CHAPTER 2: Analytic Functions

EXERCISES 2.1: Functions of a Complex Variable

1. a.
$$w = (3x^2 - 3y^2 + 5x + 1) + i(6xy + 5y + 1)$$

b. $w = \frac{x}{x^2 + y^2} + i\left(-\frac{y}{x^2 + y^2}\right)$

$$x^2 + y^2 \qquad \left(\begin{array}{c} x^2 + y^2 \end{array} \right)$$

$$x^2 + y^2 \qquad \left(\begin{array}{c} x^2 + y^2 \end{array} \right)$$

c.
$$w = \frac{1}{z - i} = \frac{x}{x^2 + (y - 1)^2} + i \frac{-y + 1}{x^2 + (y - 1)^2}$$

d.
$$w = \frac{2x^2 - 2y^2 + 3}{\sqrt{(x-1)^2 + y^2}} + i \frac{4xy}{\sqrt{(x-1)^2 + y^2}}$$

$$e. \ w = e^{3x}\cos 3y + ie^{3x}\sin 3y$$

f.
$$w = (e^x + e^{-x})\cos y + i(e^x - e^{-x})\sin y$$

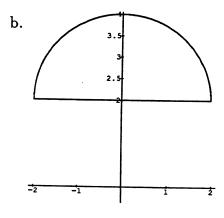
= $2\cosh x\cos y + i2\sinh x\sin y$

- a. C 2.
 - b. С\{0}
 - c. $\mathbb{C} \setminus \{i, -i\}$
 - d. C\{1}
 - e. C
 - f. C
- a. Rew > 5
 - b. $\operatorname{Im} w \geq 0$
 - c. $|w| \geq 1$
 - d. The intersection of |w| < 2 and $-\pi < \text{Arg } w < \pi/2$
- a. Taking θ from 0 to 2π , the points $z = re^{i\theta}$ traverse the circle |z| = r exactly once in the counterclockwise direction. For the same values of θ the points $w = \frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta}$ traverse the circle $|w| = \frac{1}{r}$ exactly once in the clockwise direction, hence the mapping
 - b. For $z = re^{i\theta_0}$ on the ray $\operatorname{Arg} z = \theta_0$, $w = \frac{1}{re^{i\theta_0}} = \frac{1}{r}e^{-i\theta_0}$ is on the ray $\operatorname{Arg} w = -\theta_0$. Taking values $0 < r < \infty$ shows that this mapping goes onto the ray $Arg w = -\theta_0$

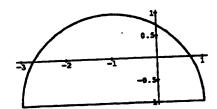
- 4 (c) $|z-1| = 12\pi > \theta \ge 0 \Rightarrow z = 1 + e^{i\theta}$. $F(z) = 1/z = 1/(1 + e^{i\theta})$ = $(1 + e^{-i\theta})/\{2(1 + \cos\theta)\} = \frac{1}{2} -i(\frac{1}{2})\sin\theta/(1 + \cos\theta)$ which is a vertical line at $x = \frac{1}{2}$.
- 5. a. domain: C range: $C \setminus \{0\}$

b.
$$f(-z) = e^{-z} = \frac{1}{e^z} = \frac{1}{f(z)}$$

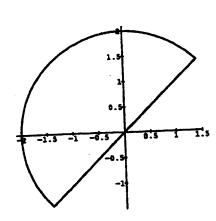
- c. circle |w| = e
- d. ray Arg $w = \pi/4$
- e. infinite sector $0 \le \operatorname{Arg} w \le \pi/4$
- 6. a. $J\left(\frac{1}{z}\right) = \frac{1}{2}\left(\frac{1}{z} + \frac{1}{1/z}\right) = \frac{1}{2}\left(z + \frac{1}{z}\right) = J(z)$
 - b. For $z = e^{i\theta}$ on the unit circle |z| = 1, $J(z) = \frac{1}{2} \left(e^{i\theta} + \frac{1}{e^{i\theta}} \right) = \cos \theta$. For all values of θ , this ranges over the real interval [-1, 1].
 - c. For $z = re^{i\theta}$ on the circle |z| = r, $J(z) = \frac{1}{2} \left(re^{i\theta} + \frac{1}{re^{i\theta}} \right) =$ $\frac{1}{2}\left(r+\frac{1}{r}\right)\cos\theta+i\frac{1}{2}\left(r-\frac{1}{r}\right)\sin\theta$. Setting u and v equal to the real and imaginary parts of this expression, respectively, one gets a pair of parametric equations that are equivalent to the ellipse $\frac{u^2}{\left[\frac{1}{2}(r+\frac{1}{2})\right]^2} + \frac{v^2}{\left[\frac{1}{2}(r-\frac{1}{2})\right]^2} = 1, \text{ which has foci at } \pm 1.$
- 7.



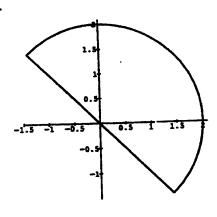
c.



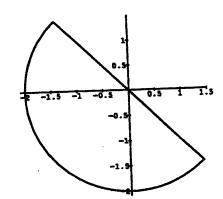
8. a



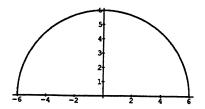
b.



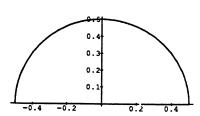
c.



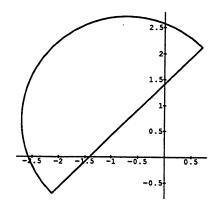
9. a.



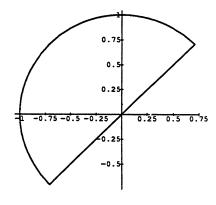
b.



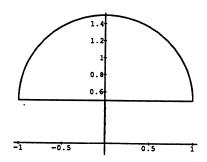
10. a. translate by i, rotate $\pi/4$



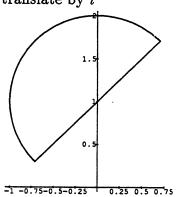
b. reduce by 1/2, rotate $\pi/4$



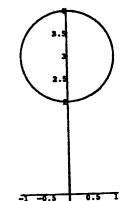
c. translate by i, reduce by 1/2



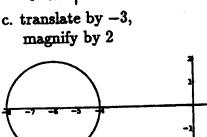
d. reduce by 1/2, rotate $\pi/4$, translate by i



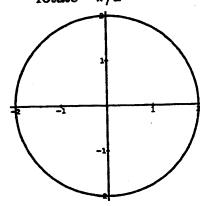
a. translate by -3, 11. rotate $-\pi/2$



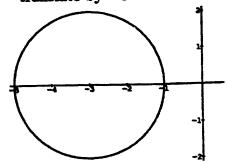
c. translate by -3, magnify by 2



b.magnify by 2, rotate $-\pi/2$



d. magnify by 2, rotate $-\pi/2$, translate by -3



- 12. Let $a = \rho e^{i\phi}$, $F(z) = \rho z$, $G(z) = e^{i\phi}z$, and H(z) = z + b. Then H(G(F(z))) = az + b.
- 13. (a) $w = u + iv = z^2 = (1 + iy)^2 = 1 y^2 + i2y$ $u = 1-y^2$, $v = 2y \Rightarrow y = v/2 \Rightarrow u = 1-v^2/4$ a parabola in the w-plane. (b) $w = u + iv = z^2 = (x + iy)^2 = (x + i/x)^2 = x^2 - 1/x^2 + 2i$

 - $u = x^2 1/x^2$, v = 2 a straight line in the w-plane. (c) $w = u + iv = z^2 = (1 + e^{i\theta})^2 = (1 + 2e^{i\theta} + e^{i2\theta}) = (e^{-i\theta} + 2 + e^{i\theta})e^{i\theta}$ = $(2 + 2\cos\theta)e^{i\theta}$ = $2(1 + \cos\theta)e^{i\theta}$ a cardioid in the w-plane.
- 14. (a) $x_1 = 2x/(|z|^2 + 1)$, $x_2 = 2y/(|z|^2 + 1)$, $x_3 = (|z|^2 1)/(|z|^2 + 1)$

 $w = e^{i\phi}z = x\cos\phi - y\sin\phi + i(x\sin\phi + y\cos\phi), |w| = |z|$

 $x_1 = (x\cos\phi - y\sin\phi)/(|z|^2 + 1), x_2 = (x\sin\phi + y\cos\phi)/(|z|^2 + 1), x_3 = x_3$

 $\underline{x}_1 = (x_1 \cos \varphi - x_2 \sin \varphi), \ \underline{x}_2 = (x_1 \sin \varphi + x_2 \cos \varphi), \ \underline{x}_3 = x_3 \text{ which corresponds}$ to a rotation of an angle φ about the x_3 axis.

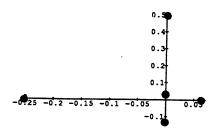
- (b) w = -1/z. |w| = 1/|z|. w = -1/(x+iy) = -x/|z| + iy/|z| $\underline{x}_1 = -x_1$, $\underline{x}_2 = x_2$, $\underline{x}_3 = -x_3$ so that $(\underline{x}_1, \underline{x}_2, \underline{x}_3)$ is obtained from (x_1, x_2, x_3) by a 180° rotation about the x_2 axis.
- $w = (1+z)/(1-z) = (1+x+iy)/(1-x-iy) = (1-|z|^2+i2y)/(1-2x+|z|^2)$ 15. $|w|^2 = (1 + 2x + |z|^2)/(1 - 2x + |z|^2).$

 $(\underline{x}_1, \underline{x}_2, \underline{x}_3) = (-x_3, x_2, x_1)$ so that $(\underline{x}_1, \underline{x}_2, \underline{x}_3)$ is obtained by a 90° counterclockwise rotation about the x_2 axis.

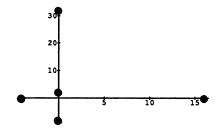
- 16. $w = (1 iz)/(1 + iz) = (1 ix + y)/(1 + ix y) = (1 |z|^2 + i2x)/(1 2y + |z|^2)$ $|w|^2 = (1 + 2y + |z|^2)/(1 - 2y + |z|^2)$. $(\underline{x}_1, \underline{x}_2, \underline{x}_3) = (-x_3, -x_1, x_2)$ so that $(\underline{x}_1, \underline{x}_2, \underline{x}_3)$ is obtained as a 90° counterclockwise rotation about the x_2 axis followed by a 90° counterclockwise rotation about the x_3 axis.
- 17. Any circle or line in the z-plane corresponds to a line or circle on the stenographic projection onto he Riemann sphere. The function w=1/z rotates the Riemann sphere 180° about the x₁ axis. Lines and circles on the rotated sphere project to lines and circles in the w-plane. As a result lines and circles in the z-plane map to lines and circles in the w-plane.

EXERCISES 2.2: Limits and Continuity

1. The first five terms are, respectively, $\frac{i}{2}$, $-\frac{1}{4}$, $-\frac{i}{8}$, $\frac{1}{16}$, and $\frac{i}{32}$. The sequence converges to 0 in a spiral-like fashion.



2. 2i, -4, -8i, 16, 32i; divergent because terms grow in modulus without bound.



3. If $\lim_{n\to\infty} z_n = z_0$, then for any $\varepsilon>0$, there is an integer N such that $|z_n - z_0| < \varepsilon$ for all n>N. For the same integer N we have $|x_n - x_0| < = |z_n - z_0| < \varepsilon$ and $|y_n - y_0| < = |z_n - z_0| < \varepsilon$ for all n>N. Therefore, $\lim_{n\to\infty} x_n = x_0$ and $\lim_{n\to\infty} y_n = y_0$.

If $\lim_{n\to\infty} x_n = x_0$ and $\lim_{n\to\infty} y_n = y_0$, then for any $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ there are integers N_1 and N_2 such

 $|x_n - x_0| < \epsilon_1$ for all $n > N_1$ and $|y_n - y_0| < \epsilon_2$ for all $n > N_2$. Given any $\epsilon > 0$; let $\epsilon_1 = \epsilon/2$ and $\epsilon_2 = \epsilon/2$. Then

 $\begin{aligned} |z_n-z_0|&<=\epsilon\ |x_n-x_0|+|y_n-y_0|<\epsilon_1+\epsilon_2=\epsilon\ for\ all\ n>maximum(N_1,\ N_2). \end{aligned}$ Thus $\lim_{n\to\infty}z_n=z_0.$

4. If $z_n = x_n + iy_n \rightarrow z_0 = x_0 + iy_0$, then $x_n \rightarrow x_0$ and $y_n \rightarrow y_0$ (see Problem 3). $\underline{z}_n = x_n - iy_n \rightarrow x_0 - iy_0 = \underline{z}_0$.

If $\underline{z}_n = x_n - iy_n \to \underline{z}_0 = x_0 - iy_0$, then $x_n \to x_0$ and $y_n \to y_0$ (see Problem 3).. $z_n = x_n + iy_n \to x_0 + iy_0 = z_0$. Thus $z_n \to z_0$ if and only if $\underline{z}_n \to \underline{z}_0$.

- $|z_n| = 0$ \implies There exists an integer N such that $||z_n| 0| = |z_n| < \varepsilon$ whenever $|z_n| = 0$ $\implies |z_n| = 0$ whenever $|z_n| = 0$, and conversely.
- ξ $z_0^n \to 0$ as $n \to \infty$ by problem 3, since the real-valued sequence $|z_0^n| \to 0$ as $n \to \infty$. On the other hand, if $|z_0| > 1$, then $|z_0^n| \to \infty$ as $n \to \infty$ so z_0^n diverges.
- 7, a. converges to 0
 - b. does not converge
 - c. converges to π
 - d. converges to 2+i
 - e. converges to 0
 - f. does not converge
- 8. Given $\varepsilon > 0$, choose $\delta = \varepsilon/6$. Then whenever $0 < |z (1+i)| < \delta$,

$$|6z-4-(2+6i)|=6|z-(1+i)|<6(\varepsilon/6)=\varepsilon$$

9. Given $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{1+\varepsilon}$. Whenever $0 < |z-(-i)| < \delta$ notice that $|z| > 1 - \delta$ and

$$\left|\frac{1}{z}-i\right| = \left|\left(-\frac{i}{z}\right)(i+z)\right| = \frac{1}{|z|}|z-(-i)| < \left(\frac{1}{1-\delta}\right)\delta = \varepsilon$$

30. Given that
$$f$$
 and g are continuous at z_0 ,
$$\lim_{z \to z_0} f(z) \pm g(z) = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) = f(z_0) \pm g(z_0)$$

$$\implies f(z) \pm g(z)$$
 is continuous at z_0 .

$$\lim_{z \to z_0} f(z)g(z) = \lim_{z \to z_0} f(z) \lim_{z \to z_0} g(z) = f(z_0)g(z_0)$$

$$\implies f(z)g(z)$$
 is continuous at z_0 .

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} = \frac{f(z_0)}{g(z_0)}, \text{ provided } g(z_0) \neq 0$$

$$\implies \frac{f(z)}{g(z)} \text{ is continuous at } z_0.$$

$$11_i$$
 a. $-8i$

b.
$$-\frac{7}{2}i$$

d.
$$-1/2$$

e.
$$2z_0$$

f.
$$4\sqrt{2}$$

12. Clearly Arg z is discontinuous at z = 0. Let a > 0 be any real number and consider the sequence

$$z_n = -a - i/n$$
 $n = 1, 2, ...,$ which converges to $-a$.

For each
$$n, -\pi < \operatorname{Arg} z_n < -\pi/2$$
, but $\operatorname{Arg} (-a) = \pi$.

- 13. $\lim_{z \to z_0} f(z)$ exists for all $z \neq -1$; f is continuous for all $z \neq 0, -1$; f has a removable discontinuity at z = 0.
- 14 Let z_0 be any complex number. Given $\varepsilon > 0$ choose $\delta = \varepsilon$. Then whenever $|z z_0| < \delta$,

$$|g(z)-g(z_0)|=|\overline{z}-\overline{z}_0|=|\overline{z-z_0}|=|z-z_0|<\varepsilon.$$

15. Given $\varepsilon > 0$ choose δ so that $|f(z) - f(z_0)| < \varepsilon$ whenever $|z - z_0| < \delta$. Then, whenever $|z - z_0| < \delta$:

a.
$$|\overline{f(z)} - \overline{f(z_0)}| = |\overline{f(z) - f(z_0)}| = |f(z) - f(z_0)| < \varepsilon$$

b.
$$|\operatorname{Re} f(z) - \operatorname{Re} f(z_0)| = |\operatorname{Re} (f(z) - f(z_0))| \le |f(z) - f(z_0)| < \varepsilon$$

c.
$$|\operatorname{Im} f(z) - \operatorname{Im} f(z_0)| = |\operatorname{Im} (f(z) - f(z_0))| \le |f(z) - f(z_0)| < \varepsilon$$

d.
$$||f(z)| - |f(z_0)|| \le |f(z) - f(z_0)| < \varepsilon$$

- 16 Given $\varepsilon > 0$, choose $\delta_0 > 0$ such that $|f(g(z)) f(g(z_0))| < \varepsilon$ whenever $|g(z) g(z_0)| < \delta_0$. Now choose $\delta > 0$ such that $|g(z) g(z_0)| < \delta_0$ whenever $|z z_0| < \delta$. Then $|f(g(z)) f(g(z_0))| < \varepsilon$ whenever $|z z_0| < \delta$; hence f(g(z)) is continuous at z_0 .
- 17. No: Observe that although $\frac{1}{n} \to 0$ and $\frac{i}{n} \to 0$ as $n \to \infty$, $f\left(\frac{1}{n}\right) \to 1 + 2i$ and $f\left(\frac{i}{n}\right) \to 2i$; thus $\lim_{z \to 0} f(z)$ does not exist.
- If $\lim_{z\to z_0} f(z) = w_0$, then given $\varepsilon>0$ there exists $\delta>0$ such that $|f(z)-w_0|<\varepsilon$ for all $|z-z_0|<\delta$. Notice that $|f(z)-w_0| = |f(z)-w_0| = |f(z)-w_0|<\varepsilon$ for all $|z-z_0|<\delta$. So that $\lim_{z\to z_0} \frac{f(z)}{f(z)} = w_0$. $\lim_{x\to x_0,y\to 0} \mu(x,y) = \lim_{z\to z_0} ((f(z)+\frac{f(z)}{f(z)})/2) = (w_0+\underline{w_0})/2 = \mu_0$. $\lim_{x\to x_0,y\to 0} \nu(x,y) = \lim_{z\to z_0} ((f(z)-\frac{f(z)}{f(z)})/2i) = (w_0-\underline{w_0})/2i = \nu_0$. Thus, $\lim_{x\to x_0,y\to 0} \mu(x,y) = \mu_0$ and $\lim_{x\to x_0,y\to 0} \nu(x,y) = \nu_0$.

Conversely, if $\lim_{x\to x_0,y\to 0} \mu(x,y) = \mu_0$ and $\lim_{x\to x_0,y\to 0} \upsilon(x,y) = \upsilon_0$, then (by Theorem 1.) $\mu_0 + i\upsilon_0 = \lim_{x\to x_0,y\to 0} \mu(x,y) + i\lim_{x\to x_0,y\to 0} \upsilon(x,y) = \lim_{z\to z_0} ((f(z)+\underline{f(z)})/2) + \lim_{z\to z_0} ((f(z)-\underline{f(z)})/2) = \lim_{z\to z_0} f(z) = w_0.$ Also $\mu_0 - i\upsilon_0 = \lim_{x\to x_0,y\to 0} \mu(x,y) - i\lim_{x\to x_0,y\to 0} \upsilon(x,y) = \lim_{z\to z_0} ((f(z)+\underline{f(z)})/2) - \lim_{z\to z_0} ((f(z)-\underline{f(z)})/2) = \lim_{z\to z_0} f(z) = \underline{w}_0.$

Thus, $\lim_{z\to z_0} f(z) = w_0$.

19.
$$-\frac{1}{2} - i$$
, since $\lim_{\substack{x \to 1 \ y \to -1}} \frac{x}{x^2 + 3y} = -\frac{1}{2}$ and $\lim_{\substack{x \to 1 \ y \to -1}} xy = -1$.

20. For any zo in the complex plane,

$$\lim_{x \to x_0} e^x = \lim_{x \to x_0 \atop y \to y_0} e^x \cos y + i \lim_{x \to x_0 \atop y \to y_0} e^x \sin y = e^{x_0} \cos y_0 + i e^{x_0} \sin y_0 = e^{x_0}.$$

- 2 /. a. 1 b. 0 c. $-\pi/2 + i$ d. 1
- 22. By contradiction: Suppose $\lim_{z\to z_0} f(z) \neq w_0$. Then there is an $\varepsilon > 0$ for which there exists a sequence $\{z_n\}$ such that $|z_n z_0| < \frac{1}{n}$ but $|f(z_n) w_0| > \varepsilon$. For this sequence, $\lim_{n\to\infty} z_n = z_0$ but $\lim_{n\to\infty} f(z_n) \neq w_0$, contrary to hypothesis.

- 23. If $z_n \to \infty$, then for any M>0 there exist an integer N such $|z_n| > M$ for al n > N. Consider the chordal distance $\chi(z_n, \infty) = 2/\sqrt{(|z_n|^2 + 1)} < 2/\sqrt{(|z_n|^2)} = 2/|z_n| < 2/M < \epsilon$ for all n > N. Thus $z_n \to \infty$ as $n \to \infty$ is equivalent to $\chi(z_n, \infty) \to 0$ as $n \to \infty$.
- 24. If $\lim_{z\to z_0} f(z) = \infty$, then for any M>0 there exis $\delta > 0$ such that |f(z)| > M for all $|z-z_0| < \delta$. Consider $\chi(f(z),\infty) = 2/\sqrt{(|f(z)|^2 + 1)} < 2/\sqrt{(|f(z)|^2)} = 2/|f(z)| < 2/M < \epsilon$ for all $|z-z_0| < \delta$. Thus $\lim_{z\to z_0} f(z) = \infty$, is equivalent to $\lim_{z\to\infty} \chi(f(z),\infty) = 0$.
- 25. (a) ∞ (b) 3 (c) ∞ (d) ∞ (f) the limit does not exist.

EXERCISES 2.3: Analyticity

1. Let $\Delta z = z - z_0$ so that $\Delta z \to 0 \iff z \to z_0$. Then

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = L \iff$$

given $\varepsilon > 0$, there is a $\delta > 0$ such that

$$\left| \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} - L \right| < \varepsilon \text{ whenever} |\Delta z - 0| < \delta \iff$$

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - L \right| < \varepsilon \text{whenever} |z - z_0| < \delta \iff$$

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = L.$$

- 2. If $\lambda(z) = \frac{f(z) f(z_0)}{z z_0} f'(z_0)$, then $\lambda(z) \to 0$ as $z \to z_0$ and $f(z_0) + f'(z_0)(z z_0) + \lambda(z)(z z_0) = f(z)$.
- 3. $\lim_{z \to z_0} f(z) = \lim_{z \to z_0} [f(z_0) + f'(z_0)(z z_0) + \lambda(z)(z z_0)]$ = $f(z_0) + 0 + 0 = f(z_0)$.

4. a.
$$\lim_{\Delta z \to 0} \frac{\operatorname{Re}(z + \Delta z) - \operatorname{Re}(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\operatorname{Re}(\Delta z)}{\Delta z} = \begin{cases} 1, & \text{if } \Delta z = \Delta x \\ 0, & \text{if } \Delta z = i \Delta y \end{cases}$$

b.
$$\lim_{\Delta z \to 0} \frac{\operatorname{Im}(z + \Delta z) - \operatorname{Im}(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\operatorname{Im}(\Delta z)}{\Delta z} = \begin{cases} 0, & \text{if } \Delta z = \Delta x \\ -i, & \text{if } \Delta z = i \Delta y \end{cases}$$

c. Case 1, z = 0.

$$\lim_{\Delta z \to 0} \frac{|0 + \Delta z| - |0|}{\Delta z} = \lim_{\Delta z \to 0} \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta x + i \Delta y} = \begin{cases} \pm 1, & \text{if } \Delta z = \Delta x \\ -i, & \text{if } \Delta z = \pm i \Delta y \end{cases}$$

Case 2, $z \neq 0$.

$$\lim_{\Delta z \to 0} \frac{|z + \Delta z| - |z|}{\Delta z}$$

$$= \lim_{\Delta x \to 0} \frac{\sqrt{(x + \Delta x)^2 + (y + \Delta y)^2} - \sqrt{x^2 + y^2}}{\Delta x + i\Delta y}$$

$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x)^2 + (y + \Delta y)^2 - (x^2 + y^2)}{(\Delta x + i\Delta y)(\sqrt{(x + \Delta x)^2 + (y + \Delta y)^2} + \sqrt{x^2 + y^2})}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2 + 2y\Delta y + (\Delta y)^2}{(\Delta x + i\Delta y)(\sqrt{(x + \Delta x)^2 + (y + \Delta y)^2} + \sqrt{x^2 + y^2})}$$

$$= \begin{cases} \frac{x}{\sqrt{x^2 + y^2}}, & \text{if } \Delta z = \Delta x, z \neq 0 \\ \frac{y}{i\sqrt{x^2 + y^2}}, & \text{if } \Delta z = i\Delta y, z \neq 0 \end{cases}$$

5. Rule 5:
$$(f \pm g)'(z_0) = \lim_{\Delta z \to 0} \frac{(f \pm g)(z_0 + \Delta z) - (f \pm g)(z_0)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \left[\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \pm \frac{g(z_0 + \Delta z) - g(z_0)}{\Delta z} \right]$$

$$= f'(z_0) \pm g'(z_0)$$

Rule 7:
$$(fg)'(z_0) = \lim_{\Delta z \to 0} \frac{fg(z_0 + \Delta z) - fg(z_0)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \left\{ \frac{f(z_0 + \Delta z)g(z_0 + \Delta z) - f(z_0 + \Delta z)g(z_0)}{\Delta z} + \frac{f(z_0 + \Delta z)g(z_0) - f(z_0)g(z_0)}{\Delta z} \right\}$$

$$= \lim_{\Delta z \to 0} \left\{ f(z_0 + \Delta z) \frac{[g(z_0 + \Delta z) - g(z_0)]}{\Delta z} + g(z_0) \frac{[f(z_0 + \Delta z) - f(z_0)]}{\Delta z} \right\}$$

$$= f(z_0)g'(z_0) + g(z_0)f'(z_0)$$

6. Let n > 0 be an integer.

Then
$$\frac{d}{dz}z^{-n} = \frac{d}{dz}\left(\frac{1}{z^n}\right) = \frac{-nz^{n-1}}{z^{2n}}$$
 (using Rule 8) = $-nz^{-n-1}$.

7. a.
$$18z^2 + 16z + i$$

b.
$$-12z(z^2-3i)^{-7}$$

c.
$$\frac{-iz^4 + (2+27i)z^2 + 2\pi z + 18}{(iz^3 + 2z + \pi)^2}$$

d.
$$\frac{-(z+2)^2(5z^2+(16+i)z-3+8i)}{(z^2+iz+1)^5}$$

e.
$$24i(z^3-1)^3(z^2+iz)^{99}(53z^4+28iz^3-50z-25i)$$

8. Let $z = z_0 + \Delta z$. Then

$$\lim_{z \to z_0} \frac{|f(z) - f(z_0)|}{|z - z_0|} = \left| \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \right| = |f'(z_0)|.$$

$$\lim_{z \to z_0} \arg[f(z) - f(z_0)] - \arg(z - z_0) = \lim_{z \to z_0} \arg\left[\frac{f(z) - f(z_0)}{z - z_0}\right]$$

$$\arg\left[\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}\right] = \arg[f'(z_0)]$$

9. **a.**
$$2-3i$$

b. $\pm i$
c. $\frac{-1 \pm i\sqrt{15}}{2}$
d. $\frac{1}{2}, 1$

10.
$$\lim_{\Delta z \to 0} \frac{|z_0 + \Delta z|^2 - |z_0|^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(z_0 + \Delta z)(\overline{z}_0 + \overline{\Delta z}) - z_0 \overline{z}_0}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \left(\overline{z}_0 + \frac{\overline{\Delta z}}{\Delta z} z_0 + \overline{\Delta z}\right) = \begin{cases} \overline{z_0} + z_0 & \text{if } \Delta z = \Delta x \\ \overline{z_0} - z_0 & \text{if } \Delta z = i \Delta y \end{cases}$$

If $z_0 = 0$, then the difference quotient is

$$\lim_{\Delta z \to 0} (0 + 0 + \overline{\Delta z}) = 0.$$

- 11. a. nowhere analytic
 - b. nowhere analytic
 - c. analytic except at z = 5
 - d. everywhere analytic
 - e. nowhere analytic
 - f. analytic except at z = 0
 - g. nowhere analytic
 - h. nowhere analytic
- 12. The case when n=1 is trivial. Assume that the result holds for all positive integers less than or equal to n and define $Q(z) = P(z)(z-z_{n+1})$. Since $Q'(z) = P'(z)(z-z_{n+1}) + P(z)$, it follows that

$$\frac{Q'(z)}{Q(z)} = \frac{P'(z)}{P(z)} + \frac{1}{z - z_{n+1}} = \frac{1}{z - z_1} + \frac{1}{z - z_2} + \dots + \frac{1}{z - z_{n+1}}$$

13. a, b, d, f, and g are always true

14.
$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{[f(z) - f(z_0)]/(z - z_0)}{[g(z) - g(z_0)]/(z - z_0)} = \frac{f'(z_0)}{g'(z_0)}$$

- 15. $\frac{3}{5}$
- 16. Any point on the line through z_1 and z_2 has the form $z=-\frac{1}{2}+i\sqrt{3}\left(\frac{1}{2}-t\right)$, t real (see Section 1.3, Exercise 18). However, $f(z_2)-f(z_1)=0$ but $f'(w)=3w^2\neq 0$ on the line in question.

17.
$$F'(z_0) = f(z_0)(gh)'(z_0) + f'(z_0)gh(z_0)$$

$$= f(z_0)[g(z_0)h'(z_0) + g'(z_0)h(z_0)] + f'(z_0)g(z_0)h(z_0)$$

$$= f'(z_0)g(z_0)h(z_0) + f(z_0)g'(z_0)h(z_0) + f(z_0)g(z_0)h'(z_0)$$

EXERCISES 2.4: The Cauchy-Riemann Equations

1. a.
$$\frac{\partial u}{\partial x} = 1 \neq \frac{\partial v}{\partial y} = -1$$

b. $\frac{\partial u}{\partial x} = 1 \neq \frac{\partial v}{\partial y} = 0$

c.
$$\frac{\partial u}{\partial y} = 2 \neq -\frac{\partial v}{\partial x} = 1$$

- 2. $\frac{\partial u}{\partial x} = 3x^2 + 3y^2 3 = \frac{\partial v}{\partial y}$, but $\frac{\partial u}{\partial y} = 6xy = \frac{\partial v}{\partial x}$. Therefore $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ only when x = 0 or y = 0. This means h is differentiable on the axes but h is nowhere analytic since lines are not open sets in the complex plane.
- 3. $\frac{\partial u}{\partial x} = 6x + 2 = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -6y = -\frac{\partial v}{\partial x}$. Since these partial derivatives exist and are continuous for all x and y, g is analytic. g can be written as $g(z) = 3z^2 + 2z 1$.

4.
$$\frac{\partial u}{\partial x} = \lim_{\Delta x \to 0} \frac{u(\Delta x, 0) - u(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0}{\Delta x} = 0$$

$$\frac{\partial u}{\partial y} = \lim_{\Delta y \to 0} \frac{u(0, \Delta y) - u(0, 0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0}{\Delta y} = 0.$$
Similarly $\frac{\partial v}{\partial x} = 0$ and $\frac{\partial v}{\partial y} = 0$.
However, when $\Delta z \to 0$ through real values $(\Delta z = \Delta x)$

$$\lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = 0,$$

while along the real line $y = x (\Delta z = \Delta x + i\Delta x)$

$$\lim_{\Delta z \to 0} \frac{f(0 + \Delta z) - f(0)}{\Delta z} = \lim_{\Delta x \to 0} \frac{\frac{(\Delta x)^{4/3}(\Delta x)^{5/3} + i(\Delta x)^{5/3}(\Delta x)^{4/3}}{2(\Delta x)^2}}{\Delta x (1 + i)}$$

$$= \frac{1}{2}.$$

Therefore f is not differentiable at z = 0.

5.
$$\frac{\partial u}{\partial x} = 2e^{x^2 - y^2} [x \cos(2xy) - y \sin(2xy)] = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -2e^{x^2 - y^2} [y \cos(2xy) + x \sin(2xy)] = -\frac{\partial v}{\partial x}$$
f is entire because the effect of the second states of the entire because the effect of the entire because the effect of the entire because t

f is entire because these first partials exist and are continuous for all x and y.

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 2e^{x^2 - y^2} (x + iy) [\cos(2xy) + i \sin(2xy)]$$
$$= 2e^{(x^2 - y^2)} e^{i2xy} (x + iy)$$
$$= 2ze^{x^2}$$

(This derivative could have been obtained directly, since $f(z) = e^{z^2}$.)

6.
$$z = re^{i\theta} \Longrightarrow x = r\cos\theta$$
 and $y = r\sin\theta$ and

$$f(z) = u(x(r,\theta), y(r,\theta)) + iv(x(r,\theta), y(r,\theta))$$
$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta$$

Similar applications of the chain rule yield

$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x}(-r\sin\theta) + \frac{\partial u}{\partial y}r\cos\theta$$
$$\frac{\partial v}{\partial r} = \frac{\partial v}{\partial x}\cos\theta + \frac{\partial v}{\partial y}\sin\theta$$
$$\frac{\partial v}{\partial \theta} = \frac{\partial v}{\partial x}(-r\sin\theta) + \frac{\partial v}{\partial y}r\cos\theta$$

Replace the partial derivatives on the right sides of the equations for $\frac{\partial u}{\partial r}$ and $\frac{\partial v}{\partial r}$ by their Cauchy-Riemann counterparts to obtain:

$$\frac{\partial u}{\partial r} = \frac{\partial v}{\partial y} \cos \theta - \frac{\partial v}{\partial x} \sin \theta = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
$$\frac{\partial v}{\partial r} = -\frac{\partial u}{\partial y} \cos \theta + \frac{\partial u}{\partial x} \sin \theta = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

7. Let h(z) = f(z) - g(z). Then h is analytic in D and h'(z) = 0 so h is a constant function.

$$h(z) = c = f(z) - g(z) \Longrightarrow f(z) = g(z) + c$$

- 8. u(x,y) = c in $D \Longrightarrow \frac{\partial u}{\partial x} = 0$ and $\frac{\partial u}{\partial y} = 0 = -\frac{\partial v}{\partial x}$. Hence $f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = 0$ so f is constant in D.
- 9. By contradiction. If f is analytic in a domain D then v(x,y) = 0 (a constant) $\Rightarrow f$ is constant (by condition 8) $\Rightarrow u$ is constant. (However, there is no open set in which $u(x,y) = |z^2 z|$ is constant).
- 10. Im f(z) = 0 in $D \Longrightarrow \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0 \Longrightarrow \frac{\partial u}{\partial x} = 0$ $\Longrightarrow f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 0 \Longrightarrow f \text{ is constant in D.}$
- 11. Re $f(z) = \frac{1}{2}[f(z) + \overline{f(z)}]$ is real valued and analytic if both f and \overline{f} are analytic. Hence Re f(z) is constant by Exercise 10. It follows that f(z) is constant by Exercise 8.

12. |f(z)| constant in $D \Longrightarrow |f(z)|^2 = u^2 + v^2$ is constant in D. If u = 0 or v = 0 in D, then f is constant by Exercises 8 and 10. Otherwise,

$$\begin{array}{ll} \frac{\partial |f|^2}{\partial x} & = & 2u\frac{\partial u}{\partial x} + 2v\frac{\partial v}{\partial x} = 0 \\ \frac{\partial |f|^2}{\partial y} & = & 2u\frac{\partial u}{\partial y} + 2v\frac{\partial v}{\partial y} = -2u\frac{\partial v}{\partial x} + 2v\frac{\partial u}{\partial x} = 0 \end{array}$$

$$\Rightarrow \frac{1}{2}v\frac{\partial |f|^2}{\partial x} - \frac{1}{2}u\frac{\partial |f|^2}{\partial y} = 0 = (u^2 + v^2)\frac{\partial v}{\partial x}$$

$$\Rightarrow \frac{\partial v}{\partial x} = 0 \Rightarrow \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = \frac{\partial u}{\partial y} = 0$$

$$\Rightarrow f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = 0$$

$$\Rightarrow f \text{ is constant in } D.$$

- 13. |f(z)| is analytic and real-valued, so the result follows from Exercises 10 and 12.
- 14. If the line is vertical then Re f(z) is constant and this reduces to Problem 8. If the line is not vertical, then v(x,y) = mu(x,y) + b, and

$$\frac{\partial v}{\partial x} = m \frac{\partial u}{\partial x} = m \frac{\partial v}{\partial y},$$

$$\frac{\partial v}{\partial y} = m \frac{\partial u}{\partial y} = -m \frac{\partial v}{\partial x} = -m^2 \frac{\partial v}{\partial y}.$$

It follows that

$$\frac{\partial v}{\partial y} = 0 = \frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial u}{\partial y} \text{ and } f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 0.$$

Hence f(z) is constant.

15.
$$J(x_0, y_0) = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \Big|_{(x_0, y_0)}$$

$$= \left[\frac{\partial u}{\partial x} (x_0, y_0) \right]^2 + \left[\frac{\partial v}{\partial x} (x_0, y_0) \right]^2$$

$$= |f'(z_0)|^2 \quad \text{(using Equation (1))}$$

16. a.
$$\frac{\partial \tilde{f}}{\partial \xi} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \xi}$$

$$= \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right) \frac{1}{2} + \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}\right) \frac{1}{2i}$$

$$= \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)$$

$$\frac{\partial \tilde{f}}{\partial \eta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \eta}$$

$$= \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right) \frac{1}{2} + \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}\right) \left(\frac{-1}{2i}\right)$$

$$= \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)$$
b.
$$\frac{\partial \tilde{f}}{\partial \eta} = 0 \Leftrightarrow 0 = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) \text{ and } 0 = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)$$

$$\Leftrightarrow \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

EXERCISES 2.5: Harmonic Functions

1. a.
$$u(x,y) = x^2 - y^2 + 2x + 1$$
, $\frac{\partial^2 u}{\partial x^2} = 2 = -\frac{\partial^2 u}{\partial y^2} \Longrightarrow \Delta u = 0$

$$v(x,y) = 2xy + 2y, \quad \frac{\partial^2 v}{\partial x^2} = 0 = -\frac{\partial^2 v}{\partial y^2} \Longrightarrow \Delta v = 0$$
b. $u(x,y) = \frac{x}{x^2 + y^2}, \quad \frac{\partial^2 u}{\partial x^2} = \frac{2x(x^2 - 3y^2)}{(x^2 + y^2)^3} = -\frac{\partial^2 u}{\partial y^2} \Longrightarrow \Delta u = 0$

$$v(x,y) = -\frac{y}{x^2 + y^2}, \quad \frac{\partial^2 v}{\partial x^2} = \frac{-2y(3x^2 - y^2)}{(x^2 + y^2)^3} = -\frac{\partial^2 v}{\partial y^2} \Longrightarrow \Delta v = 0$$
c. $u(x,y) = e^x \cos y, \quad \frac{\partial^2 u}{\partial x^2} = e^x \cos y = -\frac{\partial^2 u}{\partial y^2} \Longrightarrow \Delta u = 0$

$$v(x,y) = e^x \sin y, \quad \frac{\partial^2 v}{\partial x^2} = e^x \sin y = -\frac{\partial^2 v}{\partial y^2} \Longrightarrow \Delta v = 0$$
2. $h(x,y) = ax^2 + bxy - ay^2$

3. a.
$$u = \text{Re}(-iz)$$
, $v = -x + a$, where a is a constant

b.
$$u = \text{Re}(-ie^x)$$
, $v = -e^x \cos y + a$

c.
$$u = \text{Re}\left(\frac{-i}{2}z^2 - iz - z\right), v = -\frac{1}{2}(x^2 - y^2) - (x + y) + a$$

d. It is straightforward to verify that
$$\Delta u = 0$$
.
$$\frac{\partial u}{\partial x} = \cos x \cosh y = \frac{\partial v}{\partial x}$$

$$\frac{\partial u}{\partial x} = \cos x \cosh y = \frac{\partial v}{\partial y}$$

$$\Rightarrow v(x,y) = \int \cos x \cosh y dy = \cos x \sinh y + \psi(x)$$

$$\frac{\partial u}{\partial y} = \sin x \sinh y = -\frac{\partial v}{\partial x} = \sin x \sinh y + \psi'(x) \Rightarrow \psi(x) = a$$

Thus,
$$v(x, y) = \cos x \sinh y + a$$
.

e. It is straightforward to verify that
$$\Delta u = 0$$
.

$$\frac{\partial u}{\partial x} = \frac{x}{x^2 + y^2} = \frac{\partial v}{\partial y} \Rightarrow$$

$$v(x,y) = \int \frac{x}{x^2 + y^2} dy = \tan^{-1}\left(\frac{y}{x}\right) + \psi(x)$$

$$\frac{\partial u}{\partial y} = \frac{y}{x^2 + y^2} = -\frac{\partial v}{\partial x} = \frac{y}{x^2 + y^2} - \psi'(x) \Rightarrow \psi(x) = a$$

Thus,
$$v(x,y) = \tan^{-1}\left(\frac{y}{x}\right) + a$$
.

f.
$$u = \text{Re}\left(-ie^{x^2}\right), v = -e^{x^2-y^2}\cos(2xy) + a.$$

4. Suppose
$$v$$
 and w are both harmonic conjugates of u , and consider $\phi(x,y) = w(x,y) - v(x,y)$. Then (using the Cauchy-Riemann equations for v and w),

$$\frac{\partial \phi}{\partial x} = \frac{\partial w}{\partial x} - \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} - \left(-\frac{\partial u}{\partial y}\right) = 0$$

and similarly $\frac{\partial \phi}{\partial u} = 0$. Hence $\phi(x, y) = a$, from which it follows that

$$w(x,y)=v(x,y)+a.$$

5. If f(z) = u(x,y) + iv(x,y) is analytic then -if(z) = v(x,y) - iu(x,y)is analytic. Thus -u is a harmonic conjugate of v.

6. Since
$$f(z) = u + iv$$
 is analytic, $\frac{1}{2} [f(z)]^2 = \frac{1}{2} (u^2 - v^2) + iuv$ is analytic. Thus $uv = \operatorname{Im} \frac{1}{2} [f(z)]^2$ is harmonic.

7.
$$\phi(x, y) = x + 1$$

8. a. Yes, because
$$\Delta(u+v) = \Delta u + \Delta v = 0$$
.

b. No. Take
$$u = x, v = x^2 - y^2$$
 as an example.

c. Yes, because
$$\Delta(u_x) = u_{xxx} + u_{xyy} = u_{xxx} + u_{yyx}$$

$$=\frac{\partial}{\partial x}(\Delta u)=\frac{\partial}{\partial x}(0)=0.$$

9.
$$\phi(x,y) = xy - 1$$
 (this is $\operatorname{Im}\left(\frac{1}{2}z^2 - i\right)$)

10. Let
$$x = r \cos \theta$$
 and $y = r \sin \theta$.

$$\frac{\partial \phi}{\partial r} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial \phi}{\partial x} \cos \theta + \frac{\partial \phi}{\partial y} \sin \theta
\frac{\partial^2 \phi}{\partial r^2} = \frac{\partial^2 \phi}{\partial x^2} \frac{\partial x}{\partial r} \cos \theta + \frac{\partial^2 \phi}{\partial y \partial x} \frac{\partial y}{\partial r} \cos \theta
+ \frac{\partial^2 \phi}{\partial x \partial y} \frac{\partial x}{\partial r} \sin \theta + \frac{\partial^2 \phi}{\partial y^2} \frac{\partial y}{\partial r} \sin \theta
= \frac{\partial^2 \phi}{\partial x^2} \cos^2 \theta + \frac{\partial^2 \phi}{\partial y \partial x} 2 \sin \theta \cos \theta + \frac{\partial^2 \phi}{\partial y^2} \sin^2 \theta
\frac{\partial \phi}{\partial \theta} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial \phi}{\partial x} (-r \sin \theta) + \frac{\partial \phi}{\partial y} r \cos \theta
\frac{\partial^2 \phi}{\partial \theta^2} = \frac{\partial^2 \phi}{\partial x^2} \frac{\partial x}{\partial \theta} (-r \sin \theta) + \frac{\partial^2 \phi}{\partial y \partial x} \frac{\partial y}{\partial \theta} (-r \sin \theta) + \frac{\partial \phi}{\partial x} (-r \cos \theta)
+ \frac{\partial^2 \phi}{\partial x \partial y} \frac{\partial x}{\partial \theta} (r \cos \theta) + \frac{\partial^2 \phi}{\partial y \partial x} \frac{\partial y}{\partial \theta} (r \cos \theta) + \frac{\partial \phi}{\partial y} (-r \sin \theta)
= \frac{\partial^2 \phi}{\partial x^2} r^2 \sin^2 \theta + \frac{\partial^2 \phi}{\partial y \partial x} (-2r^2 \sin \theta \cos \theta) + \frac{\partial^2 \phi}{\partial y^2} r^2 \cos^2 \theta
+ \frac{\partial \phi}{\partial x} (-r \cos \theta) + \frac{\partial \phi}{\partial y} (-r \sin \theta).$$

Combining these partial derivatives, one gets

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0.$$

- 11. Im $f(z) = y \frac{y}{x^2 + y^2} = 0 \Longrightarrow yx^2 + y^3 y = y(x^2 + y^2 1) = 0$. The points satisfying $x^2 + y^2 - 1 = 0$ lie on the circle |z| = 1. The points (other than z = 0) satisfying y = 0 lie on the real axis.
- 12. $f(z) = z^n = r^n(\cos\theta + i\sin\theta)^n = r^n(\cos n\theta + i\sin n\theta) \Longrightarrow$ Re $f(z) = r^n\cos n\theta$ and Im $f(z) = r^n\sin n\theta$ are harmonic since f is analytic.

13.
$$\phi(x,y) = \operatorname{Im} z^4 = r^4 \sin 4\theta = -4xy^3 + 4x^3y$$

14. Let
$$\phi(x,y) = \ln |f(z)| = \frac{1}{2} \ln(u^2 + v^2)$$

$$\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial \phi}{\partial v} \frac{\partial v}{\partial x} = \frac{u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x}}{u^2 + v^2}$$

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{(v^2 - u^2) \left[\left(\frac{\partial u}{\partial x} \right)^2 - \left(\frac{\partial v}{\partial x} \right)^2 \right] - 4uv \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}}{(u^2 + v^2)^2} + \frac{u \frac{\partial^2 u}{\partial x^2} + v \frac{\partial^2 v}{\partial x^2}}{u^2 + v^2}$$

A similar calculation yields $\frac{\partial^2 \phi}{\partial y^2}$. By applying Laplace's equation and the Cauchy-Riemann equations of u and v to $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}$, the sum simplifies to reveal that $\Delta \phi = 0$.

15. Consider $\varphi(z) = \operatorname{Re}(Az^n + Bz^{-n}) + C$ which is harmonic for $1 \le |z| \le 2$. Consider the polar form for z. $z = re^{i\theta}$ and select n=3 to agree with the cosine argument. $\varphi(re^{i\theta}) = Ar^3\operatorname{Re}(e^{i3\theta}) + Br^{-3}\operatorname{Re}(e^{-i3\theta}) + C$. $\varphi(re^{i\theta}) = Ar^3\cos 3\theta + Br^{-3}\cos 3\theta + C = (Ar^3 + Br^{-3})\cos 3\theta + C$.

r=1 ⇒ (A+B)cos3θ + C = 0 ⇒ A + B = 0, C = 0.
r=2 ⇒ (A*8+B/8)cos3θ = 5cos3θ. A = 40/63, B = -40/63

$$\varphi(re^{i\theta}) = (40/63)(r^3 - r^{-3})cos3\theta = (40/63) Re (z^3 - z^{-3}).$$

16.
$$\phi(x,y) = \frac{1}{\ln 3} \ln |z| - 1$$
 or $\phi(x,y) = \ln \left| \frac{z}{3} \right|$ are two possibilities.

17. a.
$$\phi(x,y) = \text{Re}(z^2 + 5z + 1) = x^2 - y^2 + 5x + 1$$

b. $\phi(x,y) = 2\text{Re}\left(\frac{z^2}{z+2i}\right) = \frac{2x(x^2 + 4y + y^2)}{x^2 + y^2 + 4y + 4}$

18. Let $u = \phi_x$, $v = -\phi_y$. Then

$$\frac{\partial u}{\partial x} = \phi_{xx} = -\phi_{yy} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = \phi_{xy} = -\frac{\partial v}{\partial x}$$

19. $\cos^2\theta = (\frac{1}{2})\cos 2\theta + \frac{1}{2} = \varphi(z) = ARe(r^{-2}e^{-i2\theta})n + B = Ar^{-2}\cos 2\theta + B$. In the limit as $r \to \infty$ $\varphi(z) = \frac{1}{2} \Rightarrow B = \frac{1}{2}$. On the circle |z| = 1, r = 1. $\Rightarrow A = \frac{1}{2}$. $\varphi(z) = (\frac{1}{2})r^{-2}\cos 2\theta + \frac{1}{2} = Re\left[\frac{1}{2}\right] + \frac{1}{2}$.

20. In order that
$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}$$
, let $v(x,y) = \int_0^y \frac{\partial u}{\partial x}(x,\eta)d\eta + \psi(x)$. Then

$$\begin{split} \frac{\partial v}{\partial x} &= \int_0^y \frac{\partial^2 u}{\partial x^2}(x,\eta) d\eta + \psi'(x) \\ &= -\int_0^y \frac{\partial^2 u}{\partial y^2}(x,\eta) d\eta + \psi'(x) \quad \text{(because u is harmonic)} \\ &= -\frac{\partial u}{\partial y}(x,y) + \frac{\partial u}{\partial y}(x,0) + \psi'(x). \end{split}$$

In order that $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$, it must be true that $\psi'(x) = -\frac{\partial u}{\partial y}(x,0)$. Thus,

$$\psi(x) = -\int_0^x \frac{\partial u}{\partial y}(\zeta, 0)d\zeta + a$$

and

$$v(x,y) = \int_0^y \frac{\partial u}{\partial x}(x,\eta)d\eta - \int_0^x \frac{\partial u}{\partial y}(\zeta,0)d\zeta + a.$$

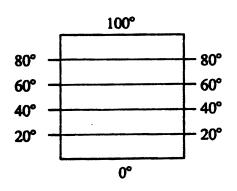
21. It is easily verified that $u = \ln |z|$ satisfies Laplace's equation on $\mathbb{C}\setminus\{0\}$ and that $u+iv = \ln |z|+i\mathrm{Arg}(z)$ satisfies the Cauchy-Riemann equations on the domain $D = \mathbb{C}\setminus\{\text{nonpositive real axis}\}$, so that

Arg (z) is a harmonic conjugate of u on D. By Problem 4, any harmonic conjugate of u has to be of the form Arg(z) + a in D. It is impossible to have a harmonic conjugate of this form that is continuous on $\mathbb{C} \setminus \{0\}$.

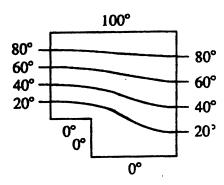
$$22. \frac{\partial u}{\partial x} = \phi_{xx}\phi_{y} + \phi_{x}\phi_{yx} + \psi_{xx}\psi_{y} + \psi_{x}\psi_{yx}$$
$$= -\phi_{yy}\phi_{y} + \phi_{x}\phi_{yx} - \psi_{yy}\psi_{y} + \psi_{x}\psi_{yx} = \frac{\partial v}{\partial y}$$

EXERCISES 2.6: Steady-State Temperature as a Harmonic Function.

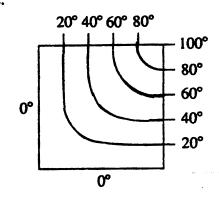
1. a.



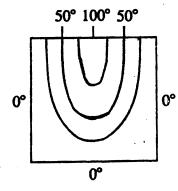
b.



c.



d.



e.

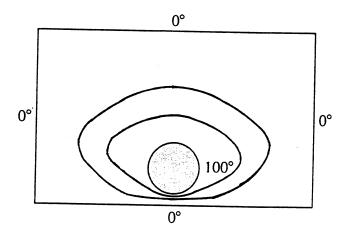
100°

80°
60°
40°
20°

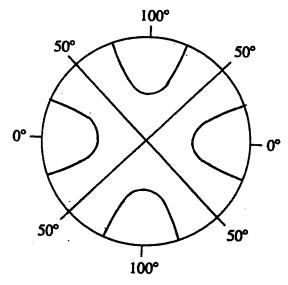
0°
0°

0°

2. This does not violate the maximum principle.



3. This does not violate the maximum principle.



Full Download: http://testbanklive.com/download/fundamentals-of-complex-analysis-with-applications-to-engineering-and-science

Exercises 2.7

- 1. $f(z) = z^2 + c$ where c is a real constant. $\zeta_1 = (1 + \sqrt{(1-4c)})/2, \ \zeta_2 = (1 - \sqrt{(1-4c)})/2$ Only ζ_2 is an attractor for $-3/4 < c < \frac{1}{4}$.
- 2. $f(\varsigma) = \varsigma$ and $f'(\varsigma) > 1$ Therefore we can pick a real number ρ between 1 and $|f'(\varsigma)|$ such that $|f(z) \varsigma| = \rho |z \varsigma|$ for all z in a sufficiently small disk around ς . If any point z_0 in this disk is the seed for an orbit $z_1 = f(z_0)$, $z_2 = f(z_1)$, ... $z_n = f(z_{n-1})$, then we have $|z_n \varsigma| \ge \rho |z_{n-1} \varsigma| \ge \ldots \ge \rho^n |z_{n-1} \varsigma|$. Because $\rho > 1$, the point z_n moves away from ς until the magnitude of the derivative becomes 1 or less. The orbit is out of the disk.
- (a) Fixed points are ζ₁ = i, ζ₂ = -i. Both are repellors.
 (b) Fixed points are ζ₁ = 1/2, ζ₂ = -1/2, ζ₃ = -1. Fixed points ζ₁ and ζ₃ are repellors, but fixed point ζ₂ is an attractor.
- 4. $z_0 = e^{i2\pi\alpha}$ with α an irrational real number. $z_n = e^{i2\pi\alpha 2^n}$. Because $|z_n| = 1$, the trajectory will follow the unit circle. If iterations p and q coincide, $2\pi\alpha 2^p 2\pi\alpha 2^q = 2\pi\alpha (2^p 2^q) = 2\pi k$ for some integer k. But because $(2^p 2^q)$ is an integer that can be represented by m, the equation $2\pi\alpha m = 2\pi k$ is satisfied only if $k = \alpha m$ or $\alpha = k/m$. Because α is irrational it cannot be represented by a rational number and no iterations repeat.
- 5. Fixed points are $\zeta_1 = -1/2 + i\sqrt{5}/2$ (an attractor) and $\zeta_2 = -1/2 i\sqrt{5}/2$ (a repellor).
- 6. $f(z) = z^2$. The seed is z_0 . $z_1 = z_0^2$, $z_2 = z_0^4$, ... $z_n = z_0^2$. To have an n cycle $z_n = z_0 = z_0^2$. Or $z_n/z_0 = z_0^2$. Solving gives $z_0 = e^2(i2\pi/(2^n-1))$.
- 7. The cycle is 4. $2^4(2\pi/p) = 2\pi \mod p \implies 2^4 = 1 \mod p$. p=3,5,15. 3 will give repeated cycles of length 2. 5 and 15 will give the desired cycles of length 4.
- 8. Student Matlab: n=100;c=.253; zo=0;y(1)=zo; for $k=1:n-1,y(k+1)=y(k)^2+c;end$ plot(y)
- 9. If $|\alpha| \le 1$ the whole complex plane is the filled Julia set. If $|\alpha| \ge 1$ the origin is the filled Julia set.
- 10. $f(z) = z F(z)/F'(z). \quad f(\zeta) = \zeta F(\zeta)/F'(\zeta) = \zeta \Rightarrow F(\zeta)/F'(\zeta) = 0 \Rightarrow F(\zeta) = 0$ with the possible exception of the points where $F'(\zeta) = 0$. $f'(z) = 1 F'(z)/F'(z) + F(z)F''(z)/(F'(z))^2 = F(z)F''(z)/(F'(z))^2$ $f'(\zeta) = F(\zeta)F''(\zeta)/(F'(\zeta))^2 = 0 \text{ where } F'(\zeta) \neq 0 \text{ and every zero of } F(z) \text{ is an attractor as long as } F'(\zeta) \neq 0.$