Full Download: http://testbanklive.com/download/genetics-laboratory-investigations-14th-edition-mertens-solutions-manual/

Investigation 2

II. INDEPENDENT EVENTS OCCURRING SIMULTANEOUSLY

1. Both heads: $1/2 \times 1/2 = 1/4$; one head, one tail: $1/2 \times 1/2 = 1/4$; head on one coin and tail on the other: 1/4 + 1/4 = 1/2; both coins tails: $1/2 \times 1/2 = 1/4$. Two coins fall heads, heads about 1/4 of the time; heads, tails (and vice versa) about 1/2 of the time; and tails, tails, about 1/4 of the time. Stated as a ratio instead of a fraction, the expected result is 1:2:1.

Table 2.3

Classes	Combinations	Class Occurring	Observed	Expected	(0-E)
3 heads	ННН	$1/2 \times 1/2 \times 1/2 = 1/8$		7	
2 heads, 1 Tail	HHT, HTH, THH	$3(1/2 \times 1/2 \times 1/2) = 3/8$		21	
1 head, 2 Tails	HTT, THT, TTH	$3(1/2 \times 1/2 \times 1/2) = 3/8$		21	
3 tails	TTT	1/2 × 1/2 × 1/2 = 1/8		7	
Total	8 possible	8/8 = 1	56	56	

4. Table 2.4

Classes	Combinations	Probability of Each Class Occurring
4 heads	НННН	1/2 × 1/2 × 1/2 × 1/2 = 1/16
3 heads : 1 tail	НННТ, ННТН, НТНН, ТННН	$4(1/2 \times 1/2 \times 1/2 \times 1/2) = 4/16$
2 heads : 2 tails	ННТТ, НТТН, ТННТ, ТТНН, НТНТ, ТНТН	$6(1/2 \times 1/2 \times 1/2 \times 1/2) = 6/16$
3 tails : 1 head	НТТТ, ТНТТ ТТНТ, ТТТН	$4(1/2 \times 1/2 \times 1/2 \times 1/2) = 4/16$
4 tails	TTTT	1/2 × 1/2 × 1/2 × 1/2 = 1/16

- 5. a. $(1/2)^4 = 1/16$
 - b. $4(1/2)^3(1/2) = 4/16 = 1/4$
 - c. $6(1/2)^2(1/2)^2 = 6/16 = 3/8$
 - d. Two boys and two girls. There are more ways (6) in which a family can consist of 2 boys and 2 girls.
 - e. A boy 1/2, a girl 1/2.

Full Download: http://testbanklive.com/download/genetics-laboratory-investigations-14th-edition-mertens-solutions-manual/

III. BINOMIAL EXPANSION

- 1. a. $(1/2)^5 = 1/32 = a^5$ d. $10(1/2)^2 (1/2)^3 = 10/32 = 5/16 = 10a^2b^3$
 - b. $5(1/2)^4(1/2) = 5/32 = 5a^4b$ e. $5(1/2)(1/2)^4 = 5/32 = 5ab^4$
 - c. $10(1/2)^3(1/2)^2 = 10/32 = 5/16 = 10a^3b^2$ f. $(1/2)^5 = 1/32 = b^5$
- 2. a. 1 boy and 5 girls: $6!/5!1! (1/2)(1/2)^5 = 6/64 = 3/32$
 - b. 3 boys and 3 girls: $6!/3!3! (1/2)^3 (1/2)^3 = 20/64 = 5/16$
 - c. All 6 girls: 6!/0!6! $(1/2)^0(1/2)^6 = (1/2)^6 = 1/64$
- 3. A normal child: 3/4; an albino: 1/4.
 - a. All 4 normal: $(3/4)^4 = 81/256$
 - b. 3 normal and 1 albino: $4(3/4)^3 (1/4) = 108/256 = 27/64$
 - c. 2 normal and 2 albino: $6(3/4)^2 (1/4)^2 = 54/256$
 - d. 1 normal and 3 albinos: $4(3/4)(1/4)^3 = 12/256$
 - e. All 4 albinos: $(1/4)^4 = 1/256$

IV. EITHER-OR SITUATIONS (MUTUALLY EXCLUSIVE EVENTS)

- 1. Either C or c gametes; 1/2 + 1/2 = 1 or 100%
- 2. Either the genotype AA or the genotype Aa: 1/4 + 2/4 = 3/4
 - a. Either aaB- or aabb: 3/16 + 1/16 = 4/16 = 1/4
 - b. Either *aabb* or *AaBb*: 1/16 + 4/16 = 5/16
 - c. Either A-bb or AAbb: 3/16 + 1/16 = 5/16
 - d. Either A-B- or aabb: 9/16 + 1/16 = 10/16 = 5/8

V. PROBABILITY AND GENETIC COUNSELING

- a. 4×7 : $1(aa) \times 1(Aa) \times 1/2 = 1/2$
- b. 5×1 : $1(Aa) \times 2/3(Aa) \times 1/4 = 2/12 = 1/6$
- c. 6×13 : $1(Aa) \times 1/2(Aa) \times 1/4 = 1/8$
- d. 10×14 : $2/3(Aa) \times 1/2(Aa) \times 1/4 = 2/24 = 1/12$
- e. 3×17 : $2/3(Aa) \times 1/3(Aa) \times 1/4 = 2/36 = 1/18$

Note: #17 has a 1/3 probability because his overall is his mother's probability of being heterozygous (2/3) times his probability (1/2) if his mother was heterozygous.

- f. 3×15 : $2/3(Aa) \times 1/2(Aa) \times 1/4 = 2/24 = 1/12$
- g. 16×17 : $1/2(Aa) \times (2/3 \times 1/2)(Aa) \times 1/4 = 2/48 = 1/24$