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Exercise 3-1:
Which of the following integers are congruent modulo 4?

−12, −11, −9, −6, −4, −1, 0, 1, 2, 3, 5, 7, 10

Solution: Look at the quotients and remainders on division by 4.

x -12 -11 -9 -6 -4 -1 0 1 2 3 5 7 10
q -3 -3 -3 -2 -1 -1 0 0 0 0 1 1 2
r 0 1 3 2 0 3 0 1 2 3 1 3 2

Then the following sets of numbers give members of the same equivalence class
under congruence modulo 4:

{−12,−4, 0}, {−11, 1, 5}, {−6, 2, 10}, {−9,−1, 3, 7}.

Exercise 3-2:
Which of the following integers are congruent modulo 6?

−147, −91, −22, −14, −2, 2, 4, 5, 21, 185

Solution: Look at the quotients and remainders on division by 6.

x -147 -91 -22 -14 -2 2 4 5 21 185
q -25 -16 -4 -3 -1 0 0 0 3 30
r 3 5 2 4 4 2 4 5 3 5

Then the following sets of numbers give members of the same equivalence class
under congruence modulo 6:

{2,−22}, {21,−147}, {4,−2,−14}, {185, 5,−91}.
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Exercise 3-3:
What is the remainder when 824 is divided by 3?

Solution:

8 ≡ 2 (mod 3)
24 = 16 ≡ 1 (mod 3)

824 ≡ 224 (mod 3)
≡ (24)6 (mod 3)
≡ 16 (mod 3)
≡ 1 (mod 3)

Hence the remainder when 824 is divided by 3 is 1.

Exercise 3-4:
Let N = 3729. What is the last digit in the decimal representation of N? What
are the last digits in the base 9 and base 8 representations of N?

Solution: For the base 10 representation (the decimal representation),

N =
k∑

i=0

ai10i = a0 + 10(a1 + 10a2 + 102a3 + . . . + 10k−1ak).

The last digit in the decimal representation is a0, and N ≡ a0 (mod 10) with
0 ≤ a0 < 10. We therefore have to determine the remainder when N is divided
by 10.

Now 32 ≡ −1 (mod 10), hence 34 ≡ 1 (mod 10). The exponent 729 can
be written as 729 = 4 · 182 + 1. Thus

3729 = 34·182+1

= 3(34)182.

Hence

3729 ≡ 3(34)182 (mod 10)
≡ 3(1)182 (mod 10)
≡ 3 (mod 10)

and we see that the last digit in the decimal expansion of N is 3.
Similarly, the last digit in the base 9 representation is the remainder upon

division by 9. However 32 ≡ 0 (mod 9), so

3729 = 32 · 3727

≡ 0 · 3727 (mod 9)
≡ 0 (mod 9)
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and the last digit in the base 9 representation of N is 0.
Also, the last digit in the base 8 representation is the remainder upon division

by 8. Now 32 ≡ 1 (mod 8), so

3729 = 32·364+1

≡ 3(32)364 (mod 8)
≡ 3(1)364 (mod 8)
≡ 3 (mod 8)

and the last digit in the base 8 representation of N is 3.

Exercise 3-5:
What is the remainder when 1045 is divided by 7?

Solution:

10 ≡ 3 (mod 7)
102 ≡ 33 ≡ 2 (mod 7)
103 ≡ 10 · 102 ≡ 3 · 2 ≡ 6 ≡ −1 (mod 7)

106 ≡
(
103

)2 ≡ (−1)2 ≡ 1 (mod 7)

1045 ≡ 107·6+3 (mod 7)

≡
(
106

)7 (
103

)
(mod 7)

≡ 1 · 6 (mod 7)
≡ 6 (mod 7)

Hence the remainder when 1045 is divided by 7 is 6.

Exercise 3-6:
Is 617 + 176 divisible by 3 or 7?

Solution: For divisibility by 3, it easy to see that 6 ≡ 0 (mod 3) and 17 ≡ 1
(mod 3). Thus

617 + 176 ≡ 017 + (−1)6 (mod 3)
≡ 1 (mod 3)

Therefore 3 does not divide 617 + 176.
For divisibility by 7, we have 6 ≡ −1 (mod 7) and 17 ≡ 3 (mod 7).

Therefore

617 + 176 ≡ (−1)17 + 36 (mod 7)

≡ (−1) +
(
32

)3
(mod 7)

≡ (−1) + 93 (mod 7)
≡ (−1) + 23 (mod 7)
≡ −1 + 8 (mod 7)
≡ 0 (mod 7).
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Hence 617 + 176 is divisible by 7.

Exercise 3-7:
Show that an integer of the form 5n + 3, where n ∈ P, can never be a perfect
square.

Solution: Every integer is congruent to 0, 1, 2, 3, 4, or 5 modulo 5. Their
squares have the following form.

Modulo 5
x 0 1 2 3 4
x2 0 1 4 4 1

This table summarizes these facts.

(1) The square of any integer divisible by 5 is divisible by 5.

(2) The square of any integer of the form 5n + 1 or 5n + 4 has remainder 1
when divided by 5.

(3) The square of any integer of the form 5n + 2 or 5n + 3 has remainder 4
when divided by 5.

Hence the square of any integer has remainder 0, 1, or 4 modulo 5. Thus no
integer has a square with remainder 3. That is, 5n+3 is never a perfect square.

Exercise 3-8:
For the following congruence, determine whether there exists a positive integer
k so that the congruence is satisfied. If so, find the smallest such k.

2k ≡ 1 (mod 11)

Solution: Let us run through the first few positive integers for k.

Modulo 11
k 1 2 3 4 5 6 7 8 9 10
2k 2 4 8 5 -1 9 7 3 6 1

We conclude that there is a solution and the smallest value of k is 10.

Exercise 3-9:
For the following congruence, determine whether there exists a positive integer
k so that the congruence is satisfied. If so, find the smallest such k.

3k ≡ 1 (mod 17)

Solution: Fermat’s Little Theorem tells us 316 ≡ 1 (mod 17), so k = 16 is
one solution, but this might not be the smallest such k.

Modulo 17

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3k 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1
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Therefore k = 16 is the smallest such k.

Exercise 3-10:
For the following congruence, determine whether there exists a positive integer
k so that the congruence is satisfied. If so, find the smallest such k.

2k ≡ 1 (mod 14)

Solution 1: The number 2k is always even for k ≥ 1, so it can never be
congruent to 1 modulo 14.

Solution 2:

21 ≡ 2 (mod 14)
22 ≡ 4 (mod 14)
23 ≡ 8 (mod 14)
24 ≡ 2 (mod 14)

Therefore we can multiple the first congruence below by powers of 2.

21 ≡ 24 (mod 14)
22 ≡ 25 (mod 14)
23 ≡ 26 (mod 14)
24 ≡ 27 (mod 14) and so on

21 ≡ 24 ≡ 27 ≡ · · · ≡ 23r+1 (mod 14)
22 ≡ 25 ≡ 28 ≡ · · · ≡ 23r+2 (mod 14)
23 ≡ 26 ≡ 29 ≡ · · · ≡ 23r (mod 14)

Thus no positive power of 2 is congruent to 1 modulo 14.

Exercise 3-11:
For the following congruence, determine whether there exists a positive integer
k so that the congruence is satisfied. If so, find the smallest such k.

4k ≡ 1 (mod 19)

Solution: Fermat’s Little Theorem tells us 418 ≡ 1 (mod 19), so k = 18 is
one solution, but this might not be the smallest such k.

Modulo 19
k 1 2 3 4 5 6 7 8 9 10 . . . 18
4k 4 -3 7 9 -2 11 6 5 1 4 . . . 1

Hence the smallest such k is 9.
[See Problem 3-97 which shows that the smallest must be a divisor of 18.]

Exercise 3-12:
Find tests for determining whether an integer in base 10 is divisible by 8.
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Solution:
Since 103 ≡ 0 (mod 8) it follows that

ar10r + ar−110r−1 + · · ·+ a110 + a0 ≡ a2102 + a110 + a0 (mod 8).

Hence a number is divisible by 8 if and only if the number represented by its
last 3 decimal digits is divisible by 8.

Exercise 3-13:
Find tests for determining whether an integer in base 10 is divisible by 12.

Solution: By Proposition 3.64, 12|x if and only if 3|x and 4|x.
Combining the tests for divisibility by 3 and 4 in base 10 we get that a

number is divisible by 12 in base 10 if and only if the number determined by its
last two digits is divisible by 4 and the sum of its digits is divisible by 3.

Exercise 3-14:
Find tests for determining whether an integer in base 10 is divisible by 7.

Solution: There is no very efficient test for divisibility by 7.
We have

10 ≡ 3 (mod 7)
102 ≡ 2 (mod 7)
103 ≡ 6 ≡ −1 (mod 7)
104 ≡ 4 ≡ −3 (mod 7)
105 ≡ −2 (mod 7)
106 ≡ 1 (mod 7)

and so 106r ≡ 1, 106r+1 ≡ 3, 106r+2 ≡ 2, 106r+3 ≡ −1, 106r+4 ≡ −3, and
106r+5 ≡ −2 (mod 7). Hence

(at . . . a4a3a2a1a0)10
≡ 10tat + · · ·+ 104a4 + 103a3 + 102a2 + 10a1 + a0 (mod 7)
≡ · · · − 3a4 − a3 + 2a2 + 3a1 + a0 (mod 7)
≡ (· · · − a9 + a6 − a3 + a0) + 2(· · · − a11 + a8 − a5 + a2)

+3(· · · − a10 + a7 − a4 + a0) (mod 7).

Hence the number on the left is divisible by 7 if and only if the number on the
right is congruent to 0 modulo 7. In most cases it would be easier to just divide
the original number by 7.

Exercise 3-15:
Find tests for determining whether an integer in base 8 is divisible by 7.
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Solution: Since 8 ≡ 1 (mod 7), it follows that 8r ≡ 1 (mod 7) for all positive
integers r. Thus

(at . . . a4a3a2a1a0)8 ≡ 8tat + · · ·+ 84a4 + 83a3 + 82a2 + 8a1 + a0 (mod 7)
≡ at + · · ·+ a4 + a3 + a2 + a1 + a0 (mod 7).

Hence a number is divisible by 7 if and only if the sum of the digits in the base
8 representation is divisible by 7.

Exercise 3-16:
Find tests for determining whether an integer in base 12 is divisible by 13.

Solution: Since 12 ≡ −1 (mod 13), we have

(at . . . a3a2a1a0)12 ≡ 12tat + · · ·+ 123a3 + 122a2 + 12a1 + a0 (mod 13)
≡ (−1)tat + · · ·+ a4 − a3 + a2 − a1 + a0 (mod 13).

Therefore, to determine whether a number in base 12 is divisible by 13, we just
need to check if the alternating sum of its digits is divisible by 13.

Exercise 3-17:
Determine whether 514000 is divisible by 2, 3, 4, 5, 6, 8, 9, 10 or 11.

Solution:

2: Yes - last digit is even.

3: No - sum of digits is 10, and 3 6 | 10.

4: Yes - number determined by last 2 digits is 00 and 4|00.

5: Yes - last digit is 0.

6: No - not divisible by 3.

8: Yes - number determined by last 3 digits is 000 and 8|000.

9: No - not divisible by 3 or sum of digits is 10 and 9 6 | 10.

10: Yes - last digit is 0.

11: No - alternating sum of digits is 8 and 11 6 | 8.

Exercise 3-18:
Determine whether 111111 is divisible by 2, 3, 4, 5, 6, 8, 9, 10 or 11.

Solution:

2: No - last digit is odd.
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3: Yes - sum of digits is 6, and 3| 6.

4: No - last 2 digits not divisible by 4.

5: No - last digit not 0 or 5.

6: No - not divisible by 2.

8: No - not divisible by 2.

9: No - sum of digits is 6, and 9 6 | 6.

10: No - last digit not 0.

11: Yes - alternating sum of digits is 0, which is divisible by 11.

Exercise 3-19:
Determine whether 179652 is divisible by the following numbers: 2, 3, 4, 5, 6,
8, 9, 10 or 11.

Solution:

2: Yes - last digit is even.

3: Yes - sum of digits is 30, and 3|30.

4: Yes - number determined by last 2 digits is 52 and 4|52.

5: No - last digit is not 0 or 5.

6: Yes - divisible by both 2 and 3.

8: No - number determined by last 3 digits is 652 and 8 6 | 652.

9: No - sum of digits is 30 and 9 6 | 30.

10: No - last digit is not 0.

11: Yes - alternating sum of digits is 0 and 11|0.

Exercise 3-20:
Determine whether 7654321 is divisible by 2, 3, 4, 5, 6, 8, 9, 10 or 11.

Solution:

2: No - last digit is odd.

3: No - sum of digits is 28, and 3 6 | 28.

4: No - last 2 digits not divisible by 4.

5: No - last digit not 0 or 5.
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6: No - not divisible by 2.

8: No - not divisible by 2.

9: No - sum of digits is 28, and 9 6 | 28.

10: No - last digit not 0.

11: No - alternating sum of digits is 4, and 11 6 | 4.

Exercise 3-21:
Check the following calculation by casting out nines.

12453 × 7057 − 84014651 = 3869170

Solution: Modulo 9, this gives

6× 1− 2 ≡ 7 (mod 9)

which is not true. Hence the original calculation contains an error.

Exercise 3-22:
Determine whether the following relation on Z is reflexive, symmetric, or tran-
sitive. If it is an equivalence relation, determine its quotient set.

aRb if and only if a− b 6= 1

Solution:

(i) This relation is reflexive because for all a ∈ Z, a− a = 0 6= 1. Hence aRa.

(ii) This relation is not symmetric. If aRb so that a− b 6= 1, then b− a could
be 1. For example, if b = 1 and a = 0, then a− b = −1 but b− a = 1, so
that b 6Ra.

(iii) This relation is not transitive. For example, take a = 1 and c = 0, so that
a − c = 1 and a 6Rc. If we now choose b = 3, we have a − b = −2 and
b− c = 3, so aRb and bRc, but a 6Rc.

Thus aRb is not an equivalence relation.

Exercise 3-23:
Determine whether the following relation on Z is reflexive, symmetric, or tran-
sitive. If it is an equivalence relation, determine its quotient set.

aRb if and only if a ≤ b

Solution:

(i) This relation is reflexive, for all a ∈ Z, a = a so a ≤ a. Hence aRa.
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(ii) This relation is not symmetric. Suppose aRb, i.e. a ≤ b. If a < b then
b > a so a 6Rb.

(iii) This relation is transitive. Suppose aRb and bRc i.e. a ≤ b and b ≤ c.
This implies that a ≤ c and aRc.

Thus aRb is not an equivalence relation.

Exercise 3-24:
Determine whether the following relation on Z is reflexive, symmetric, or tran-
sitive. If it is an equivalence relation, determine its quotient set.

aRb if and only if a− b is a multiple of 3

Solution:
This is just the relation of congruence mod 3. In general, we have seen that

“congruence mod n” is always an equivalence relation. The quotient set is of
course just the congruence classes modulo 3.

Exercise 3-25:
Determine whether the following relation on Z is reflexive, symmetric, or tran-
sitive. If it is an equivalence relation, determine its quotient set.

aRb if and only if |a− b| < 3

Solution:

(i) This relation is reflexive. For all a ∈ Z, |a−a| = 0 and 0 < 3. Hence aRa.

(ii) This relation is symmetric. Suppose aRb, i.e. |a− b| < 3. Then

|b− a| = |a− b| < 3.

Hence bRa.

(iii) This relation is not transitive. If a and b are within distance 3 of each
other, and b and c are within distance 3 of each other, then this does not
imply that a and c are within distance 3 of each other.

For example, take a = 4, b = 2, and c = 0. Then |a− b| = 2, |b − c| = 2,
and |a− c| = 4. That is, aRb, bRc, but a 6Rc.

Thus aRb is not an equivalence relation.

Exercise 3-26:
Determine whether the following relation on Z is reflexive, symmetric, or tran-
sitive. If it is an equivalence relation, determine its quotient set.

aRb if and only if a|b

Solution:

(i) This is reflexive since a|a for all a.
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(ii) This is not symmetric, since 1|2 but 2 6 | 1.

(iii) This is transitive since a|b and b|c implies a|c (by Proposition 2.11 (i)).

Hence aRb is not an equivalence relation.

Exercise 3-27:
Construct addition and multiplication tables for the following set of integers
modulo m and find, if possible, multiplicative inverses of each of the elements
in the set.

Z2

Solution:

Addition in Z2

+ [0] [1]
[0] [0] [1]
[1] [1] [0]

Mult. in Z2

· [0] [1]
[0] [0] [0]
[1] [0] [1]

The multiplicative inverse of [1] is [1] and, of course, [0] does not have an
inverse.

Exercise 3-28:
Construct addition and multiplication tables for the following set of integers
modulo m and find, if possible, multiplicative inverses of each of the elements
in the set.

Z3

Solution:

Addition in Z3

+ [0] [1] [2]
[0] [0] [1] [2]
[1] [1] [2] [0]
[2] [2] [0] [1]

Multiplication in Z3

· [0] [1] [2]
[0] [0] [0] [0]
[1] [0] [1] [2]
[2] [0] [2] [1]

The multiplicative inverse of [1] is [1], the multiplicative inverse of [2] is [2]
and, of course, [0] does not have an inverse.

Exercise 3-29:
Construct addition and multiplication tables for the following set of integers
modulo m and find, if possible, multiplicative inverses of each of the elements
in the set.

Z7

Solution:
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Addition in Z7

+ [0] [1] [2] [3] [4] [5] [6]
[0] [0] [1] [2] [3] [4] [5] [6]
[1] [1] [2] [3] [4] [5] [6] [0]
[2] [2] [3] [4] [5] [6] [0] [1]
[3] [3] [4] [5] [6] [0] [1] [2]
[4] [4] [5] [6] [0] [1] [2] [3]
[5] [5] [6] [0] [1] [2] [3] [4]
[6] [6] [0] [1] [2] [3] [4] [5]

Multiplication in Z7

· [0] [1] [2] [3] [4] [5] [6]
[0] [0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5] [6]
[2] [0] [2] [4] [6] [1] [3] [5]
[3] [0] [3] [6] [2] [5] [1] [4]
[4] [0] [4] [1] [5] [2] [6] [3]
[5] [0] [5] [3] [1] [6] [4] [2]
[6] [0] [6] [5] [4] [3] [2] [1]

[1]−1 = [1], [2]−1 = [4], [3]−1 = [5], [4]−1 = [2], [5]−1 = [3], [6]−1 = [6], and,
of course, [0] does not have and inverse.

Exercise 3-30:
Construct addition and multiplication tables for the following set of integers
modulo m and find, if possible, multiplicative inverses of each of the elements
in the set.

Z8

Solution:

Addition in Z8

+ [0] [1] [2] [3] [4] [5] [6] [7]
[0] [0] [1] [2] [3] [4] [5] [6] [7]
[1] [1] [2] [3] [4] [5] [6] [7] [0]
[2] [2] [3] [4] [5] [6] [7] [0] [1]
[3] [3] [4] [5] [6] [7] [0] [1] [2]
[4] [4] [5] [6] [7] [0] [1] [2] [3]
[5] [5] [6] [7] [0] [1] [2] [3] [4]
[6] [6] [7] [0] [1] [2] [3] [4] [5]
[7] [7] [0] [1] [2] [3] [4] [5] [6]
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Multiplication in Z8

x [0] [1] [2] [3] [4] [5] [6] [7]
[0] [0] [0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5] [6] [7]
[2] [0] [2] [4] [6] [0] [2] [4] [6]
[3] [0] [3] [6] [1] [4] [7] [2] [5]
[4] [0] [4] [0] [4] [0] [4] [0] [4]
[5] [0] [5] [2] [7] [4] [1] [6] [3]
[6] [0] [6] [4] [2] [0] [6] [4] [2]
[7] [0] [7] [6] [5] [4] [3] [2] [1]

The following elements have multiplicative inverses:

[1]−1 = [1], [3]−1 = [3], [5]−1 = [5], [7]−1 = [7].

Exercise 3-31:
If d = gcd(a,m) and d|c, then show that the congruence ax ≡ c (mod m) is
equivalent to

a

d
x ≡ c

d

(
mod

m

d

)
.

Solution:

The integer x is a solution of ax ≡ c (mod m) if and only if m|ax − c.
Now m|ax− c if and only if there exists an integer q such that ax− c = qm, or
equivalently, such that

a

d
x− c

d
= q

m

d

where gcd(a,m) = d. This happens if and only if

a

d
x ≡ c

d

(
mod

m

d

)
.

Exercise 3-32:
Solve the congruence

3x ≡ 5 (mod 13).

Solution:

Since the gcd(3, 13) = 1, this congruence has exactly one congruence class
of solutions modulo 13. Applying the Euclidean Algorithm to 3 and 13, we see
that it terminates after one step.

13 = 4 · 3 + 1

Therefore, (−4) ·3 ≡ 1 (mod 13). We proceed by multiplying both sides of the
original equation by −4.

(−4) · 3x ≡ (−4) · 5 (mod 13)
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x ≡ 6 (mod 13)

Check: 3 · 6 = 18 ≡ 5 (mod 13).

Exercise 3-33:
Solve the congruence

4x ≡ 6 (mod 14).

Solution:

This is equivalent to the Diophantine equation

4x + 14y = 6 for some y ∈ Z.

Now gcd(4, 14) = 2 and 2|6 so the congruence has a solution. By inspection
4(−2) + 14(1) = 6 Hence x = −2, y = 1 is one solution to the Diophantine
equation.

By the Linear Congruence Theorem 3.54 the complete solution to the con-
gruence is

x ≡ −2 (mod 14
2 )

that is x ≡ 5 (mod 7)
or as

x ≡ 5, 5 + 7 (mod 14)
that is x ≡ 5, 12, (mod 14).

Check: (4)(5)− 6 ≡ 14 ≡ 0 (mod 14).

Exercise 3-34:
Solve the congruence

5x ≡ 7 (mod 15).

Solution:

Here, gcd(5, 15) = 5, but 5 6 | 7, so there is no solution.

Exercise 3-35:
Solve the congruence

29x ≡ 43 (mod 128).

Solution:
The congruence is equivalent to the Diophantine equation

29x + 128y = 43, for some y ∈ Z.
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Since gcd(29, 128) = 1, we can find a solution to 29x + 128y = 1 by applying
the Euclidean Algorithm to 29 and 128.

29x +128y = r

1 0 29
0 1 128
1 0 29

−4 1 12
9 −2 5

−22 5 2
53 −12 1

Hence one solution to 29x + 128y = 1 is x = 53, y = −12. Multiplying by 43,
we obtain

29(2279) + 128(−516) = 43.

Therefore x = 2279 is one integer solution to 29x ≡ 43 (mod 128). Since
2279 ≡ 103 (mod 128), it follows from the Linear Congruence Theorem 3.54
that the complete solution to the congruence is

x ≡ 103 (mod 128).

Check: (29)(103)− 43 ≡ 23(128) ≡ 0 (mod 128).

Exercise 3-36:
Solve the congruence

1713x ≡ 871 (mod 2000).

Solution: This is equivalent to the Diophantine equation

1713x + 2000y = 871 for some y ∈ Z.

We use the Extended Euclidean Algorithm to calculate the gcd(1713, 2000).

2000y +1713x = r qi

1 0 2000
0 1 1713
1 −1 287 1

−5 6 278 5
6 −7 9 1

−185 216 8 30
191 −223 1 1

−1713 2000 0 8

Hence gcd(1713, 2000) = 1 and the congruence has a solution. The above cal-
culations shows that

1713(−223) + 2000(191) = 1.
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Multiplying by 871 we get

1713(−194233) + 2000(166361) = 871.

Hence x = −194233, y = 166361 is one solution to the Diophantine equation. By
the Linear Congruence Theorem 3.54, the complete solution to the congruence
is

x ≡ −194233 (mod 2000)
i.e. x ≡ 1767 (mod 2000).

Check: (1713)(1767)− 871 ≡ 3026000 ≡ 0 (mod 2000).

Exercise 3-37:
Solve the congruence

1426x ≡ 597 (mod 2000).

Solution:

There can be no solution since gcd(1426, 2000) = 2 and 2 does not divide
597.

Exercise 3-38:
Solve the congruence

x2 ≡ 6x (mod 8).

Solution: Consider the following table.

Modulo 8
x ≡ 0 1 2 3 4 5 6 7

x2 ≡ 0 1 4 1 0 1 4 1
6x ≡ 0 6 4 2 0 6 4 2

Therefore x is a solution to x2 ≡ 6x (mod 8) iff x ≡ 0, 2, 4, 6 (mod 8)
Note: We could write the solution as x ≡ 0 (mod 2); that is, x is even.
Check: If x = 2k for k ∈ Z then 4k2 − 12k = 4k(k− 3) and one of k and k− 3
is even. Therefore 8|x2 − 6x.

Exercise 3-39:
Solve the congruence

x2 + 2x ≡ 3 (mod 8).

Solution: Consider the following table.

Modulo 8
x ≡ 0 1 2 3 4 5 6 7

x2 ≡ 0 1 4 1 0 1 4 1
x2 + 2x ≡ 0 3 0 7 0 3 0 7
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From the above table we see that x2 + 2x ≡ 3 (mod 8) if

x ≡ 1 or 5 (mod 8).

Exercise 3-40:
Solve the congruence

4x3 + 2x + 1 ≡ 0 (mod 5).

Solution:

Modulo 5
x ≡ 0 1 2 3 4

x3 ≡ 0 1 3 2 4
4x3 + 2x + 1 ≡ 1 2 0 2 0

Hence the complete solution is x ≡ 2 or 4 (mod 5)

Exercise 3-41:
Solve the congruence

x9 + x7 + x6 + 1 ≡ 0 (mod 2).

Solution: If x is even then the left side is odd, and if x is odd then the left side
is even. Hence the solution to the congruence is x ≡ 1 (mod 2); that is, x is
odd.

Exercise 3-42:
Find the inverse of [4] in Z11.

Solution: We have to solve the following congruence.

4x ≡ 1 (mod 11)
4x ≡ 12 (mod 11)
x ≡ 3 (mod 11), since gcd(4, 11) = 1

Therefore, [4]−1 = [3] in Z11.
Check: [4][3] = [12] = [1] in Z11.

Exercise 3-43:
Find the inverse of [2] in Z41.
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Solution: We have to solve the following congruence.

2x ≡ 1 (mod 41)
2x ≡ 42 (mod 41)
x ≡ 21 (mod 41) since gcd(2, 41) = 1

Therefore [2]−1 = [21] in Z41.
Check: 2(21) ≡ 1 (mod 41).

Exercise 3-44:
Find the inverse of [23] in Z41.

Solution: We must solve 23x ≡ 1 (mod 41). Apply the Extended Euclidean
Algorithm to 41 and 23.

41y +23x = r qi

1 0 41
0 1 23
1 −1 18 1

−1 2 5 1
4 −7 3 1

−5 9 2 3
9 −16 1 1

−23 41 0 1

Hence 23(−16) + 41(9) = 1. Therefore 23(−16) ≡ 1 (mod 41) and

[23]−1 = [−16] = [25] ∈ Z41.

Check: 23 · 25 = 575 = 14 · 41 + 1.

Exercise 3-45:
Solve the equation [4][x] + [8] = [1] in Z9.

Solution:
[4][x] + [8] = [4x + 8] = [1]. This is equivalent to solving

4x ≡ −7 (mod 9)
4x ≡ 2 (mod 9).

This congruence is equivalent to the Diophantine Equation 4x+9y = 2 for y ∈ Z.
Since gcd(4, 9) = 1, the congruence equation has a solution. By inspection
4(−4) + 9(2) = 2. Therefore x = −4 and y = 2 is a particular solution. By
Theorem 3.54, the complete solution is

x ≡ −4 (mod 9)
≡ 5 (mod 9)

[x] = [5] ∈ Z9.
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Check: [4][5] + [8] = [28] = [1] ∈ Z9

Exercise 3-46:
Solve the equation [3][x] = [18] in Z19.

Solution: This is equivalent to solving

3x ≡ 18 (mod 19).
x ≡ 6 (mod 19) since gcd(3, 19) = 1.

Therefore [x] = [6] is the complete solution.

Exercise 3-47:
Solve the equation ([x]− [2])([x]− [3]) = [0] in Z6.

Solution: Consider the following table.

Modulo 6
x ≡ 0 1 2 3 4 5

x− 2 ≡ -2 -1 0 1 2 3
x− 3 ≡ -3 -2 -1 0 1 2

(x− 2)(x− 3) ≡ 0 2 0 0 2 0

Therefore (x − 2)(x − 3) ≡ 0 (mod 6) for x ≡ 0, 2, 3, 5 (mod 6) and the
solutions are x = [0], [2], [3], [5] ∈ Z6.

Exercise 3-48:
For what integer values of a does x2 ≡ a (mod 7) have a solution?

Solution: Consider all the squares modulo 7.

Modulo 7
x ≡ 0 1 2 3 4 5 6

x2 ≡ 0 1 4 2 2 4 1

Thus x2 ≡ a (mod 7) has a solution for a ≡ 0, 1, 2, 4 (mod 7).

Exercise 3-49:
Solve the following simultaneous congruence:

x ≡ 4 (mod 5)
x ≡ 3 (mod 4).

Solution: By the Chinese Remainder Theorem the system of congruences has
a solution, since gcd(5, 4) = 1.
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An integer x satisfies the first congruence if and only if x = 4 + 5y for some
y ∈ Z. Substitute this value of x into the second congruence,

4 + 5y ≡ 3 (mod 4)
y ≡ 3 (mod 4).

This is equivalent to y = 3 + 4z for some z ∈ Z. The solution for both congru-
ences is therefore

x = 4 + 5(3 + 4z) = 19 + 20z;

that is, x ≡ 19 (mod 20).
Check: 19 + 20z ≡ 3 (mod 4) and 19 + 20z ≡ 4 (mod 5).

Exercise 3-50:
Solve the following simultaneous congruences.

x ≡ 46 (mod 51)
x ≡ 27 (mod 52)

Solution: By the Chinese Remainder Theorem the system of congruences has
a solution, since gcd(51, 52) = 1.

Now convert one congruence to an integer equation, involving another vari-
able, and substitute into the other congruence. [A useful trick is to choose the
larger congruence to convert, as the resulting congruence you have to solve will
be of smaller modulus.]

An integer x satisfies the second congruence if and only if x = 27 + 52y for
some y ∈ Z. Substitute this into the first congruence.

27 + 52y ≡ 46 (mod 51)
y ≡ 52y ≡ 46− 27 ≡ 19 (mod 51)

The complete solution for y is y = 19 + 51n for n ∈ Z. Hence

x = 27 + (19 + 51n)52 = 1015 + 51 · 52n

for n ∈ Z. Therefore, the complete solution for x is x ≡ 1015 (mod 2652).
Check: If x = 1015 + 2652z then x ≡ 46 (mod 51) and x ≡ 27 (mod 52).

Exercise 3-51:
Solve the following simultaneous congruences.

x ≡ 1 (mod 2)
x ≡ 2 (mod 3)
x ≡ 3 (mod 7)
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Solution: By the Chinese Remainder Theorem, the first two congruences have
a unique solution, since gcd(2, 3) = 1, and the solution is one congruence class
modulo 6. Again by the Chinese Remainder Theorem, the solution to the
first two congruences and the last congruence have a unique solution, since
gcd(6, 7) = 1, and the solution is one congruence class modulo 42.

Now, x ≡ 1 (mod 2) and x ≡ 2 (mod 3) are equivalent to x ≡ −1
(mod 2) and x ≡ −1 (mod 3) respectively. Hence, by Proposition 3.64, the
solution to the first two is x ≡ −1 (mod 6).

We have reduced the three simultaneous congruences to two simultaneous
congruences.

x ≡ −1 (mod 6)
x ≡ 3 (mod 7).

An integer x satisfies the second congruence if and only if x = 3 + 7y for y ∈ Z.
Substitute this into the first congruence.

3 + 7y ≡ −1 (mod 6)
y ≡ 7y ≡ −1− 3 ≡ 2 (mod 6)

This is equivalent to y = 2 + 6z for z ∈ Z. The solution for both congruences is
therefore

x = 3 + (2 + 6z)7 = 17 + 42z.

That is x ≡ 17 (mod 42).
Check: 17+42z ≡ 1 (mod 2), 17+42z ≡ 2 (mod 3), 17+42z ≡ 3 (mod 7).

Exercise 3-52:
Solve the following simultaneous congruences.

2x ≡ 11 (mod 13)
3x ≡ 7 (mod 9)
7x ≡ 5 (mod 8)

Solution: Because gcd(3, 9) = 3 which does not divide 7, the second congruence
3x ≡ 7 (mod 9) has no solutions. Hence the system has no solutions.

Exercise 3-53:
Solve the following simultaneous congruences.

2x ≡ 4 (mod 7)
18x ≡ 43 (mod 23)

Solution:
As gcd(2, 7) = 1, the first congruence has one solution modulo 7, by Theorem
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3.54. Now x ≡ 2 (mod 7) satisfies the congruence, so it must be the complete
solution.

The second congruence can be rewritten as 18x ≡ 20 (mod 23). This is
equivalent to the Diophantine equation

18x + 23y = 20 for some y ∈ Z.

Apply the Extended Euclidean Algorithm to 23 and 18.

23y +18x = r qi

1 0 23
0 1 18
1 −1 5 1

−3 4 3 3
4 −5 2 1

−7 9 1 1
18 −23 0 1

As gcd(18, 23) = 1, the equation has a solution. The next to last row shows
that 18(9) + 23(−7) = 1. Multiplying by 20 gives 18(180) + 23(−140) = 20.
Therefore x = 180 and y = −140 is a particular solution to the Diophantine
equation. By Theorem 3.54, the complete solution to the second congruence is

x ≡ 180 (mod 23)
≡ 19 (mod 23).

Hence the given system of simultaneous congruences is equivalent to the system

x ≡ 2 (mod 7)
x ≡ 19 (mod 23).

As gcd(7, 23) = 1, the Chinese Remainder Theorem shows that the system
has one solution modulo 7 · 23.

An integer x satisfies the second congruence if and only if x = 19 + 23y for
y ∈ Z. Substituting into the first congruence,

19 + 23y ≡ 2 (mod 7)
2y ≡ 4 (mod 7).

Since gcd(2, 7) = 1, this has the solution y ≡ 2 (mod 7), which is equivalent
to y = 2 + 7z for z ∈ Z.

The solution for both congruences is therefore

x = 19 + 23(2 + 7z) = 65 + 161z for all x ∈ Z.

That is, x ≡ 65 (mod 161).

Alternate Solution:
As gcd(2, 7) = 1, the first congruence has one solution modulo 7, by Theorem
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3.54. Now x ≡ 2 (mod 7) satisfies the congruence, so it must be the complete
solution, and x = 2 + 7y for y ∈ Z.

Substitute this into to second congruence and determine if there is a solution.

18x ≡ 43 (mod 23)
18(2 + 7y) ≡ 43 (mod 23)

126y ≡ 43− 36 (mod 23)
11y ≡ 7 (mod 23)
22y ≡ 14 (mod 23)

y ≡ −14 ≡ 9 (mod 23)

Hence there is a solution to both congruences and it is

x = 2 + 7(9 + 23z) = 65 + 161z for all x ∈ Z.

That is, x ≡ 65 (mod 161).
Check: If x = 65+161z then 2x ≡ 130 ≡ 4 (mod 7). Now x ≡ −4 (mod 23),
so 18x ≡ −72 ≡ −3 ≡ 43 (mod 23).

Exercise 3-54:
Solve the following simultaneous congruences.

161x ≡ 49 (mod 200)
74x ≡ 1 (mod 53)

Solution:
The first congruence is equivalent to the Diophantine Equation 161x+200y = 49
for some y ∈ Z. Apply the Extended Euclidean Algorithm to 200 and 161.

200y +161x = r qi

1 0 200
0 1 161
1 −1 39 1

−4 5 5 4
29 −36 4 7

−33 41 1 1
200 −161 0 7

The gcd(200, 161) = 1, so the congruence has a solution. From the next t last
row we see that 161(41) + 200(−33) = 1. Multiplying by 49 gives

161(2009) + 200(−1617) = 49.

Therefore x = 1763 and y = −1617 is a particular solution, and by Theorem
3.54, the complete solution to the congruence is

x ≡ 2009 (mod 200)
≡ 9 (mod 200).
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An integer x satisfies the first congruence if and only if x = 9 + 200y for
some y ∈ Z. Substitute this into the second congruence and determine if there
is a solution.

74(9 + 200y) ≡ 1 (mod 53)
14800y ≡ −665 (mod 53)

13y ≡ 24 (mod 53)

This is equivalent to the Diophantine Equation 13y + 53s = 24. This has a
solution, since gcd(13, 53) = 1. Either apply the Extended Euclidean Algorithm
to 13 and 53, or notice that

13(−4) + 53 = 1
13(−96) + 53(24) = 24.

Therefore y = −96 and s = 24 is a particular solution, and by Theorem 3.54,
the complete solution to the congruence 13y ≡ 24 (mod 53) is

y ≡ −96 (mod 53)
≡ 10 (mod 53).

So y = 10 + 53z for z ∈ Z.
The solution for both congruences is therefore

x = 9 + 200(10 + 53z) = 2009 + 10600z for z ∈ Z

That is, x ≡ 2009 (mod 10600).
Check: If x = 2009 + 10600z then

161x ≡ 161 · (2009) ≡ 323449 ≡ 49 (mod 200)
74x ≡ 74 · (2009) ≡ 148666 ≡ 1 (mod 53).

Exercise 3-55:
Find the two smallest positive integer solutions of x ≡ 5 (mod 7) and x ≡ 24
(mod 25).

Solution: We must first solve the system of congruences

x ≡ 5 (mod 7)
x ≡ 24 (mod 25).

Since gcd(7, 25) = 1, the Chinese Remainder Theorem tells us that the system
of congruences has a solution modulo 175.

An integer x satisfies the congruence x ≡ 5 (mod 7) if and only if

x = 5 + 7y for some y ∈ Z.
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Substituting into the second congruence we have

5 + 7y ≡ 24 (mod 25)
7y ≡ 19 (mod 25).

This is equivalent to the equation 7y + 25s = 19 for some s ∈ Z. By inspection
7(−7) + 25(2) = 1, multiplying by 19 gives 7(−133) + 25(38) = 19. Hence
y = −133 and s = 38 is a particular solution to the equation. Therefore the
complete solution of the congruence is

y ≡ −133 (mod 25)
≡ 17 (mod 25)

This is equivalent to 17 + 25z = y for z ∈ Z. The solution for both congruences
is therefore

x = 5 + 7(17 + 25z) = 124 + 175z

or equivalently
x ≡ 124 (mod 175).

The smallest positive solutions occur when z = 0 and 1, so x = 124 and 299.
Check: 124− 5 ≡ 119 ≡ 0 (mod 7) and 124− 24 ≡ 100 ≡ 0 (mod 25).

Problem 3-56:
If p is a prime, prove that x2 ≡ y2 (mod p) if and only if x ≡ ±y (mod p).

Solution:
Let x2 ≡ y2 (mod p). Then x2 − y2 ≡ 0 (mod p); i.e. (x + y)(x− y) ≡ 0

(mod p) and p|(x + y)(x− y) Since p is prime, by Theorem 2.53 either p|x + y
or p|x− y; i.e.

x ≡ −y or x ≡ y (mod p)
x ≡ ±y (mod p).

Conversely suppose x ≡ ±y (mod p). Then, squaring, x2 ≡ y2 (mod p).

Problem 3-57:
If p is an odd prime, show that x2 ≡ a (mod p) has a solution for exactly half
the values of a between 1 and p−1 inclusive. Furthermore, if 1 ≤ a ≤ p−1 and
x2 ≡ a (mod p) has a solution, show that it has exactly two congruence classes
of solutions modulo p.

Solution:
We use the result of Problem 3-56 that, for p prime, x2 ≡ y2 (mod p) if

and only if x ≡ ±y (mod p). In particular, x2 ≡ 0 (mod p) if and only if
x ≡ 0 (mod p).

Note that if 1 ≤ i < p/2 then p/2 < p− i ≤ p− 1 and

(p− i)2 ≡ (−i)2 ≡ i2 (mod p).
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Hence if x2 ≡ a (mod p) has a solution where a 6≡ 0 (mod p), then there exists
i with 1 ≤ i < p/2 and i2 ≡ a (mod p). Therefore the values of a 6≡ 0 (mod p)
for which the congruence x2 ≡ a (mod p) has a solution are congruent to

12, 22, 32, . . . ,

(
p− 1

2

)2

(mod p).

Some of these squares could give the same congruence class modulo p, though
we shall now show that they are all distinct. Suppose

i2 ≡ j2 (mod p) with 1 ≤ j ≤ i < p/2.

Then p|(i − j)(i + j) and, since p is prime, it follows from Theorem 2.53 that
either p|i + j or p|i − j. However 2 ≤ i + j < p and 0 ≤ i − j < p/2, so the
only possibility is i− j = 0. Therefore the congruence classes 12, 22, . . . , (p−1

2 )2

are all distinct modulo p and there are p−1
2 possible values for a between 1 and

p− 1.
Therefore the congruence x2 ≡ a (mod p) has a solution for exactly half

the values of a between 1 and p − 1. If x2 ≡ a (mod p) has a solution with
1 ≤ a ≤ p−1 then there are exactly two congruence classes of solutions modulo
p of the form x ≡ i, p− i (mod p) for 1 ≤ i < p/2.

Problem 3-58:
Does x3 ≡ a (mod p) always have a solution for every value of a, whenever p
is prime?

Solution:
The congruence x3 ≡ a (mod p) does not always have a solution for every

a and every prime p.
For example, when p = 7 :

Modulo 7
x ≡ 1 2 3 4 5 6 0
x3 ≡ 1 1 6 1 6 6 0

So the equation x3 ≡ 2 (mod 7), for example, has no solution.

Problem 3-59:
Choose any integer larger than 10, subtract the sum of its digits from it, cross
out one nonzero digit from the result, and let the sum of the remaining digits be
s. From a knowledge of s alone, is it possible to find the digit that was crossed
out?

Solution:
Let the integer be x > 10, so it has at least 2 digits and the described

procedure is possible. If the sum of the digits of x is dr + · · · + d1 + d0 then
x−(dr + · · ·+d1 +d0) ≡ 0 (mod 9) by Theorem 3.21. If x−(dr + · · · d1 +d0) =
ytyt−1 . . . y1y0 then yi + y1 + · · ·+ yt ≡ 0 (mod 9). If we cross out some digit,
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say yi, then the sum of the remaining digits, s = y0 + y1 + · · ·+ yt − yi ≡ −yi

(mod 9). Hence yi ≡ −s (mod 9). Since yi is nonzero, 1 ≤ yi ≤ 9 and yi can
be determined from s.

[Note that 0 ≡ 9 (mod 9), so if we crossed out a zero digit, we could not
distinguish that from crossing out a 9, from the knowledge of s alone.]

Problem 3-60:
Prove that 21|(3n7 + 7n3 + 11n) for all integers n.

Solution:
The relation 21|(3n7 + 7n3 + 11n) holds if and only if both the following

congruences hold.

3n7 + 7n3 + 11n ≡ 0 (mod 3)
3n7 + 7n3 + 11n ≡ 0 (mod 7)

The first congruence is equivalent to n3 + 2n ≡ 0 (mod 3) and this holds
for all n by Fermat’s Little Theorem because n3 ≡ n (mod 3). The second
congruence is equivalent to 3n7 + 4n ≡ 0 (mod 7) which also holds for all n
by Fermat’s Little Theorem because n7 ≡ n (mod 7). Hence the divisibility
relation holds for all integers n.

Problem 3-61:
Prove that n91 ≡ n7 (mod 91) for all integers n. Is n91 ≡ n (mod 91) for all
integers n?

Solution: Since 91 = 7·13, 91 is not prime. By Fermat’s Little Theorem n6 ≡ 1
(mod 7) for all n coprime to 7. Hence

n91 ≡ (n6)15n ≡ 115 · n ≡ n ≡ n7 (mod 7).

This is true even if 7|n.
Also by Fermat’s little theorem, nk ≡ 1 (mod 13) if 13 - k. Hence

n91 ≡ (n12)7n7 ≡ n7 (mod 13).

This congruence is still true if 13|n.
Hence we have the two congruences

n91 ≡ n7 (mod 7)
n91 ≡ n7 (mod 13)

for all integers n. By Proposition 3.64 this is equivalent to

n91 ≡ n7 (mod 91).

From what we have proved above, the congruence n91 ≡ n (mod 91) is
equivalent to n7 ≡ n (mod 91), which is also equivalent to the two congruences
n7 ≡ n (mod 7) and n7 ≡ n (mod 13).
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However, 27 ≡ 128 ≡ −2 6≡ 2 (mod 13). Hence 291 ≡ 27 6≡ 2 (mod 91)
and so n91 6≡ n (mod 91) for all n.

Problem 3-62:
For which positive values of k is nk ≡ n (mod 6) for all integers n?

Solution: The congruence nk ≡ n (mod 6) if and only if the simultaneous
congruences

nk ≡ n (mod 2)
nk ≡ n (mod 3)

hold for all n. The first congruence holds for all k, since if n is odd, both sides
are congruent to 1, and if n is even, both sides are congruent to 0.

If k is odd, say k = 2j + 1, the second congruence holds for all n since, if
n 6≡ 0 (mod 3), we can use Fermat’s Little Theorem to obtain

nk ≡ n2j+1 ≡
(
n2

)j
n ≡ 1jn ≡ n (mod 3).

If n ≡ 0 (mod 3), then both sides are congruent to 0.
If k is even however, say k = 2j, the second congruence does not hold for all

n. For example, if n ≡ 2 (mod 3) then

nk ≡ 22j ≡
(
22

)j ≡ 1j ≡ 1 6≡ n (mod 3).

Therefore nk ≡ n (mod 6), for all n, if and only if k is odd.

Problem 3-63:
For which positive values of k is nk ≡ n (mod 4) for all integers n?

Solution: If k = 1 then nk = n so the congruence nk ≡ n (mod 4) holds.
For k ≥ 2, choose n such that n ≡ 2 (mod 4). Then

nk ≡ 2k ≡ 222k−2 ≡ 0 · 2k−2 ≡ 0 6≡ 2 ≡ n (mod 4).

Hence the congruence is not satisfied for all integers n.
Therefore nk ≡ n (mod 4), for all integers n, if and only if k = 1.

Problem 3-64:
For which positive values of k is nk ≡ n (mod 7) for all integers n?

Solution: We shall show that the possible values of k are the positive integers
with k ≡ 1 (mod 6).

We first show that if k ≡ 1 (mod 6), then nk ≡ n (mod 7). Let k = 6m+1
for some m ∈ Z. Then m ≥ 0 as k > 0. If n ≡ 0 (mod 7), then certainly
nk ≡ 0k ≡ 0 ≡ n (mod 7). If n 6≡ 0 (mod 7) then, using Fermat’s Little
Theorem, we have

nk ≡ n6m+1 ≡
(
n6

)m
n ≡ 1mn ≡ n (mod 7).
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Now we need to show that if nk ≡ n (mod 7), for all n ∈ Z, then k ≡ 1
(mod 6). Let k = 6q + r with 0 ≤ r < 6, q, r ∈ Z. Then q ≥ 0 as k > 0.

Since nk ≡ n (mod 7) for all n, it certainly must hold for all n not divisible
by 7. For these n, Fermat’s Little Theorem yields n6 ≡ 1 (mod 7). So

n ≡ nk ≡ n6q+r ≡ (n6)qnr ≡ 1qnr ≡ nr (mod 7).

For r = 1, this is certainly true, but for r = 0, 2, 3, 4, 5, there are integers n that
do not satisfy this:

20 ≡ 1 6≡ 2 (mod 7); 22 ≡ 4 6≡ 2 (mod 7);
23 ≡ 8 6≡ 2 (mod 7); 34 ≡ 4 6≡ 3 (mod 7);
25 ≡ 4 6≡ 2 (mod 7).

Therefore we must have r = 1; i.e., k = 6q + 1 and k ≡ 1 (mod 6).

Problem 3-65:
Prove, without using a calculator, that 641 divides the Fermat number

F (5) = 225
+ 1.

Solution:
We have to show that 225

+ 1 ≡ 0 (mod 641); i.e. 232 ≡ −1 (mod 641).
We therefore need to compute large powers of 2 modulo 641. We note that
641 = 640 + 1 = 27 · 5 + 1, so

27 · 5 ≡ −1 (mod 641)
(27 · 5)4 ≡ (−1)4 (mod 641)
228 · 625 ≡ 1 (mod 641)

228(−16) ≡ 1 (mod 641), since 625 ≡ −16 (mod 641)
−232 ≡ 1 (mod 641)

232 ≡ −1 (mod 641).

Therefore, 641|232 + 1.

Problem 3-66:
Show that the product of two numbers of the form 4n + 1 is still of that form.
Hence show that there are infinitely many primes of the form 4n + 3.

Solution:
If x is of the form 4n + 1 then x ≡ 1 (mod 4). If y is of the form 4n + 1

then y ≡ 1 (mod 4). Hence xy ≡ 1 (mod 4), and is of the form 4n + 1.
Suppose that there are only finitely many primes of the form 4n + 3, say

p1, p2, . . . , pk. Then their product

p1 · p2 · · · pk ≡ 3k (mod 4)
≡ (−1)k (mod 4)

≡
{

1 (mod 4) if k is even
3 (mod 4) if k is odd .
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If k is even, consider N = p1 ·p2 · · · pn+2, which is congruent to 3 (mod 4).
Now N is odd and so is not divisible by 2. Since the product of primes of the
form 4n + 1 is still of that form, N cannot be the product of primes just of
the form 4n + 1. Therefore N must be divisible by a prime of the form 4n + 3.
This prime cannot be any of p1, p2, . . . , pk, because they leave remainder 2 when
divided into N. Hence we obtain a new prime of the form 4n + 3.

If k is odd, consider N = p1 ·p2 · · · pk +4 which is congruent to 3 (mod 4).
By a similar argument to that above, it follows that N must contain a new
prime factor of the form 4n + 3.

Therefore we have shown that p1, p2, . . . , pk cannot be the complete set of
primes of the form 4n + 3, and so there must be an infinite number of such
primes.

Problem 3-67:
Define a relation on the set of real numbers by

aRb if and only if a− b = 2kπ for somek ∈ Z.

(a) Prove that this is an equivalence relation.

(b) Which of the following are related?

5π and − 10π,−π and π, 3 and 9,
2
3
π and − 1

3
π,

11
6

π and
23
6

π?

(c) Two real numbers are equivalent if and only if they represent the same
angle in radians. The equivalence classes therefore consist of the different
angles. Denote the equivalence class containing a by [a].
Show that addition of angles is well defined by

[a] + [b] = [a + b].

(d) Show, by a counterexample, that multiplication of angles if not well defined
by

[a] · [b] = [ab].

Solution: (a)

(i) Since a− a = 2 · 0π it follows that aRa.

(ii) If aRb then a− b = 2kπ and b− a = 2(−k)π, so bRa.

(iii) If aRb and bRc then a − b = 2kπ, b − c = 2`π for k, ` ∈ π Hence a − c =
(a− b) + (b− c) = 2(k + `)π and aRc.

Therefore R is an equivalence relation on the set of real numbers.
(b) 5π − (−10π) = 15π so 5π and −10π are not related.

−π − π = −2π so −π and π are related.
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3− 9 = −6, which is not an integral multiple of 2π, since π is not a rational
number. Hence 3 and 9 are not related.

2π
3 − (−π

3 ) = π so 2π
3 and −π

3 are not related. 11π
6 − 23π

6 = −12π
6 = −2π, so

11π
6 and 23π

6 are related.
Hence πRπ, and 11π

6 R 23π
6 .

(c) Let [a] = [a′] and [b] = [b′]. Then aRa′ and bRb′ so that a − a′ = 2kπ and
b−b1 = 2`π, where k, ` ∈ Z. Then a+b = a′+2kπ+b′+2`π = a′+b′+2(k+`)π.
Hence (a + b)R(a′ + b′), so [a + b] = [a′ + b′] whenever [a] = [a′] and [b] = [b′].

This means that addition of angles is well defined by [a] + [b] = [a + b]
(d) Now [2π] = [0], but [2π] · [π] 6= [0] · [π], since 2π · π − 0 · π = 2π2, which is
not an integer multiple of 2π as π is not a rational number.

Therefore multiplication of angles is not well defined.

Problem 3-68:

(a) Find a relation R, on a set S, that is symmetric and transitive, but not
reflexive.

(b) If there is an example to part (a), the following “proof,” that every sym-
metric and transitive relation is reflexive, must be fallacious. Find the
error. “Let R be a symmetric and transitive relation on the set S. For
any a, b ∈ S, aRb implies that bRa, because R is symmetric. But aRb and
bRa imply that aRa, because R is transitive. Since aRa, R must also be
reflexive.”

Solution: (a) Let S = {1, 2} with the relation R defined by just 2R2.
This relation is clearly symmetric. It is transitive, since the only case to

check is
2R2 and 2R2 =⇒ 2R2

which is true.
This relation is not reflexive, since 1 is not related to 1.

[An even more primitive example is S = {1}, with no elements related to each
other.]

(b) For a relation to be reflexive, aRa must hold for each element a in the set.
When a is not related to any other element in the set, we cannot use symmetry
and transitivity to prove that a is related to itself.

Problem 3-69:
If m = pq is a composite number, where 1 < p ≤ q < m, show that Zm is not a
field by showing that division by nonzero elements is not always possible in Zm.

Solution:
The question of division by a nonzero element is equivalent to the existence

of an inverse for the element. Since m = pq where 1 < p ≤ q < m, then in Zm

we have
[p] 6= 0, [q] 6= 0 but [p][q] = [pq] = [m] = [0].

3.31



We shall show that the nonzero element [p] has no inverse in Zm. If [p] did
have an inverse, then multiply both sides of the above equation by the inverse
[p]−1 and use the relation [p]−1[p] = [1] to obtain

[p]−1[p][q] = [p]−1[0]
[1][q] = [0]

[q] = [0]

which is a contradiction. Thus, our assumption that [p]−1 existed was wrong.
Hence division by [p] in Zm is not possible.

Problem 3-70:
Solve the following system of simultaneous equations in Z12.

[8][x] + [3][y] = [9]
[6][x] + [5][y] = [2]

Solution:
Note that it is possible to solve for [y] in terms of [x] in the second equation,

since 5 is relatively prime to 12 and we can compute the inverse of [5] in Z12.
We have 52 = 25 ≡ 1 (mod 12) so [5][5] = [1], and the inverse of [5] is itself in
Z12. Multiply the second equation by [5] to obtain

[5][6][x] + [5][5][y] = [5][2]
[6][x] + [y] = [10]

[y] = [10]− [6][x].

Substitute this into the first equation,

[8][x] + [3]([10]− [6][x]) = [9]
[8][x] + [6] + [6][x] = [9]

[2][x] = [3].

This final equation is a simple congruence to solve modulo 12. Since gcd(2, 12) =
2, which does not divide 3, there are no solutions for x by the Linear Congruence
Theorem 3.54. Therefore the simultaneous equations have no solutions in Z12.

Problem 3-71:
Solve the following system of simultaneous equations in Z11.

[3][x] + [4][y] = [5]
[7][x] + [5][y] = [4]

Solution:
Since the modulus is prime, all nonzero elements in Z11 have inverses and

we can solve the system just as we would in real numbers.
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By adding multiples of the equations we will cancel [x] and solve for [y]. If
we multiply the second equation by [−2] we get

[−3][x] + [−10][y] = [−8]

If we add this to the first equation we get

[3][x] + [4][y] = [5]
[−3][x] + [−10][y] = [−8]

[5][y] = [8]

Since 5 is relatively prime to 11, we may compute the inverse of [5] in Z11.
We have 5 · 9 = 45 ≡ 1 (mod 11), so [5][9] = [1] and the inverse of [5] is [9].
Therefore, if we multiply the equation by [9] we get

[y] = [72] = [6]

To find [x], we substitute [y] = [6] into the first equation.

[3][x] + [4][6] = [5]
[3][x] = [5− 24]
[3][x] = [3]

Clearly [x] = [1] is a solution. Because 3 and 11 are coprime this is the only
solution. Thus, the solution to the system of simultaneous equations in Z11 is

[x] = [1]
[y] = [6].

Check:

3 · 1 + 4 · 6 ≡ 27 ≡ 5 (mod 11)
7 · 1 + 5 · 6 ≡ 37 ≡ 4 (mod 11)

Problem 3-72:
One common error in copying numbers is the transposition of adjacent digits.
For example, 9578 might be copied as 9758. Will the method of casting out
nines discover such an error? Discuss other methods of checking for errors.

Solution: Let

x = ar10r + ar−110r−1 + . . . + ai+110i+1 + ai10i + . . . + a110 + a0

be the number that is copied. Suppose that the transposition of adjacent digits
occurs in the ith and (i + 1)st digit. That is,

x′ = ar10r + ar−110r−1 + . . . + ai10i+1 + ai+110i + . . . + a110 + a0
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is the copied number. The method of casting out nines checks the numbers
modulo 9. As we know by the test for divisibility by 9,

x ≡ ar10r + . . . + ai+110i+1 + ai10i + . . . + a0 (mod 9)
≡ ar + ar−1 + . . . + ai+1 + ai + . . . + a1 + a0 (mod 9)

But x′ has the same digits as x in different order so x ≡ x′ (mod 9). Hence
the method of casting out nines will not detect the error.

By the same argument as above we can rule out the test of divisibility by
3. Now, the tests for divisibility by 2, 4, 5 and 10 depend in the last digit or
the last two digits of the number. Only if the transposition of adjacent digits
happened in these digits could there be a possibility of detecting the error. But
even then, the test would only work for certain numbers. For example if 542
gets copied as 524, both numbers are even.

Now the test for divisibility by 11 takes the alternating sum of digits. Using
x and x′ as defined above we have

x ≡ (−1)rar + . . . + (−1)i+1ai+1 + (−1)iai + . . .− a1 + a0 (mod 11).

and if ai 6= ai+1,

x ≡ (−1)rar + . . . + (−1)i+1ai + (−1)iai+1 + . . .− a1 + a0 (mod 11).

Subtracting these two congruences we get

x− x′ ≡ 2(−1)i(ai − ai+1) (mod 11).

Because ai − ai+1 6= 0 and 0 ≤ ai, ai+1 ≤ 10 < 11 then

2(−1)i(ai − ai+1) 6≡ 0 (mod 11).

So the test for divisibility by 11 will detect the error.
A modification of this method is used in the ISBN introduced in the next

problem.

Problem 3-73:
Is 0-467-51402-X a valid ISBN?

Solution: Yes.

2 · 4 + 3 · 6 + 4 · 7 + 5 · 5 + 6 · 1 + 7 · 4 + 9 · 2 ≡ 10

and 10 is represented by X.

Problem 3-74:
Is 1-56-004151-5 a valid ISBN?
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Solution:

1(1) + 2(5) + 3(6) + 4(0) + 5(0) + 6(4) + 7(1) + 8(5) + 9(1)
= 1 + 10 + 18 + 0 + 0 + 24 + 7 + 40 + 9
≡ 7 + 2 + 7 + 7 + 9 (mod 11)
≡ 32 (mod 11)
≡ 10 (mod 11)

Hence, it is not a valid ISBN (The check digit should be 10 or X, not 5).

Problem 3-75:
What is the check digit for 14-200-0076- ?

Solution: Let a10 be the check digit for 14− 200− 0076− ? then

a10 ≡ 1 · 1 + 2 · 4 + 3 · 2 + 7 · 8 + 6 · 9 (mod 11)
≡ 125 ≡ 4 (mod 11)

Hence the check digit is a10 = 4.

Problem 3-76:
What is the check digit for 0-4101-1286- ?

Solution: Let a10 be the check digit for 0-4101-1286- ? then

a10 ≡ 2 · 4 + 3 · 1 + 5 · 1 + 6 · 1 + 7 · 2 + 8 · 8 + 9 · 6 (mod 11)
≡ 3− 2− 1 ≡ 0 (mod 11)

Hence the check digit is a10 = 0.

Problem 3-77:
If φ(m) is the Euler φ-function, show that φ(m) = φ(2m) if and only if m is
odd.

Solution:
If m is odd then gcd(m, 2) = 1 and by the Euler-Phi Function Formula,

φ(2m) = φ(2)φ(m) = 1 · φ(m).

If m is even, write m = 2ik where gcd(k, 2) = 1 and i > 0. Suppose
φ(m) = φ(2m) and use the Euler-Phi Function Formulas.

φ(m) = φ(2m)
φ(2ik) = φ(2i+1k)

φ(2i)φ(k) = φ(2i+1)φ(k)
2i−1φ(k) = 2iφ(k)
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Dividing both sides by the nonzero number 2i−1φ(k) gives 1 = 2, which is a
contradiction.

Therefore φ(m) can never be φ(2m), when m is even.

Problem 3-78:
Prove that φ(m) = m− 1 if and only if m is prime.

Solution:
If m is a prime then φ(m) = m− 1, by the Euler Phi Function Formula.
If φ(m) = m− 1 then all the numbers from 1 to m− 1 are relatively prime

with m. That is, there is no number from 2 to m− 1 that divides m. Note that
φ(1) = 1, so m > 1. Hence m must be prime.

Problem 3-79:
(Wilson’s Theorem:) If p is prime, prove that

(p− 1)! ≡ −1 (mod p).

Solution:
We shall work inside Zp. If p = 2, then 1! ≡ −1 (mod 2) and the result is

true.
Otherwise p ≥ 3 is prime and the nonzero elements of Zp, [1], [2], . . . , [p− 1],

all have inverses. Now [1]−1 = [1] and [p−1]−1 = [−1]−1 = [−1] = [p−1]. These
are the only two elements of Zp that are their own inverses, since if x2 = 1 in Zp,
then (x− 1)(x + 1) = 0 and x = 1 or x = −1, by Problem 3-56. Thus the other
p − 3 nonzero elements {[2], [3], . . . , [p − 2]} are paired off into (p − 3)/2 pairs
consisting of an element with its inverse. When we multiply these together, we
will get [1]. Hence

[2] · [3] · [4] · · · [p− 3] · [p− 2] = [1]
p−3
2 = [1]

[1] · [2] · [3] · [4] · · · [p− 3] · [p− 2] · [p− 1] = [p− 1] = [−1].

That is, (p− 1)! ≡ −1 (mod p).

Problem 3-80:
If p and q are integers, not divisible by 3 or 5, prove that p4 ≡ q4 (mod 15).

Solution:
Since 3 is a prime, and p is not divisible by 3 then by Fermat’s Little Theo-

rem, p2 ≡ 1 (mod p) and so p4 ≡ p2 · p2 ≡ 1 (mod 3). Since 5 is prime and p
is not divisible by 5 then by Fermat’s Little Theorem, p4 ≡ 1 (mod 5) mod p.

We have the simultaneous congruences,

p4 ≡ 1 (mod 3)
p4 ≡ 1 (mod 5).
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By Proposition 3.64, p4 ≡ 1 (mod 15). Similarly, q4 ≡ 1 (mod 15). Thus

p4 ≡ q4 (mod 15).

Problem 3-81:
Solve the simultaneous congruences

9x ≡ 21 (mod 6)
4x ≡ 9 (mod 13).

Solution: We can rewrite the simultaneous congruences as

3x ≡ 3 (mod 6)
4x ≡ −4 (mod 13).

Clearly x ≡ 1 (mod 6) is one solution to the first congruence. Since gcd(3, 6) =
3, the complete solution by Theorem 3.54 is

x ≡ 1 (mod 2).

That is, x is odd.
Clearly x ≡ −1 (mod 13) is one solution to the second congruence. Since

gcd(4, 13) = 1 this is the complete solution.
To get the solution for the simultaneous congruences we must solve the

system of congruences

x ≡ 1 ≡ −1 (mod 2)
x ≡ −1 (mod 13).

Since gcd(2, 13) = 1, by Proposition 3.64 the complete solution is

x ≡ −1 (mod 26).

Modulo 6 · 13 = 78, this is

x ≡ 25, 25 + 26, 25 + 52 (mod 78)
≡ 25, 51, 77 (mod 78).

Check:

9(25)− 21 = 240 = 6(34), 4(25)− 9 = 91 = 13(7)
9(51)− 21 = 438 = 6(73), 4(51)− 9 = 195 = 13(15)
9(77)− 21 = 672 = 6(112), 4(77)− 9 = 299 = 13(23)

Problem 3-82:
Solve the simultaneous congruences
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3x ≡ 7 (mod 11)
8x ≡ 3 (mod 9).

Solution:
Since gcd(3, 11) = 1 and gcd(8, 9) = 1, the first congruence has one solution
modulo 11, and the second congruence one solution modulo 9. By the Chi-
nese Remainder Theorem the simultaneous congruences will have one solution
modulo 99, since gcd(11, 9) = 1.

Solve one of these congruences. The second congruence can be written

−x ≡ 3 (mod 9)
x ≡ −3 ≡ 6 (mod 9).

Hence x = 6 + 9z for z ∈ Z. Substitute this into the first congruence

3(6 + 9z) ≡ 7 (mod 11)
27z ≡ −11 ≡ 0 (mod 11).

Since gcd(27, 11) = 1 , the solution is z ≡ 0 (mod 11), or z = 11t for t ∈ Z.
Hence the solution the the simultaneous congruences is x = 6 + 99t, or

x ≡ 6 (mod 99).

Check: 3(6)− 7 = 11 = 11(1) and 8(6)− 3 = 45 = 9(5).

Problem 3-83:
Two watches, one of which gains 2 minutes per day, and the other which loses
3 minutes per day, read the correct time. When will both watches next give the
same time? When will they next both give the correct time?

Solution:
We first need to know that there are 1440 minutes in a day. The answers

might depend on whether the watches can tell the difference between a.m. and
p.m. If they can, then we have to work modulo 1440; if not, then we work
modulo 720. [Most digital watches can tell the difference, though they do not
normally lose anything like 2 minutes per day.]

12 Hour Watch: If the watches cannot tell the difference between a.m. and
p.m. then, after d days, the time on our first watch is given by

t + 2d (mod 720)

and on our second watch is given by

t− 3d (mod 720).

In order for both watches to read the same time, we must have

t + 2d ≡ t− 3d (mod 720).
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Clearly this occurs if and only if 5d ≡ 0 (mod 720); that is, 720|5d or 144|d.
Therefore the two watches will next read the same time after 144 days.

If we want to know when they will both read the correct time, then we must
have

t + 2d ≡ t (mod 720) and t− 3d ≡ t (mod 720)

or equivalently

2d ≡ 0 (mod 720) and − 3d ≡ 0 (mod 720).

Adding these congruences gives us

d ≡ 0 (mod 720).

This clearly satisfies both congruences and so must be the complete solution.
Hence both watches will read the correct time again after 720 days.

24 Hour Watch: If the watches can tell the difference between a.m. and p.m.
then, after d days, the time on our first watch is given by

t + 2d (mod 1440)

and on our second watch is given by

t− 3d (mod 1440).

In order for both watches to read the same time, we must have

t + 2d ≡ t− 3d (mod 1440).

Clearly this occurs if and only if 5d ≡ 0 (mod 1440); that is, 1440|5d or 288|d.
Therefore the two watches will next read the same time after 288 days.

If we want to know when they will both read the correct time, then we must
have

t + 2d ≡ t (mod 1440) and t− 3d ≡ t (mod 1440)

or equivalently

2d ≡ 0 (mod 1440) and − 3d ≡ 0 (mod 1440).

Adding these congruences gives us

d ≡ 0 (mod 1440).

This clearly satisfies both congruences and so must be the complete solution.
Hence both watches will read the correct time again after 1440 days.

Problem 3-84:
Solve x3 ≡ 17 (mod 99).

Solution: Since 99 = 9 · 11 and gcd(9, 11) = 1, the congruence is equivalent to
the simultaneous congruences

x3 ≡ 17 ≡ 6 (mod 11)
x3 ≡ 17 ≡ 8 (mod 9).
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Modulo 11
x ≡ 0 1 2 3 4 5 6 7 8 9 10

x3 ≡ 0 1 8 5 9 4 7 2 6 3 10

Modulo 9
x ≡ 0 1 2 3 4 5 6 7 8

x3 ≡ 0 1 8 0 1 8 0 1 8

From the tables, the solutions are x ≡ 8 (mod 11) and x ≡ 2, 5, 8 (mod 9).
By the Chinese Remainder Theorem, there will be three solutions modulo

99. The first congruence is equivalent to x = 8+11k for some k ∈ Z. Substitute
this into the modulo 9 congruence to obtain 8 + 11k ≡ 2, 5, 8 (mod 9). So
11k ≡ 2k ≡ 3, 6, 0 (mod 9). Multiply by 5 (the inverse of [2] in Z9) to obtain
k ≡ 6, 3, 0 (mod 9). That is, k = 6 + 9z, 3 + 9z, 9z, for some z ∈ Z. Hence

x = 8 + 11(6 + 9z), 8 + 11(3 + 9z), 8 + 11(9z)
= 74 + 99z, 41 + 99z, 8 + 99z

x ≡ 74, 41, 8 (mod 99).

Check: 743 ≡ 413 ≡ 83 ≡ 17 (mod 99)

Problem 3-85:
Solve x2 ≡ 7 (mod 99).

Solution: Since 99 = 9 · 11 and gcd(9, 11) = 1, the congruence is equivalent to
the simultaneous congruences

x2 ≡ 7 (mod 11)
x2 ≡ 7 (mod 9).

Modulo 11
x ≡ 0 1 2 3 4 5 6 7 8 9 10

x2 ≡ 0 1 4 9 5 3 3 5 9 4 1

Modulo 9
x ≡ 0 1 2 3 4 5 6 7 8

x2 ≡ 0 1 4 0 7 7 0 4 1

We see from the tables that the congruence x2 ≡ 7 (mod 11) has no solution.
Therefore the original congruence x2 ≡ 7 (mod 99) has no solution.

Problem 3-86:
If gcd(m,n) = d, when do the simultaneous congruences

x ≡ a (mod m)
x ≡ b (mod n)
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have a solution?

Solution: An integer x satisfies the first congruence if and only if

x = a + my for some y ∈ Z.

Substituting into the second congruence we have

a + my ≡ b (mod n)
mx ≡ b− a (mod n).

By Theorem 3.54, this linear congruence has an integer solution for x if and
only if gcd(m,n) | b− a.

Therefore, the two simultaneous congruences have a solution if and only if
d | b− a.

Problem 3-87:
Let M = m1m2 . . .mn, where gcd(mi,mj) = 1 whenever i 6= j, and let Mi =
M/mi. Let y ≡ bi (mod mi) be a solution to Miy ≡ 1 (mod mi). Prove that
the simultaneous congruences

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

...
x ≡ an (mod mn)

have the solution

x ≡ a1b1M1 + a2b2M2 + a3b3M3 + · · ·+ anbnMn (mod M).

Solution:
Because gcd(mi,mj) = 1 whenever i 6= j, the Chinese Remainder Theorem
shows the system of simultaneous congruences has one solution modulo M .

Our goal is to show that

x0 = a1b1M1 + a2b2M2 + a3b3M3 + · · ·+ anbnMn

is one particular integer solution to each congruence.
Consider the first congruence modulo m1. If j 6= 1, then

Mj =
M

mj
=

m1 · · ·mn

mj
= m1m2 · · ·mj−1mj+1 · · ·mn

so m1|Mj and Mj ≡ 0 (mod m1). Using the fact that y = b1 is a solution to
M1y ≡ 1 (mod m1), we have b1M1 ≡ 1 (mod m1) and so

x0 ≡ a1b1M1 + a2b2M2 + · · ·+ anbnMn (mod m1)
≡ a1b1M1 + 0 + · · ·+ 0 (mod m1)
≡ a1 (mod m1).
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Therefore x0 satisfies the first congruence.
Similarly, x0 satisfies each of the other congruences. By the Generalized

Chinese Remainder Theorem, the complete solution to the system is

x ≡ a1b1M1 + a2b2M2 + a3b3M3 + · · ·+ anbnMn (mod M).

Problem 3-88:
Solve the simultaneous equations

100x − 9y = 4264
11x + 109y = 909

(a) modulo 9

(b) modulo 11

(c) in integers, using (a) and (b), given the fact that x and y have unique
solutions and both are positive integers less than 100.

Solution: (a) Modulo 9, we can rewrite the equations as

x ≡ 7 (mod 9)
2x + y ≡ 0 (mod 9).

Substituting x in the second equation gives

14 + y ≡ 0 (mod 9)
y ≡ 4 (mod 9).

Hence the solution to the simultaneous equations modulo 9 is

x ≡ 7 (mod 9) and y ≡ 4 (mod 9).

Check: 7− 7 = 0 · 9 and 14 + 4 = 18 = 2 · 9.

(b) Modulo 11, we can rewrite the equations as

x + 2y ≡ 7 (mod 11)
−y ≡ 7 (mod 11).

Substituting y in the first equation gives

x− 14 ≡ 7 (mod 11)
x ≡ 10 (mod 11).

Hence the solution to the simultaneous equations modulo 11 is

x ≡ 10 (mod 11) and y ≡ 4 (mod 11).
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Check: 10 + 8− 7 = 11 · 1 and 4 + 7 = 11 · 1.

(c) From parts (a) and (b) we know that x satisfies the congruences

x ≡ 7 (mod 9)
x ≡ 10 (mod 11).

An integer x satisfies the second congruence if and only if

x = 10 + 11z for some z ∈ Z.

Substituting into the first congruence we have

10 + 11z ≡ 7 (mod 9)
2z ≡ −3 ≡ 6 (mod 9).

By inspection z ≡ 3 (mod 9) is a solution. This is equivalent to z = 3 + 9t for
all t ∈ Z. The solution for both congruences is therefore

x = 10 + 11(3 + 9t) = 43 + 99t.

On the other hand, for y satisfies the system of congruences

y ≡ 4 (mod 9)
y ≡ 4 (mod 11).

Because gcd(9, 11) = 1, Proposition 3.64 tells us that this is equivalent to

y ≡ 4 (mod 99).

Given that x and y are positive integers less than 100, the only possible
solution is x = 43 and y = 4.
Check:

100(43)− 9(4) = 4300− 36 = 4264
11(43) + 109(4) = 473 + 436 = 909

Problem 3-89:
A basket contains a number of eggs and, when the eggs are removed 2, 3, 4, 5
and 6 at a time, there are 1, 2, 3, 4 and 5 respectively, left over. When the eggs
are removed 7 at a time there are none left over. Assuming none of the eggs
broke during the preceding operations, determine the minimum number of eggs
that were in the basket.

Solution: Let e be the number of eggs in the basket. Then

e ≡ 1 ≡ −1 (mod 2) (1)
e ≡ 2 ≡ −1 (mod 3) (2)
e ≡ 3 ≡ −1 (mod 4) (3)
e ≡ 4 ≡ −1 (mod 5) (4)
e ≡ 5 ≡ −1 (mod 6) (5)
e ≡ 0 (mod 7). (6)
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Because gcd(2, 3) = 1 and gcd(4, 5) = 1, by Proposition 3.64, the congruences
(1) and (2), and (3) and (4) are equivalent to

e ≡ −1 (mod 6) (7)
e ≡ −1 (mod 20). (8)

Congruence (7) is the same as the congruence (5). Therefore e satisfies the two
congruences

e ≡ −1 (mod 20) (8)
e ≡ 0 (mod 7). (6)

Congruence (8) is equivalent to e = 20y − 1 for some y ∈ Z. Substitute this in
congruence (6) to get

20y − 1 ≡ 0 (mod 7)
20y ≡ 1 (mod 7)
−y ≡ 1 (mod 7)

y ≡ −1 ≡ 6 (mod 7).

Hence y = 6 + 7z for z ∈ Z and

e = 20(6 + 7z)− 1
= 119 + 140z.

The solution to the system of congruences is e ≡ 119 (mod 140) and the
minimum number of eggs that were in the basket is 119.
Check:

119 = 2 · 59 + 1
= 3 · 39 + 2
= 4 · 29 + 3
= 5 · 23 + 4
= 6 · 19 + 5
= 7 · 17

Problem 3-90:
Use Problem 3-87 to solve each of these three simultaneous congruences.

(a) x ≡ 2 (mod 7), x ≡ 5 (mod 11), x ≡ 11 (mod 17)

(b) x ≡ 0 (mod 7), x ≡ 8 (mod 11), x ≡ 10 (mod 17)

(c) x ≡ 5 (mod 7), x ≡ 6 (mod 11), x ≡ 14 (mod 17)
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Solution: Problem 3-87 is most suitable for solving this type of problem where
there are several simultaneous congruences to solve using the same modulii but
different right sides.

If we let m1 = 7,m2 = 11 and m3 = 17, then our moduli satisfy the criterion
given in Problem 3-87 that gcd(mi,mj)=1 for i 6= j. We must construct bi such
that Mibi ≡ 1 (mod mi) where Mi = m1m2m3/mi. We use the Euclidean
Algorithm to construct such bi.

Apply the Extended Euclidean Algorithm to 7 and 187.

187y + 7x = r qi

1 0 187
0 1 7
1 −26 5 26

−1 27 2 1
3 −80 1 2

−7 187 0 2

Therefore 3 · 187− 80 · 7 = 1. Hence 1 ≡ 3 · 187 (mod 7), so

b1 ≡ 3 (mod 7).

Apply the Extended Euclidean Algorithm to 11 and 119.

119y +11x = r qi

1 0 119
0 1 11
1 −10 9 10

−1 11 2 1
5 −54 1 4

−11 119 0 2

Therefore 5 · 119− 54 · 11 = 1. Hence 1 ≡ 5 · 119 (mod 11), so

b2 ≡ 5 (mod 11).

Apply the Euclidean algorithm to 17 and 77.

77y +17x = r qi

1 0 77
0 1 17
1 −4 9 4

−1 5 8 1
2 −9 1 1

−17 77 0 8

Therefore 2 · 77− 9 · 17 = 1 . Hence 1 ≡ 2 · 77 (mod 17), so

b3 ≡ 2 (mod 17).
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We may now use Problem 3-83. to solve the three parts of the problem.

(a) x ≡ 2 · 3 · 187 + 5 · 5 · 119 + 11 · 2 · 77 (mod 1309)
≡ 1122 + 357 + 385
≡ 555 (mod 1309)

(b) x ≡ 0 · 3 · 187 + 8 · 5 · 119 + 10 · 2 · 77 (mod 1309)
≡ 0 + 833 + 231
≡ 1064 (mod 1309)

(c) x ≡ 5 · 3 · 187 + 6 · 5 · 119 + 14 · 2 · 77 (mod 1309)
≡ 187 + 952 + 847
≡ 677 (mod 1309)

Check:
x mod 7 mod 11 mod 17
555 2 5 11

1064 0 8 10
677 5 6 14

Problem 3-91:
Use Problem 3-87 to find the solution to these simultaneous congruences.

x ≡ a1 (mod 9), x ≡ a2 (mod 11).

Solution:
Since gcd(9, 11) = 1, Problem 3-87 can be used. Using the same variable names
as in Problem 3-87, m1 = 9, m2 = 11, M = 9 · 11 = 99, M1 = M/m1 = 11 and
M2 = M/m2 = 9. The congruence M1y ≡ 1 (mod m1) is 11y ≡ 1 (mod 9)
and, by inspection, one solution is b1 = 5. Similarly, the congruence M2y ≡ 1
(mod m2) is 9y ≡ 1 (mod 11) and, by inspection, one solution is also b2 = 5.

By Problem 3-87 the simultaneous congruences have the solution

x ≡ a1b1M1 + a2b2M2 (mod 99)
≡ a1(5 · 11) + a2(5 · 9) (mod 99)
≡ 55a1 + 45a2 (mod 99).

Check:
55a1 + 45a2 ≡ 55a1 ≡ a1 (mod 9)
55a1 + 45a2 ≡ 45a2 ≡ a2 (mod 11)

Problem 3-92:
Use Problem 3-87 to find the solution to these simultaneous congruences.

x ≡ a1 (mod 3), x ≡ a2 (mod 8), x ≡ a3 (mod 25).

Solution:
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Since gcd(3, 8) = 1, gcd(8, 25) = 1, gcd(3, 25) = 1, Problem 3-87 can be used.
Using the same variable names as in Problem 3-87, m1 = 3, m2 = 8, m3 = 25,
M = 3 · 8 · 25 = 600, M1 = M/m1 = 8 · 25 = 200, M2 = M/m2 = 3 · 25 = 75,
and M3 = M/m3 = 3 · 8 = 24.

The congruence M1y ≡ 1 (mod m1) is 200y ≡ 1 (mod 3). This is 2y ≡ 1
(mod 3) and, by inspection, one solution is b1 = 2. The congruence M2y ≡ 1
(mod m2) is 75y ≡ 1 (mod 8). This is 3y ≡ 1 (mod 8) and, by inspec-
tion, one solution is b2 = 3. The congruence M3y ≡ 1 (mod m3) is 24y ≡ 1
(mod 25), which clearly has a solution b3 = −1.

By Problem 3.87 the simultaneous congruences have the solution

x ≡ a1b1M1 + a2b2M2 + a3b3M3 (mod 600)
≡ a1(2 · 200) + a2(3 · 75) + a3(−1 · 24) (mod 600)
≡ 400a1 + 225a2 − 24a3 (mod 600)
≡ 400a1 + 225a2 + 576a3 (mod 600).

Check:

400a1 + 225a2 − 24a3 ≡ 400a1 ≡ a1 (mod 3)
400a1 + 225a2 − 24a3 ≡ 225a2 ≡ a2 (mod 8)
400a1 + 225a2 − 24a3 ≡ −24a3 ≡ a3 (mod 25)

Problem 3-93:
Find positive integers a, b, m1, m2 such that

a ≡ b (mod m1)
a ≡ b (mod m2)
a 6≡ b (mod m1m2).

Solution:
If gcd(m1,m2) = 1, Proposition 3.64 tells us that a ≡ b (mod m1m2). If such
positive integers a, b, m1, m2 exist then the gcd(m1,m2) 6= 1.

For example, take a = 13, b = 1, m1 = 2, m2 = 4. Then

13 ≡ 1 (mod 2)
13 ≡ 1 (mod 4)
13 ≡ 5 6≡ 1 (mod 8)

and this is one of many examples.

Problem 3-94:
Find all the integer solutions to the Diophantine equation 5x2 + x + 6 = 7y.
Solution:
We are seeking integer solutions, so 7y ≡ 0 (mod 7). Hence

5x2 + x + 6 ≡ 0 (mod 7).
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Modulo 7
x ≡ 0 1 2 3 4 5 6

x2 ≡ 0 1 4 2 1 4 1
5x2 + x + 6 ≡ 6 5 0 5 6 3 3

Therefore x ≡ 2 (mod 7) is the only solution. That is, x = 2 + 7z for any
z ∈ Z and then

7y = 5(2 + 7z)2 + (2 + 7z) + 6
= 5(4 + 28z + 49z2) + 8 + 7z

= 28 + 147z + 245z2

y = 4 + 21z + 35z2.

Thus the complete solution is

x = 2 + 7z
y = 4 + 21z + 35z2

}
for any z ∈ Z.

Check: Try z = −1, so x = −5 and y = 4− 21 + 35 = 18. Then

5x2 + x + 6 = 125− 5 + 6 = 126 = 7 · 18.

Problem 3-95:

(a) Prove that if p and q are coprime, and x is an integer such that

x ≡ p (mod q)
x ≡ q (mod p)

then x ≡ p + q (mod pq).

(b) Show by means of a counterexample that the condition that p and q are
coprime is necessary.

Solution: (a)
Since x ≡ p (mod q), x = p + qy, for some y ∈ Z. Substitute this into the

second congruence.

p + qy ≡ q (mod p)
q(y − 1) ≡ 0 (mod p)

Hence p|q(y − 1). Since gcd(p, q) = 1, by Proposition 2.28, p|y − 1. Therefore
y − 1 = pz for some z ∈ Z and

x = p + q(1 + pz)
= p + q + pqz

x ≡ p + q (mod pq).
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(b) As an example in which gcd(p, q) 6= 1, take p = 4 and q = 6. Then x = 22
is a solution to x ≡ 4 (mod 6) and x ≡ 6 (mod 4). But 22 6≡ 4 + 6 ≡ 10
(mod 24). Hence the condition that p and q are coprime is necessary.

Problem 3-96:
Solve the congruence

x3 − 29x2 + 35x + 38 ≡ 0 (mod 195).

Solution:
Now, 195 = 3·5·13 and 3, 5, and 13 are coprime in pairs. By Proposition 3.64,

the congruence modulo 195 is equivalent to the following system of simultaneous
congruences.

x3 − 29x2 + 35x + 38 ≡ 0 (mod 3)
x3 − 29x2 + 35x + 38 ≡ 0 (mod 5)
x3 − 29x2 + 35x + 38 ≡ 0 (mod 13)

Reducing by the modulii, these are the same as the following.

x3 + x2 + 2x + 2 ≡ 0 (mod 3)
x3 + x2 + 3 ≡ 0 (mod 5)

x3 − 3x2 − 4x− 1 ≡ 0 (mod 13)

Modulo 3: It follows from Corollary 3.43 to Fermat’s Little Theorem that
x3 ≡ x (mod 3) for all x ∈ Z. Therefore the modulo 3 congruence is equivalent
to

x + x2 + 2x + 2 ≡ 0 (mod 3)
x2 ≡ 1 (mod 3).

Modulo 3
x ≡ 0 1 2

x2 ≡ 0 1 1

We see from the above table that x ≡ 1 (mod 3) and x ≡ 2 (mod 3) are the
solutions to the modulo 3 congruence.
Modulo 5: Use the brute force method to try all the possibilities for the modulo
5 congruence.

Modulo 5
x ≡ 0 1 2 3 4

x2 ≡ 0 1 4 4 1
x3 ≡ 0 1 3 2 4

x3 + x2 + 3 ≡ 3 0 0 4 3
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We see from the above table that x ≡ 1 (mod 5) and x ≡ 2 (mod 5) are the
solutions to the modulo 5 congruence.
Modulo 5: Again, use the brute force method to try all the possibilities for
the modulo 13 congruence f(x) ≡ 0 (mod 13) where f(x) = x3−3x2−4x−1.

Modulo 13
x ≡ 0 1 2 3 4 5 6 7 8 9 10 11 12

x2 ≡ 0 1 4 9 3 12 10 10 12 3 9 4 1
x3 ≡ 0 1 8 1 12 8 8 5 5 1 12 5 12

f(x) ≡ 12 6 0 0 12 3 5 11 1 7 9 0 12

We see from the table that x ≡ 2, 3, 11 (mod 13) are the solutions to the
modulo 13 congruence.
Modulo 195: We now need to combine all the above solutions into solutions
modulo 195.

x ≡ 1, 2 (mod 3)
x ≡ 1, 2 (mod 5)
x ≡ 2, 3, 11 (mod 13)

Taking all possible combinations and using the Chinese Remainder Theorem we
will get 2 ·2 ·3 = 12 solutions modulo 195. This is a case in which Problem 3-87
is useful, since we have to solve 12 simultaneous congruences using the same
modulii, but different right sides.

[Note that the first two congruences have the obvious solutions x ≡ 1, 2
(mod 15), but also two more solutions where x ≡ 1 (mod 3), x ≡ 2 (mod 5),
and x ≡ 2 (mod 3), x ≡ 1 (mod 5).]

Using the same variable names as in Problem 3-87, m1 = 3, m2 = 5, m3 =
13, M = 3 · 5 · 13 = 195, M1 = M/m1 = 5 · 13 = 65, M2 = M/m2 = 3 · 13 = 39,
and M3 = M/m3 = 3 · 5 = 15.

The congruence M1y ≡ 1 (mod m1) is 65y ≡ 1 (mod 3). This is 2y ≡ 1
(mod 3) and, by inspection, one solution is b1 = 2. The congruence M2y ≡ 1
(mod m2) is 39y ≡ 1 (mod 5), which clearly has a solution b2 = −1. The con-
gruence M3y ≡ 1 (mod m3) is 15y ≡ 1 (mod 13). This is 2y ≡ 1 (mod 13)
or 14y ≡ 7 (mod 13), which clearly has a solution b3 = 7.

By Problem 3-87, the solution to the simultaneous congruences

x ≡ a1 (mod 3), x ≡ a2 (mod 5), x ≡ a3 (mod 13)

is

x ≡ a1b1M1 + a2b2M2 + a3b3M3 (mod 195)
≡ (2 · 65)a1 + (−1 · 39)a2 + (7 · 15)a3 (mod 195)
≡ 130a1 − 39a2 + 105a3 (mod 195).
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Mod 3 Mod 5 Mod 13 Modulo 195
a1 a2 a3 130a1 − 39a2 + 105a3

1 1 2 130 - 39 + 210 = 301 ≡ 106
1 1 3 130 - 39 + 315 = 406 ≡ 16
1 1 11 130 - 39 + 210 = 1246 ≡ 76
1 2 2 130 - 39 + 210 = 262 ≡ 67
1 2 3 130 - 39 + 315 = 367 ≡ 172
1 2 11 130 - 39 + 210 = 1207 ≡ 37
2 1 2 130 - 39 + 210 = 431 ≡ 41
2 1 3 130 - 39 + 315 = 536 ≡ 146
2 1 11 130 - 39 + 210 = 1376 ≡ 11
2 2 2 130 - 39 + 210 = 392 ≡ 2
2 2 3 130 - 39 + 315 = 497 ≡ 107
2 2 11 130 - 39 + 210 = 1337 ≡ 167

Hence the 12 solutions to the congruence x3 − 29x2 + 35x + 38 ≡ 0 (mod 195)
are

x ≡ 2, 11, 16, 37, 41, 67, 76, 106, 107, 146, 167, 172 (mod 195).

Check: Try x = 2 and 16.

23 − 29 · 22 + 35 · 2 + 38 = 0
163 − 29 · 162 + 35 · 16 + 38 = −1755 = −9 · 195

Problem 3-97:
If p is prime and k is the smallest positive integer such that ak ≡ 1 (mod p)
then prove that k divides p− 1.

Solution:
If p divides a then am ≡ 0 (mod p) for every m ∈ Z. Therefore no such k

exists in this case.
Hence if there is a smallest positive integer k such that ak ≡ 1 (mod p) then

p does not divide a and Fermat’s Little Theorem implies ap−1 ≡ 1 (mod p).
If p = 2 and 2 6 | a then a1 ≡ 1 (mod p). It is clear that k = 1 and 1|2− 1.
If p > 2, divide p − 1 by k according to the Division Algorithm to obtain

unique integers q and r such that

p− 1 = qk + r where 0 ≤ r < k.

Now, by Fermat’s Little Theorem and the definition of k,

ap−1 ≡ 1 (mod p)
aqk+r ≡ 1 (mod p)

(ak)q · ar ≡ 1 (mod p)
1q · ar ≡ 1 (mod p)

ar ≡ 1 (mod p)
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If 0 < r < k then r would be a smaller positive integer than k satisfying that
ar ≡ 1 (mod p), which is a contradiction. Hence we can conclude that r = 0,
which implies that k divides p− 1.

Problem 3-98:
Find the remainder when 1740 is divided by 27.

Solution:
We have to calculate the remainder modulo 27. Now we know that the Euler

phi function φ(27) = φ(33) = 27 ·
(
1− 1

3

)
= 18. Because gcd(17, 27) = 1, the

Euler-Fermat Theorem tells us that 1718 ≡ 1 (mod 27). Now, by the Division
Algorithm, 40 = 18(2) + 4. Therefore,

1740 ≡ 1718(2)+4 ≡ 1 · 174 (mod 27).

By repeated squaring,

172 ≡ 289 ≡ 19 (mod 27).
174 ≡ (172)2 ≡ 192 ≡ 361 ≡ 10 (mod 27)

Thus, the remainder of 1740 when divided by 27 is 10.

Problem 3-99:
Find the remainder when 5183 is divided by 99.
Solution:

We have to calculate the remainder modulo 99. Now we know that the Euler
phi function φ(99) = φ(32 · 11) = 33 ·

(
1− 1

3

) (
1− 1

11

)
= 60. Hence because

gcd(5, 99) = 1, the Euler-Fermat Theorem tells us that 560 ≡ 1 (mod 99).
Now, by the Division Algorithm, 183 = 60(3) + 3. Therefore,

5183 ≡ 560(3)+3 ≡ 1 · 53 ≡ 125 ≡ 26 (mod 99).

Thus, the remainder of 5183 when divided by 99 is 26.

Problem 3-100:
Find the remainder when 22405

is divided by 23.

Solution:
We have to calculate the remainder modulo 23. Now we know that 23

is a prime and so Fermat’s Little Theorem tells us that 222 ≡ 1 (mod 23).
Therefore 222k ≡ 1 (mod 23) for any positive integer k, and so we would like
to look at the exponent e = 2405 modulo 22. By Proposition 3.64,

e ≡ 2405 (mod 22) ⇐⇒
{

e ≡ 2405 (mod 2)
e ≡ 2405 (mod 11)
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We know that 2405 ≡ 0 (mod 2), so the first congruence is equivalent to e ≡ 0
(mod 2). Fermat’s Little Theorem tells us that 210 ≡ 1 (mod 11). By the
Division Algorithm, 405 = 10(40) + 5, so, for the second congruence,

2405 ≡ 210(40)+5 ≡ 1 · 25 ≡ 32 ≡ 10 (mod 11).

Thus, the congruence x ≡ 2405 (mod 22) is equivalent to the simultaneous
congruences

e ≡ 0 (mod 2)
e ≡ 10 (mod 11).

The solution x ≡ 10 (mod 22) satisfies both congruences so, by the Chinese
Remainder Theorem, it is the complete solution. Hence

2405 ≡ 10 (mod 22)

and 2405 = 10 + 22z for some z ∈ Z. Therefore,

22405
≡ 222z+10 ≡ 210 ≡ 1024 ≡ 12 (mod 23).

Hence the remainder when 22405
is divided by 23 is 12.

Problem 3-101:
Find the last two digits of 747130.

Solution:
For the last two digits, we have to calculate the remainder modulo 100.

We know that φ(100) = φ(22 · 52) = 100 ·
(
1− 1

2

) (
1− 1

5

)
= 40. Because

gcd(747, 100) = 1, the Euler-Fermat Theorem tells us that

74740 ≡ 1 (mod 100)

and so 74740k ≡ 1 (mod 100) for any positive integer k. By the Division
Algorithm, 130 = 40(3) + 10, so

747130 ≡ 74740(3)+10 ≡ 1 · 74710 ≡ 4710 (mod 100).

Because 100 = 25 · 4 and gcd(4, 25) = 1, Proposition 3.64 tells us that

x ≡ 4710 (mod 100) ⇐⇒
{

x ≡ 4710 (mod 4)
x ≡ 4710 (mod 25).

The congruence modulo 4 is equivalent to x ≡ (−1)10 ≡ 1 (mod 4).
The congruence modulo 25 is equivalent to

x ≡ (−3)10 ≡ 310 ≡ 3 ·
(
33

)3 ≡ 3 · 273 ≡ 3 · 23 ≡ 24 (mod 25).
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Thus, the congruence x ≡ 4710 (mod 100) is equivalent to the simultaneous
congruences

x ≡ 1 (mod 4)
x ≡ 24 (mod 25).

An integer x satisfies the second congruence if and only if

x = 24 + 25y for some integer y ∈ Z

Substitute this into the first congruence.

24 + 25y ≡ 1 (mod 4)
y ≡ 1 (mod 4)
y = 1 + 4z for z ∈ Z
x = 24 + 25(1 + 4z) for z ∈ Z

= 49 + 100z for z ∈ Z

Thus, the remainder of 4710 modulo 100 is 49 and these are precisely the last
two digits of 747130.

Problem 3-102:
Find the last two digits of 287449.

Solution:
For the last two digits, we have to calculate the remainder modulo 100.

We know that φ(100) = φ(22 · 52) = 100 ·
(
1− 1

2

) (
1− 1

5

)
= 40. Because

gcd(287, 100) = 1, the Euler-Fermat Theorem tells us that

28740 ≡ 1 (mod 100)

and so 28740k ≡ 1 (mod 100) for any positive integer k. By the Division
Algorithm, 449 = 40(11) + 9, so

287449 ≡ 28740(11)+9 ≡ 1 · 2879 ≡ 879 (mod 100).

Because 100 = 25 · 4 and gcd(4, 25) = 1, Proposition 3.64 tells us that

x ≡ 879 (mod 100) ⇐⇒
{

x ≡ 879 (mod 4)
x ≡ 879 (mod 25).

The modulo 4 congruence is equivalent to x ≡ (−1)9 ≡ −1 (mod 4).
The modulo 25 congruence is equivalent to

x ≡ 129 ≡
(
123

)3 ≡ 17283 ≡ 33 ≡ 27 ≡ 2 (mod 25).

Thus, the congruence x ≡ 879 (mod 100) is equivalent to the simultaneous
congruences

x ≡ 3 (mod 4)
x ≡ 2 (mod 25).
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An integer x satisfies the second congruence if and only if

x = 2 + 25y for some integer y ∈ Z

Substitute this into the first congruence.

2 + 25y ≡ 3 (mod 4)
y ≡ 1 (mod 4)
y = 1 + 4z for z ∈ Z
x = 2 + 25(1 + 4z) for z ∈ Z

= 27 + 100z for z ∈ Z

Thus, the remainder of 879 modulo 100 is 27 and these are precisely the last
two digits of 287449.

Problem 3-103:
Find the last two digits of 9595.

Solution:
For the last two digits, we have to calculate the remainder modulo 100.

Because 100 = 25 · 4 and gcd(4, 25) = 1, Proposition 3.64 tells us that

x ≡ 9595 (mod 100) ⇐⇒
{

x ≡ 9595 (mod 4)
x ≡ 9595 (mod 25).

The modulo 4 congruence is equivalent to x ≡ (−1)95 ≡ −1 (mod 4).
Since 9595 = (5 · 19)95 = 595 · 1995, it is clear that 52|9595, so 9595 ≡ 0

(mod 25). Hence the modulo 25 congruence is equivalent to x ≡ 0 (mod 25).
Thus, the congruence x ≡ 9595 (mod 100) is equivalent to the simultaneous

congruences
x ≡ −1 (mod 4)
x ≡ 0 (mod 25)

The second congruence has solutions x ≡ 0, 25, 50, 75 (mod 100) so, by
inspection, x = 75 is a solution to both. Hence, by the Chinese Remainder
Theorem,

x ≡ 75 (mod 100)

is the complete solution to the simultaneous congruences.
Thus, the remainder modulo 100 of 9595 is 75 and these are precisely the

last two digits of 9595 .

Problem 3-104:
Find the last two digits of 25543333.

Solution:
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For the last two digits, we have to calculate the remainder modulo 100.
The congruence 25543333 ≡ (mod 100) is equivalent to 543333 ≡ (mod 100).
Because 100 = 25 · 4 and gcd(4, 25) = 1, Proposition 3.64 tells us that

x ≡ 543333 (mod 100) ⇐⇒
{

x ≡ 543333 (mod 4)
x ≡ 543333 (mod 25).

The congruence modulo 4 is equivalent to x ≡ 23333 ≡ 0 (mod 4).
The modulo 25 congruence is equivalent to x ≡ 43333 ≡ 26666 (mod 25).

Since gcd(2, 25) = 1 and φ(25) = φ(52) = 25
(
1− 1

5

)
= 20, the Euler-Fermat

Theorem tells us that 220 ≡ 1 (mod 25). By the Division Algorithm we have
6666 = 20(333) + 6, so

x ≡ 26666 ≡ 220(333)+6 ≡
(
220

)333 · 26 ≡ 1 · 26 ≡ 64 ≡ 14 (mod 25).

Thus, the congruence x ≡ 25543333 (mod 100) is equivalent to the simul-
taneous congruences,

x ≡ 0 (mod 4)
x ≡ 14 (mod 25).

The second congruence has solutions x ≡ 14, 39, 64, 89 (mod 100) so, by
inspection, x = 64 is a solution to both. Hence, by the Chinese Remainder
Theorem

x ≡ 64 (mod 100)

is the complete solution to the simultaneous congruences.
Thus, the remainder modulo 100 of 25543333 is 64 and these are precisely

the last two digits of 25543333 .
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