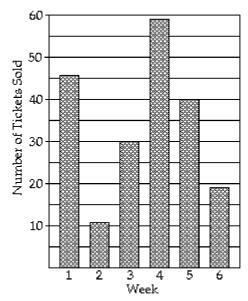
Interactive Statistics Informed Decisions Using Data 1st Edition Sullivan Test Bank


Full Download: http://testbanklive.com/download/interactive-statistics-informed-decisions-using-data-1st-edition-sullivan-test-ban SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. Round relative frequencies to thousandths. 1) Scott Tarnowski owns a pet grooming shop. His prices for grooming dogs are based on the 1) size of the dog. His records from last year are summarized below. Construct a frequency distribution and a relative frequency distribution. Show the percentage represented by each relative frequency. Class Frequency 345 Large Medium 830 Small 645 2) The results of a survey about a recent judicial appointment are given in the table below. 2) ____ Construct a relative frequency distribution. Response Frequency Strongly Favor 35 Favor 13 7 Neutral 25 **Oppose Strongly Oppose** 120 3) The preschool children at Elmwood Elementary School were asked to name their favorite 3) color. The results are listed below. Construct a frequency distribution and a relative frequency distribution. yellow purple purple blue red red red purple red blue red blue yellow yellow yellow blue red yellow red green MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

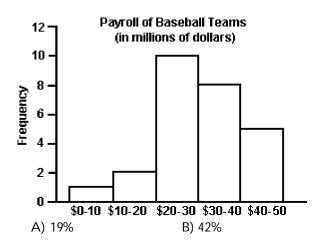
4) _____ 4) True or False: The sum of all the relative frequencies of a distribution will always add up to 1. A) True B) False

5) True or False: Relative frequency is the proportion (or percent) of observations within a category sum of all frequencies and is found using the formula: relative frequency = frequency

A) False B) True The bar graph shows the number of tickets sold each week by the garden club for their annual flower show.

Number of Tickets Sold Each Week

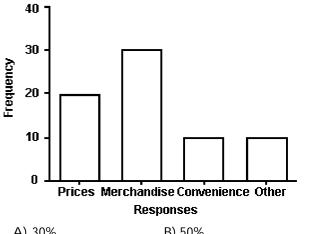
- 6) During which week was the most number of tickets sold?
 - A) week 2
- B) week 4
- C) week 5
- D) week 1
- 6) _____


- 7) During which week was the fewest number of tickets sold?
 - A) week 6
- B) week 5
- C) week 2
- D) week 4
- 7) _____

- 8) Approximately how many tickets were sold during week 5?
 - A) 40 tickets
- B) 46 tickets
- C) 11 tickets
- D) 19 tickets
- 8) _____

Provide an appropriate response.

9) The payroll amounts for 26 major-league baseball teams are shown below. Aprroximately what percentage of the payrolls were in the \$30-\$40 million range? Round to the nearest whole percent.

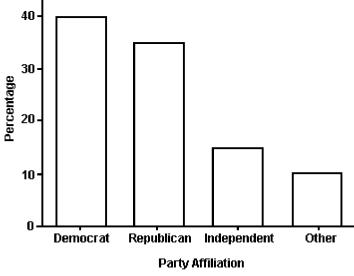


C) 8%

D) 31%

10) Retailers are always interested in determining why a customer selected their store to make a purchase. A sporting goods retailer conducted a customer survey to determine why its customers shopped at the store. The results are shown below. What percentage of the customers responded that the merchandise was the reason they shopped at the store? Round to the nearest whole percent

A) 30%


B) 50%

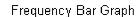
C) 43%

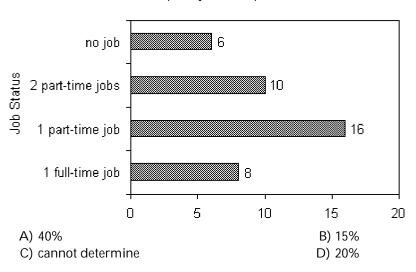
D) 29%

11) The bar graph below shows the political party affiliation of 1000 registered U.S. voters. What percentage of the 1000 registered U.S. voters belonged to one of the traditional two parties (Democratic and Republican)?

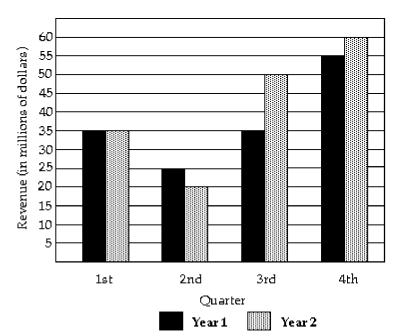
11) _____

A) 40%


B) 25%


C) 35%

D) 75%


12) The Excel frequency bar graph below describes the employment status of a random sample of U.S.

12) ____ adults. What is the percentage of those having no job?

The following double-bar graph illustrates the revenue for a company for the four quarters of the year for two different years. Use the graph to answer the question.

- 13) In what quarter was the revenue the greatest for Year 1?
 - A) fourth quarter
- B) third quarter
- C) second quarter
- D) first quarter
- 13)

- 14) In what guarter was the revenue the least for Year 1?
 - A) fourth quarter
- B) first quarter
- C) third quarter
- D) second quarter

- 15) What was the revenue for the third quarter of Year 2?
 - A) \$7 million
- B) \$10 million
- C) \$50 million
- D) \$35 million

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

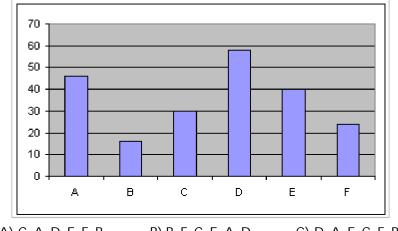
16) The grade point averages for 40 evening students are listed below. Construct a frequency bar graph and a relative frequency bar graph.

16)

Grade Point Average	Frequency
0.5-0.9	4
1.0-1.4	2
1.5 - 1.9	7
2.0-2.4	9
2.5-2.9	2
3.0-3.4	10
3.5 - 3.9	2
4.0 - 4.4	4

17) The local police, using radar, checked the speeds (in mph) of 30 motorists in a construction 17) area. The results are listed below. Construct a frequency bar graph and a relative frequency bar graph.

Speed	Frequency
33-35	3
36-38	6
39-41	6
42-44	6
45-47	3
48-50	6

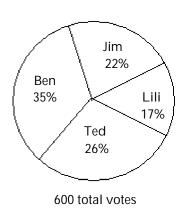

18) Listed below are the ACT scores of 40 randomly selected students at a major university.

```
18 22 13 15 24 24 20 19 19 12
16 25 14 19 21 23 25 18 18 13
26 26 25 25 19 17 18 15 13 21
19 19 14 24 20 21 23 22 19 17
```

- a) Construct a relative frequency bar graph of the data, using eight classes.
- b) If the university wants to accept the top 90% of the applicants, what should the minimum score be?
- c) If the university sets the minimum score at 17, what percent of the applicants will be accepted?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

19) Given the bar graph shown below, the Pareto chart that would best represent the data should have 19) _____ the bars in the following order.

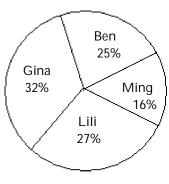


- A) C A D E F B
- B) B F C E A D
- C) D A E C F B
- D) B F E D A C

The pie chart shows the percentage of votes received by each candidate in the student council presidential election. Use the pie chart to answer the question.

20) Student Council President

20) _____

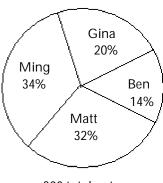


- Who got the most votes?
 - A) Ben
- B) Ted
- C) Lili
- D) Jim

21) ____

22) _____

Student Council President


200 total votes

Who got the fewest votes?

- A) Ben
- B) Lili
- C) Ming
- D) Gina

22)

Student Council President

300 total votes

What percent of the votes did Ben and Gina receive together?

- A) 20%
- B) 14%
- C) 34%
- D) 66%

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Construct a pie chart for the data. Label each category with its percentage.

23) A study was conducted to determine how people get jobs. Four hundred subjects were randomly selected and the results are listed below. Round percents to whole numbers.

Job Sources of	
Survey Respondents	Frequency
Newspaper want ads	72
Online services	124
Executive search firms	69
Mailings	32
Networking	103

			_		-	ng dogs are based on the	24)
size of	the dog. Hi	is records fr	om last yea	r are summa	rized below.	Round percents to	
whole	numbers.						
	Class	F	requency				
L	.arge		345				
	edium		830				
	mall		645				
MALLI TIDI E OLIG	NOT 01		-14	41414			
MULTIPLE CHO	JICE. Choo	ose the one	aiternative	that best co	impletes the	statement or answers the o	auestion.
Provide an appro	nnriate resr	nnse					
			d candy con	tained 100 c	aramels 83 m	nint patties, 93 chocolate squ	uares, 25)
·			-			chart of this data, the angle t	· ·
		•	-	•	•	9	
	•	•	5 5.	•		s the degree measure of the	SIICE
•	•	•		the nearest	•	->	
A) 5) 0	E	3) 52°		C) 19°	D) 69°	
SHORT ANSWE	R. Write tl	ne word or	phrase that	best compl	etes each stat	tement or answers the que	stion.
			-	-		•	
Construct a frequency	uency distr	ibution for	the data.				
26) A rand	dom sample	of 30 high	school stude	ents is select	ed. Each stud	lent is asked how much	26)
time h	e or she spe	nt on the In	iternet durir	ng the previo	ous week. The	e following times (in	
	are obtaine					g .	
•		8 6 8 7	5 11				
		8 5 5 10					
		10 6 9					
			ution for the	n data			
COHSU	uct a rreque	ency distrib	ution for the	c uata.			
	•		t scores is ta	ken and is r	ecorded belov	w. Construct a frequency	27)
distrib	ution for th	is data.					
97	96 96 9	95 96					
99	97 97 10	00 99					
95	98 95 9	96 100					
95	98 96 9	96 100					
95	97 99 9	97 98					
Construct the sn	saified hist	ogram					
Construct the sp		_	امرياده المصامم		ad Faabatus		20)
	-	_					28)
	•		iternet durir	ng the previo	ous week. In	e following times (in	
•	are recorde						
6			8 7 5				
9	7 7	6 9 8	5 5 10	7			
5	7 14	9 6 10	6 9 8	7			
Constr	uct a freque	ency histogr	ram for this	data.			

29) A sample of 25 co	ommunity service projects	is obtained and the scores	are recorded. The	29)
results are shown	below. Construct a freque	ency histogram for this dat	ta.	
	95 96			
99 97 97 1				
	96 100			
	96 100			
95 97 99	97 98			
MULTIPLE CHOICE. Cho	ose the one alternative th	at best completes the sta	tement or answers the c	juestion.
Provide an appropriate resp				
•	the difference between			30)
	sive lower class limits			
	frequency and the smalles			
	lass limit and the lower cla	ass limit of a class		
D) The high an	d the low data values			
31) Determine the nu	mber of classes in the freq	uency table below.		31)
Class Frequency				
17-18 7				
19-20 2				
21-22 6				
23-24 4				
25-26 1				
A) 6	B) 5	C) 20	D) 2	
32) Find the class wic	Ith for the frequency table	below.		32)
Class Frequency				
8-9 3				
10-11 1				
12-13 3				
14-15 6				
16-17 2				
A) 1.5	B) 2.5	C) 1	D) 2	
33) Use the following	frequency distribution to	determine the class limits	of the third class.	33)
01 5				
Class Frequency				
5-11 7				
12-18 11 19-25 8				
26-32 5				
33-39 9				
40-46 6				
<u></u>				
	18.5; upper limit: 25.5		19; upper limit: 25	
C) lower limit:	18; upper limit: 26	D) lower limit:	19; upper limit: 26	

34) A researcher records the number of employees of each of the IT companies in the town of Westmoore. The results are summarized in the table.

34) _____

Number of Employees	Number of IT Companies
0 - 249	32
250 - 499	24
500 - 749	5
750 - 999	7

Find the class width.

1000 - 1249

A) 5

B) 1249

C) 250

D) 249.5

35) A researcher records the number of employees of each of the IT companies in the town of Westmoore. The results are summarized in the table.

10

35) ____

Number of Employees	Number of IT Companies
0 - 799	35
800 - 1599	20
1600 - 2399	9
2400 - 3199	8
3200 - 3999	5
	•

Find the class limits of the third class.

A) lower limit: 1599.5; upper limit: 2399.5 C) lower limit: 1599; upper limit: 2400

B) lower limit: 1600; upper limit: 2400

D) lower limit: 1600; upper limit: 2399

36) The weights (in pounds) of babies born at St Mary's hospital last month are summarized in the table.

36) _____

Weight (lb)	Number of Babies
5.0 - 6	7
6.1 - 7.1	20
7.2 - 8.2	19
8.3 - 9.3	9
9.4 - 10.4	5

Find the class width.

A) 1.1 lb

B) 1.05 lb C) 1.15 lb

D) 1 lb

37) The weights (in pounds) of babies born at St Mary's hospital last month are summarized in the

37) _____

Weight (lb)	Number of Babies
5.0 - 6	5
6.1 - 7.1	19
7.2 - 8.2	19
8.3 - 9.3	9
9.4 - 10.4	5

Find the class limits for the second class.

A) lower limit: 6.1; upper limit: 7.1

B) lower limit: 6.1; upper limit: 7.2

C) lower limit: 6; upper limit: 7.2

D) lower limit: 6.05; upper limit: 7.15

38)	The tab	le be	low	sum	nma	rizes	s the	wei	ghts	of th	ie almoi	nds (in gr	ams) in a	a one-p	ound bag	g. Wha	at is	38)	
	the clas	s wid	th?																
	Wei				Fred	quer	ncy												
	0.7585	-0.8	184			1													
	0.8185	-0.8	784			1													
	0.8785	-0.9	384			1													
	0.9385	-0.9	984			3													
	0.9985	-1.0	584		1	57													
	1.0585	-1.1	184		1	71													
	1.1185	-1.1	784			8													
	A) 0.	4					B) 0	.06				C) 0.408			D) 0.05	9			
SHODT /	NICWEI	> \A	/rita	th.	\#\O!	-d 0	r nhi		that	bost	aamnl	atas asah	ctatama	nt or or	scurore th		stion		
SHORT A	AIVSVVEI	X. VI	rite	trie	WOI	u o	pni	ase	ınaı	pesi	compi	etes eacm	Stateme	ent or ar	isweis ti	ie que	SCIOII.		
Construct				-		-													
39)								•		•		s are liste					39)		
	frequer	ıcy d	istril	outio	on a	nd a	rela	tive	freq	uenc	y distril	bution us	ing eight	t classes					
										3.6									
										3.2									
										3.0									
	3.0	4.0	4.0) 2.	1 1	.9	1.1	0.5	3.2	3.0	2.2								
40)	The con	nmıı	to tir	~ 00	(in r	mini	utoc)	of 2	۸ ۵۷	ocuti	voc aro	listed bel	ow Con	etruet a	frogueno	21/	40)		
40)												insted bei			•	-y	40)		
	frequen							_			ion usii	ig rive cia	3562. KU	unu reia	itive				
	rrequer	icy v	aiue	3 10	unc	e ue	CIIII	л ріс	1003.										
	70	72	71	70	69	73	69	68	70	71									
			70		69		71		71										
		71																	
41)	The Ma	rch ւ	utilit	v bil	lls (iı	n do	ollars) of :	30 h	ome	owners	are listed	below. (Constru	ct a		41)		
,												bution us					,		
			41					42			J		3						
	35	40	37	41	43	50	45												
		41																	
Provide a	n appro	priat	e re	oga	nse.														
						uts v	vas s	elect	ed a	nd tl	neir wei	ghts (in p	ounds) v	were red	corded a	S	42)		
,	follows			,									,				<i>'</i>		

follows: 97 120 137 124 117

108 134 126 123 106

130 110 100 120 140

- a. Using a class width of 10, give the upper and lower limits for five classes, starting with a lower limit of 95 for the first class.
- b. Construct a frequency distribution for the data

Construct	tho	enocified	histor	ıram
Construct	me	specified	mstoč	ji atti.

43) For the data below, construct a frequency distribution and a relative frequency distribution.

43)	

Height (in inches)

neight (in inches)	rrequency
50 - 52	5
53 - 55	8
56 - 58	12
59 - 61	13
62 - 64	11

44) For the data below, construct a frequency histogram and a relative frequency histogram.

44)		
44)		

Weight (in pounds)|Frequency

weight (in pounds)	requeries
135 - 139	6
140 - 144	4
145 - 149	11
150 - 154	15
155 - 159	8

45) The 30 students in Mrs Harrison's literature class were asked how many cousins they had. The results are shown below. Create a frequency histogram for the data using a class width of 2.

46) The 30 students in Mrs Harrison's literature class were asked how many cousins they had The results are shown below. Construct a relative-frequency histogram using a class width of 2.

d.	46)	

47) A sample of 15 Girl Scouts was selected and their weights (in pounds) were recorded. The results are listed below. Construct a frequency histogram for the data using a class width of 10 and using 95 as the lower limit of the first class.

47)	

le an appropriate response.	
48) What is the difference between a bar chart and a histogram?	48)
 A) The bars on a bar chart do not touch while the bars of a histogram do touch. 	
B) The bars in a bar chart may be of various widths while the bars of a histogram are all the same width.	
C) There is no difference between these two graphical displays.	
D) The bars in a bar chart are all the same width while the bars of a histogram may be of various widths.	
49) For the stem-and-leaf plot below, what are the maximum and minimum entries?	49)
1 3 7	
1 6 6 6 7 8 9	
2 0 1 1 2 3 4 4 5 6 6	

1 | 6 6 6 7 8 9 2 | 0 1 1 2 3 4 4 5 6 6 2 | 7 7 7 8 8 9 9 9 3 | 0 1 1 2 3 4 4 5 5 3 | 6 6 6 7 8 8 9 9 4 | 0 5

A) max: 47; min: 17 C) max: 38; min: 7 B) max: 45; min: 13

D) max: 40; min: 13

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Determine the original set of data.

50) _____

Stem	Leaves	
7	6	
8	8	
9	0 9	
10	4	
11	1 8	
12	1 8 6 9 6 7 9	
13	6 7 9	
14	2 3 8 9	
15	7 9	
Logor	d. El4 ropro	c 0

Legend: 5 6 represents 56

51)	51)
Stem Leaves Stem Leaves	
5 1	
6 9	
7 0 1	
8 3	
9 1 9	
10 6 9	
11 6 7 9	
12 2 3 8 9	
13 6 9	
Legend: 5 1 represents 5.1	
Construct a stem-and-leaf plot for the data.	
52) The number of home runs that Mark McGwire hit in the first 13 years of his major league	52)
baseball career are listed below. (Source: Major League Handbook) Construct a	
stem-and-leaf plot for this data.	
3 49 32 33 39 22 42 9 9 39 52 58 70	
3 47 32 33 37 22 42 7 7 37 32 30 70	
E2) The numbers of runs betted in by Mark Malamara in the first 12 years of his major league	E3)
53) The numbers of runs batted in by Mark McLemore in the first 13 years of his major league	53)
baseball career are listed below. (Source: Major League Handbook) Construct a	
stem-and-leaf plot for this data.	
0 102 56 25 9 9 56 165 88 122 150 91 114	
54) The heights (in inches) of 30 mechanics are listed below. Construct a stem-and-leaf plot	54)
for the data.	
70 72 71 70 69 73 69 68 70 71	
67 71 70 74 69 68 71 71 72	
69 71 68 67 73 74 70 71 69 68	
55) The March utility bills (in dollars) of 30 homeowners are listed below. Construct a	55)
stem-and-leaf plot for the data.	
44 38 41 50 36 36 43 42 49 48	
35 40 37 41 43 50 45 45 39 38	
50 41 47 36 35 40 42 43 48 33	
56) The scores for an economics test are listed below. Create a stem-and-leaf plot for the	56)
data.	
87 76 92 77 90 94 88 85 66 89	
79 98 52 95 83 88 82 54 14 69	
Construct a dot plot for the data.	
57) The local police, using radar, checked the speeds (in mph) of 30 motorists at a busy	57)
intersection. The results are listed below. Construct a dot plot for the data.	• -
44 38 41 50 36 36 43 42 49 48	

35 40 37 41 43 50 45 45 39 38 50 41 47 36 35 40 42 43 48 33

58) The	heig	ghts	(in i	nche	es) o	f 30	med	hani	ics a	re listed below. Construct a dot plot for the data.	58) _	
	70	72	71	70	69	73	69	68	70	71		

67 71 70 74 69 68 71 71 71 72 69 71 68 67 73 74 70 71 69 68

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Construct a frequency distribution for the data using five classes. Describe the shape of the distribution.

59) The data set: Pick Three Lottery Outcomes for 10 Consecutive Weeks

3 6 7 6 0 6 1 7 8 4 1 5 7 5 9 1 5 3 9 9 2 2 3 0 8 8 4 0 2 4

- A) uniform B) skewed to the left C) bell shaped D) skewed to the right
- 60) The data set: ages of dishwashers (in years) in 20 randomly selected households

 12 6 4 9 11 1 7 8 9 8

59)

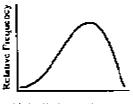
9 13 5 15 7 6 8 8 2 1

- A) skewed to the left
 C) skewed to the right
 D) uniform
- 61) The data set: weekly grocery bills (in dollars) for 20 randomly selected households

 135 120 115 132 136 124 119 145 98 110

 135 120 115 130 140 105 116 121 125 108
 - 125 120 115 130 140 105 116 121 125 108 A) skewed to the right
 - A) skewed to the right B) skewed to the left C) bell shaped D) uniform

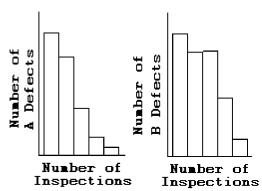
Describe the shape of the distribution.


62) _____

- A) skewed to the left
- C) uniform

- B) bell shaped
- D) skewed to the right

63) _____


- A) bell shaped
- C) uniform

- B) skewed to the right
- D) skewed to the left

Use the histograms shown to answer the question.

64)

64) _____

Is either histogram symmetric?

- A) Both are symmetric.
- B) Neither is symmetric.
- C) The second is symmetric, but the first is not symmetric.
- D) The first is symmetric, but the second is not symmetric.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Describe the shape of the distribution.

65) A sample of 15 Little League players was selected and their weights (in pounds) were recorded as follows:

65) _____

97	120	137	124	117
108	134	126	123	106
130	110	100	120	140

Construct a frequency polygon for the data.

66)

66)		
00)		

Height (in inches)	Frequency
50 - 52	5
53 - 55	8
56 - 58	12
59 - 61	13
62 - 64	11

Weight (in pounds)	Frequency
135 - 139	6
140 - 144	4
145 - 149	11
150 - 154	15
155 - 159	8

	68)		•			verag ht cla			ever	ing	stud	nts are listed below. Construct a frequency	y 68)	
		2.0	3.2	1.8	2.9	0.9	4.0	3.3	2.9	3.6	0.8			
						1.6								
						3.6								
		3.0	4.0	4.0	2.1	1.9	1.1	0.5	3.2	3.0	2.2			
	(0)												(0)	
	69)			•		_					•	ds (in mph) of 30 motorists in a construction	on 69)	
		class				ne nsi	.ea b	eiow	7. CO	115111	ucta	frequency polygon using six classes and a		
		44	38	41	50 3	36 36	43	42	49	48				
						13 50								
		50	41	47	36 3	35 40	42	43	48	33				
MUL	TIPI	LE CI	HOI	CE.	Cho	ose th	e on	e alt	erna	tive	that	best completes the statement or answers	the question.	
Dete	rmin	ie wh	ethe	er th	e stat	temen	nt is t	rue	or fa	lse.				
	70)	A fr	eque	ency	poly	gon al	lway	s beg	gins	and	ends	with a frequency of zero.		70)
		Α) Tr	ue								B) False		
	71)			s mi	dpoir	nt can	be d	eterr	mine	d by	adc	ng to the lower class limit one-half of the	class	71)
		wid	in.) Tr	110								B) False		
		^	, 11	ue								b) i dise		
:HO	DT /	NSN	VFR	· \//	rite t	he wo	ard o	r nh	raca	that	hes	completes each statement or answers the	auestion	
,,,,	IX I <i>F</i>	11454	VLI	. VV	1110 1	iic vvc	nu o	ı pıı	asc	uia	DCS	completes each statement of answers the	question.	
Cons						quen								
	72)											40 cities are listed below. Construct a	72)	
				_						•	_	stribution, a cumulative frequency		
		distr									•	ncy distribution using eight classes.		
						2.9								
						2.3 0.5								
						2.1								
			5.0	4.0	4.0	2.1	1.7	1.1	0.5	J.Z	5.0	2.2		
	73)	The	com	mut	te tim	e (in r	minu	ites)	of 30) exe	cutiv	es are listed below. Construct a frequency	73)	
	,											a cumulative frequency distribution, and a		
								_				ng five classes.		
						70 69		-						
						74 69								
						74 69 57 73								

74) The local police, using radar, checked the speeds (in mph) of 30 motorists in a construction	. 74)
area. The results are listed below. Construct a frequency distribution, a relative frequency	
distribution, a cumulative frequency distribution, and a relative cumulative frequency	
distribution using six classes.	
44 38 41 50 36 36 43 42 49 48	
35 40 37 41 43 50 45 45 39 38	
50 41 47 36 35 40 42 43 48 33	
Construct the requested ogive.	
75) The grade point averages for 40 evening students are listed below. Construct a frequency	75)
ogive using	
eight classes.	
2.0 3.2 1.8 2.9 0.9 4.0 3.3 2.9 3.6 0.8	
3.1 2.4 2.4 2.3 1.6 1.6 4.0 3.1 3.2 1.8	
2.2 2.2 1.7 0.5 3.6 3.4 1.9 2.0 3.0 1.1	
3.0 4.0 4.0 2.1 1.9 1.1 0.5 3.2 3.0 2.2	
76) The heights (in inches) of 30 lawyers are listed below. Construct a frequency ogive using	76)
five classes.	
70 72 71 70 69 73 69 68 70 71	
67 71 70 74 69 68 71 71 72	
69 71 68 67 73 74 70 71 69 68	
77) The local police, using radar, checked the speeds (in mph) of 30 motorists on a rural road.	77)
The results are listed below. Construct a frequency ogive using six classes.	
44 38 41 50 36 36 43 42 49 48	
35 40 37 41 43 50 45 45 39 38	
50 41 47 36 35 40 42 43 48 33	
78) The grade point averages for 40 evening students are listed below. Construct a relative	78)
frequency ogive using eight classes.	
2.0 3.2 1.8 2.9 0.9 4.0 3.3 2.9 3.6 0.8	
3.1 2.4 2.4 2.3 1.6 1.6 4.0 3.1 3.2 1.8	
2.2 2.2 1.7 0.5 3.6 3.4 1.9 2.0 3.0 1.1	
3.0 4.0 4.0 2.1 1.9 1.1 0.5 3.2 3.0 2.2	
79) The heights (in inches) of 30 lawyers are listed below. Construct a relative frequency ogive	e 79)
using five classes.	
70 72 71 70 69 73 69 68 70 71	
67 71 70 74 69 68 71 71 72	
69 71 68 67 73 74 70 71 69 68	
80) The local police, using radar, checked the speeds (in mph) of 30 motorists on a rural road.	80)
The results are listed below. Construct a relative frequency ogive using six classes.	
44 38 41 50 36 36 43 42 49 48	
35 40 37 41 43 50 45 45 39 38	
50 41 47 36 35 40 42 43 48 33	

	Choose the one alternative that best com		-4:
WILL LIPLE C.HCHC.E	Choose the one atternative that best com	pietes the statement or answers the otte	SHOD
WIGETH EE GITGIGE.	Olioose the one afternative that best com	pictes the statement of answers the que	JUIOI I.

Pro	vide	an	anr	oron	riate	response.
	viac	an	uvi	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ı ıaıc	I CODUITOC.

- 81) An ogive is a graph that represents cumulative frequencies or cumulative relative frequencies. The points labeled on the horizontal axis are the
 - A) Upper class limits

B) Lower class limits

C) Frequencies

D) Midpoints

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Use a time series plot to display the data. Comment on the trend,

82) The data below represent the consumption of high-energy drinks (in gallons) by adult Americans over a nine-year period.

82) _____

Year	1	2	3	4	5	6	7	8	9
Consumption (gal)	10	11	11	12	13	14	15	15	13

83) A transportation engineer wishes to use the following data to illustrate the number of deaths from the collision of passenger cars with motorcycles on a particular highway.

83)

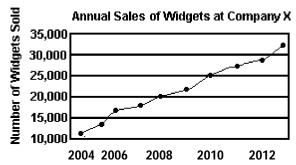
Year	Number of Deaths
1	12
2	17
3	22
4	21
5	16
6	13
7	11

84) Women were allowed to enter the Boston Marathon for the first time in 1972. Listed below 84) ______ are the winning women's times (in minutes) for the first 10 years.

Year 1 2 3 4 5 6 7 8 9 10 Time 190 186 167 162 167 168 165 155 154 147

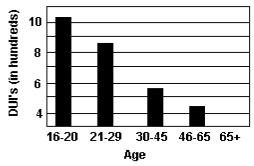
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Explain what is misleading about the graphic.


85)

85) _____

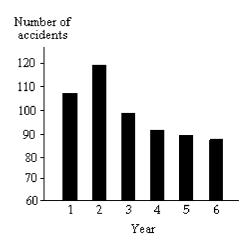
The volume of our sales has doubled!!!


- A) The length of a side has doubled, but the area has been multiplied by 4.
- B) The graphic is not misleading.
- C) The length of a side has doubled, but the area has been multiplied by 8.
- D) The length of a side has doubled, but the area has been unchanged.

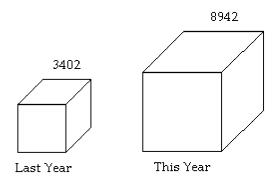
- A) The graphic is not misleading.
- B) The horizontal label is incomplete.
- C) The trend is depicted in the wrong direction.
- D) The vertical scale does not begin at zero.

87) **2012 DUI Figures for State County**

87) _____


- A) The horizontal scale does not begin at zero.
- B) The graphic is not misleading.
- C) The graphic may give the impression that drivers over age 65 had no DUI's in 2012.
- D) The graphic only includes information for one year.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.


Provide an appropriate response.

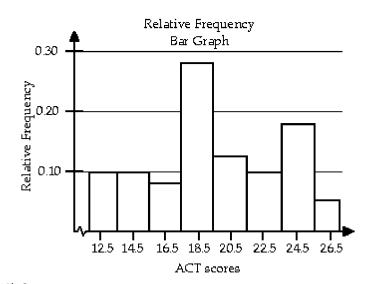
88) The following graph shows the number of car accidents occurring in one city in each of the years 2006 through 2011 (Year 1 = 2006, Year 2 = 2007 etc). The number of accidents dropped in 2008 after a new speed limit was imposed. How is the bar graph misleading? How would you redesign the graph to be less misleading?

89) A parcel delivery store finds that their delivery rates increased over the past year. Last yea 89) ______ it delivered 3402 parcels. This year it delivered 8942 parcels.

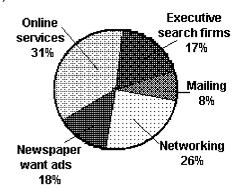
How many times larger should the graphic for this year be than the graphic for last year?

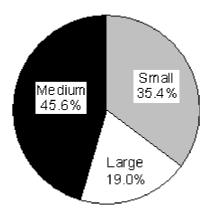
Answer Key Testname: UNTITLED2

1) Class	Frequency	Relative Frequency	<u>Percentage</u>
Large	345	0.190	19.0
Medium	830	0.456	45.6
Small	645	0.354	35.4
Total	1820	1.000	100.0


2)

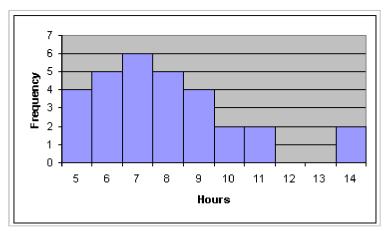
Response	Frequency	Relative Frequency
Strongly Favor	35	0.175
Favor	13	0.065
Neutral	7	0.035
Oppose	25	0.125
Strongly Oppose	120	0.6

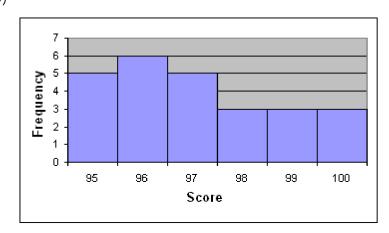

Color	Frequency	Relative Frequency		
purple	3	0.15		
blue	4	0.20		
yellow	5	0.25		
red	7	0.35		
green	1	0.05		


- 4) B
- 5) A 6) B
- 7) C
- 8) A
- 9) D
- 10) C
- 11) D 12) B
- 13) A
- 14) D
- 15) C 16)

- 18) a) See graph below
 - b) The minimum score = 14
 - c) The university will accept 76.57% of the applicants.

- 19) C 20) A
- 21) C
- 22) C 23)


25) D


26)

Hours	Number of
	HS Students
5	4
6	5
7	6
8	5
9	4
10	2
11	2
14	2

27)

Measure	Frequency
95	5
96	6
97	5
98	3
99	3
100	3

- 30) A 31) B
- 32) D
- 33) B
- 34) C
- 35) D
- 36) A 37) A
- 38) B
- 39)

Precip.	Frequency	Relative Frequency
0.5-0.9	4	0.10
1.0-1.4	2	0.05
1.5-1.9	7	0.175
2.0-2.4	9	0.225
2.5-2.9	2	0.05
3.0-3.4	10	0.25
3.5-3.9	2	0.05
4.0-4.4	4	0.10

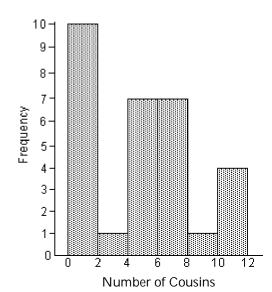
40)

•	Commute Time (in min)	Frequency	Relative Frequency
	67.0-68.4	6	0.200
	68.5-69.9	5	0.167
	70.0-71.4	13	0.433
	71.5-72.9	2	0.067
	73.0-74.4	4	0.133

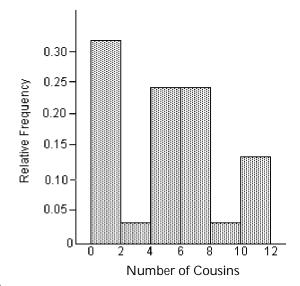
Util. Bill (dollars)	Frequency	Relative Frequency
33-35	3	0.10
36-38	6	0.20
39-41	6	0.20
42-44	6	0.20
45-47	3	0.10
48-50	6	0.20
		•

Answer Key Testname: UNTITLED2

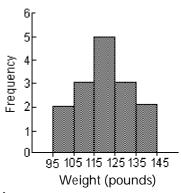
42) a. 95-104, 105-114, 115-124, 125-134, 135-144


b.

Weight (lb)	Tally	Frequency
95-104	Ш	2
105-114	Ш	3
115-124	ШШ	5
125-134	Ш	3
135-144	Ш	2


43)

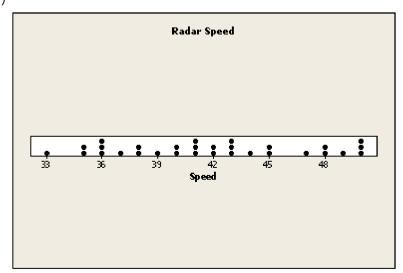
44) Frequency Histogram:

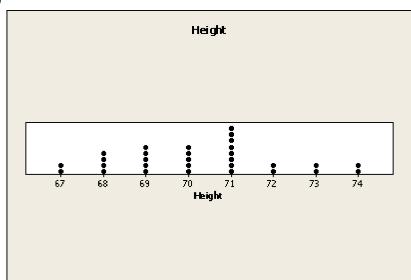

Relative Frequency Histogram:

46)

47)

48) A


Answer Key


Testname: UNTITLED2

```
49) B
50) 76, 88, 90, 99, 104, 111, 118, 126, 129, 136, 137, 139, 142, 143, 148, 149, 157, 159
51) 5.1, 6.9, 7.0, 7.1, 8.3, 9.1, 9.9, 10.6, 10.9, 11.6, 11.7, 11.9, 12.2, 12.3, 12.8, 12.9, 13.6, 13.9
    0 | 3 9 9
    1
    2 2
    3 | 2 3 9 9
    4 2 9
    5 2 8
    6
    7 0
53)
     0 | 0 9 9
     1
     2 | 5
     3
     4
     5 | 6 6
     7
     8 | 8
     9 | 1
    10 2
    11 4
    12 2
    13
    14
    15 0
    16 5
54)
    6 | 7 7 8 8 8 8 9 9 9 9 9
    7 | 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 3 3 4 4
55)
    3 | 3556667889
    4 | 0 0 1 1 1 2 2 3 3 3 4 5 5 7 8 8 9
```

56) The stem will consist of the tens digit and range from 1 to 9. The leaves will be drawn in the appropriate stems based on the data values.

Stem	L	ea	ve	S			
1	4						
2							
2							
4							
5	2	4					
6	6	9					
7	6	4 9 7	9				
8	7	8	5	9	3	8	2
9	2	0	4	8	5		

- 59) A
- 60) B
- 61) C
- 62) D
- 63) D
- 64) B
- 65) symmetric

Answer Key Testname: UNTITLED2

66)

67)

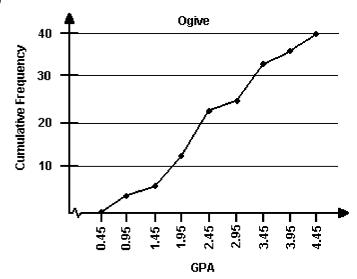
68)

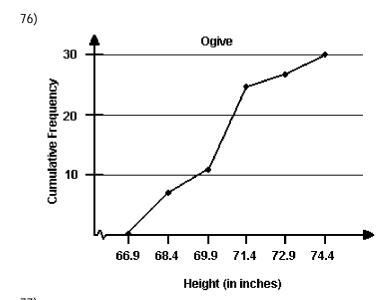
69)

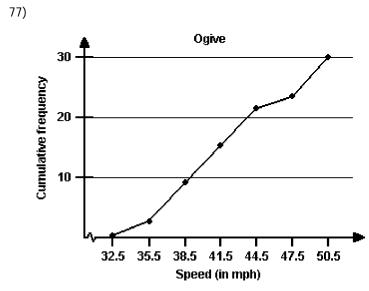
70) A 71) A

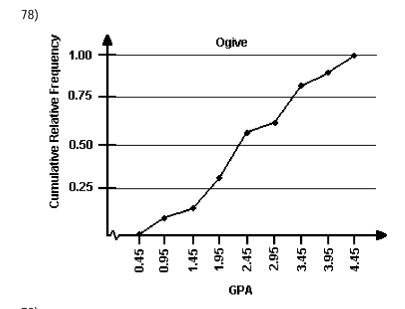
Answer Key Testname: UNTITLED2

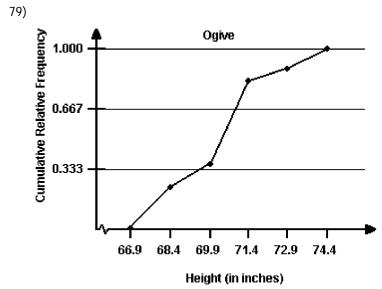
72)

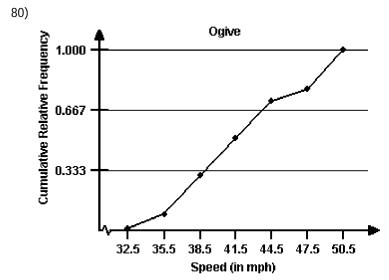

-		Relative	Cumulative	Cumulative
Precip (in.)	Frequency	Frequency	Frequency	Relative Frequency
0.5-0.9	4	0.10	4	0.10
1.0-1.4	2	0.05	6	0.15
1.5-1.9	7	0.175	13	0.325
2.0-2.4	9	0.225	22	0.55
2.5-2.9	2	0.05	24	0.60
3.0-3.4	10	0.25	34	0.85
3.5-3.9	2	0.05	36	0.90
4.0-4.4	4	0.10	40	1


73)


		Relative	Cumulative	Cumulative
Commute Time (in min)	Frequency	Frequency	Frequency	Relative Frequency
67.0-68.4	6	0.20	6	0.20
68.5-69.9	5	0.167	11	0.367
70.0-71.4	13	0.433	24	0.80
71.5-72.9	2	0.067	26	0.867
73 0-74 4	4	0.133	30	1

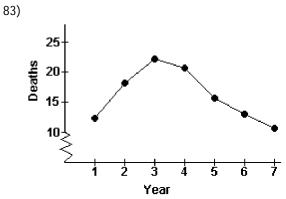

74)


,		Relative	Cumulative	Cumulative
Speed (in mph)	Frequency	Frequency	Frequency	Relative Frequency
33-35	3	0.10	3	0.10
36-38	6	0.20	9	0.30
39-41	6	0.20	15	0.50
42-44	6	0.20	21	0.70
45-47	3	0.10	24	0.80
48-50	6	0.20	30	1



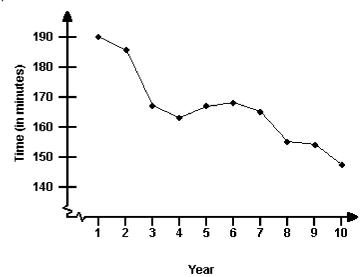


- 81) A
- 82) In general, there is an increasing trend in high-energy drinks consumption of adult Americans. However, beginning in Year 9, there is sign of a decreasing trend.



Interactive Statistics Informed Decisions Using Data 1st Edition Sullivan Test Bank

Full Download: http://testbanklive.com/download/interactive-statistics-informed-decisions-using-data-1st-edition-sullivan-test-banklive.com/download/interactive-statistics-informed-decisions-using-data-1st-edition-sullivan-test-banklive.com/download/interactive-statistics-informed-decisions-using-data-1st-edition-sullivan-test-banklive.com/download/interactive-statistics-informed-decisions-using-data-1st-edition-sullivan-test-banklive.com/download/interactive-statistics-informed-decisions-using-data-1st-edition-sullivan-test-banklive.com/download/interactive-statistics-informed-decisions-using-data-1st-edition-sullivan-test-banklive.com/download/interactive-statistics-informed-decisions-using-data-1st-edition-sullivan-test-banklive.com/download/interactive-statistics-informed-decisions-using-data-1st-edition-sullivan-test-banklive.com/download/interactive-statistics-informed-decision-sullivan-test-banklive


Answer Key

Testname: UNTITLED2

From Year 1 to Year 3, there was an increasing trend in the number of collision deaths. Subsequently, there was a decreasing trend.

84)

In general, there was a decreasing trend in women's Boston marathon times.

- 85) A
- 86) D
- 87) C
- 88) The bar graph is misleading because the vertical axis starts at 60 instead of 0. This tends to indicate that the number of accidents decreased at a faster rate than they actually did. The graph would be less misleading if the vertical scale began at 0 or if a symbol were used to clearly indicate that the vertical scale is truncated and has a gap.
- 89) roughly 3 times larger