(1 + \frac{0.045}{365}\right)^{730} = \1094.17 , Int. = $\$94.17$
9. a) $S = 500\left(1 + \frac{0.04}{12}\right)^{12} = \520.37
b) $S = 500\left(1 + \frac{0.08}{12}\right)^{12} = \541.50
c) $S = 500\left(1 + \frac{0.01}{12}\right)^{12} = \563.41

10. $S = 2000(1.0175)^{12} = 2462.88

11. a)
$$S = 100(1.08)^5 = \$146.93$$

b) $S = 100(1.04)^{10} = \$148.02$
c) $S = 100(1.02)^{20} = \$148.59$
d) $S = 100 \left(1 + \frac{0.08}{12}\right)^{60} = \148.98
e) $S = 100 \left(1 + \frac{0.12}{365}\right)^{1825} = \149.18

12. $S = 1000(1.005)^{216} = 2936.77

13. a) $S = 10\ 000(1.03)^{522} = 5.02379 \times 10^{10} = 50.2379 billion b) $S = 10\ 000[1 + (0.03)(522)] = $166\ 600$

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

14. a) $S = 1000(1.06136)^1 = 1061.36 b) $S = 1000(1.030225)^2 = 1061.36 c) $S = 1000(1.015)^4 = 1061.36 d) $S = 1000(1.004975)^{12} = 1061.36

15. At the end of 5 years = $8000 \left(1 + \frac{0.035}{2}\right)^{10} = \9515.56 At the end of 6 years = $9515.56 \left(1 + \frac{0.04}{2}\right)^2 = \9899.99 Interest earned = \$384.43

EXERCISE 2.1

Part B

1.	a) $S = 100 (1 + 1)$	$-\frac{0.06}{365}\Big)^{365}$	= \$1061.83,	Interest = \$61.83
----	----------------------	--------------------------------	--------------	--------------------

b)	Period	Interest
	January 1-June 30	$1000 \times 0.06 \times \frac{181}{365} = \29.75
	July 1 – December 31	$1029.75 \times 0.06 \times \frac{184}{365} = \31.15
	Total interest earned	= \$60.90
c)	Period	Interest
	January	$1000 \times 0.06 \times \frac{31}{365} = 5.10
	February	$1005.10 \times 0.06 \times \frac{28}{365} = 4.63
	March	$1009.73 \times 0.06 \times \frac{31}{265} = 5.15
	April	$1014.88 \times 0.06 \times \frac{30}{30}_{21}^{305} = 5.00
	Мау	$1019.88 \times 0.06 \times \frac{31}{365} = 5.20
	June	$1025.08 \times 0.06 \times \frac{30}{365} = 5.06
	July	$1030.14 \times 0.06 \times \frac{31}{365} = \5.25
	August	$1035.39 \times 0.06 \times \frac{31}{365} = 5.28
	September	$1040.67 \times 0.06 \times \frac{30}{365} = 5.13
	October	$1045.80 \times 0.06 \times \frac{31}{365} = 5.33
	November	$1051.13 \times 0.06 \times \frac{30}{365} = 5.18
	December	$1056.31 \times 0.06 \times \frac{31}{365} = 5.38
	Total interest earned	= \$61.69

Growth of \$1000

Years	п	$j_{365} = 4\%$	$j_{365} = 7\%$	$j_{365} = 10\%$
5	1825	1221.39	1419.02	1648.61
10	3650	1491.79	2013.62	2717.91
15	5475	1822.06	2857.36	4480.77
20	7300	2225.44	4054.66	7387.03
25	9125	2718.13	5753.63	12 178.32

3.

m	i	п	S	Interest
1	0.054	10	16 920.22	6920.22
2	0.027	20	17 037.62	7037.62
4	0.0135	40	17 098.19	7098.19
12	0.0045	120	17 139.29	7139.29
52	0.054	520	17 155.26	7155.26
365	52 0.054	3650	17 159.38	7159.38
	365			

Part A

1. a)
$$j = (1.035)^2 - 1 = 0.071225 = 7.12\%$$

b) $j = \left(1 + \frac{0.03}{4}\right)^4 - 1 = 0.030339191 = 3.03\%$
c) $j = (1.02)^4 - 1 = 0.08243216 = 8.24\%$
d) $j = \left(1 + \frac{0.12}{365}\right)^{365} - 1 = 0.127474614 = 12.75\%$
e) $j = \left(1 + \frac{0.09}{12}\right)^{12} - 1 = 0.093806897 = 9.38\%$

2. a)
$$(1+i)^2 = 1.06 \rightarrow i = (1.06)^{1/2} - 1$$

 $j_2 = 2[(1.06)^{1/2} - 1] = 5.91\%$
b) $(1+i)^4 = 1.09 \rightarrow i = (1.09)^{1/4} - 1$
 $j_4 = 4[(1.09)^{1/4} - 1] = 8.71\%$
c) $(1+i)^{12} = 1.10 \rightarrow i = (1.10)^{1/12} - 1$
 $j_{12} = 12[(1.10)^{1/12} - 1] = 9.57\%$
d) $(1+i)^{365} = 1.17 \rightarrow i = (1.17)^{1/365} - 1$
 $j_{365} = 365[(1.17)^{1/365} - 1] = 15.70\%$
e) $(1+i)^{52} = 1.045 \rightarrow i = (1.045)^{1/52} - 1$
 $j_{52} = 52[(1.045)^{1/52} - 1] = 4.40\%$

3. a)
$$(1+i)^4 = (1.04)^2 \rightarrow i = (1.04)^{1/2} - 1$$

 $j_4 = 4[(1.04)^{1/2} - 1] = 7.92\%$
b) $(1+i)^2 = (1.05)^4 \rightarrow i = (1.015)^2 - 1$
 $j_2 = 2[(1.015)^2 - 1] = 6.05\%$
c) $[(1+i)^4 = (1 + \frac{0.18}{12})^2 \rightarrow i = (1.015)^3 - 1$
 $j_4 = 4[(1.015)^3 - 1] = 18.27\%$
d) $(1+i)^{12} = (1 + \frac{0.1}{6})^6 \rightarrow i = (1 + \frac{0.10}{6})^{1/2} - 1$
 $j_{12} = 12 \left[(1 + \frac{0.10}{6})^{1/2} - 1 \right] = 9.96\%$
e) $(1+i)^2 = (1.02)^4 \rightarrow i = (1.02)^2 - 1$
 $j_2 = 2[(1.02)^2 - 1] = 8.08\%$
f) $(1+i)^2 = (1 + \frac{0.04}{52})^{52} \rightarrow i = (1 + \frac{0.04}{52})^{26} - 1$
 $j_2 = 2[(1 + \frac{0.04}{52})^{26} - 1] = 4.04\%$

g)
$$(1+i)^{12} = \left(1 + \frac{0.0525}{2}\right)^2 \rightarrow i = \left(1 + \frac{0.0525}{2}\right)^{1/6} - 1$$

 $j_{12} = 12\left[\left(1 + \frac{0.0525}{2}\right)^{1/6} - 1\right] = 5.19\%$
h) $(1+i)^{365} = \left(1 + \frac{0.1279}{4}\right)^4 \rightarrow i = \left(1 + \frac{0.1279}{4}\right)^{4/365} - 1$
 $j_{365} = 365\left[\left(1 + \frac{0.1279}{4}\right)^{\frac{4}{365}} - 1\right] = 12.59\%$

4.
$$1 + 2r = (1 + \frac{0.057}{12})^{24} \rightarrow r = \frac{1}{2} \left[\left(1 + \frac{0.057}{12} \right)^{24} - 1 \right] = 6.02\%$$

5.
$$1 + 3r = (1 + \frac{0.08}{365})^{1095} \rightarrow r = \frac{1}{3} \left[\left(1 + \frac{0.08}{365} \right)^{1095} - 1 \right] = 9.04\%$$

6.
$$j = (1.0175)^{12} - 1 = 23.14\%$$

7. $j_2 = 4.9\% \rightarrow j = \left(1 + \frac{0.049}{2}\right)^2 - 1 = 4.96\%$ $j_1 = 5\% \rightarrow j = 5\%$ Thus $j_1 = 5\%$ yields the higher annual effective rate of interest.

8. a)
$$j_{12} = 15\%$$
 $\rightarrow j = \left(1 + \frac{0.15}{12}\right)^{12} - 1 = 16.08\%$
 $j_2 = 15\frac{1}{2}\%$ $\rightarrow j = \left(1 + \frac{0.155}{2}\right)^2 - 1 = 16.10\%$ BEST
 $j_{365} = 14.9\%$ $\rightarrow j = \left(1 + \frac{0.149}{365}\right)^{365} - 1 = 16.06\%$ WORST
b) $j_{12} = 6\%$ $\rightarrow j = (1.005)^{12} - 1 = 6.17\%$
 $j_2 = 6\frac{1}{2}\%$ $\rightarrow j = (1.0325)^2 - 1 = 6.61\%$ BEST
 $j_{365} = 5.9\%$ $\rightarrow j = \left(1 + \frac{0.059}{365}\right)^{365} - 1 = 6.08\%$ WORST

9. Bank A : $j_1 = 0.10 \rightarrow \text{annual effective rate} = 0.10$ Bank B : $j_m = 0.0.975 \rightarrow \text{annual effective rate} = j$ Calculate *m*, such that $j = (1 + \frac{0.0975}{m})^m - 1 \ge 0.10$ for m = 2, j = 0.0998766for m = 4, j = 0.1011231The minimum frequency of compounding for Bank B is m = 4. However, if Bank A offered 5% and Bank B offered 4.75%, $j_m = 4.75\%$ will never be equivalent to $j_1 = 5\%$, no matter what value of *m* is chosen.

Part B

3. a) <i>n</i>	n = 1: $S = 2$	$(0\ 000(1.06)^5) = 267	764.51
m	n = 2: $S = 2$	$20\ 000(1.03)^{10} = 268	878.33
m	a = 4: $S = 2$	$(0.000(1.015)^{20}) = 26	937.10
		$20\ 000(1.005)^{60} = 26	977.00
т	a = 365: S = 2	$20\ 000\left(1+\frac{0.06}{365}\right)^{1825} = \26	996.51
b)	$j_m = 6\%$	$j = (1+i)^m$	$S = 20\ 000(1+j)^5$
	<i>j</i> ₁	$j = (1.06)^1 - 1$	26 764.51
	j ₂	$j = (1.03)^2 - 1$	26 878.33
	j ₄	$j = (1.015)^4 - 1$	26 937.10
	j ₁₂	$j = (1.005)^{12} - 1$	26 977.00
	j ₃₆₅	$j = (1 + \frac{0.06}{365})^{365} - 1$	26 996.51
c)	$j_m = 6\%$	$j_{12} = 12 \left[\left(1 + \frac{j_m}{m} \right)^{m/12} - \frac{j_m}{m} \right]^{m/12} - \frac{j_m}{m} \left[j_m$	$-1 \qquad S = 20\ 000\left(1 + \frac{j_{12}}{12}\right)^{60}$
	<i>j</i> ₁	0.058410607	26 764.51
	j ₂	0.059263464	26 878.33
	j ₄	0.059702475	26 937.10
	j ₁₂	0.06	26 977.00
	j ₃₆₅	0.060145294	26 996.51

- 4. a) $(1+j)^2 = (1.06)^2 \rightarrow j = 6\%$ b) $(1+j)^3 = (1.06)^3 (1.02) \rightarrow j = [(1.06)^3 (1.02)]^{1/3} - 1 = 6.70\%$ c) $(1+j)^4 = (1.06)^4 (1.02) \rightarrow j = [(1.06)^4 (1.02)]^{1/4} - 1 = 6.53\%$
- 5. Annual effective yield = $[(1 + 0.0201)(0.995)]^4 1 = 6.14\%$
- 6. Let $j_2 = 2i$; Then at the present time: $100 = 51.50 + 51.50(1 + i)^{-1}$ $(1 + i) = \frac{51.50}{48.50} \rightarrow i = 0.06185567 \rightarrow j_2 = 2i = 0.12371134 = 12.37\%$

Part A

1.
$$P = 100(1.015)^{-12} = \$83.64$$

2. $P = 50(1 + \frac{0.085}{12})^{-24} = \42.21
3. $P = 2000(1.118)^{-10} = \655.56
4. $P = 500(1.05)^{-10} = \$306.96$
5. $P = 800(1 + \frac{0.05}{365})^{-1095} = \688.57
6. $P = 1000(1 + \frac{0.08}{4})^{-20} = \672.97
7. $P = 2000(1 + \frac{0.048}{12})^{-36} = \1732.27
8. $P = 250\ 000(1 + \frac{0.065}{2})^{-20} = \$131\ 867.81$
9. $P = 10\ 000(1.03)^{-40} = \3065.57
10. $P = 2000(1 + \frac{0.055}{4})^{-18} = \1564.14
11. $P = 800(1.03)^{-24} = \$393.55$
12. Maturity value $S = 250(1 + \frac{0.09}{12})^{48} = \357.85
Proceeds $P = 357.85\left(1 + \frac{0.075}{4}\right)^{-11} = \291.71
13. Maturity value $S = 1000(1.03)^{10} = \$1343.92$

Proceeds
$$P = 1343.92(1 + \frac{0.07}{4})^{-14} = $1054.12$$

14. Discounted value of the payment plan : 230 000 + 200 000 $(1 + \frac{0.04}{2})^{-10}$

= 230 000 + 164 069.66 = \$394 069.66

The payment scheme is cheaper by $400\ 000 - 394\ 069.66 = \$5\ 930.34$

15. Total current value = $1000(1.045)^{20} + 600(1.045)^{-14}$ = 2411.71 + 323.98 = \$2735.69

16.
$$P = 3000(1 + \frac{0.0575}{2})^{10}(1.05)^{-5} = $3120.85$$

EXERCISE 2.3 Part B

1. Maturity value $S = 2500 \left(1 + \frac{0.12}{12}\right)^{40} = \3722.16 Financial Consultants pay: $3722.16\left(1+\frac{0.1325}{4}\right)^{-12} = \2517.45 Financial Consultants receive: $3722.16(1.13)^{-3} = 2579.64 Financial Consultants profit: 2579.64 – 2517.45 = \$62.19

$(1.075)^5 = $1435.$

$S = 1000(1.075)^5 = \$1435.63$				
т	i	п	Р	Discount
1	0.06	5	1072.79	362.84
2	0.03	10	1068.24	367.39
4	$\underset{\scriptstyle{0.06}}{0.015}$	20	1065.91	369.72
12	12 0.06	60	1064.34	371.29
52		260	1063.72	371.91
365	52 0.06 365	1825	1063.57	372.06

 $95\ 400(1.14)^{-1} + 39\ 000(1.14)^{-2} + 12\ 000(1.14)^{-3} - 80\ 000$ = 83 684.21 + 30 009.23 $+ 8099.66 - 80\,000 = $41\,793.10$

Net present value of proposal B:

 $35\ 000(1.14)^{-1} + 58\ 000(1.14)^{-2} + 80\ 000(1.14)^{-3} - 100\ 000$ +53997.72 -100000 = \$29328.59= 30 701.75 + 44 629.12

Select proposal A with higher net present value.

Part A

1. a)
$$S = 100 \left(1 + \frac{0.065}{2}\right)^{11\frac{1}{6}} = \$142.92$$

b) $S = 100 \left(1 + \frac{0.065}{2}\right)^{11} \left[1 + (0.065) \left(\frac{1}{12}\right)\right] = \142.93

2. a)
$$S = 800(1.01)^{18\frac{1}{3}} = \$960.10$$

b) $S = 800(1.01)^{18} \left[1 + (0.04) \left(\frac{1}{12} \right) \right] = \960.11

3. a)
$$S = 5000 \left(1 + \frac{0.074}{2}\right)^{-17\frac{2}{3}} = \$2631.55$$

b) $S = 5000 \left(1 + \frac{0.074}{2}\right)^{-18} \left[1 + (0.074) \left(\frac{2}{12}\right)\right] = \2631.94

4. a)
$$S = 280(1.0175)^{-3\frac{1}{12}} = $263.12$$

b) $S = 280(1.0175)^{-4} \left[1 + (0.0175) \left(\frac{5}{12} \right) \right] = 263.13

5. Maturity date is October 20, 2019.

Time = 22 interest periods less 8 days

$$P = 2000(1.03)^{-22} \left[1 + (0.12) \left(\frac{8}{365}\right)\right] = 1046.53$$

6.
$$S = 1200(1.00525)^{38}[1 + (0.063)(\frac{11}{365})] = $1466.97$$

7.
$$S = 4000(1.05)^{10} \left[1 + (0.10) \left(\frac{165}{365}\right)\right] = $6810.12$$

8. Maturity date is December 8, 2017.

Time = 7 interest periods less 60 days

$$P = 850 \left(1 + \frac{0.0525}{2}\right)^{-7} \left[1 + (0.0525) \left(\frac{60}{365}\right)\right] = \$715.12$$

9. Maturity date is August 24, 2015:

$$S = 1200 \left(1 + \frac{0.0875}{12}\right)^{24} = \$1428.59$$

Proceeds: $P = 1428.59 \left(1 + \frac{0.095}{4}\right)^{-5} \left[1 + (0.095) \left(\frac{25}{365}\right)\right] = 1278.66 Compound discount: S - P = \$149.93

Part B

1. a) From the binomial theorem

$$(1+i)^t = 1 + it + \binom{t}{2}i^2 + \cdots$$

The 3rd term in the series will overshadow all the remaining terms.

If 0 < t < 1 then $\binom{t}{2}i^2$ is negative And $(1 + i)^t < 1 + it$ If t > 1 then $\binom{t}{2}i^2$ is positive

and $(1 + i)^t > 1 + it$

c) For
$$0 < t < 1$$
: $P(1+i)^k (1+i)^t < P(1+i)^k [1+it]$
 $S(1+i)^{-k} (1+i)^t < S(1+i)^{-k} [1+it]$

2.
$$(1-k)(1+i)^n + k(1+i)^{n+1} = (1-k)(1+i)^n + k(1+i)(1+i)^n$$

= $(1+i)^n[(1-k) + k(1+i)]$
= $(1+i)^n(1+ki)$

3. Maturity value on October 4, 2018:

 $S = 2000(1.03)^{4} \left[1 + (0.03) \left(\frac{182}{365} \right) \right] = \2284.69 Proceeds: $P = 2283.69 \left(1 + \frac{0.035}{4} \right)^{-14} \left[1 + (0.035) \left(\frac{64}{365} \right) \right] = \2034.77 Compound discount: S - P = \$1750.08

Part A

1.
$$2000(1+i)^{15} = 3000$$

 $(1+i)^{15} = 1.5$
 $1+i = (1.5)^{1/15}$
 $i = (1.5)^{1/15} - 1$
 $i = 0.027399659$
 $j_4 = 0.109598636$
 $j_4 = 10.96\%$
2. $100(1+i)^{55} = 150$
 $(1+i)^{55} = 150$

$$(1+i)^{55} = 1.5$$

$$1+i = (1.5)^{1/55}$$

$$i = (1.5)^{1/55} - 1$$

$$i = 0.007399334$$

$$j_{12} = 0.088792004$$

$$j_{12} = 8.88\%$$

3.
$$200(1+i)^{15} = 600$$
$$(1+i)^{15} = 3$$
$$1+i = 3^{1/15}$$
$$i = 3^{1/15} - 1$$
$$i = 0.075989625$$
$$j_1 = 7.60\%$$

4.
$$1000(1 + i)^7 = 1181.72$$

 $(1 + i)^7 = 1.18172$
 $1 + i = (1.18172)^{1/7}$
 $i = (1.18172)^{1/7} - 1$
 $i = 0.024139759$
 $j_2 = 0.048279518$
 $j_2 = 4.83\%$

5.
$$2000(1.01)^n = 2800$$

 $(1.01)^n = 1.4$
 $n \log(1.01) = \log 1.4$
 $n = 33.81518078$ quarters
 $n = 8$ years, 5 months, 14 days

6.
$$1000(1.045)^n = 130$$

 $(1.045)^n = 1.3$
 $n \log(1.045) = \log 1.3$
 $n = 5.96053678$ half years
 $n = 2$ years, 11 months, 23 days

7. $500(1.005)^n = 800$ $(1.005)^n = 1.6$ $n \log 1.005 = \log 1.6$ *n* = 94.23553231 months n = 7 years, 10 months, 8 days 8. $1800(1.02)^n = 2200$ $(1.02)^n = \frac{22}{18}$ $n \log 1.02 = \log \frac{22}{18}$ *n* = 10.13353897 quarters n = 2 years, 6 months, 12 days 9. $(1+i)^{10} = 2$ $i = 2^{1/10} - 1$ $j_1 = 2^{1/10} - 1 = 7.18\%$ 10. $(1+i)^{16} = 1.5$ $i = (1.5)^{1/16} - 1$ $j_4 = 4[(1.5)^{1/16} - 1] = 10.27\%$ 11. $4.71(1+i)^5 = 9.38$ $(1+i)^5 = \frac{9.38}{4.71}$ $i = \left(\frac{9.38}{4.71}\right)^{1/5} - 1 = 14.77\%$ 12. $4000(1+i)^{1095} = 5000$ $(1+i)^{1095} = 1.25$ $i = (1.25)^{1/1095} - 1$ $j_{365} = 365[(1.25)^{\frac{1}{1095}} - 1] = 7.44\%$ $(1.0456)^n = 2$ 13. a) $n \log 1.10456 = \log 2$ *n* = 15.54459407 years n = 15 years, 199 days OR 15 years, 6 months, 17 days Rule of 70 $n = \frac{70}{4.56}$

 $n = \frac{1}{4.56}$ n = 15.35087719 years n = 15 years, 129 days OR 15 years, 4 months, 7 days

b)
$$\left(1 + \frac{0.07}{365}\right)^n = 2$$

 $n \log \left(1 + \frac{0.07}{365}\right) = \log 2$
 $n = 3614.614035$ days
 $n = 9$ years, 330 days OR 9 years, 10 months, 26 days

Rule of 70

$$n = \frac{\frac{70}{\frac{7}{365}}}{n = \frac{70}{0.019178082}}$$

n = 3650 days = 10 years

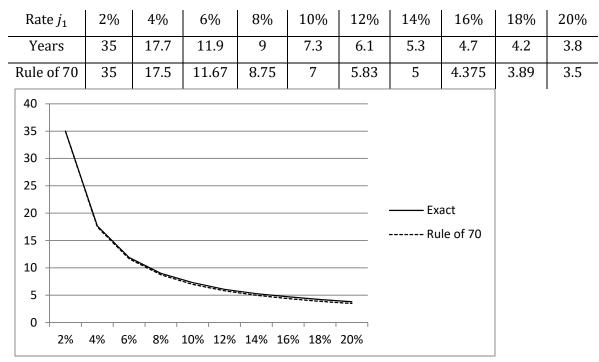
14.
$$800 \left(1 + \frac{0.098}{2}\right)^n = 1500$$

 $(1.049)^n = 1.875$
 $n \log(1.049) = \log 1.875$
 $n = 13.14054666$ half - years
 $n = 6$ years, 208 days OR 6 years, 6 months, 26 days

15.
$$\left(1 + \frac{0.05}{365}\right)^n = 1.5$$

$$n \log \left(1 + \frac{0.05}{365}\right) = \log 1.5$$

$$n = 2960.098047 \text{ days}$$


$$n = 8 \text{ years, 41 days OR 8 years, 1 month, 10 days}$$

EXERCISE 2.5 Part B

1. $(1+i)^{16} = 2$ $(1+i) = 2^{1/6}$ 1+i = 1.044273782a) $S = 1000(1+i)^{10} = \$1542.21$ b) $S = 1000(1+i)^{20} = \$2378.41$ 2. $(1+i)^{2190} = 2$ $1+i = 2^{1/2190}$ 1+i = 1.000316556n = 3471.06782 days

n = 9 yrs, 186 days OR 9 yrs, 6 mths, 4 days

3.

4.
$$\left(1 + \frac{0.045}{12}\right)^{12n} = 2\left(1 + \frac{0.025}{2}\right)^{2n}$$

 $\left[\frac{(1.00375)^{12}}{(1.0125)^2}\right]^n = 2$
 $n \log\left[\frac{(1.00375)^{12}}{(1.0125)^2}\right] = \log 2$
 $n = 34.535$ years

5.
$$(1+j_1^*)^{t/2} = (1+j_1)^t \rightarrow 1+j_1^* = (1+j_1)^2 \rightarrow j_1^* = (1+j_1)^2 - 1$$

6. $800(1.045)^n = 2(600)(1.035)^n$

$$\left(\frac{1.045}{1.035}\right)^n = \frac{1200}{800}$$

$$n = \frac{\log(1200/800)}{\log(1.045/1.035)}$$

$$n = 42.16804634 \text{ half -years}$$

$$n = 21 \text{ years, } 31 \text{ days OR } 21 \text{ years, } 1 \text{ month, } 1 \text{ day}$$

7. In *n* years:

$$1.5[100(1.04)^{n} + 25(1.04)^{n-2}] = 95(1.08)^{n-1}$$

$$1.5(1.04)^{n}[100 + 25(1.04)^{-2}] = 95(1.08)^{n}(1.08)^{-1}$$

$$\left(\frac{1.04}{1.08}\right)^{n} = \frac{95(1.08)^{-1}}{1.5[100+25(1.04)^{-2}]}$$

$$\left(\frac{1.04}{1.08}\right)^{n} = 0.476322924$$

$$n = \frac{\log 0.476322924}{\log\frac{1.04}{1.08}}$$

$$n = 19.65163748 \text{ years} = 19 \text{ years}, 238 \text{ days}$$

Using simple interest for the last X days we obtain:

$$1.5(1.04)^{19}[100 + 25(1.04)^{-2}]\left[1 + (0.04)\left(\frac{x}{365}\right)\right] = 95(1.08)^{18}[1 + (0.08)\left(\frac{x}{365}\right)]$$

This solves for X = 233; It takes 19 years and 233 days

8. $500(1.08)^n + 800(1.08)^{n-3} = 2000$ $(1.08)^n [500 + 800(1.08)^{-3}] = 2000$ $1135.065793(1.08)^n = 2000$ $(1.08)^n = 1.762012398$ $n = \frac{\log 1.762012398}{\log 1.08}$ n = 7.360302768 years = 7 years, 132 days

Using compound interest for 7 years and simple interest for X days we have $500(1.08)^7 \left[1 + (0.08)\left(\frac{x}{365}\right)\right] + 800(1.08)^4 \left[1 + (0.08)\left(\frac{x}{365}\right)\right] = 2000$

Solving for X we obtain X \doteq 128 days; It takes 7 years, 128 days

Check:
$$500(1.08)^7 [1 + (0.08) \left(\frac{128}{365}\right)] + 800(1.08)^4 [1 + (0.08) \left(\frac{128}{365}\right)]$$

= $880.95 + 1118.93 = 1999.88$

EXERCISE 2.6 Part A

1.
$$X = 1000(1.01)^{36} = \$1709.14$$

2. $X = 1800 \left(1 + \frac{0.1175}{2}\right)^{-14} = \809.40
3. a) $X = 2500 \left(1 + \frac{0.09}{12}\right)^{-48} = \1746.54
b) $Y = 2500 \left(1 + \frac{0.09}{12}\right)^{36} = \3271.61
Note: $1746.54 \left(1 + \frac{0.09}{12}\right)^{84} = \3271.61
4. $X = 1000(1.02)^4 + 1500(1.02)^{-4} = 1082.43 + 1385.77 = \2468.20
5. a) $X = 800(1.0025)^{-24} + 700(1.0025)^{-72} = \1338.29
b) $Y = 800(1.0025)^{24} + 700(1.0025)^{-24} = \1508.69
c) $Z = 800(1.0025)^{72} + 700(1.0025)^{24} = \1700.79
 $X(1.0025)^{48} = Y$ $1338.29(1.0025)^{48} = \$1508.69$
 $Y(1.0025)^{48} = Z$ $1508.69(1.0025)^{48} = \$1700.79$
6. At the end of 7 years: $X + 1000(1.035)^8 = 2000(1.035)^{-2}$
 $X + 1316.81 = 1867.02$
 $X = \$550.21$
7. $X = 4000(1.015)^{12} - 1000(1.015)^8 - 2000(1.015)^4$
 $= 4782.47 - 1126.49 - 2122.73 = \1533.25
8. $X = 1200(1.015)^{12} - 500(1.015)^6 = 1434.74 - 546.72 = \888.02
9. At the end of 4 years:
 $375 \left(1 + \frac{0.08}{12}\right)^{36} + X \left(1 + \frac{0.08}{12}\right)^{24} + X \left(1 + \frac{0.08}{12}\right)^{12} = 1000$
 $476.34 + 1.172887932X + 1.082999507X = 1000$
 $2.255887439X = 523.66$
 $X = \$232.13$
10. a) On December 1, 2015:
 $X + X(1.03)^2 + 1200(1.03)^4 + 900(1.03)^7 = 3000(1.03)^9$
 $X + 1.0609X + 1350.61 + 1106.89 = 3914.32$

X = \$706.89b) Balance on September 1, 2015: = 3000(1.03)⁸ - 900(1.03)⁶ - 1200(1.03)³ - 900(1.03)² = 3800.31 - 1074.65 - 1311.27 - 954.81 = \$459.58

2.0609X = 1456.82

11. $X = 200(1.03)^4 + 150(1.03)^3 - 250(1.03)^2 + 100(1.03)$ = 225.10 + 163.91 - 265.23 + 103 = \$226.78

12. At the end of 3 years:

 $X + 2X(1.1)^{-3} = 400(1.1)^{-2} + 300(1.1)^{-7}$ X + 1.502629602X = 330.58 + 153.95 2.502629602X = 484.53 X = \$193.61

13. At the time of the man's death:

 $X(1.03)^{-4} + X(1.03)^{-12} + X(1.03)^{-16} = 50\ 000$ 2.17033867X = 50 000 X = \$22 593.42

- 14. $X(1.006)^9 + 2X(1.006)^5 + 2X = 4000(1.006)^{12}$ 5.11603864X = 4297.70X = \$840.04
- 15. Maturity value of original debt: $S = 3000(1.0075)^{24} = 3589.24

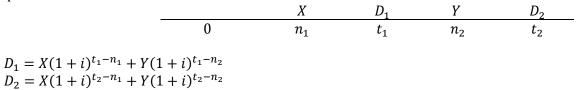
Equation of value at time 5:

 $1000(1.03)^{4} + 1500(1.03)^{3} + X = 3589.24(1.03)$ 1125.50881 + 1639.0905 + X = 3696.9172 X = \$932.32

16.
$$500 + 800(1.08)^{-3} = 2000(1.08)^{-t}$$

 $(1.08)^{-t} = \frac{1135.065793}{2000} = 0.567532896$
 $t = 7.36 \ years$

17. $1000 = 700(1+i)^{-6} + 400(1+i)^{-10}$


By trial and error,

$i = j_4/4$	Right hand side
0.02	949.72
0.015	984.85
0.013	999.33
0.0128	1000.80
0.0129	1000.06
ml / .	4(0.0120) 0.051(

Thus, $j_4 \doteq 4(0.0129) = 0.0516 = 5.16\%$

EXERCISE 2.6 Part B

1. a) Let X and Y be the two dated values due n_1 and n_2 periods from now. Let D_1 and D_2 be two equivalent dated values of the set at t_1 and t_2 interest periods from now.

Multiplying the first equation by $(1 + i)^{t_2-t_1}$ and simplifying we obtain

 $D_1(1+i)^{t_2-t_1} = X(1+i)^{t_2-n_1} + Y(1+i)^{t_2-n_2} = D_2$

which is the condition that D_1 and D_2 are equivalent

b) Assuming that the times are in years

$$\begin{split} D_1 &= X[1+r(t_1-n_1)] + Y[1+r(n_2-t_1)]^{-1} \\ D_2 &= X[1+r(t_2-n_1)] + Y[1+r(t_2-n_2)] \end{split}$$

Multiplying the first equation by $[1 + r\{t_2 - t_1)]$ we obtain

$$D_{1}[1 + r(t_{2} - t_{1})] = X[1 + r(t_{1} - n_{1})][1 + r(t_{2} - t_{1})] + Y[1 + r(n_{2} - t_{1})]^{-1}[1 + r(t_{2} - t_{1})] \neq X[1 + r(t_{2} - n_{1})] + Y[1 + r(t_{2} - n_{2})] = D_{2}$$

- 2. $X = 1000(1.08)^2 + 2000\left(1 + \frac{0.125}{2}\right)^8 (1.08)^{-2}$ = 1166.40 + 2784.93 = \$3951.33
- 3. On January 1, 2018:

 $X + X(1.02)^{8} + 500(1.02)^{16} = 5000(1.0225)^{24}$ X + 1.171659381X + 686.39 = 8528.83 2.171659281X = 7842.44 X = \$3611.27

4. At the present time:

 $X + X(1.06)^{-2} = 3000(1.05)^{-8} + 4000(1.04)^{-10}$ 1.88999644X = 2030.52 + 2702.26 1.88999644X = 4732.78 X = \$2504.12

5. Let *i* be the interest rate per year. At the end of year 18:

(1) $240(1+i)^{12} + 200(1+i)^6 + 300 = X$ (2) $360(1+i)^6 + 700 = X + 100$ (3) $Y(1+i)^{12} + 600(1+i)^6 = X$ Let $(1+i)^6 = Z$. Then,

(1) $240Z^2 + 200Z + 300 = X$ (2) 360Z + 600 = X(3) $YZ^2 + 600Z = X$

From the first two equations: $240Z^2 + 200Z + 300 = 360Z + 600$ $240Z^2 - 160Z - 300 = 0$ $12Z^2 - 8Z - 15 = 0$ $Z = \frac{8 \pm \sqrt{64 + 720}}{24} = \frac{36}{24} = 1.5$ or $-\frac{20}{24}$ (not applicable)

Substituting Z = 1.5 into (1) we obtain 240(1.5)² + 200(1.5) + 300 = X X = \$1140

Substuting Z = 1.5, X = 1140 into (3) we obtain $Y(1.5)^2 + 600(1.5) = 1140$ 2.25Y = 1140 - 900 $Y = \frac{240}{2.25}$ Y = \$106.67

EXERCISE 2.7 Part A

1.
$$S = 2000 \left(1 + \frac{0.04}{12}\right)^{72} \left(1 + \frac{0.09}{12}\right)^{72} = \$3042.03$$

- 2. $P = 1000(1.07)^{-4}(1.08)^{-2} = 654.06$
- 3. $S = 500(1.025)^2(1.03)^4(1.0225)^4 = 646.28$ $500(1+j_1)^5 = 646.28$ $j_1 = 5.27\%$
- 4. $S = 2000(1.025)^{6}(1.02)^{16}(1.005)^{36} = 3810.26 Compound interest = 3810.26 - 2000 = \$1810.26 $200\left(1 + \frac{j_2}{2}\right)^{20} = 3810.26$ $j_2 = 6.55\%$
- 5. $X = 2000(1.05)^4(1.045)^9 = \3612.72
- 6. At the present time: $X + X(1.048)^{-4}(1.061)^{-6} = 5000(1.061)^{-5}$ 1.581115643X = 3718.72X = \$2351.96
- 7. $Y = 20\ 000(1.06)^5 + 30\ 000 + 35\ 000(1.05)^{-7}$ = 26 764.51 + 30 000 + 24 873.85 = \$81 638.36

8. Present value of the offer = $65\ 000\ +\ 150\ 000(1.02)^{-4}\ +\ 150\ 000(1.02)^{-4}(1.015)^{-8}$ = $65\ 000\ +\ 138\ 576.81\ +\ 123\ 016.18\ =\ \$326\ 592.99$ They should accept the offer.

- 9. a) Discounted value of the payments option: $60\ 000 + 60\ 000\left(1 + \frac{0.072}{12}\right)^{-24} + 60\ 000\left(1 + \frac{0.072}{12}\right)^{-60}$ = 60\ 000 + 51\ 975.62 + 41\ 905.63 = \$153\ 881.26 The payment option is better.
 - b) Discounted value of the payments option: $60\ 000\ +\ 60\ 000\ \left(1\ +\ \frac{0.075}{4}\right)^{-8}\ +\ 60\ 000\ \left(1\ +\ \frac{0.075}{4}\right)^{-12}\ \left(1\ +\ \frac{0.04}{4}\right)^{-8}$ = $60\ 000\ +\ 51\ 714.26\ +\ 44\ 337.25\ =\ \$156\ 051.51$ The cash option is better.
- 10. $(1+j)^6 = (1.015)^8 \left(1 + \frac{0.08}{12}\right)^{48}$ $(1+j)^6 = 1.549677664$ 1+j = 1.075738955j = 7.57%

EXERCISE 2.7 Part B

1.
$$(1+i)^n \times (1+j)^n = [(1+i)(1+j)]^n = (1+i+j+ij)^n$$

 $\left(1+\frac{i+j}{2}\right)^{2n} - \left[\left(1+\frac{i+j}{2}\right)^2\right]^n = \left[1+\frac{2(i+j)}{2}+\frac{i^2+2ij+j^2}{4}\right]^n$
 $= \left(1+i+j+\frac{i^2+2ij+j^2}{4}\right)^n$

Since
$$ij \neq \frac{i^2 + 2ij + j^2}{4}$$
 then $(1+i)^n \times (1+j)^n \neq \left(1 + \frac{i+j}{2}\right)^{2n}$

- 2. $S = 500(1.04)^2(1.02)^4 \left(1 + \frac{0.08}{12}\right)^{12} \left(1 + \frac{0.08}{365}\right)^{365} = \686.76 Difference = $686.76 - 500(1.04)^8 = 686.76 - 684.28 = \2.48
- 3. $X = 1000(1.02)^{14} + 2000(1.01)^{-20}$ = 1319.48 + 1639.09 = \$2958.57
- 4. $P = 20\ 000(1.12)^{-3}(1.05)^{-10} + 30\ 000(1.12)^{-3}(1.05)^{-12}(1.02)^{-12}(1.0075)^{-36}$ = 8739.43 + 7164.26 = \$15 903.69
- 5. Amount in the account on April 21, 2014 : $X = 1000(1.0175)^{11}(1.025)^3 + 2000(1.0175)(1.025)^3$ = 1303.32 + 2191.47 = \$3494.79

Calculate $i = \frac{j_{12}}{12}$ such that $1000(1+i)^{51} + 2000(1+i)^{21} = 3494.79$ By trial and error we determine: at $j_{12} = 5\%$: $1000(1+i)^{51} + 2000(1+i)^{21} = 3418.71$ at $j_{12} = 6\%$: $1000(1+i)^{51} + 2000(1+i)^{21} = 3510.48$

91.77
$$\left\{\begin{array}{ccc} \frac{\text{amount}}{3418.71} & \frac{j_{12}}{5\%} \\ 3494.79 & j_{12} \\ 3510.48 & 6\%\end{array}\right\} d \left\{\begin{array}{c} \frac{d}{1\%} = \frac{76.08}{91.77} \\ 1\% & d \doteq 0.83\% \\ j_{12} = 5.83\%\end{array}\right\}$$

Check at $j_{12} = 5.83\%$: $1000(1+i)^{51} + 2000(1+i)^{21} = 3494.68

6.
$$(1+j_1)^3 = \left(1+\frac{0.04}{12}\right)^{12} \left(1+\frac{0.08}{4}\right)^4 \left(1+\frac{0.055}{365}\right)^{365}$$

 $(1+j_1)^3 = 1.190222002$
 $j_1 = (1.190222002)^{1/3} - 1 = 0.059764396 = 5.98\%$

7. Let $j_4 = 4i$ $(1+i)^{12} = [1+(0.06)(1)][1-(0.08)(2)]^{-1}$ $(1+i)^{12} = 1.261904762$ 1+i = 1.019574304 i = 0.019574304and $j_4 = 4i = 0.078297216 = 7.83\%$

EXERCISE 2.8 Part A

1.
$$0.6(1.08)^n = 1$$

 $(1.08)^n = \frac{1}{0.6}$
 $n \log 1.08 = \log \frac{1}{0.6}$
 $n = 6.637457293$ years

- 2. $S = 320\ 000(1.021)^5 = $355\ 041.15$ Increase = \$35\ 041.15
- 3. a) $i_{real} = \frac{0.06 0.02}{1 + 0.02} = 3.92\%$ $i_{realAT} = \frac{0.06(1 0.26) 0.02}{1 + 0.02} = 2.39\%$ b) $i_{real} = \frac{0.08 - 0.04}{1 + 0.04} = 3.85\%$ $i_{realAT} = \frac{0.08(1 - 0.26) - 0.04}{1 + 0.04} = 1.85\%$ c) $i_{real} = \frac{0.10 - 0.06}{1 + 0.06} = 3.77\%$ $i_{realAT} = \frac{0.10(1 - 0.26) - 0.06}{1 + 0.06} = 1.32\%$

EXERCISE 2.8 Part B

1. Let X =\$1000.

You need $1000(1.03)^{-1}$ U.S. dollars now in U.S. dollars account, which is equivalent to $1000(1.03)^{-1}\left(\frac{1}{0.9717}\right) = \999.15 Cdn. This amount invested in a Canadian dollar account will accumulate to

999.15(1.04) = 1039.12

The implied exchange rate one year from now is

\$1000 U.S. = \$1039.12 Cdn. OR \$0.9624 U.S. = \$1 Cdn.

2. Present value of $(1 + r)^n$ due in *n*-years at annual effective rate *i* is:

$$(1+r)^n (1+i)^{-n} = \left(\frac{1+r}{1+i}\right)^n$$

Present value of 1 due in *n* years at annual effective rate $\frac{i-r}{1+r}$ is:

$$\left(1+\frac{i-r}{1+r}\right)^{-n} = \left(\frac{1+r+i-r}{1+r}\right)^{-n} = \left(\frac{1+i}{1+r}\right)^{-n} = \left(\frac{1+r}{1+i}\right)^n$$

EXERCISE 2.9 Part A

1. $S = 40\ 000(1.04)^{20} \doteq 87\ 645$ 2. Increase = 2% of 15 000(1.02)⁷ = 345 3. $(1+j)^{11} = 2$ $j = 2^{1/11} - 1$ j = 0.065041089 j = 6.50%4. $S = 48\ 000(1.05)^{42} = $372\ 556.20$ 5. P = 0.25 S = 10 i = 0.10 $(0.25)(1.10)^n = 10$ $(1.10)^n = 40$ $n = \frac{\log 40}{\log 1.10}$ n = 38.70393972 hours

$$n = 1.61$$
 days

EXERCISE 2.9 Part B

- 1. a) Number of flies at 7 a.m. = $100\ 000(1.04)^{27} \doteq 288\ 337$ Number of flies at 11 a.m. = $100\ 000(1.04)^{33} \doteq 364\ 838$ Increase between 7 a.m. and 10 a.m. = $76\ 501$
 - b) $(1.04)^n = 2$ $n = \frac{\log 2}{\log 1.04} = 17.67298769$ periods $\doteq 707$ minutes At 0:47 a.m. there will be 20 000 flies in the lab.
- 2. $200\ 000(1+i)^{10} = 250\ 000$ $(1+i)^{10} = 1.25$ $i = (1.25)^{1/10} - 1$ i = 0.022565183Population in 2014 = 200\ 000(1+i)^{20} = 312\ 500 Population in 2019 = 200\ 000(1+i)^{25} = 349\ 386 Increase in population = 36\ 886

Part A

- 1. a) $S = 1500(1.09)^{1.5} = \$1706.99$ b) $S = 1500 \left(1 + \frac{0.09}{12}\right)^{18} = \1715.94 c) $S = 1500e^{(0.09)(1.5)} = \1716.81
- 2. a) $P = 8000(1.02)^{-20} = 5383.77 b) $P = 8000 \left(1 + \frac{0.08}{365}\right)^{-1825} = 5362.80 c) $P = 8000e^{-(0.08)(5)} = 5362.56

3.
$$e^{j_{\infty}(5)} = 1.5$$

 $5 j_{\infty} = \ln 1.5$
 $j_{\infty} = \frac{\ln 1.5}{5} = 0.081093022 = 8.11\%$
 $j = e^{j_{\infty}} - 1 = 0.084471771 = 8.45\%$

4. a)
$$800 \left(1 + \frac{0.06}{365}\right)^n = 1200$$

 $\left(1 + \frac{0.06}{365}\right)^n = 1.5$
 $n = \frac{\log 1.5}{\log(1 + \frac{0.06}{365})} = 2466.782157 \rightarrow 2467 \text{ days} = 6 \text{ years, } 277 \text{ days}$

On November 8, 2020 the deposit will be worst at least \$1200.

b)
$$800e^{0.06t} = 1200$$

 $e^{0.06t} = 1.5$
 $0.06t = \ln 1.5$
 $t = \frac{\ln 1.5}{0.06} - 6.757751802$ years $\doteq 6$ years 277 days
On November 9, 2016 the dense it will be worth at least \$1200

On November 8, 2016 the deposit will be worth at least \$1200.

5. $e^{5j_{\infty}} = 2$ $5j_{\infty} = \ln 2$ $j_{\infty} = \frac{\ln 2}{5}$ $e^{j_{\infty}t} = 3$ $j_{\infty} t = \ln 3$ $t = \frac{\ln 3}{j_{\infty}} = \frac{\ln 3}{\frac{\ln 2}{5}} = 7.924812504$ years

6. a)
$$S = 1000e^{0.08(2)} = \$1173.51$$

b)
$$S = 1000 \left(1 + \frac{0.0825}{2}\right)^4 = \$1175.49$$

c) $S = 1000[1 + (0.085)(2)] = \1170

She should accept offer c) as it has the lowest interest charges.

EXERCISE 2.10 Part B

1.
$$(1+5r) = e^{0.07(5)}$$

 $5r = e^{0.35} - 1$
 $r = \frac{e^{0.35} - 1}{5}$
 $r = 0.08381351$
 $r = 8.38\%$

2.
$$e^{j_{\infty}(25)} = 2$$

 $j_{\infty} = \frac{\ln 2}{25}$
 $e^{\frac{\ln 2}{25}t} = 1.5$
 $t\frac{(\ln 2)}{25} = \ln 1.5$
 $t = 25(\frac{\ln 1.5}{\ln 2})$
 $t = 14.62406252$ years

3. At the end of *t*-years :

$$1000e^{0.10(t-1.25)} + 1500e^{-0.10(6.5-t)} = 2500$$

 $e^{0.10t}(1000e^{-0.125} + 1500e^{-0.65}) = 2500$
 $e^{0.10t} = 1.500991644$
 $0.10t = \ln 1.500991644$
 $t = 4.061259858$ years

4.
$$250e^{0.07(2)}e^{0.08(n-2)} = 400$$

 $e^{0.08(n-2)} = \frac{400}{250}e^{-0.14}$
 $0.08(n-2) = \ln(\frac{400}{250}) - 0.14$
 $n-2 = \frac{1}{0.08}(\ln\frac{400}{250} - 0.14)$
 $n = 6.125045366$ years

5. At the end of 12 months:

$$400e^{0.04(0.75)} + Xe^{0.04(0.5)} + X = 1000e^{0.04}$$

 $412.187 + 1.02020134X + X = 1040.81$
 $2.02020134X = 628.63$
 $X = 311.17

6.
$$1 - 4d = e^{-0.08(4)}$$

 $d = \frac{1 - e^{-0.32}}{4}$
 $d = 0.068462741$
 $d = 6.85\%$

REVIEW EXERCISE 2.11

1.
$$X = 1000 \left(1 + \frac{0.0638}{2}\right)^9 + 800 \left(1 + \frac{0.0638}{2}\right)^{-11} = 1326.60 + 566.34 = $1892.94$$

2.
$$S = 1500 \left(1 + \frac{0.098}{365}\right)^{3650} = $3996.16$$

3.
$$S = 1000(1.045)^{20} = $2411.71$$

- 4. a) Theoretical method : $S = 2000(1.04)^2 \frac{1}{3} = \2191.67 Practical method : $S = 2000(1.04)^2 \left[1 + (0.08)\left(\frac{2}{12}\right)\right] = \2192.04
 - b) Theoretical method : $S = 2000(1.04)^{-2\frac{1}{3}} = \1825.10 Practical method : $S = 2000(1.04)^{-3} \left[1 + (0.08) \left(\frac{4}{12} \right) \right] = \1825.41
- 5. $S = 680\ 000(1.04)^5 = \$\ 827\ 323.97$
- 6. Interest = $100(1.035)^{20} 100(1.035)^{10} = 198.98 141.06 = 57.92

7.
$$D = 1500 - 500 \left(1 + \frac{0.21}{12}\right)^{-3} - 600 \left(1 + \frac{0.21}{12}\right)^{-6} - 300 \left(1 + \frac{0.21}{12}\right)^{-9}$$

= 1500 - 474.64 - 540.69 - 256.63 = \$228.04

8.
$$j_2 = 6.75\% \rightarrow j = \left(1 + \frac{0.0675}{2}\right)^2 - 1 \doteq 6.86\%$$
 BEST
 $j_4 = 6.25\% \rightarrow j = \left(1 + \frac{0.0625}{4}\right)^4 - 1 \doteq 6.40\%$ MIDDLE
 $j_{12} = 6.125\% \rightarrow j = \left(1 + \frac{0.06125}{12}\right)^{12} - 1 \doteq 6.30\%$ WORST

9. Maturity date is November 21, 2018 Proceeds $P = 3000(1.015)^{-19} \left[1 + (0.06) \left(\frac{41}{365}\right)\right] = 2276.06

10.
$$1000 \left(1 + \frac{0.06}{365}\right)^n = 2500$$

 $\left(1 + \frac{0.06}{365}\right)^n = 2.5$
 $n \log \left(1 + \frac{0.06}{365}\right) = \log 2.5$
 $n = 5547.560135$ days
 $n = 15$ years, 100 days OR 15 years, 2 months, 12 days

11.
$$(1+i)^{60} = 3$$

 $i = 3^{1/60} - 1$
 $j_4 = 4\left[3^{\frac{1}{60}} - 1\right] = 7.39\%$

12. Maturity Value of Loan = $10\ 000\left(1+\frac{0.12}{2}\right)^{12}$ = \$20 121.96 On January 1, 2019: $2000(1.02)^{12} + X(1.02)^4 + X = 20\ 121.96$ $2536.48 + 2.08243216X = 20\ 121.96$ $X = $8\ 444.68$

13.
$$\left(1 + \frac{0.045}{365}\right)^n = 1.25$$

$$n = \frac{\log 1.25}{\log(1 + \frac{0.045}{365})}$$
$$n \doteq 1810 \text{ days}$$

4 years, 350 days from November 20, 2013 is November 5, 2017.

$$X(1.0075)^{-2} + 2X(1.0075) - {}^{5} + 3X(1.0075)^{-10} = 5000$$

5.695834944X = 5000
X = \$877.83

15. a) at
$$j_{12}$$
: $\left(1 + \frac{j_{12}}{12}\right)^{120} = 3$
 $j_{12} = 12\left[3^{\frac{1}{120}} - 1\right] \doteq 11.04\%$

b) at
$$j_{365}$$
: $\left(1 + \frac{j_{365}}{365}\right)^{3650} = 3$
 $j_{365} = 365 \left[3^{\frac{1}{3650}} - 1\right] \doteq 10.99\%$

c) at
$$j_{\infty} \equiv \sigma$$
: $e^{10\sigma} = 3$
 $10\sigma = \ln 3$
 $\sigma = \frac{\ln 3}{10} \doteq 10.99\%$

16.
$$1000(1.045)^n = 1246.18$$

 $(1.045)^n = 1.24618$
 $n = \frac{\log 1.24618}{\log 1.045}$
 $n = 5$
 $S = 1000(1.06)^5 = \$1338.23$

17. Discounted value of the payments option:

 $P = 20\ 000 + 20\ 000(1.04)^{-4} + 20\ 000(1.04)^{-8}$ = 20\ 000 + 17\ 096.08 + 14\ 613.80 = \$51\ 709.88

Cash option is better by \$1709.88

18. Maturity value on October 6, 2012: $S = 2000 \left(1 + \frac{0.08}{12}\right)^{24} = \2345.78 Proceeds on January 16, 2014: $P = 2345.78 \left(1 + \frac{0.09}{4}\right)^{-9} \left[1 + (0.09) \left(\frac{10}{365}\right)\right] = \2199.72 Compound discount = 2345.78 - 2199.72 = \$146.06

19.
$$S = 500 \left(1 + \frac{0.053}{2}\right)^4 \left(1 + \frac{0.07}{12}\right)^{36} \left(1 + \frac{0.045}{365}\right)^{365} = \$715.95$$

 $500(1 + j_1)^6 = 715.95$
 $j_1 = 6.17\%$

20.
$$P = 2000(1.02)^{-8}(1.05)^{-7} = $1213.12$$

- 21. a) $1000(1.06)^5 = 1338.23 b) $1000\left(1+\frac{0.06}{12}\right)^{60} = \1348.85 c) $1000e^{0.06(5)} = 1349.86
- 22. She will receive $2000(1.05)^5 \left[1 + (0.05)\left(\frac{3}{12}\right)\right] = 2584.47

23. a)
$$S = 5000 \left(1 + \frac{0.036}{12}\right)^{22} \left[1 + (0.036) \left(\frac{26}{365}\right)\right] = $5354.30$$

b) $S = 5000 \left(1 + \frac{0.036}{12}\right)^{22 + \frac{26}{365}(12)} = 5354.30

24. Value on December 13, 2013:

$$2000(1.025)^{-9} \left[1 + (0.1)\left(\frac{39}{365}\right)\right] = \$1618.57$$

25. a) Equation of value at 12 months:

$$X(1.0075)^9 + 2X(1.0075)^5 + 2X = 4000(1.0075)^{12}$$

 $1.069560839X + 2.076133469X + 2X = 4375.23$
 $5.145694308X = 4375.23$
 $X = \$850.27$

b) Equation of value at 12 months:

$$Xe^{0.09\left(\frac{9}{12}\right)} + 2Xe^{0.09\left(\frac{5}{12}\right)} + 2X = 4000e^{0.09\left(\frac{12}{12}\right)}$$

1.0698026X + 2.076423994X + 2X = 4376.70
5.146254254X = 4376.70
X = \$850.46

26. a) At
$$j_{365} = 10\%$$

 $\left(1 + \frac{0.10}{365}\right)^n = 2$
 $n = \frac{\log 2}{\log(1 + \frac{0.10}{365})}$
 $n \doteq 2530.33 = 2531$ days
 $n \doteq 6$ years, 341 days OR 6 years, 11 months, 7 days

b) At
$$j_{\infty} = 10\%$$

 $e^{0.1t} = 2$
 $0.1t = \ln 2$
 $t = \frac{\ln 2}{0.1}$
 $t = 6.931471806$ years
 $t \doteq 6$ years, 340 days OR 6 years, 11 months, 6 days

c) At
$$j_4 = 10\%$$

(1.05)ⁿ = 2
 $n = 28.07103453$ quarters
 $n = 7$ years, 0 months, 7 days

d) At $j_2 = 10\%$ (1.05)ⁿ = 2 n = 14.20669908 half years n = 7 years, 38 days OR 7 years, 1 months, 8 days

Rule of 70

a)
$$\frac{70}{\frac{10}{365}} = 2555 \text{ days} = 7 \text{ years}$$

c)
$$\frac{70}{\frac{10}{4}} = 28$$
 quarters = 7 years

d)
$$\frac{70}{\frac{10}{2}} = 14$$
 half years = 7 years

Mathematics of Finance Canadian 8th Edition Brown Solutions Manual

Full Download: https://testbanklive.com/download/mathematics-of-finance-canadian-8th-edition-brown-solutions-manual/

Case Study I - Payday Loans

a) Calculate *j* such that:

$$(1+j) = (1.25)^{\frac{365}{14}}$$

1+j = 336.188
j = 335.2%

b) If you are one week late, the penalty is 10% of 1000 or another \$100. Thus you borrow \$800 and pay back \$1100 in 21 days. Thus:

$$(1+j) = \left(\frac{1100}{800}\right)^{\frac{365}{21}}$$
$$1+j = 253.415$$
$$j = 252.4\%$$

If you are two weeks late, you owe \$1200 in 28 days. Thus:

$$(1+j) = \left(\frac{1200}{800}\right)^{\frac{365}{28}} 1+j = 197.458 j = 196.5\%$$

c) When the fee is 15%:

 $(1 + j) = (1.15)^{\frac{365}{14}}$ 1 + j = 38.2366 j = 37.2%

At 20%:

$$(1+j) = (1.20)^{\frac{365}{14}}$$

1+j = 115.976
j = 114.98%

At 30%

$$(1+j) = (1.30)^{\frac{365}{14}}$$

1+j = 934.687
j = 933.7%

Case Study II - Overnight Rates

a)
$$I = 20,000,000 \left(\frac{0.04}{365}\right) = \$2191.78$$

b) $I = 20,000,000 \left(e^{\frac{0.04}{365}} - 1\right) = \2191.90
c) $j = \left(\frac{25,002,568}{25,000,000}\right)^{\frac{365}{1}} - 1 = 0.0328 = 3.28\%$

Page 2-30 Brown/Kopp 8e ISM (c) 2015 McGraw-Hill Ryerson

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com