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Solutions for Chapter 2 Problems

1. Vectors in the Cartesian Coordinate System

Fundamentals of Electromagnetics with Engineering Applications 1st Edition Wentworth Solutions Manual
Full Download: http://testbanklive.com/downl oad/fundamental s-of -el ectromagneti cs-with-engineering-applications- 1st-edition-we

P2.1: Given P(4,2,1) and Apg=2a +4a, +6a,, find the point Q.

App=2ayt4a,+t6a,=

Qx-Px=0Qx-4=2; Q=6
Qy-Py=Qy-2=4; Qy=6
Q-P=Q.-1=6; Q=7
Ans: Q(6,6,7)

P2.2: Given the points P(4,1,0)m and Q(1,3,0)m, fill in the table and make a sketch of

(QX'PX)aX + (Qy'Py)ay+(Q2'PZ)az

the vectors found in (a) through (f).

Vector Mag Unit Vector
a. Find the vector A Aor=4a,+1ay 4.12 Aop=0.97a,+0.24 a,
from the origin to P
b. Find the vector B Boo=1lay+3a, 3.16 aog=0.32a,+0.95 a,
from the origin to Q
c. Find the vector C Cpp=-3act+2ay 3.61 apg =-0.83 a, + 0.55 a,
from P to Q
d. Find A+ B A+B=5a,+t4a, 6.4 a=0.78 a, +0.62 a,
e. Find C— A C-A=-Ta,+1a, 7.07 a=-0.99a,+0.14 a,
f.Find B- A B-A=-3a,+2a, 3.6 a=-0.83 a,+0.55 a,
a. Aop = (4-0)a, + (1-0)a, + (0-0)a, =4 a, + 1 a,.
|AOP|:\/42+12 =J1_=4.12 — >y
Q
——a, =0.97a,+0.24a,
T
(see Figure P2.2ab)
b. Bog =(1-0)ax + (3-0)a, + (0-0)a, =1 a, + 3 a,.
\BOQ\ = \/12 +3% = JE =3.16
——a, =0.32a,+0.95a,
\/7 \/7 / — >y
(see Figure P2.2ab) b Q
T C
c. Cpo = (1-4)a, + (3-1)a, + (0-0)a, = -3 ax + 2 ay. 1
\CPQ\ - \/32 +2? :JE —3.61 I = B
X
——a, =—0.83a, +0.55a,
y
f f Fig. P2.2cd
(see Figure P2.2cd)

Full download all chaptersinstantly please go to Solutions Manual, Test Bank site: testbanklive.com
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d. A+B=(4+Da, + (1+3)ay + (0-0)a, = S ax + 4 ay.

|A + B| =\J5*+4> =J41=64 1B-A
J_ \/_ay—078a +0.62a, L/ |ca

(see Figure P2.2cd)

e.C-A=(-3-4)a, +(2-a, + (0-0)a,=-7 ax + 1 a,. i

|C—A|:\/72+12:«/_0=7.07 '
\/_ \/_ a, =—-0.99a, +0.14a, FigPa 2ef

(see Figure P2.2ef)

f.B-A=(1-4)ac+ (3-1)a, + (0-0)a,=-3 ax + 2 a,.

|B A| \/32+22 J13=36

-0.83a, +0.55a,
T TS

(see Figure P2.2ef)

P2.3: MATLAB: Write a program that will find the vector between a pair of arbitrary
points in the Cartesian Coordinate System.

A program or function for this task is really overkill, as it is so easy to perform the task.
Enter points P and Q (for example, P=[1 2 3]; Q=[6 5 4]). Then, the vector from P toQ is
simply given by Q-P.

As a function we could have:

function PQ=vector (P, Q

% Gven a pair of Cartesian points

% P and Q the program determ nes the
% vector fromPto Q

PQ=Q P;

Running this function we have:
>>P=[12 3],

>> Q=[6 5 4];

>> PQ=vector(P,Q)

PQ =
5 3 1

Alternatively, we could simply perform the math in the command line window:
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>> PQ=Q-P
PQ =

5 3 1
>>

2. Coulomb’s Law, Electric Field Intensity, and Field Lines

P2.4: Suppose Q;(0.0, -3.0m, 0.0) = 4.0nC, Q(0.0, 3.0m, 0.0) = 4.0nC, and Q3(4.0m,
0.0, 0.0) = 1.0nC. (a) Find the total force acting on the charge Qs. (b) Repeat the problem
after changing the charge of Q, to —4.0nC. (c) Find the electric field intensity for parts (a)
and (b).

_ QQ,

a)F
@F, 47&90R123

SO

a3, where Ris=4a,+3 dy =, Riz=5m,a;3= 0.8a,+0.6 dy.

(4X10_9C)(1X10_9C)(4ax +3ay% FV NM
P 4z(10°F/36zm)(sm)’ C Ve
=1.15x10"a, +0.86x10‘9ay N.
Similarly, F,; =1.15x107a, —0.86x10‘9ay N, so |For =2.3a, NN

(b) with Q; =-4 nC, Fy3 is unchanged but F,; = —1.15x10‘9ax + 0.86x10‘9ay N, so
For =1.7a, NN |

Q 9

—Yy

2.3x107a,N T ot
(©) E, = Fron =( 5 Jve :2.3axl. Ry
Q, (1x10°C)  Nm m
. . V

Likewise, E, =1.7a, —. 3

m Fy| Fis

X
Fig. P2.4

P2.5: Find the force exerted by Q;(3.0m, 3.0m, 3.0m) = 1.0 nC on Q,(6.0m, 9.0m, 3.0m)
=10.nC.

__QQ,
" 4ze R2
Rix=(6-3)ax + (9-3)ay + (3-3)a, =3 a, + 6 8, m

Ty 3a, +6a
R12 = 32 +62 = \/Em,alz ZT",and

a,,, where



2-4

(1x10°°C)(10x10°C) 3a, +6a, FV NM

F —
? 477(10 F/6 )45m J4s5 C vC’

so [F, =0.89a, +1.8a, uN]|

N
Il
w

I i A O A O
N BN T A e M R

Fig. P2.5

P2.6: Suppose 10.0 nC point charges are located on the corners of a square of side 10.0
cm. Locating the square in the x-y plane (at z = 0.00) with one corner at the origin and
one corner at P(10.0, 10.0, 0.00) cm, find the total force acting at point P.

We arbitrarily label the charges as shown in Figure P2.6. Then
Ror=0.1a,+0.1 a,

ROP: 0.141 m
aop = 0.707 a; + 0.707 a. o S
" > y
(10nc)(10nc)(0 707)(a, +a,) R,
P
(47)(107F 4 ) (0-141m)
(a +ay)/lN Te p Frp
1 1 \ F
Fro = (10n J10nC)a, —=90a, uN . Fso
( ) (0.1m)’ Fig. P2.6
Fo- (IOnC)(IOnC) _90a_uN

(47) (10 %Mm) 0.1m)’

and then the total (adjusting to 2 significant digits) is:
Fror =120(a, +a, ) uN.
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P2.7: 1.00 nC point charges are located at (0.00, -2.00, 0.00)m, (0.00, 2.00, 0.00)m, (0.00,
0.00, -2.00)m and (0.00, 0.00, +2.00)m. Find the total force acting on a 1.00 nC charge
located at (2.00, 0.00, 0.00)m.

Figure P2.7a shows the situation, but we need only find the x-directed force from one of
the charges on Q; (Figure P2.7b) and multiply this result by 4. Because of the problem’s
symmetry, the rest of the components cancel.

2a, +2a
F = QQ aR,R:2aX+2ay,R=\/§m,aR: —

" 4ze R Js

(1x10-9c)(1x10—9c)(2ax+2ay Jg}
soF, = OF : =796x10"" (a, +a, )N
47[( A&zm)(gm )
The force from all charges is then
Fror =(4)(796x10%a, )nN =3.2a,nN.
Z
-~
4Q
Qs : e >y
Q
Qy + Y
10
X
Fig. P2.7a Fig. P2.7b

P2.8: A 20.0 nC point charge exists at P(0.00,0.00,-3.00m). Where must a 10.0 nC
charge be located such that the total field is zero at the origin?

For zero field at the origin, we must cancel the +a, directed field from Qp by placing Q at
the point Q(0,0,z) (see Figure P2.8). Then we have Ei = Ep + Eq=0.

-9
(20x107C)a, =, —0a, v

- 2 ag = -9
47e,R 4”(10 %67zm)(3m)2 C m
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and

Q

=———a
° 4zgR* T z

_ (10x0°c)-a) %0, Q
(107 F S (2) Z

So then
20a, —@a -0, 1
Z

P4 Q
X
z* :z—g, z7=2.12.

Thus, Q(0,0,2.12m).

3. The Spherical Coordinate System

P2.9: Convert the following points from Cartesian to Spherical coordinates:
a. P(6.0,2.0,6.0)
b. P(0.0,-4.0, 3.0)
c. P(-5.0,-1.0,-4.0)

a)r= + + = .;, =Ccos | — 4/ =tan | — |=
62 22 62 8 H ! ° ! 180
b) r=+v0"+4"+3" =560=cos” 53°,p=tan" | — |=-90°
( ) 2 2 32 1 ( J [} 1 ( I J

(c) r=+5 +1"+4% =6.5,0 = cos” (65) 130° ¢:tan1(_—;j:1900

wnlw o

P2.10: Convert the following points from Spherical to Cartesian coordinates:
a. P(3.0,30.°,45.°)
b. P(5.0, /4, 31t/2)
c. P(10., 135°, 180°)

(a)
X =rsin@cos ¢ =3sin30° cos45° =1.06

y =rsin@sing =3sin30°sin45° =1.06
Z=rcosf =3cos30°=2.6

s0 P(1.1,1.1,2.6).

(b)
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X =rsin@cos¢@=5sin45° cos270° =0

y =rsinfsin¢ =5sin45°sin270° = -3.5
Z=rcosf=5cos45° =3.5

50 P(0,-3.5,3.5).

(c)
X=rsinfcos¢p=10sin135° cos180° =-7.1

y =rsinfsing =10sin135°sin180° =0
Z=rcos@=10cos135° =-7.1
50 P(=7.1,0,~7.1).

P2.11: Given a volume defined by 1.0m < r< 3.0m, 0< 6< 0°,90°< ¢ < 90° (a)
sketch the volume, (b) perform the integration to find the volume, and (c) perform the

necessary integrations to find the total surface area.

(a)
Z
1 ¥
X
Fig. P2.11
(b)
3 90° 7/2 1371_
Vv :ﬂjrzsinedrdewzjrzdrj sinedej d¢=T:13.6m3.
1 0 0

So volume V = 14 m’.

(c) There are 5 surfaces: an inner, an outer, and 3 identical sides.
7/2

S = H rdrdg = j rdr I dg=2zm*;, S, =6xm’
1

0

Soer = [[ 1> sin6dOdg = 329}0 sin Hdeﬂfdgé :%”m2
0

0

Sinner
So Stotal =35 mz.

= % m*; S, =11zm* =34.6m’
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4. Line Charges and the Cylindrical Coordinate System
P2.12: Convert the following points from Cartesian to cylindrical coordinates:
a. P(0.0,4.0,3.0)
b. P(-2.0, 3.0, 2.0)
c. P4.0,-3.0,-4.0)
4

() p=+0’+4> =4,¢=tan"' (6} =90°,z =3, s0 P(4.0,90°,3.0)

(b) p=~2>+3*=3.6,4=tan"’ (%):124"; =2, s0 P(3.6,120°,2.0)

(c) p=v4’ +3’ =54 =tan"’ (_73} =-37°,2=-4, so P(5.0,-37°,-4.0)

P2.13: Convert the following points from cylindrical to Cartesian coordinates:
a. P(2.83,45.0°,2.00)
b. P(6.00, 120.°, -3.00)
c. P(10.0,-90.0°, 6.00)

(a)
X=pcos¢=2.83cos45° =2.00

y = psing =2.83sin45° =2.00
z=2=2.00
so P(2.00,2.00,2.00).

(b)
X = pcos¢=6.00cos120° =-3.00

y = psing =6.00sin120° =5.20

z=2=-3.00
so P(-3.00,5.20,-3.00).
(©)

X=pcos¢=10.0cos(-90.0°)=0

y = psing =10.0sin(-90.0°) = -10.0
2=7=6.00

50 P(0,-10.0,6.00).

P2.14: A 20.0 cm long section of copper pipe has a 1.00 cm thick wall and outer
diameter of 6.00 cm.
a. Sketch the pipe conveniently overlaying the cylindrical coordinate system, lining
up the length direction with the z-axis
b. Determine the total surface area (this could actually be useful if, say, you needed
to do an electroplating step on this piece of pipe)
c. Determine the weight of the pipe given the density of copper is 8.96 g/cm’
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(a) See Figure P2.14
(b) The top area, Stop, is equal to the bottom area. We must also find the inner area, Sinner,
and the outer area, Soyter.

Stop =”pdpd¢=jpdp2fd¢=5ﬂ' cm’.
2 0

S =S

bottom top*

2z

Souer = ”pd(ﬁdz = 3J d¢]9 dz =120z cm’
0 0

27

20
Sumer = |[ Pdgdz =2 [ dg [ dz =807 cm’
0 0
The total area, then, is 2107 cmz, or Sit = 660 cm?.

(c) Determining the weight of the pipe requires the volume:

V =[] pd pdgdz

3 27 20 i
=|pdp|dg|dz=100z cm’. ———om
'!. '([ '(|). (g: %7 3em
g i |
M e = (8.96 p— j(100ﬁ0m3) | |
=2815g.

SO Mp|pe = 2820g.

Fig. P2.14

P2.15: A line charge with charge density 2.00 nC/m exists at y = -2.00 m, x = 0.00. (a) A
charge Q = 8.00 nC exists somewhere along the y-axis. Where must you locate Q so that
the total electric field is zero at the origin? (b) Suppose instead of the 8.00 nC charge of
part (a) that you locate a charge Q at (0.00, 6.00m, 0.00). What value of Q will result in a
total electric field intensity of zero at the origin?

(a) The contributions to E from the line and point charge must cancel, or E=E +E,.
yox a - (2nC/m) 3 —18¥a

) P -9 y m y
w210 (2m)

For the line: E, =
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and for the point charge, where the point is located a distance y along the y-axis, we
B (-a,)- (8nC)(-a,) —7—2(—a |
Q 2 y)] ™ -9 T2 y
4re, 107 F 2
y 47[( A 67rm) y:

Therefore:
72 72 3
7=18, 0ry=\/%=2m.
S0[Q(0,2.0m,0) R
Q
b =y
(b) 0 ———y
——F=18, Y
47, (6)
1 X
Fig. P2.15

P2.16: You are given two z-directed line charges of charge density +1 nC/matx =0,y =
-1.0 m, and charge density —1.0 nC/m at x =0, y = 1.0 m. Find E at P(1.0m,0,0).

The situation is represented by Figure P2.16a. A better 2-dimensional view in Figure
P2.16b is useful for solving the problem.

P a,+a,
E = a , and pa =\/§ .
Y 2mep © P2 ( V2

(1x10°C) (a,+a,) Fv Vv Vv
= - =9(ax+ay)—,and E2=9(-ax+ay)—.
27(107F S (V2M) V2 € " "

So ETOT =18 dy V/m.

El

1 P =+1nC/m P =-1nC/m
il L2
LI pi.z o o——> Y
~ e
g E, ,”
S
N
’ \é‘ Eror
X E,
X
Fig. P2.16a Fig. P2.16b




2-11

P2.17: MATLAB: Suppose you have a segment of line charge of length 2L centered on
the z-axis and having a charge distribution p.. Compare the electric field intensity at a
point on the y-axis a distance d from the origin with the electric field at that point
assuming the line charge is of infinite length. The ratio of E for the segment to E for the
infinite line is to be plotted versus the ratio L/d using MATLAB.

This is similar to MATLAB 2.3. We have for the ideal case
PL PL
E. 6= a = a,.
A 2mep 7 2med ”

For the actual 2L case, we have an integration to perform (Equation (2.35) with different
limits):
_ pLpa, " dz _ pLday z
e, (p*+ 22)3/2 d*Vz? +d?

+L

4re, N

,0 Lay |—
Eactual = .
27e,d \ /12 +d2
Now we manipulate these expressions to get the following ratio:

Ep 74
Egea \/1+(%)2

In the program, the actual to ideal field ratio is termed “Eratio” and the charged line half-
length L ratioed to the distance d is termed “Lod”.

% MFile: MP0217

%

% This programis simlar to M.0203.

% It conpares the E-field froma finite length

% segnment of charge (from-L to +L on the z-axis)

% to the E-field froman infinite length |ine

% of charge. The ratio (E fromsegnment to E from
% infinite length line) is plotted versus the ratio
% Lod=L/d, where d is the distance along the y axis.
%

% Wentworth, 12/19/02

%

% Vari abl es:

% Lod the ratio L/d

% Eratio ratio of E fromsegnent to E fromline
clc %l ears the command w ndow

cl ear %l ears vari abl es

% Initialize Lod array and cal cul ate Eratio
Lod=0. 1: 0. 01: 100;
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Eratio=Lod./ (sqgrt(1+Lod."2));

% Plot Eratio versus Lod

sem | ogx(Lod, Erati o)

grid on

x| abel (' Lod=L/d")

yl abel (" E ratio: segnent to line")

Executing the program gives Figure P2.17.

Lod=L/d

Fig. P2.17

So we see that the field from a line segment of charge appears equivalent to the field
from an infinite length line if the test point is close to the line.

P2.18: A segment of line charge p. =10 nC/m exists on the y-axis from the origin to y =
+3.0 m. Determine E at the point (3.0, 0, 0)m.

It is clear from a sketch of the problem in Figure P2.18a that the resultant field will be
directed in the x-y plane. The situation is redrawn in a temporary coordinate system in
Figure P2.18b.

pLdZ pa,—1a,
4re, (,02 n 22)%

We have from Eqn (2.34) E = I =Ea, +Eza,.

For E, we have:

£ _PAP dz _pp z

P 471'80 ( )% 47[80 p2 ./ 22 + p2
With p= 3, we then have E,=21.2 V/m.
For E;:

3

2, 2
p Ttz 0
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R
' >y
P
Ep S
X Ep
Fig. P2.18a Fig. P2.18b
3
S £ 1 - 8797
m

4re, (,02+22)% =47ng \/p2+zz

Thus we have Eror =21 a, - 8.8 a, V/m.

z=0

Converting back to the original coordinates, we have Etor =21 a, — 8.8 a, V/m.

5. Surface and Volume Charge

P2.19: In free space, there is a point charge Q = 8.0 nC at (-2.0,0,0)m, a line charge p. =

10 nC/m at y = -9.0m, x =
Determine E at the origin.

Om, and a sheet charge ps = 12. nC/m” at z = -2.0m.

The situation is represented by Figure P2.19, and the total field is Eror = Eq + EL + Es.

Q (8x10°C)a,
= a. =
C 4ze R® T 10°F 2
7z, 4;;( AMm)(zm)
:18axl
m
10x10° C/m)a
ELzsz ap= (10_9F / ) y
7EP 27[( A67zm)(9m)
oV
m
12x10° C/m?
Eszzps aNZ( 10°F / )az
&
° 2( A67rm)
6792 L
m

So: Bt =18 a,+20 a, + 680 a, V/m.

Fig. P2.19

pL
_ Q
y=9 x=-2
7 z=-2 Y
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P2.20: An infinitely long line charge (o = 21m nC/m) lies along the z-axis. An infinite
area sheet charge (ps = 3 nC/m?) lies in the x-z plane at y = 10 m. Find a point on the y-
axis where the electric field intensity is zero.

We have Eror = EL + Es.

E — pLap _ pLay z
Y 2me,p 27y A
(217x10°C/m) 3787 . 0
1079 F y y y A
Zﬂ( Amm) ' y W B
pa, (3x10°C/m*)(-a,) 10
B =, = S[I0°F
E X
° 2( A&rm)
=-54ra, )
Fig. P2.20
SO
@—547z:O, ory=7.
y

Therefore, P(0, 7m, 0).

P2.21: Sketch the following surfaces and find the total charge on each surface given a
surface charge density of ps = InC/m?”. Units (other than degrees) are meters.

(a) 3<x<3,05y<4z=0

(b) 1< r<4,180°< ¢< 360°, =mn/2

(c) 1< p<4,180°< ¢< 360°,z=0

Fig. P2.21a Fig. P2.21b&c

(@) Q=[pds =p, i dxi dy = 24p, =24nC
-3 0
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4 2r 1572_
b) Q=p. |rdr| d¢g=——p, =24nC
() Q ps! ! ¢ 5P

4

© Q=p, [ pdp [ 0 =24nC

P2.22: Consider a circular disk in the x-y plane of radius 5.0 cm. Suppose the charge
density is a function of radius such that p; = 12p nC/cm” (when p is in cm). Find the
electric field intensity a point 20.0 cm above the origin on the z-axis.

h
From section 4 for a ring of charge of radius a,E = A, 7 Now we have
2¢, (a2 + hz) ?
Ap dp pha, ) I
p=pdp and dE = e where ps = Ap nC/cm”. Now the total field is given
2¢, ( P+ h2) ?
by the integral:
Aha I pd
p +h? )

This can be solved using integration by parts, where U = p, du = dp,
and dv = ﬂ This leads to

-1
- /p2+h2’ /p2+h2
Ah| -a a++va’+h’
+1In a,.
250 \/a2+h2 h

Plugging in the appropriate values we arrive at E = 6.7 kV/cm a,.

E-=

P2.23: Suppose a ribbon of charge with density ps exists in the y-z plane of infinite
length in the z direction and extending from —a to +a in the y direction. Find a general
expression for the electric field intensity at a point d along the x-axis.

The problem is represented by Figure P2.23a. A better representation for solving the
problem is shown in Figure P2.23b.

We have dE =2t ———a,,, where o = pidy. Then, since
2re, p

. da, —va,
pa, =—F———,
P /d2+y2
the integral becomes
da, —ya
E=] £y <y
2s,d> +y? \JdP +y?
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It may be noted that the a, component will cancel by symmetry. The ay integral is found
from the appendix and we have

E=%5 tan (Ej a,.
TE d

P =Py dy

pa,

d

; Y

X

FigP2.23a FigP2.23b

P2.24: Sketch the following volumes and find the total charge for each given a volume

charge density of g, = 1InC/m’. Units (other than degrees) are meters.
(a) 0<x<40<y<50<z<6

(b) 1< r<50< < 60°
() 1< p<5,0°< ¢< 90°,0< z< 5 9

(a) Q= _[pvdv = pvjtdx.sf dyi dz=120nC
0 0 0

(b) y
Q=[pdv

5 60° 2
= p,[r’dr [ sing do [ dg=130nC
© Y ’ Fig. P2.24a
Q= p,dv

7/2 5 z

:pvj.p dp_[ d¢IdZ:94nC

Fig. P2.24b
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Fig. P2.24c

A1
o

Ve

X

P2.25: You have a cylinder of 4.00 inch diameter and 5.00 inch length (imagine a can of
tomatoes) that has a charge distribution that varies with radius as p, = (6 p) nC/in® where
pis in inches. (It may help you with the units to think of this as p, (nC/in’)= 6 (nC/in*)
p(in)). Find the total charge contained in this cylinder.

Q=[pdv={[[(6p)pdpdpdz = 6jp2ded¢j dz =160znC =503nC
0 0 0

P2.26: MATLAB: Consider a rectangular volume with 0.00 < X < 4.00 m, 0.00 < y <
5.00 m and —6.00 m < z < 0.00 with charge density p, = 40.0 nC/m’. Find the electric
field intensity at the point P(0.00,0.00,20.0m).

%
%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

M.P0226

calculate E froma rectangul ar vol ume of charge
vari abl es

xstart, xstop [imts on x for vol charge (m

ystart, ystop
zstart, zstop

xt, yt, zt test point (m

r hov vol charge density, nC nt3
NXx, Ny, Nz di scretization points

dx, dy, dz differential |engths

dQ differential charge, nC

€eo free space permttivity (F/'m
dEi differential field vector

dEi x,dEiy,dEiz x,y and z conponents of dE
dEj x, dEj y, dEj z of dEj
dEkx, dEky, dEkz of dEk

Et ot total field vector, V/m
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clc
cl ear

% initialize variables
xst art =0; xst op=4,
ystart =0; yst op=5;
zstart=-6; zst op=0;

xt =0; yt =0; zt =20;
rhov=40e- 9;

Nx=10; Ny=10; Nz=10;

e0=8. 854e-12;

dx=(xstop-xstart)/ Nx;
dy=(ystop-ystart)/ Ny;
dz=(zstop-zstart)/ Nz;
dQ@=r hov*dx*dy*dz;

for k=1: Nz
for j=1:Ny
for i=1:Nx
xv=xstart+(i-0.5)*dx;
yv=ystart +(j-0.5)*dy;
zv=zstart +(k-0.5)*dz;
R=[ xt-xv yt-yv zt-zv];
magR=magvect or (R);
uvR=uni tvector (R);
dEi =(dQ (4*pi *eo*magR*2) ) *uvR;
dEi x(i)=dEi (1);
dEi y(i)=dEi (2);
dEi z(i)=dEi (3);
end
dEj x(j ) =sum(dEi x) ;
dEj y(j) =sun(dEiy);
dEj z(j ) =sum( dEi z);
end
dEkx( k) =sun( dfj x) ;
dEky (k) =sun(dEjy);
dEkz (k) =sum(dEj z) ;
end
Et ot x=sum( dEkX) ;
Et ot y=sum( dEkY) ;
Et ot z=sum( dEkz) ;
Etot=[ Et ot x Etoty Et ot z]

Now to run the program:

Etot =
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-6.9983 -8.7104 79.7668

>>

SoE=-7.0a,-8.7a,+80.a,V/m

P2.27: MATLAB: Consider a sphere with charge density p, = 120 nC/m’ centered at the
origin with a radius of 2.00 m. Now, remove the top half of the sphere, leaving a
hemisphere below the x-y plane. Find the electric field intensity at the point
P(8.00m,0.00,0.00). (Hint: see MATLAB 2.4, and consider that your answer will now
have two field components.)

% MFile: MP0227

%

% This program nodifies M.0204 to find the field
% at point P(8mO0,0) froma hem spheri cal

% distribution of charge given by

% rhov=120 nC m3 fromO <r < 2m and

% pi/2 <theta < pi.

%

% Wentworth, 12/23/02

%

% Vari abl es:

% d y axis distance to test point (m

% a sphere radius (m

% dv differential charge vol ume where

% dv=del ta_r*del ta_t het a*del t a_phi

% eo free space permttivity (F/'m

% r,theta, phi spherical coordinate | ocation of

% center of a differential charge el enent

% X,Y,z cartesian coord | ocation of charge %
el ement

% R vector fromcharge elenent to P

% Rmag magni tude of R

% aR unit vector of R

% dr,dtheta,dphi differential spherical elenments

% dEi , dEj , dEK partial field val ues

% Et ot total field at P resulting from charge

clc %l ears the command wi ndow

cl ear %l ears vari abl es

% Initialize variabl es
e0=8. 854e-12;
d=8; a=2;
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delta _r=40; del ta_t heta=72; del t a_phi =144;

% Performcal cul ation
for k=(1:delta_phi)
for j=(1:delta_theta)
for i=(1l:delta_r)
r=i*aldelta_r;
theta=(pi/2)+j*pi/(2*delta_theta);
phi =k*2*pi / del t a_phi ;
X=r*si n(theta)*cos(phi);
y=r*sin(theta)*sin(phi);
z=r*cos(theta);
R=[d-Xx, -y, -2];
Rmag=magvector (R);
aR=R/ Rmag;
dr=a/delta_r;
dt het a=pi / del t a_t het a;
dphi =2*pi / del t a_phi ;
dv=r~2*si n(t het a) *dr *dt het a*dphi ;
dQ=120e- 9*dV;
dEi =dQ*aR/ (4*pi *eo* Rmag”"2) ;
dEi x(i)=dEi (1);
dEi y(i)=dEi (2);
dEi z(i)=dEi (3);
end
dEj x(j ) =sum(dEi x) ;
dEj y(j)=sun(dEiy);
dEj z(j ) =sum( dEi z);
end
dEkx( k) =sun( dfj x) ;
dEky (k) =sun(dEjy);
dEkz (k) =sum(dEj z) ;
end
Et ot x=sum( dEkx) ;
Et ot y=sum( dEkY) ;
Et ot z=sunm( dEkz) ;

Etot=[ Et ot x Etoty Et ot z]
Now to run the program:
Etot =

579.4623 0.0000 56.5317

So E=580a+57a, V/m.

6. Electric Flux Density
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P2.28: Use the definition of dot product to find the three interior angles for the triangle
bounded by the points P(-3.00, -4.00, 5.00), Q(2.00, 0.00, -4.00), and R(5.00, -1.00,
0.00).

Here we use A<B = |A||B|cos Os-
PR =(5--3)a, +(-1-—4)a, +(0-5)a, B(3,4.0)
PR =8a, +3a, —5a,,|PR|=9.9

PQ =5a, +4a, —9%a,,|PQ[=11.0
PR-PQ=(8)(5)+(3)(4)+(-5)(-9)=97
=|9.9||11.0|0050P

_1( 97 ] R(5.-1,0)
0,=cos | ———— |=2T

(9-9)(11) Fig. P2.28
RQ=-3a,+la, —4a,,|RQ|=5.1

RP =-8a, —3a, +5a,,|RP|=9.9

RQ+RP =1=(5.1)(9.9)cos 65,6, =89’
0, =180°-27" -89" = 64°

P2.29: GivenD =2pa,+sin ¢ a, C/m?, find the electric flux passing through the surface
defined by 2.0 < p< 4.0m, 90.°< ¢< 180°, and z=4.0 m.

¥ = [E.dS, dS=p dp dga,

v =I(2pap +sin¢az)-p dp dga, =]£p dpjf singdg = 6C
2

/2

P2.30: Suppose the electric flux density is given by D = 3r a, —cos ¢ ag + sin* 6 ay C/m’,
Find the electric flux through both surfaces of a hemisphere of radius 2.00 m and 0.00° <
6<90.0°.

W, = [DdS, dS, =r"sin0dodga,
¥, = I(3rar —cosga, +sin’ fa, )-(r2 sin 6d 9d¢ar)

7/2 2z
=3r' [ sin0do [ dg=48zC
0 0

dS, =rdrdga,
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Y, = J—cos ga,-rdrdga,

—(; ]Sin¢

S WY =4872C

2

=0

0 0

ink
T siny dd

Fig. P2.30

7. Gauss’s Law and Applications

P2.31: Given a 3.00 mm radius solid wire centered on the z-axis with an evenly
distributed 2.00 coulombs of charge per meter length of wire, plot the electric flux
density D, versus radial distance from the z-axis over the range 0 < p< 9 mm.

2(C/m
For a I mlength, p, = ( /2 ) =70.7x10° %,
za m

Qe = SB D.dS = I D,a, pdgdza, =27zpLD,, where L is the length of the Gaussian
surface. Note that this expression for Qenc 1s valid for both Gaussian surfaces.
GS1 (p<a):

Qenc = _[PvdV = pvfpdedgb-sz =p,p 7L
0 0 0

(a=3mm=.003m)

2
wD PPrL_p

for p<a.
N N
GS2 (p> a):
a’ 1
Qenc = pva'zﬂ-l—a Dp = pv — for Y% >a.
P

This is plotted with the following Matlab routine:
% MFile: MP0231

%

% (Gauss's Law Probl em

% solid cylinder wwth even charge
%

% Variabl es

% rhov charge density (C/ m3)

% a radi us of cylinder (m

% rho radi al di stance from z-axis
% rhomm rho in nm

% D electric flux density (C nt3)
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% N nunber of data points
% maxrad max radius for plot (m

clc;clear;

% initialize variables
rhov=70. 7e3;

a=0. 003;

maxr ad=. 009;

N=100;

bndy=r ound( N*a/ maxr ad) ;

for i=1:bndy
rho(i) =i *maxrad/ N,
rhomm(i ) =rho(i)*1000;
D(i)=rhov*rho(i)/2;
end

for i=bndy+1: N
rho(i) =i *maxrad/ N,
rhomr(i ) =rho(i)*1000;
D(i)=(rhov*an2)/(2*rho(i));
end
pl ot (r homm D)
x|l abel (' radial distance (mm")
yl abel (" elect. flux density (C/m2)")
grid on
P2.32: Given a 2.00 cm radius solid wire centered on the z-axis with a charge density py
= 6p Clem’ (when p is in cm), plot the electric flux density D, versus radial distance
from the z-axis over the range 0 < p< 8 cm.

120

100

elect. flux density (Cfrr12)

radial distance (mm)

Fig. P2.31
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Choose Gaussian surface length L, and as usual we have
Qenc = SB DedS = I D,a pdgdza, =27LpD,, valid for both Gaussian surfaces.

InGS1 (p<a): Q,, = Jpvdv = j6p2dpd¢dz =4rlLp’,
4rlLp’

=2p for p<a.
Ly PP

SO Dp:

3
=4rLa’, D, _ 2 for p > a.

P
This is plotted for the problem values in the following Matlab routine.

For GS2 (p>a): Q

enc

% MFile: MP0232

%

% (Gauss's Law Probl em

% solid cylinder with radi al |l y-dependent charge
%

% Variabl es

% a radi us of cylinder (cm

% rho radi al di stance from z-axis

% D electric flux density (C cnt3)
% N nunber of data points

% maxrad max radius for plot (cm
clc;clear;

% initialize variables
a=2;

maxr ad=8;

N=100;

bndy=r ound( N*a/ maxr ad) ;

for i=1:bndy
rho(i) =i *maxrad/ N,
D(i)=2*rho(i)"2;
end

for i=bndy+1: N
rho(i) =i *maxrad/ N,
D(i)=(2*a"3)/rho(i);

end

pl ot (r ho, D)

x|l abel (' radi al distance (cm')

yl abel ("elect. flux density (Ccnm2)")

grid on
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w

elect. flux density (Cfcn‘F)
w B o~

8]

radial distance (cm)

Fig. P2.32

P2.33: A cylindrical pipe with a 1.00 cm wall thickness and an inner radius of 4.00 cm is
centered on the z-axis and has an evenly distributed 3.00 C of charge per meter length of
pipe. Plot D, as a function of radial distance from the z-axis over the range 0 < p < 10

cm.

Qenc = SB D.dS = j D,a, pdgdza, =27hpD ;this is true for all the Gaussian surfaces.

GS1 (p<a): since Qenc =0, D,=0.

GS2(a< p<hb):
_ 3h _ 3
& ”depd(ﬁdl ﬂ(bz—az)
Qe = [ AUV
3 P 2 h
:;f(bz az)lpdp£d¢£dz
B (pz_az)
=3h (bz—az)
So,
3h(p2—a2) 3 (pz_az)

h<

Fig. P2.33a

=

P = 27hp (b -a’) "2 (b*-a%)
GS3(p> by:

fora< p<h.
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Qenc: 3h, Dp Zi fOl‘p>b,

27p

A plot with the appropriate values is generated by the following Matlab routine:

%
%
%
%
%
%
%
%
%
%
%
%
clc;

%

M File: MP0233
Gauss' s Law Probl em
cylindrical pipe with even charge distribution

Vari abl es

a i nner radius of pipe (M

b outer radius of pipe (M

rho radi al di stance fromz-axis (m
rhocm radial distance in cm

D electric flux density (C/ cnt3)
N nunber of data points

maxrad max radius for plot (m

cl ear;

initialize vari abl es

a=. 04; b=. 05; maxr ad=0. 10; N=100;
bndya=r ound( N*a/ maxr ad) ;
bndyb=r ound( N* b/ maxr ad) ;

f or

end

for

end

for

end

i =1: bndya
rho(i) =i *maxrad/ N,
rhocm(i)=rho(i)*100;
D(i ) =0;

i =bndya+1: bndyb

rho(i) =i *maxrad/ N,

rhocm(i)=rho(i)*100;
D(i)=(3/(2*pi*rho(i)))*((rho(i)"2-an2)/(b"2-a"2));

i =bndyb+1: N
rho(i) =i *maxrad/ N,
rhocm(i)=rho(i)*100;
D(i)=3/(2*pi *rho(i));

pl ot (rhocm D)

x|l abel (' radi al distance (cm"')

yl abel (" elect. flux density (C/ nt2)")
grid on
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—_
o

elect. flux density (Cfrr12)

- N w L L] o ~I @® L]
T
i

(=]

o

radial distance (cm)

Fig. P2.33b

P2.34: An infinitesimally thin metallic cylindrical shell of radius 4.00 cm is centered on
the z-axis and has an evenly distributed charge of 100. nC per meter length of shell. (a)
Determine the value of the surface charge density on the conductive shell and (b) plot D,
as a function of radial distance from the z-axis over the range 0 < p< 12 cm.

,-Q_1oonC _  100nC __.50nC
© S [pdgdz  (04m)(27)(1m) m*’

For all Gaussian surfaces,

of height h and radius p, we have: 5
Qe = D+dS, where dS = pdgdza,,, s
"+ Qgpe =270hD . ~——L—1
GS1 (p<a): Qenc=0s0D,=0
GS2 (p>a):
Q.. :J‘psds ZPSIpd¢dZ = 27ahp,, >100nC/m length
D a
,=p,— forp=>a
p ./
N~
% MFile: MP0234
% Fig. P2.34a
% Gauss's Law Probl em
% cylindrical shell of charge
%
% Variabl es
% a radi us of cylinder (m
% & surface charge density (nC nmt2)

% rho radi al di stance fromz-axis (m
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% rhocm radial distance in cm

% D electric flux density (nC/ cnt3)
% N nunber of data points

% maxrad nmax radius for plot (cm

clc;clear;

% initialize variables
a=. 04; @=398; naxrad=0. 12; N=100;
bndy=r ound( N*a/ maxr ad) ;

for i=1:bndy
rho(i) =i *maxrad/ N,
rhocm(i)=rho(i)*100;
D(i)=0;

end

for i=bndy+1: N
rho(i) =i *maxrad/ N,
rhocm(i)=rho(i)*100;
D(i)=Qs*al/rho(i);

end

pl ot (rhocm D)

x|l abel (' radial distance (cm"')

yl abel ("elect. flux density (nC nt2)")
grid on

400 T

£\ E— N R e -

300 f--eemmeneee T i

[}
i}
=}

8]
=
=

________________________

i
=

________________________

elect. flux density (nC/rd)

o
=

[3,]
=

[=]

radial distance (crm)

Fig. P2.34b
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P2.35: A spherical charge density is given by o, = p, r/a for 0 <r <a, and p, = 0 for r >
a. Derive equations for the electric flux density for all r.

Qe = (JS D.dS = I D,a,sr’sinddédga, =4xr’D,. This is valid for each Gaussian

surface.

GS1 (r<a): Q,, = [ p,dv =&jr3drfsm edHTd¢ _
a 0 0 0 a

2

4
So D, = 2L _ Lo

> forr < a.
adrr 4a

3
GS2 (r>a): Q,, =7p,a’, D,:f;—a forr > a.

r2

P2.36: A thick-walled spherical shell, with inner radius 2.00 cm and outer radius 4.00
cm, has an evenly distributed 12.0 nC charge. Plot D, as a function of radial distance
from the origin over the range 0 <r <10 cm.

Here we’ll let a = inner radius and b = outer radius. Then
Q,.= 4} D.dS = _[ D,a,«r’sin@d@dga, =4xr’D,; This is true for each Gaussian surface.

The volume containing charge is
b Vi 2z
4
v=|r’dr|sin@d@ | dg=—7r(b’—a’).

So pv=9= o

v 47z(b3 -a’ )
Now we can evaluate Qenc for each Gaussian surface.
GS1 (I’ < 8.)5 Qenc =0soD,=0.
r V.4 2r
. pAT [ 5 3
GS2(a<r<bh): Q,, =|pdv=p, [r’dr|sin@dd | dg="(r’-a’).
= frnfnoos-£45(0

Inserting our value for p, we find

r:%w fora <r <bh.
4rr (b3—a3)

GS3 (r >b): Qenc = Q, Dr = fOI‘ r > b.

drr?’
This is plotted for appropriate values using the following Matlab routine:

% MFile: MP0236

% Gauss's Law Probl em

% t hi ck spherical shell with even charge
%

% Variabl es
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% a i nner radius of sphere (m

% b outer radius of sphere (m

% r radi al distance fromorigin (m
% rcm radi al distance in cm

% D electric flux density (nC/ cnt3)
% N nunber of data points

%  maxr max radius for plot (m

% Q charge (nQC

clc;clear;

% initialize variables

a=. 02; b=. 04;
Q=12;
maxr ad=0. 10;
N=100;

bndya=r ound( N*a/ maxr ad) ;
bndyb=r ound( N* b/ maxr ad) ;

for i=1:bndya
r(i)=i*maxrad/ N,
rem(i)=r(i)*100;
D(i ) =0; :
en d ° ? rad?al distance (ﬁcm) ? 1
Fig. P2.36

elect. flux density (nCint)

for i=bndya+l: bndyb
r(i)=i*maxrad/ N,
rem(i)=r(i)*100;
D(i)=(Q (4*pi*r(i)"2))*(r(i)"3-a"3)/(b"3-a"3);

end

for i=bndyb+1: N
r(i)=i*maxrad/ N,
rem(i)=r(i)*100;
D(i)=Q (4*pi~*r(i)"2);

end

pl ot (rcm D)

x|l abel (' radi al distance (cm")

yl abel ("elect. flux density (nC nt2)")
grid on

P2.37: Given a coaxial cable with solid inner conductor of radius a, an outer conductor
that goes from radius b to ¢, (so ¢ > b > a), a charge +Q that is evenly distributed
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throughout a meter length of the inner conductor and a charge —Q that is evenly
distributed throughout a meter length of the outer conductor, derive equations for the
electric flux density for all p. You may orient the cable in any way you wish.

We conveniently center the cable on the z-axis. Then, for a Gaussian surface of length L,
Qe = 4} D+dS =27pLD ; valid for all Gaussian surfaces.
GSI1: m< a): Py =L2’
(Im)(7a*)

P 2z L

QL

Ql = jpvdv = pvjpdp_[ d¢J'dZ = ?pza
0 0 0

b - QL _ Q

7 a2zl 2ra

~p forp < a

GS2 (a<p<b): Q,=0QL; Dp=&=i fora < p < h.
2npl 27mp
GS3 (b<p<c0) Q,=Q +Jpv0dv, where p,, = Q

(lm)ﬂ(cz—bz)
6. Q f oxw ko (€-p)
Q3_Q+7z(cz—b2)£pdp'<[d¢2[dz_Q(Cz—bz)

2 2
soD=iC_p)

b 272-p((cz—bz) fOI‘bSPSC.

GS4 (0> C): Qene =0, D, =0.

8. Divergence and the Point Form of Gauss’s Law
P2.38: Determine the charge density at the point P(3.0m,4.0m,0.0) if the electric flux
density is given as D = xyz a, C/m".

oD, o(xyz)
e YTA

2(3,4,0)=(3)(4)=12 C/m’.

VoD:

P2.39: Given D = 3a, +2xya, +8x%y%a, C/m’, (a) determine the charge density at the
point P(1,1,1). Find the total flux through the surface of a cube with 0.0 < x <2.0m, 0.0
<y <2.0m and 0.0 <z <2.0m by evaluating (b) the left side of the divergence theorem
and (c) the right side of the divergence theorem.
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(@) V-D=%(2xy):2x, p(LL1) =22

m*’

(b) SBD-dS=jV-DdV=I+ I +I+ J‘ + I + j
top bottom left right front back

J = j 8x’y’a, «dxdya, :8J2' xzdxff y’dy =85.3C

top 0 0

J' —I8X (—dxdya, ) =—85.3C

bottom

j = sz Y|y:0 ay-(—dxdzay) -0

left

j = jzx y|,_, a,-dxdza, =16C

right

I = J' 3a,-dydza, =12C

front

I j3a dydza -12C

back

e = P D-dS =16C.

(c) VeD= aay(2xy jV «Ddv = 2dexjdyfdz—l6C

P2.40: Suppose D = 6pcos¢ a, C/m”. (a) Determine the charge density at the point (3m,
90°, -2m). Find the total flux through the surface of a quartered-cylinder defined by 0 <
P< 4m,0< ¢< 90° and -4m < z < 0 by evaluating (b) the left side of the divergence
theorem and (c) the right side of the divergence theorem.

oD o(6
(a) (V.D)cylinder :% a; zi ( ;;;OS¢) - —6Sil’l¢.
C

p,(3.90,-2)=-6

® ¢Deds= [+ [ +[+ [ + |

#=0° $=90° top bottom outside
note that the top, bottom and outside integrals yield zero since there is no component of
D in the these dS directions.
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| =J6pcosy 0 «(—dpdza, ) =-192C
9=0°

[ =Jopcosd|, a(dpdza,)=0

$=90°

So, gS D+dS = —192C.

(c)
VeD =-6sin¢g, dv= pdpdgpdz

[v+Ddv = —6T sin¢d¢jpdp} dz =-192C.
0 0 -4

P2.41: Suppose D = r’sinfa, + sinbcos¢ ay C/m’. (a) Determine the charge density at
the point (1.0m, 45°, 90°). Find the total flux through the surface of a volume defined by
0.0<r<20m,0.0°< < 90.°,and 0.0 < ¢< 180° by evaluating (b) the left side of
the divergence theorem and (c) the right side of the divergence theorem.

The volume is that of a quartered-sphere, as indicated in Figure P2.41.

(a)

oD i
V-Dzizi(rzDr)+ 1 —¢=4rsin9—M=pv,
r-or rsind o0 r

p,(1,45°,90°) = 1.83%

(b)qSD-dS=j+ j + [+

$=0"  $=180° 6=90°

J. ; note that I =0 since D, = 0.
=2

r 6=90°

I = Isin Hcos¢|¢=00 a¢-(—rdrd6’a¢) =-2C
g=0°

I = Jsin 0 cos ¢|¢=1800 a¢-rdrd9a¢ =-2C
$=180°
/2 T 90°
[ =[r’sin6a,r’sinododga, =r* [ sin’ 0d0[dg =87 [ (1-cos20)d6 =4z°C
r=2 0 0 0
Summing these terms we have Q = 4(n” — 1)C = 35.5C.

(©)
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sin ¢

j V.Ddv = j (4rsin9——j r? sin 9drd0d ¢
r

= 4J2.r3dr7]/.2sin2 HdH]Ed¢—J%rdrTsin HdH][.sin¢d¢ — 47’ —4=355C.
0 0 0 0 7

0

X
Fig. P2.41

9. Electric Potential

P2.42: A sheet of charge density ps = 100 nC/m* occupies the x-z plane at y = 0. (a)
Find the work required to move a 2.0 nC charge from P(-5.0m, 10.m, 2.0m) to M(2.0m,
3.0m, 0.0). (b)Find Vyp.

M
(a) W = —QJ. E«dL; so we need E for the sheet charge.
P

100x10°C
E-La, - ( _ ) _Fv 8, =5.65x10° La,
2¢, 2(8.854x10* F/m) C m

Notice that we are only concerned with movement in the y-direction. We then have:

y=3
W =-2x10"C | (5.65x103layj.dyay(ij=79yJ
V210 m Ccv
W (7913) cv
() Vyp =—= ( 9)
Q (2x07C) J

=39.5kV; soV,,, =40kV.

P2.43: A surface is defined by the function 2x + 4y* —In z = 12. Use the gradient
equation to find a unit vector normal to the plane at the point (3.00m,2.00m,1.00m).
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Let F =2x+4y’~Inz =12, then
a, :E; VF =2a,+8ya, ——a,,

[VF z
At (3,2,1),

VF =2a, +16a, —a,,|VF|=v22 +16* +1* =16.16,

a, =0.124a, +0.990a, —0.062a,

P2.44: For the following potential distributions, use the gradient equation to find E.
(a) V =x+y’z (V)
(b) V = psing(V)

(c) V=rsinfcosg (V).
(a) E=-VV =-a,-2yza, - y’a,

(b) E=-VV :—[ﬂa lﬂa +ﬁa }

op © pogp ! oz
()
oV 10V 1 oV

E=—VV=—(Ea r69a9+m8¢aj —sinfcosga , —cosfcosga, +sin ga,

=-2psinga , — pcosgpa,

P2.45: A 100 nC point charge is located at the origin. (a) Determine the potential
difference Vga between the point A(0.0,0.0,-6.0)m and point B(0.0,2.0,0.0)m. (b) How
much work would be done to move a 1.0 nC charge from point A to point B against the
electric field generated by the 100 nC point charge?

A
(a) Vs =~ E-dL.
A

The potential difference is only a function of radial distance from the origin. Letting ry =
6m and rb = 2m, we then have

ar-drar:& 11 =300V.
dre \ 1, T

a

(b) W =Q,V, = (10" c)(soov)civ=300nJ

P2.46: MATLAB: Suppose you have a pair of charges Q1(0.0, -5.0m, 0.0) = 1.0 nC and
Q2(0.0, 5.0m, 0.0) = 2.0 nC. Write a MATLAB routine to calculate the potential Vro
moving from the origin to the point R(5.0m, 0.0, 0.0). Your numerical integration will
involve choosing a step size AL and finding the field at the center of the step. You should
try several different step sizes to see how much this affects the solution.
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clc
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M File: MP0246

Modi fy M.0207 to cal cul ate the potenti al

di fference going fromthe origin (O to the point
R(5,0,0) given a pair of point charges
QL(0,-5,0)=1nC and @(0, 5, 0)=2nC

The approach will be to break up the distance
fromOto Rinto k sections. The total field E will
be found at the center of each section (located

at point P) and then dot(Ep,dLv) will give the
potential drop across the kth section. Total
potential is found by sunm ng the potential drops.

Wentworth, 1/7/03
Vari abl es:

Q, Q@ t he point charges, in nC
k nunber of numerical integration steps

dL magni t ude of one step
dLv vector for a step
x(n) x location at center of section at P

Rl, R2 vector fromQl, Q@ to P

El, E2 electric fields fromQL & @ at P
Et ot total electric field at P

V(n) portion of dot(Etot,dL) at P

%l ears the command w ndow

cl ear %l ears vari abl es

%

Initialize vari abl es

k=64,
Ql=1;
@=2;
dL=5/k;

dLv=

%
for

dL*[1 0 0];

Perform cal cul ati on
n=1:k
x(n)=(n-1)*dL+dL/ 2;
Ri=[x(n) 5 0];

R2=[ x(n) -5 0];
Rmagl=magvect or (R1);
Rmag2=magvect or ( R2) ;
E1=9*Ql* Rl/ Rmagl1”3;
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E2=9* Q2* R2/ Rmag2” 3;

Et ot =E1+E2;

V(n)=dot (Etot, dLv);
end

Vt ot =sunt( - V)
Now runni ng the program

Vtot =
-1.5817

So VRO =-1.6 V.

P2.47: For an infinite length line of charge density o = 20 nC/m on the z-axis, find the
potential difference Vga between point B(0, 2m, 0) and point A(0, 1m, 0).

B
P
Vo, =—|EedL; E= a ,dL=dpa ,
IA 2me,p " :
B
P —PL
soV,, =-— a «dpa = In(2)=-250V
o J,;27r€0p P e )

0

P2.48: Find the electric field at point P(0.0,0.0,8.0m) resulting from a surface charge

density ps = 5.0 nC/m? existing on the z = 0 plane from p=2.0 mto p= 6.0 m. Assume
V =0 at a point an infinite distance from the origin.

(Method 1)
For a ring of charge it was previously found that

pLahaz
E= .
2 2 %
250(a +h )

We can then break up our disk into differential rings (see Figure P2.48), each
contributing dE as:
qe_psh__pdp
2¢, (

7 a,, where we've used p, = p.dp.
,02 + hz) 2
So we then have
e_psha, r pdp
= —
26‘0 (pZ + hZ)A

This is easy to integrate if we let u = p? + h?, then du = 2 p dp, and we have

b
E:pShaqu_%du:pShaz __2:_p5haz 1 |
de,

46‘0 \/a 26‘0 ,/pz +h? L



2-38

Solving, we arrive at

E:_psh[ L1 }az.
26, (o> +h* Jai+n’

Upon inserting the appropriate values we find E =48 V/m a,.

b Ps

dl=- == >y

Fig. P2.48

(method 2)
Find an expression for potential and then evaluate the gradient at the point.

, R=4p*+h*,dQ = p,pdpdg, soV= I pspdpdf

dre N p’ +h
&[\/buhz —\/a2+h2]
2¢,

_I4ﬁ8

d
V-2 ] Lo oo o]

Now we leth=zand E=-VV;
)} 1
E=— p{ (b”+2 )/ g(a2+zz)4}az
0z 0z

-1 1
:—&F(b%zz)Azz—l(a%zz)AZz}aZ:—ps L a,
26,12 2 26, | b +22 Jal+7?

Plugging in the values we find E =48 V/m a,.

P2.49: Suppose a 6.0 m diameter ring with charge density 5.0 nC/m lies in the x-y plane
with the origin at its center. Determine the potential difference Vi, between the point
h(0.0,0.0,4.0)m and the origin. (Hint: first find an expression for E on the z-axis as a
general function of z.)

For the ring of charge, replacing h with z, we have
E — pLaaz z
2¢,

2)4

(a2+z
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h
Vo =] ErdL=- 22 z__ z
2¢, (az n Zz)é
Letting u = a* + 7%, du = 2z dz, we have 1h
V, =- pL J'u/d pLal' \/ho
2¢, Ju a
Replacmg u and evaluating from 0 to h, y

vy =@ ! 1
" 2‘c"o \/a2+h2 a

=-367V =-113V.

X

Fig. P2.49

10. Conductivity and Current
P2.50: A columnular beam of electrons from 0 < p <1 mm has a charge density p, =-0.1

cos(np/2) nC/mm’ (where p is in mm) and a velocity of 6 x 10° m/sec in the +a,
direction. Find the current.

Let’slet p, = p, cos(%), where p, = -0.1 nC/mm>. Then we’ll let u = Uoa,, where Uy =
6x10° mm/s. Notice we convert the units to mm. Now,

J=pUu=pu, cos(%) a,,

and with dS = p dp d¢ a, we then have

I = IJ «dS = pouojpcos( jdp_[ dg.

This becomes

| = Ajpcos( 5 jdp, where A = 27p,U,.

Now we can integrate by parts, or judV:uv— J vdu, where u = Ap, du = Adp,

V= gsin (Ej, and dv = cos(@jdp.
T 2 2

We then have

2Aa . (naj 4A (naj
| =——sin| — +—5| cos| — -1].
T 2 T 2

To evaluate, we first find A = 27(-0.1x107)(6x10%)=3.77, and then
I=2.40-1.53=0.87A.

I=0.87A.
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P2.51: Two spherical conductive shells of radius a and b (b > a) are separated by a
material with conductivity o. Find an expression for the resistance between the two
spheres.

First find E for a <r <b, assuming +Q at r =a and —Q at r = b. From Gauss’s law:

E= Q -a,
dre ¥
Now find Vap:

Vy = —T E.dL = —j. Q a, -dra,
b b

dre,r’
1.9 (1_1)
1t dxe, )y, 4dze,\a b))
Now can find I:

| = [9:05= o[ ExdS = o[~ L-a,+r sin 640dsa,

_ijﬂ_ Q1!

- 2
4re,

dre, r
4 2z
= oQ J.sianHI d¢=£.
Are, 0 &,
Finally, R = \% = %(l —~ %)
o\ a

P2.52: The typical length of each piece of jumper wire on a student’s protoboard is 5.0
cm. Assuming AWG-20 (wire diameter 0.812 mm) copper wire, (a) determine the
resistance for this length of wire. (b) Determine the power dissipated in the wire for 10.
mA of current.

1 L 1 0.05m
(@R=— 2 7

oxa’  5.8x107(S/M) 7(0.406x10~m)
soR = 1.7 mQ

~=1.67mQ

(b) P=1°R=(10x10"A)"(1.7x10° Q) =170nW

P2.53: A densely wrapped coil of AWG-22 (0.644 mm diameter) copper magnet wire is
150 m long. The wire has a very thin insulative sheath. Determine the resistance for this
length of wire.

1L 1 150m
ora’ 5.8x10"S/m 7[(0_322)(10—3 m)
so R=7.9Q

R=

—=7.94Q
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P2.54: Determine an expression for the power dissipated per unit length in coaxial cable

of inner radius a, outer radius b, and conductivity between the conductors o if a potential
difference Vgp is applied.

a
Now for a given potential difference Va, we have

p_ ﬁ 2oLV P_ 270V,

R T m(by) L m(by)

From Eqn(2.84) we have R = ! In [Ej
2rolL

P2.55: Find the resistance per unit length of a stainless steel pipe of inner radius 2.5 cm
and outer radius 3.0 cm.

1 L

Re————— |

O'ﬂ(bz—az)

so we have B=i ! = 16 ! =1.05E
L oz(b’-a*) (1.1x10°S/m )| 7(.030” 025" )m’ m

so R/L = 1.0 mQ/m

P2.56: A nickel wire of diameter 5.0 mm is surrounded by a 0.50 mm thick layer of
silver. What is the resistance per unit length for this wire? Assuming 1.0 m of this wire
carries 1.0 A of current, determine the power dissipated in the nickel portion and in the
silver portion of the wire.

We can treat this wire as two resistors in parallel. We have

Ry |1 1 ~ L Q
1o Preiakiate .
: ﬁ(2.5x10 )
Rug _ ! ! :1.87x10’39
L 62x10’ 7{(3x103 y —(2.5x103)2} m
_Rtotal :& %:1'2@
L Ll L m

To find the power dissipated, we first find the potential difference:
V=IR,, =12mV
then
V2 V2
Py = R 0.42mW,P, = Y 0.77mW

Ni Ag
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11. Dielectrics
P2.57: A material has 12.0 V/m a, field intensity with permittivity 194.5 pF/m.
Determine the electric flux density.

D =€ = (194.5x10™" %)(12%)% = 2.3;—fax

P2.58: MATLAB: A 20 nC point charge at the origin is embedded in Teflon (& = 2.1).
Find and plot the magnitudes of the polarization vector, the electric field intensity and the
electric flux density at a radial distance from 0.1 cm out to 10 cm.

We use the following equations:
E= Q - P=x&ED=¢¢E

4dre e, r

% MFile: MP0258

%

% Plot E, P and D vs distance r froma point
% charge Qat the origin with a dielectric.

%

% Variabl es

% Q charge (O

% eo free space permttivity (F/'m
% r radi al distance (m

%  Chi el ectric susceptibility

% E electric field intensity(V/m
% D electric flux density (C nt2)
% P pol ari zati on vector (C/ m2)
% initialize variables

Q=20e-9;

er=2.1,

e0=8. 854e- 12,

Chi =er - 1;

% performcal cul ations
r=0. 001:.001: 0. 100;
rcmer . *100;

E=Q / (4*pi *r."2);

P=Chi *eo*E;

D=er *eo*E;

% plot data
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subplot(2,1,1)
| oglog(rcmP,"--Kk',rcmD,"-k")
| egend(' P ,'D)
yl abel (' C n2")
grid on

subplot (2, 1, 2)
| ogl og(rcm E)

yl abel (" VI m)

x| abel (' radi al
di stance (cm')
grid on

Chr?

10 10° 10
radial distance (crm)

Fig. P2.58

P2.59: Suppose the force is very carefully measured between a pair of point charges
separated by a dielectric material and is found to be 20 nN. The dielectric material is
removed without changing the position of the point charges, and the force has increased
to 100 nN. What is the relative permittivity of the dielectric?

__QQ - _0QQ F___100_,

2
- 5 - s — =& =_——
' dnee R * 4z, R F 20

P2.60: The potential field in a material with & = 10.2 is V = 12 xy*> (V). Find E, P and D.

o(12xy? o(12xy?
E=-VV=- ( Y >ax— ( 4 >ay:—12y2ax—24xyay v
OX oy m
D=¢¢E=-1.1y’a, —2.2xya, ?n—c

2

X.=¢ —1=9.2

-12 2 nC
P = 7.6,E=(92)(8.854x10"*)E = -9.8y’a, —2.00xya, —
m

2

P2.61: In a mineral oil dielectric, with breakdown voltage of 15 MV/m, the potential
function is V = x* — 6x* =3.1x (MV). Is the dielectric likely to breakdown, and if so,
where?
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E=-VV =(-3x"+12x+3.1)a, MV
m
dE d’E ) )
d_ =—6X+12, ——=-6, so from 6x — 12 = 0 we find the maximum electric field
X X

occurs at x =2m.
At x =2m, we have E =-12+24+3.1 = 15.1 MV/m, exceeding the breakdown voltage.

12. Boundary Conditions
P2.62: Fory <0, &1 =4.0 and E; =3a, + 6ma, + 4a, V/m. Aty =0, p;=0.25 nC/m>. If
&2=15.0 fory >0, find E,.

E| =3a, + 6na, +4a, V/m (g) E» =3a,+20.7a, + 4a, V/m
(@) Eni = 67'Cay (f) Exn2 = Dno/Se, = 20.7ay

(b) Er =3ax+4a, (C) Er =Em =3a, +4a,

(d) Dy = 8r180EN1 = 24me, dy (e) DN2 =0.92 dy

(e a21.(D1_D2):ps’ 'ay'(DNl_DNz)ay:psa Dy, =Dy = £

nC 10°F) nC nC
Dy =, + Dy =025 S 24[367”“};—— 0.92—

m* m

P2.63: Forz< 0, §1=9.0 and for z > 0, &, =4.0. If E; makes a 30° angle with a normal
to the surface, what angle does E; make with a normal to the surface?

Refer to Figure P2.63.

E., =Esing, E;,=E,sin6,, and E;, =E;,

also

Dy, = €n6,E cos8, Dy, =¢,6E,cosd,, and Dy, =D,, (since p, =0)

Therefore

E E . L[ &
—TL = T2 'and after routine math we find &, = tan™' | =% tan 6,
DN 1 DN 2 &

Using this formula we obtain for this problem 6, = 14°.

rl

Er1=9 ﬁr2:4
0,y ,E,

E,

Fig. P2.63
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P2.64: A plane defined by 3x + 2y + z = 6 separates two dielectrics. The first dielectric,
on the side of the plane containing the origin, has &1 = 3.0 and E; = 4.0a, V/m. The
other dielectric has &, = 6.0. Find E,.

We first use gradient to find a normal to the planar surface.
LetF=3x+2y+z-6=0.

VF =3a,+2a,+a, and |[VF|=./14,

s0a, = —0.802a + 0.534a, +0.267a,.

[VF|
Now we can work the boundary condition problem.
E =4a,, E,, =(E-a,)a, =0.857a, +0.570a,+0.285a,.
E;, =E -E,,=-0.857a, -0.570a, +3.715a,, E;,=E
Dy, =&,6,Ey, =&,[2.571a, +1.710a,+0.855a, |, and D, =Dy,

£, =2n2 ~Pw 4990 +0.285a, +0.143a,

E,6, 6¢&

r 0 0

Finally we have E, =E;, +E,, =-0.43a, -0.29a +3.8a, Y :
m

P2.65: MATLAB: Consider a dielectric-dielectric charge free boundary at the plane z =
0. Construct a program that will allow the user to enter & (for z < 0), &2, and E;, and
will then calculate E,. (Just for fun, you may want to have the program calculate the
angles that E; and E; make with a normal to the surface).

% MFile: MP0265

%

% Gven E1 at boundary between a pair of

% dielectrics with no charge at boundary,

% calculate E2. Al so cal cul ates angl es.

%

clc

cl ear

% enter variables

di sp(' enter vector quantities in brackets,")

di sp('for exanple: [1 2 3]")

erl=input('relative permttivity in material 1. ');
er2=input('relative permttivity in material 2: ');
al2=input('unit vector frommrl 1 to ntrl 2: ");
El=input (' electric field intensity vector in mrl 1. ');

% performcal cul ations
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Enl=dot (El, al2)*alz;

Et 1=E1- En1;

Et 2=Et 1,

Dnl=er 1*Eni; % gnores eo since it will factor out
Dn2=Dn1,;

En2=Dn2/ er 2;

E2=Et 2+En2

% calculate the angles

t hl=at an( magvect or (Et 1)/ magvect or (Enl));
t h2=at an( magvect or (Et 2) / magvect or (En2)) ;
t hlr =t h1* 180/ pi

t h2r =t h2* 180/ pi

Now run the program:

enter vector quantities in brackets,

for example: [1 2 3]

relative permittivity in material 1: 2

relative permittivity in material 2: 5

unit vector from mtrl 1 to mtrl 2: [0 0 1]
electric field intensity vector in mtrl 1: [3 4 5]

E2 =
3 4 2
thlr =
45
th2r =
68.1986

P2.66: A 1.0 cm diameter conductor is sheathed with a 0.50 cm thickness of Teflon and
then a 2.0 cm (inner) diameter outer conductor. (a) Use Laplace’s equations to find an
expression for the potential as a function of p in the dielectric. (b) Find E as a function of
p. (c) What is the maximum potential difference that can be applied across this coaxial
cable without breaking down the dielectric?

(a) Since V is only a function of p,



2-47

vzvcyl :li(pa_VJzo v
pop\ Op ¢
SO pa—v =A
op
orV=Alhp+B
where A and B are constants.
Now we apply boundary conditions.
BCl: Fig. P2.66
0=AInb+B,B=-Alnb,

SV = Aln(ﬁj
b

ln(
BC2: Va:Aln(%j, A=Y yoy

or
V = —1.443V, In(1000).
oy Eovvo N, 14N,
op p
(c)
LMV s e~ eoxof.
005
6
s0 V.= 60X105 =208V, . (Vy)  =210kV

P2.67: A 1.0 m long carbon pipe of inner diameter 3.0 cm and outer diameter 5.0 cm is
cut in half lengthwise. Determine the resistance between the inner surface and the outer

surface of one of the half sections of pipe.

One approach is to consider the resistance for the half-section of pipe is twice the
resistance for a complete cylindrical section, given by Eqn. (2.84). But we’ll used the

LaPlace equation approach instead.

Laplace: VZVCyI = li( P v ] =0; here we see V only depends on p

pop\’ dp

So: pﬂzA; V=Alhp+B;

op
where A and B are constants.
Now apply boundary conditions.
BCl:
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V,=0=Alnb+B; B=-Alnb;
V = Aln (fj carbon
BC2:
_ ay, a__ V. |
Va_Aln(bj, A 1n(%)’
ln(pb)
V=V,
In(3p)
_ :_a_v - _ Va l
E=-VV apap ln(%)Pap | -
J=6E Fig. P2.67
e V. T1 < _ nloV,
= [ 1n(%)£ppd¢£dz n(b7)

= = 5.4,0.

oL

Rt in(2,)

P2.68: For a coaxial cable of inner conductor radius a and outer conductor radius b and a
dielectric & in-between, assume a charge density p, = p,/p is added in the dielectric

region. Use Poisson’s equation to derive an expression for V and E. Calculate ps on each

plate.

vy oL 1O N =P
£ popl\” Op &p

SO

o v\ p N (p oV
6/0(/)6/3] £ I (pﬁpj Is P o

N p, . A

—Po p+ A, where A is a constant.
£

=2 +—; dVZJ&der.[édp; Vv =&p+ Aln p+ B, where B is a constant.
£ P g

» & p

Now apply boundary conditions: V =V, atp=a andV =0at p=Db

Applying the second one gives us:

V :%(p—b)+ Aln(%).

Applying the first one:
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, Va+%(b—a)
V,=(a-b)+ Aln(3{); A:T%)
Therefore,

DN = Pss DNa €E|p a a _% = Psa
aln()
b
_(va+po(b-a)j
_ £ Lo
Dy, = gE|p:b = a s = Psp
bln(j
b

P2.69: For the parallel plate capacitor given in Figure 2.51, suppose a charge density

(%)
= sm| —
Py = Py 2d

is added between the plates. Use Poisson’s equation to derive a new expression for V and
E. Calculate ps on each plate.
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NG _-p,_~Psin("Hag)

oz’ & &
6\/822) f" sm(”/ )dz— cos(”/d)JrA
V(z )— jcos( )dz+Ajdz_ g s1n( 2d)+Az+B
Now apply the boundary conditions:
2p,d’

V()—

d sm +( 2'0" j
o, N 2p0d2 . 2p,d
E=vv= a_{ SPa () 5220 e
po.d \Y 2pdj
E= -2 YL |-+ |a
[l en(3h0)- 280

V, 2
ZZO, DN:8E, SO p5|20:_p0d—gdd+ pod:ps.
- T T
eV, +2p0d _

z=d d 72_2

z=d, D, =¢E, so ps|

13. Capacitors

P2.70: A parallel plate capacitor is constructed such that the dielectric can be easily
removed. With the dielectric in place, the capacitance is 48 nF. With the dielectric
removed, the capacitance drops to 12 nF. Determine the relative permittivity of the
dielectric.

& A EA &=8r=ﬁ=4.0
C, 12

P2.71: A parallel plate capacitor with a 1.0 m” surface area for each plate, a 2.0 mm plate
separation, and a dielectric with relative permittivity of 1200 has a 12. V potential
difference across the plates. (a) What is the minimum allowed dielectric strength for this
capacitor? Calculate (b) the capacitance, and (c) the magnitude of the charge density on
one of the plates.

12V kV KV
a) E= =6—; (a)E,,, =6—
@ 0.002m  m @)E, m
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ge, A (1200)(8.854x10™*F /m)(1m*)
d 0.002m

Q 6 C
2. Q=CV =(53x10°F ) (12V )— = 644C
vi @ (3310 F)(12V) 5 = 64u

(b) C= =5.3uF

(c) C=

P2.72: A conical section of material extends from 2.0 cm < r <9.0 cm for 0 < < 30°

with & = 9.0 and o= 0.020 S/m. Conductive plates are placed at each radial end of the
section. Determine the resistance and capacitance of the section.

rrorl ar or r
Boundary conditions: r =a,V=0andr=b,V =V,

VAV = ii(rz N j =0; r’ ﬂ =A, V= —é+ B, where A and B are constants.

g =9
6=0.02 S/m

Fig. P2.72

—&,&V,

pr:(l_I]bz;
a b

Q= JdeS; dS =r’sin#déd¢
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0°

Q, AT [ s1n9d9J.d¢
1 1),
~——~1b 0
[+5)

=1.73x1077V,,.

c=%_17pF; Rc=Z: R=LZ_23k0
o Co

b

P2.73: An inhomogeneous dielectric fills a parallel plate capacitor of surface area 50.
cm” and thickness 1.0 cm. You are given & = 3(1 + z), where z is measured from the
bottom plate in cm. Determine the capacitance.

Place +tQatz=dand -Qatz=0.
Q ,_Q, -0

= _az’ - az
P77 S 6.9
d d
Q (dz
= E’dL__ Odza =— | —
Veo J. J.g &,S %028, £,S ;[ g,
evaluatlng the 1ntegra1
- I In(1+2)), ~Linoem
(1+2) 3

:g 36,5 3(8.854x1012F/m)(500m2)( m J2:19p':
Vy, In2 (In(2)cm) 100cm

P2.74. Given E = 5xyay + 3za, V/m, find the electrostatic potential energy stored in a
volume defined by 0 < X< 2m,0< y<1m,and0< z< 1 m. Assume &= &.

W, = %50.[ E-Edv :%50 U25x2y2dxdydz + I922dxdydz]

W, = lgo [25} xzdxj' yzdyj' dz + 9J2. dxj[ dyj zzdz} =125pJ
2 0 0 0 0 0 0

P2.75: Suppose a coaxial capacitor with inner radius 1.0 cm, outer radius 2.0 cm and
length 1.0 m is constructed with 2 different dielectrics. When oriented along the z-axis,
& for 0° < @< 180° is 9.0, and for 180° < @< 360° is 4.0. (a) Calculate the
capacitance. (b) If 9.0 V is applied across the conductors, determine the electrostatic
potential energy stored in each dielectric for this capacitor.

(a) a coaxial line,
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2rle, g, b

(%) € DR
But for only half the line, \_da/

wle.g,

A
So > L

C:

_rleeg,
=361pF

SR
and

_7Leng _61pr \_//

A ‘

So Fig. P2.75
Cior =C,+C, =522pF

(b) W, =%clv2 =14.6nJ; W, :%czv2 =6.5nJ
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