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Exercise 1.1. Many centuries ago, a mariner poured 100 cm3 of water into the ocean. As time 
passed, the action of currents, tides, and weather mixed the liquid uniformly throughout the 
earth’s oceans, lakes, and rivers. Ignoring salinity, estimate the probability that the next sip (5 
ml) of water you drink will contain at least one water molecule that was dumped by the mariner. 
Assess your chances of ever drinking truly pristine water. (Consider the following facts: Mw for 
water is 18.0 kg per kg-mole, the radius of the earth is 6370 km, the mean depth of the oceans is 
approximately 3.8 km and they cover 71% of the surface of the earth.) 
 
Solution 1.1. To get started, first list or determine the volumes involved: 

υd = volume of water dumped = 100 cm3, υc = volume of a sip = 5 cm3, and 
V = volume of water in the oceans = 

€ 

4πR2Dγ , 
where, R is the radius of the earth, D is the mean depth of the oceans, and γ is the oceans' 
coverage fraction. Here we've ignored the ocean volume occupied by salt and have assumed that 
the oceans' depth is small compared to the earth's diameter. Putting in the numbers produces: 

€ 

V = 4π (6.37 ×106m)2(3.8 ×103m)(0.71) =1.376 ×1018m3. 
For well-mixed oceans, the probability Po that any water molecule in the ocean came from the 
dumped water is: 

€ 

Po =
(100 cm3 of water)
(oceans'  volume)

=
υ d

V
=

1.0 ×10−4m3

1.376 ×1018m3 = 7.27 ×10−23, 

Denote the probability that at least one molecule from the dumped water is part of your next sip 
as P1 (this is the answer to the question).  Without a lot of combinatorial analysis, P1 is not easy 
to calculate directly. It is easier to proceed by determining the probability P2 that all the 
molecules in your cup are not from the dumped water. With these definitions, P1 can be 
determined from: P1 = 1 – P2.  Here, we can calculate P2 from: 

P2 = (the probability that a molecule was not in the dumped water)[number of molecules in a sip]. 
The number of molecules, Nc, in one sip of water is (approximately) 

Nc = 5cm
3 ×
1.00g
cm3 ×

gmole
18.0g

×6.023×1023 molecules
gmole

=1.673×1023 molecules 

Thus, P2 = (1−Po )
Nc = (1− 7.27×10−23)1.673×10

23

.  Unfortunately, electronic calculators and modern 
computer math programs cannot evaluate this expression, so analytical techniques are required.  
First, take the natural log of both sides, i.e. 

ln(P2 ) = Nc ln(1−Po ) =1.673×10
23 ln(1− 7.27×10−23)  

then expand the natural logarithm using ln(1–ε) ≈ –ε (the first term of a standard Taylor series 
for 

€ 

ε → 0) 
ln(P2 ) ≅ −Nc ⋅Po = −1.673×10

23 ⋅ 7.27×10−23 = −12.16 , 
and exponentiate to find: 

P2 ≅ e
−12.16 ≅ 5×10−6  ... (!) 

Therefore, P1 = 1 – P2 is very close to unity, so there is a virtual certainty that the next sip of 
water you drink will have at least one molecule in it from the 100 cm3 of water dumped many 
years ago. So, if one considers the rate at which they themselves and everyone else on the planet 
uses water it is essentially impossible to enjoy a truly fresh sip. 
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Exercise 1.2. An adult human expels approximately 500 ml of air with each breath during 
ordinary breathing.  Imagining that two people exchanged greetings (one breath each) many 
centuries ago, and that their breath subsequently has been mixed uniformly throughout the 
atmosphere, estimate the probability that the next breath you take will contain at least one air 
molecule from that age-old verbal exchange. Assess your chances of ever getting a truly fresh 
breath of air. For this problem, assume that air is composed of identical molecules having Mw = 
29.0 kg per kg-mole and that the average atmospheric pressure on the surface of the earth is 100 
kPa. Use 6370 km for the radius of the earth and 1.20 kg/m3 for the density of air at room 
temperature and pressure. 
 
Solution 1.2. To get started, first determine the masses involved. 
m = mass of air in one breath = density x volume = 

€ 

1.20kg /m3( ) 0.5 ×10−3m3( ) = 

€ 

0.60 ×10−3kg 

M = mass of air in the atmosphere = 

€ 

4πR2 ρ(z)dz
z= 0

∞

∫  

Here, R is the radius of the earth, z is the elevation above the surface of the earth, and ρ(z) is the 
air density as function of elevation.  From the law for static pressure in a gravitational field, 

€ 

dP dz = −ρg , the surface pressure, Ps, on the earth is determined from 

€ 

Ps − P∞ = ρ(z)gdz
z= 0

z= +∞

∫  so 

that:                    M = 4πR2 Ps −P∞
g

= 4π (6.37×106m)2 (10
5Pa)

9.81ms−2
= 5.2×1018kg . 

where the pressure (vacuum) in outer space = P∞ = 0, and g is assumed constant throughout the 
atmosphere.  For a well-mixed atmosphere, the probability Po that any molecule in the 
atmosphere came from the age-old verbal exchange is  

€ 

Po =
2 × (mass of one breath)

(mass of the whole atmosphere)
=

2m
M

=
1.2 ×10−3kg
5.2 ×1018kg

= 2.31×10−22 , 

where the factor of two comes from one breath for each person.  Denote the probability that at 
least one molecule from the age-old verbal exchange is part of your next breath as P1 (this is the 
answer to the question).  Without a lot of combinatorial analysis, P1 is not easy to calculate 
directly. It is easier to proceed by determining the probability P2 that all the molecules in your 
next breath are not from the age-old verbal exchange. With these definitions, P1 can be 
determined from: P1 = 1 – P2.  Here, we can calculate P2 from: 

P2 = (the probability that a molecule was not in the verbal exchange)[number of molecules in one breath]. 
The number of molecules, Nb, involved in one breath is  

€ 

Nb =
0.6 ×10−3kg
29.0g /gmole

×
103g
kg

× 6.023×1023 molecules
gmole

=1.25 ×1022molecules 

Thus, 

€ 

P2 = (1− Po)
Nb = (1− 2.31×10−22)1.25×10

22

.  Unfortunately, electronic calculators and modern 
computer math programs cannot evaluate this expression, so analytical techniques are required.  
First, take the natural log of both sides, i.e. 

€ 

ln(P2) = Nb ln(1− Po) =1.25 ×1022 ln(1− 2.31×10−22)  
then expand the natural logarithm using ln(1–ε) ≈ –ε (the first term of a standard Taylor series 
for 

€ 

ε → 0) 

€ 

ln(P2) ≅ −Nb ⋅ Po = −1.25 ×1022 ⋅ 2.31×10−22 = −2.89 , 
and exponentiate to find: 
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€ 

P2 ≅ e
−2.89 = 0.056. 

Therefore, P1 = 1 – P2 = 0.944 so there is a better than 94% chance that the next breath you take 
will have at least one molecule in it from the age-old verbal exchange.  So, if one considers how 
often they themselves and everyone else breathes, it is essentially impossible to get a breath of 
truly fresh air. 
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Exercise 1.3. The Maxwell probability distribution, f(v) = f(v1,v2,v3), of molecular velocities in a 
gas flow at a point in space with average velocity u is given by (1.1). 
a) Verify that u is the average molecular velocity, and determine the standard deviations (σ1, 

σ2, σ3) of each component of u using σ i =
1
n

(vi −ui )
2

all v
∫∫∫ f (v)d3v

#

$
%

&

'
(

1 2

 for i = 1, 2, and 3. 

b) Using (1.27) or (1.28), determine n = N/V at room temperature T = 295 K and atmospheric 
pressure p = 101.3 kPa. 
c) Determine N = nV = number of molecules in volumes V = (10 µm)3, 1 µm3, and (0.1 µm)3. 
d) For the ith velocity component, the standard deviation of the average, σa,i, over N molecules 
is σa,i = σ i N  when N >> 1. For an airflow at u = (1.0 ms–1, 0, 0), compute the relative 
uncertainty, 2σ a,1 u1 , at the 95% confidence level for the average velocity for the three volumes 
listed in part c). 
e) For the conditions specified in parts b) and d), what is the smallest volume of gas that ensures 
a relative uncertainty in U of one percent or less? 
 
Solution 1.3. a) Use the given distribution, and the definition of an average: 

(v)ave =
1
n

v
all  u
∫∫∫ f (v)d3v = m

2πkBT
"

#
$

%

&
'

3 2

v
−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫ exp −
m

2kBT
v−u 2*

+
,

-
.
/
d3v . 

Consider the first component of v, and separate out the integrations in the "2" and "3" directions. 

(v1)ave =
m

2πkBT
!

"
#

$

%
&

3 2

v1
−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫ exp −
m
2kBT

(v1 −u1)
2 + (v2 −u2 )

2 + (v3 −u3)
2*+ ,-

.
/
0

1
2
3
dv1dv2dv3

 

          
=

m
2πkBT
!

"
#

$

%
&

3 2

v1
−∞

+∞

∫ exp −
m(v1 −u1)

2

2kBT
*
+
,

-
.
/
dv1 exp −

m(v2 −u2 )
2

2kBT
*
+
,

-
.
/
dv2

−∞

+∞

∫ exp −
m(v3 −u3)

2

2kBT
*
+
,

-
.
/−∞

+∞

∫ dv3
 

The integrations in the "2" and "3" directions are equal to: 

€ 

2πkBT m( )1 2, so 

(v1)ave =
m

2πkBT
!

"
#

$

%
&

1 2

v1
−∞

+∞

∫ exp −
m(v1 −u1)

2

2kBT
*
+
,

-
.
/
dv1  

The change of integration variable to β = (v1 −u1) m 2kBT( )1 2  changes this integral to: 

(v1)ave =
1
π

β
2kBT
m

!

"
#

$

%
&
1 2

+u1
!

"
##

$

%
&&

−∞

+∞

∫ exp −β 2{ }dβ = 0+ 1
π
u1 π = u1 , 

where the first term of the integrand is an odd function integrated on an even interval so its 
contribution is zero. This procedure is readily repeated for the other directions to find (v2)ave = u2, 
and (v3)ave = u3. Thus, u = (u1, u2, u3) is the average molecular velocity. 
 Using the same simplifications and change of integration variables produces: 

σ1
2 =

m
2πkBT
!

"
#

$

%
&

3 2

(v1 −u1)
2

−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫ exp −
m
2kBT

(v1 −u1)
2 + (v2 −u2 )

2 + (v3 −u3)
2*+ ,-

.
/
0

1
2
3
dv1dv2dv3

 

     
=

m
2πkBT
!

"
#

$

%
&

1 2

(v1 −u1)
2

±∞

+∞

∫ exp −
m(v1 −u1)

2

2kBT
*
+
,

-
.
/
dv1 =

1
π
2kBT
m

!

"
#

$

%
& β 2

±∞

+∞

∫ exp −β 2{ }dβ . 
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The final integral over β is: 

€ 

π 2, so the standard deviations of molecular speed are 

€ 

σ1 = kBT m( )1 2 =σ 2 =σ 3 ,  
where the second two equalities follow from repeating this calculation for the second and third 
directions.  
b) From (1.27), n V = p kBT = (101.3kPa) [1.381×10

−23J /K ⋅295K ]= 2.487×1025m−3  
c) From n/V from part b): 

€ 

n = 2.487 ×1010  for V = 103 µm3 = 10–15 m3 
    

€ 

n = 2.487 ×107 for V = 1.0 µm3 = 10–18 m3 
    

€ 

n = 2.487 ×104  for V = 0.001 µm3 = 10–21 m3 
d) From (1.29), the gas constant is R = (kB/m), and R = 287 m2/s2K for air. Compute: 
2σ a,1 u1 = 2 kBT mn( )1 2 1m / s[ ] = 2 RT n( )1 2 1m / s = 2 287 ⋅295 n( )1 2 = 582 n . Thus,  
for V = 10–15 m3 : 2σ a,1 u1  = 0.00369, 
 V = 10–18 m3 : 2σ a,1 u1  = 0.117, and  
 V = 10–21 m3 : 2σ a,1 u1  = 3.69. 
e) To achieve a relative uncertainty of 1% we need n ≈ (582/0.01)2 = 3.39

€ 

×109, and this 
corresponds to a volume of 1.36

€ 

×10-16 m3 which is a cube with side dimension ≈ 5 µm. 
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Exercise 1.4. Using the Maxwell molecular speed distribution given by (1.4), 
a) determine the most probable molecular speed,  
b) show that the average molecular speed is as given in (1.5), 

c) determine the root-mean square molecular speed = vrms =
1
n

v2 f (v)
0

∞

∫ dv
#

$%
&

'(

1 2

, 

d) and compare the results from parts a), b) and c) with c = speed of sound in a perfect gas 
under the same conditions.  

 
Solution 1.4. a) The most probable speed, vmp, occurs where f(v) is maximum. Thus, differentiate 
(1.4) with respect v, set this derivative equal to zero, and solve for vmp. Start from: 

f (v) = 4πn m
2πkBT
!

"
#

$

%
&

3 2

v2 exp −
mv2

2kBT
(
)
*

+
,
-

, and differentiate 

df
dv

= 4πn m
2πkBT
!

"
#

$

%
&

3 2

2vmp exp −
mvmp

2

2kBT

(
)
*

+*

,
-
*

.*
−
mvmp

3

kBT
exp −

mvmp
2

2kBT

(
)
*

+*

,
-
*

.*

/

0
1
1

2

3
4
4
= 0  

Divide out common factors to find: 

2−
mvmp

2

kBT
= 0   or  vmp =

2kBT
m

. 

b) From (1.5), the average molecular speed v  is given by: 

v = 1
n

v
0

∞

∫ f (v)dv = 4π m
2πkBT
#

$
%

&

'
(

3 2

v3
0

∞

∫ exp −
mv2

2kBT
*
+
,

-
.
/
dv . 

Change the integration variable to β =mv2 2kBT  to simplify the integral: 

v = 4 m
2πkBT
!

"
#

$

%
&

1 2
kBT
m

β
0

∞

∫ exp −β{ }dβ =
8kBT
πm

!

"
#

$

%
&
1 2

−βe−β − e−β( )0
∞
=
8kBT
πm

!

"
#

$

%
&
1 2

, 

and this matches the result provided in (1.5). 
c) The root-mean-square molecular speed vrms is given by: 

vrms
2 =

1
n

v2
0

∞

∫ f (v)dv = 4π m
2πkBT
#

$
%

&

'
(

3 2

v4
0

∞

∫ exp −
mv2

2kBT
*
+
,

-
.
/
dv . 

Change the integration variable to β = v m 2kBT( )1 2  to simplify the integral: 

vrms
2 =

4
π
2kBT
m

!

"
#

$

%
&
1 2

β 4

0

∞

∫ exp −β 2{ }dβ = 4
π
2kBT
m

!

"
#

$

%
&
3 π
8

=
3kBT
m

.  

Thus, vrms = (3kBT/m)1/2. 
d) From (1.28), R = (kB/m) so vmp = 2RT , v = (8 /π )RT , and vrms = 3RT . All three speeds 
have the same temperature dependence the speed of sound in a perfect gas: 

€ 

c = γRT , but are 
factors of 2 γ , 8 πγ  and 

€ 

3 γ , respectively, larger than c.  
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Exercise 1.5. By considering the volume swept out by a moving molecule, estimate how the 
mean-free path, l, depends on the average molecular cross section dimension d  and the 
molecular number density n for nominally spherical molecules. Find a formula for  (the ratio 
of the mean-free path to the mean intermolecular spacing) in terms of the nominal molecular 
volume ( ) and the available volume per molecule (1/n). Is this ratio typically bigger or smaller 
than one? 
 
Solution 1.5. The combined collision cross section for two spherical molecules having diameter 

€ 

d  is 

€ 

πd 2. The mean free path l is the average distance traveled by a molecule between 
collisions. Thus, the average molecule should experience one 
collision when sweeping a volume equal to 

€ 

πd 2l . If the molecular 
number density is n, then the volume per molecule is n–1, and the 
mean intermolecular spacing is n–1/3. Assuming that the swept volume 
necessary to produce one collision is proportional to the volume per 
molecule produces: 

πd 2l =C n   or  l =C nπd 2( ) , 
where C is a dimensionless constant presumed to be of order unity. The dimensionless version of 
this equation is: 

     mean free path
mean intermolecular spacing

=
l

n−1 3 = l n
1 3  

                                                     = C
n2 3πd 2 =

C
nd 3( )

2 3 =C
n−1

d 3

"

#
$

%

&
'

2 3

=C volume per molecule
molecular volume

"

#
$

%

&
'

2 3

, 

 
where all numerical constants like π have been combined into C. Under ordinary conditions in 
gases, the molecules are not tightly packed so l >> n−1 3 . In liquids, the molecules are tightly 
packed so l ~ n−1 3 . 

ln1 3

d 3

€ 

d 
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Exercise 1.6. Compute the average relative speed, vr , between molecules in a gas using the 
Maxwell speed distribution f given by (1.4) via the following steps. 
a) If u and v are the velocities of two molecules then their relative velocity is: vr = u – v. If the 
angle between u and v is θ, show that the relative speed is: vr = |vr| = u2 + v2 − 2uvcosθ  where 
u = |u|, and v = |v|. 
b) The averaging of vr necessary to determine vr  must include all possible values of the two 
speeds (u and v) and all possible angles θ. Therefore, start from: 

vr =
1

2n2 vr f (u)
all  u,v,θ
∫ f (v)sinθdθdvdu , 

and note that vr  is unchanged by exchange of u and v, to reach: 

vr =
1
n2

u2 + v2 − 2uvcosθ
θ=0

π

∫
v=u

∞

∫
u=0

∞

∫ sinθ f (u) f (v)dθdvdu  

c) Note that vr must always be positive and perform the integrations, starting with the angular 
one, to find:  

vr =
1
3n2

2u3 + 6uv2

uvv=u

∞

∫
u=0

∞

∫ f (u) f (v)dvdu = 16kBT
π

#

$
%

&

'
(
1 2

= 2 v . 

 
Solution 1.6. a) Compute the dot produce of vr with itself: 

vr
2
= vr ⋅vr = (u− v) ⋅ (u− v) = u ⋅u− 2u ⋅v+ v ⋅v = u

2 − 2uvcosθ + v2 . 

Take the square root to find: |vr| = u2 + v2 − 2uvcosθ . 
b) The average relative speed must account for all possible molecular speeds and all possible 
angles between the two molecules. [The coefficient 1/2 appears in the first equality below 
because the probability density function of for the angle θ in the interval 0 ≤ θ ≤ π is (1/2)sinθ.] 

vr =
1

2n2 vr f (u)
all  u,v,θ
∫ f (v)sinθdθdvdu

   = 1
2n2 u2 + v2 − 2uvcosθ f (u)

all  u,v,θ
∫ f (v)sinθdθdvdu

   = 1
2n2 u2 + v2 − 2uvcosθ

θ=0

π

∫
v=0

∞

∫
u=0

∞

∫ sinθ f (u) f (v)dθdvdu.

 

In u-v coordinates, the integration domain covers the first 
quadrant, and the integrand is unchanged when u and v are 
swapped. Thus, the u-v integration can be completed above the 
line u = v if the final result is doubled. Thus,  

vr =
1
n2

u2 + v2 − 2uvcosθ
θ=0

π

∫
v=u

∞

∫
u=0

∞

∫ sinθ f (u) f (v)dθdvdu . 

Now tackle the angular integration, by setting 
β = u2 + v2 − 2uvcosθ  so that dβ = +2uvsinθdθ . This leads to  

vr =
1
n2

β1 2

β=(v−u)2

(v+u)2

∫
v=u

∞

∫
u=0

∞

∫ dβ
2uv

f (u) f (v)dvdu , 
u!

v! dv!

du!

u =
 v!
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and the β-integration can be performed: 

vr =
1
2n2

2
3
β 3 2( )(v−u)2

(v+u)2

v=u

∞

∫
u=0

∞

∫ f (u)
u

f (v)
v

dvdu = 1
3n2

(v+u)3 − (v−u)3( )
v=u

∞

∫
u=0

∞

∫ f (u)
u

f (v)
v

dvdu . 

Expand the cubic terms, simplify the integrand, and prepare to evaluate the v-integration: 

vr =
1

3n2 2u3 + 6uv2( )
v=u

∞

∫
u=0

∞

∫ f (v)
v

dv f (u)
u

du

   = 1
3n

2u3 + 6uv2( )
v=u

∞

∫
u=0

∞

∫ 4π
v

m
2πkBT
#

$
%

&

'
(

3 2

v2 exp −
mv2

2kBT
*
+
,

-
.
/
dv f (u)

u
du.

 

Use the variable substitution: α = mv2/2kBT so that dα = mvdv/kBT, which reduces the v-
integration to: 

vr =
1
3n

2u3 + 6u kBT
m

α
!

"
#

$

%
&

mu2 kBT

∞

∫
u=0

∞

∫ 4π m
2πkBT
!

"
#

$

%
&

3 2

exp −α{ }
kBT
m

dα f (u)
u

du

   = 2
3n

m
2πkBT
!

"
#

$

%
&

1 2

2u3 + 6u kBT
m

α
!

"
#

$

%
&

mu2 kBT

∞

∫
u=0

∞

∫ e−αdα f (u)
u

du

   = 2
3n

m
2πkBT
!

"
#

$

%
&

1 2

−2u3e−α + 6u kBT
m

−αe−α − e−α( )!

"
#

$

%
&
mu2 kBT

∞

u=0

∞

∫ f (u)
u

du

   = 2
3n

m
2πkBT
!

"
#

$

%
&

1 2

8u3 +12u kBT
m

!

"
#

$

%
&

u=0

∞

∫ exp −
mu2

2kBT
!

"
#

$

%
&
f (u)
u

du.

 

The final u-integration may be completed by substituting in for f(u) and using the variable 
substitution γ = u m kBT( )1 2 . 

vr =
1
3

2m
πkBT
!

"
#

$

%
&

1 2

8 kBT
m

!

"
#

$

%
&

3 2

γ 3 +12 kBT
m

!

"
#

$

%
&

3 2

γ
!

"
##

$

%
&&

0

∞

∫ 4π m
2πkBT
!

"
#

$

%
&

3 2
kBT
m

!

"
#

$

%
&γ exp −γ 2( )dγ

   = 2
3π

kBT
m

!

"
#

$

%
&

1 2

8γ 4 +12γ 2( )
0

∞

∫ exp −γ 2( )dγ = 2
3π

kBT
m

!

"
#

$

%
&

1 2

8 3
8

π +12 1
4

π
!

"
#

$

%
&

   = 4
π

kBT
m

!

"
#

$

%
&

1 2

=
16kBT
πm

!

"
#

$

%
&

1 2

= 2v

 

Here, v  is the mean molecular speed from (1.5).  
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Exercise 1.7. In a gas, the molecular momentum flux (MFij) in the j-coordinate direction that 
crosses a flat surface of unit area with coordinate normal direction i is: 

MFij =
1
V

mvivj f (v)d3v
all  v
∫∫∫  where f(v) is the Maxwell velocity distribution (1.1). For a perfect 

gas that is not moving on average (i.e., u = 0), show that MFij = p (the pressure), when i = j, and 
that MFij = 0, when i ≠ j.  
 
Solution 1.7. Start from the given equation using the Maxwell distribution: 

MFij =
1
V

mvivj f (v)d3v
all  u
∫∫∫ =

nm
V

m
2πkBT
"

#
$

%

&
'

3 2

vivj
−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫ exp −
m

2kBT
v1

2 + v2
2 + v3

2( )
*
+
,

-
.
/
dv1dv2dv3  

and first consider i = j = 1, and recognize ρ = nm/V as the gas density, as in (1.28).  

 MF11 = ρ
m

2πkBT
!

"
#

$

%
&

3 2

u1
2

−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫ exp −
m
2kBT

v1
2 + v2

2 + v3
2( )

*
+
,

-
.
/
dv1dv2dv3  

          
= ρ

m
2πkBT
!

"
#

$

%
&

3 2

v1
2 exp −

mv1
2

2kBT
(
)
*

+
,
-
dv1

−∞

+∞

∫ exp −
mv2

2

2kBT
(
)
*

+
,
-
dv2

−∞

+∞

∫ exp −
mv3

2

2kBT
(
)
*

+
,
-−∞

+∞

∫ dv3  

The first integral is equal to 2kBT m( )3 2 π 2( )  while the second two integrals are each equal to 

2πkBT m( )1 2 . Thus:  

 MF11 = ρ
m

2πkBT
!

"
#

$

%
&

3 2
2kBT
m

!

"
#

$

%
&
3 2

π
2

2πkBT
m

!

"
#

$

%
&
1 2 2πkBT

m
!

"
#

$

%
&
1 2

= ρ
kBT
m

= ρRT = p  

where kB/m = R from (1.28). This analysis may be repeated with i = j = 2, and i = j = 3 to find: 
MF22 = MF33 = p, as well.  
 Now consider the case i ≠ j. First note that MFij = MFji because the velocity product under 
the triple integral may be written in either order vivj = vjvi, so there are only three cases of 
interest.  Start with i = 1, and j = 2 to find: 

MF12 = ρ
m

2πkBT
!

"
#

$

%
&

3 2

v1v2
−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫ exp −
m
2kBT

v1
2 + v2

2 + v3
2( )

*
+
,

-
.
/
dv1dv2dv3  

         
= ρ

m
2πkBT
!

"
#

$

%
&

3 2

v1 exp −
mv1

2

2kBT
(
)
*

+
,
-
dv1

−∞

+∞

∫ v2 exp −
mv2

2

2kBT
(
)
*

+
,
-
dv2

−∞

+∞

∫ exp −
mv3

2

2kBT
(
)
*

+
,
-−∞

+∞

∫ dv3  

Here we need only consider the first integral. The integrand of this integral is an odd function 
because it is product of an odd function, v1, and an even function, exp −mv1

2 2kBT{ } . The 
integral of an odd function on an even interval [–∞,+∞] is zero, so MF12 = 0. And, this analysis 
may be repeated for i = 1 and j = 3, and i = 2 and j = 3 to find MF13 = MF23 = 0. 
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Exercise 1.8. Consider the viscous flow in a channel of width 2b. The channel is aligned in the 
x-direction, and the velocity u in the x-direction at a distance y from the channel centerline is 
given by the parabolic distribution 

€ 

u(y) =U0 1− y b( )2[ ]. Calculate the shear stress τ as a 

function y, µ, b, and Uo. What is the shear stress at y = 0? 
 

Solution 1.8. Start from (1.3):

€ 

τ = µ
du
dy

= µ
d
dy
Uo 1−

y
b
$ 

% 
& 
' 

( 
) 
2* 

+ 
, 

- 

. 
/ = –2µUo

y
b2

. At y = 0 (the location of 

maximum velocity) τ = 0. At At y = ±b (the locations of zero velocity),   

€ 

τ = 2µUo b . 
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Exercise 1.9. Hydroplaning occurs on wet roadways when sudden braking causes a moving 
vehicle’s tires to stop turning when the tires are separated from the road surface by a thin film of 
water. When hydroplaning occurs the vehicle may slide a significant distance before the film 
breaks down and the tires again contact the road. For simplicity, consider a hypothetical version 
of this scenario where the water film is somehow maintained until the vehicle comes to rest. 
a) Develop a formula for the friction force delivered to a vehicle of mass M and tire-contact area 
A that is moving at speed u on a water film with constant thickness h and viscosity µ. 
b) Using Newton’s second law, derive a formula for the hypothetical sliding distance D traveled 
by a vehicle that started hydroplaning at speed Uo 
c) Evaluate this hypothetical distance for M = 1200 kg, A = 0.1 m2, Uo = 20 m/s, h = 0.1 mm, and 
µ = 0.001 kgm–1s–1. Compare this to the dry-pavement stopping distance assuming a tire-road 
coefficient of kinetic friction of 0.8. 
 
Solution 1.9. a) Assume that viscous friction from the water layer transmitted to the tires is the 
only force on the sliding vehicle. Here viscous shear stress at any time will be µu(t)/h, where u(t) 
is the vehicle's speed. Thus, the friction force will be Aµu(t)/h. 

b) The friction force will oppose the motion so Newton’s second law implies: M du
dt
= −Aµ u

h
. 

This equation is readily integrated to find an exponential solution: u(t) =Uo exp −Aµt Mh( ) , 
where the initial condition, u(0) = Uo, has been used to evaluate the constant of integration. The 
distance traveled at time t can be found from integrating the velocity: 

x(t) = u( !t )d !t
o

t
∫ =Uo exp −Aµ !t Mh( )d !t

o

t
∫ = UoMh Aµ( ) 1− exp −Aµt Mh( )$% &'  . 

The total sliding distance occurs for large times where the exponential term will be negligible so: 
D =UoMh Aµ  

c) For M = 1200 kg, A = 0.1 m2, Uo = 20 m/s, h = 0.1 mm, and µ = 0.001 kgm–1s–1, the stopping 
distance is: D = (20)(1200)(10–4)/(0.1)(0.001) = 24 km! This is an impressively long distance and 
highlights the dangers of driving quickly on water covered roads. 
 For comparison, the friction force on dry pavement will be –0.8Mg, which leads to a 
vehicle velocity of: u(t) =Uo − 0.8gt , and a distance traveled of x(t) =Uot − 0.4gt

2 . The vehicle 
stops when u = 0, and this occurs at t = Uo/(0.8g), so the stopping distance is 

D =Uo
Uo

0.8g
!

"
#

$

%
&− 0.4g

Uo

0.8g
!

"
#

$

%
&

2

=
Uo
2

1.6g
, 

which is equal to 25.5 m for the conditions given. (This is nearly three orders of magnitude less 
than the estimated stopping distance for hydroplaning.) 
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Exercise 1.10. Estimate the height to which water at 20°C will rise in a capillary glass tube 3 
mm in diameter that is exposed to the atmosphere. For water in contact with glass the contact 
angle is nearly 0°. At 20°C, the surface tension of a water-air interface is σ = 0.073 N/m. 
 
Solution 1.10. Start from the result of Example 1.4. 

h = 2σ cosα
ρgR

=
2(0.073N /m)cos(0°)

(103kg /m3)(9.81m / s2 )(1.5×10−3m)
= 9.92mm  
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Exercise 1.11. A manometer is a U-shaped tube containing mercury of density ρm. Manometers 
are used as pressure-measuring devices. If the fluid in tank A has a pressure p and density ρ, then 
show that the gauge pressure in the tank is: p − patm = ρmgh − ρga. Note that the last term on the 
right side is negligible if ρ « ρm. (Hint: Equate the pressures at X and Y.) 
 

 
 
Solution 1.9. Start by equating the pressures at X and Y. 

pX = p + ρga  = patm + ρmgh = pY. 
Rearrange to find:  

 p – patm  =  ρmgh – ρga. 
 



Fluid Mechanics, 6th Ed.                                                                                                      Kundu, Cohen, and Dowling 

 
Exercise 1.12. Prove that if e(T, υ) = e(T) only and if h(T, p) = h(T) only, then the (thermal) 
equation of state is (1.28) or pυ = kT, where k is constant. 
 
Solution 1.12. Start with the first equation of (1.24): de = Tds – pdυ, and rearrange it: 

€ 

ds =
1
T
de +

p
T
dυ =

∂s
∂e
$ 

% 
& 

' 

( 
) 
υ

de +
∂s
∂υ

$ 

% 
& 

' 

( 
) 
e

dυ , 

where the second equality holds assuming the entropy depends on e and υ. Here we see that: 

€ 

1
T

=
∂s
∂e
# 

$ 
% 

& 

' 
( 
υ

, and 

€ 

p
T

=
∂s
∂υ

$ 

% 
& 

' 

( 
) 
e

. 

Equality of the crossed second derivatives of s, 

€ 

∂
∂υ

∂s
∂e
$ 

% 
& 

' 

( 
) 
υ

$ 

% 
& 

' 

( 
) 
e

=
∂
∂e

∂s
∂υ

$ 

% 
& 

' 

( 
) 
e

$ 

% 
& 

' 

( 
) 
υ

, implies: 

€ 

∂ 1 T( )
∂υ

$ 

% 
& 

' 

( 
) 
e

=
∂ p T( )
∂e

$ 

% 
& 

' 

( 
) 
υ

. 

However, if e depends only on T, then (∂/∂υ)e = (∂/∂υ)T, thus 

€ 

∂ 1 T( )
∂υ

$ 

% 
& 

' 

( 
) 
e

=
∂ 1 T( )
∂υ

$ 

% 
& 

' 

( 
) 
T

= 0 , so

€ 

∂ p T( )
∂e

# 

$ 
% 

& 

' 
( 
υ

= 0 , which can be integrated to find: p/T = f1(υ), where f1 is an undetermined function.  

 Now repeat this procedure using the second equation of (1.24), dh = Tds + υdp. 

€ 

ds =
1
T
dh − υ

T
dp =

∂s
∂h
% 

& 
' 

( 

) 
* 
p

dh +
∂s
∂p
% 

& 
' 

( 

) 
* 
h

dp. 

Here equality of the coefficients of the differentials implies: 

€ 

1
T

=
∂s
∂h
# 

$ 
% 

& 

' 
( 
p
, and 

€ 

−
υ
T

=
∂s
∂p
% 

& 
' 

( 

) 
* 
h

. 

So, equality of the crossed second derivatives implies: 

€ 

∂ 1 T( )
∂p

# 

$ 
% 

& 

' 
( 
h

= −
∂ υ T( )
∂h

# 

$ 
% 

& 

' 
( 
p

. Yet, if h depends 

only on T, then (∂/∂p)h = (∂/∂p)T, thus 

€ 

∂ 1 T( )
∂p

# 

$ 
% 

& 

' 
( 
h

=
∂ 1 T( )
∂p

# 

$ 
% 

& 

' 
( 
T

= 0, so

€ 

−
∂ υ T( )
∂h

% 

& 
' 

( 

) 
* 
p

= 0 , which can 

be integrated to find: υ/T = f2(p), where f2 is an undetermined function. 
 Collecting the two results involving f1 and f2, and solving for T produces: 

€ 

p
f1(υ)

= T =
υ
f2(p)

   or   

€ 

pf2(p) =υf1(υ) = k , 

where k must be is a constant since p and υ are independent thermodynamic variables. 
Eliminating f1 or f2 from either equation on the left, produces pυ = kT. 
 And finally, using both versions of (1.24) we can write: dh – de = υdp + pdυ = d(pυ). 
When e and h only depend on T, then dh = cpdT and de = cvdT, so 

dh – de = (cp – cv)dT = d(pυ) = kdT ,  thus  k = cp – cv = R, 
where R is the gas constant. Thus, the final result is the perfect gas law: p = kT/υ = ρRT. 
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Exercise 1.13. Starting from the property relationships (1.24) prove (1.31) and (1.32) for a 
reversible adiabatic process involving a perfect gas when the specific heats cp and cv are constant. 
 
Solution 1.13. For an isentropic process: de = Tds – pdυ = –pdυ, and dh = Tds + υdp = +υdp. 
Equations (1.31) and (1.32) apply to a perfect gas so the definition of the specific heat capacities 
(1.20), and (1.21) for a perfect gas, dh = cpdT, and de = cvdT , can be used to form the ratio 
dh/de: 

dh
de

=
cpdT
cvdT

=
cp
cv
= γ = −

υdp
pdυ

  or  

€ 

−γ
dυ
υ

= γ
dρ
ρ

=
dp
p

. 

The final equality integrates to: ln(p) = γln(ρ) + const which can be exponentiated to find: 
p = const.ργ, 

which is (1.31). The constant may be evaluated at a reference condition po and ρo to find: 

€ 

p po = ρ ρo( )γ and this may be inverted to put the density ratio on the left  

€ 

ρ ρo = p po( )1 γ , 
which is the second equation of (1.32). The remaining relationship involving the temperature is 
found by using the perfect gas law, p = ρRT, to eliminate ρ = p/RT: 

€ 

ρ
ρo

=
p RT
po RTo

=
pTo
poT

=
p
po

# 

$ 
% 

& 

' 
( 

1 γ

  or  

€ 

T
To

=
p
po

p
po

" 

# 
$ 

% 

& 
' 

−1 γ

=
p
po

" 

# 
$ 

% 

& 
' 

(γ −1) γ

, 

which is the first equation of (1.32).   
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Exercise 1.14. A cylinder contains 2 kg of air at 50°C and a pressure of 3 bars. The air is 
compressed until its pressure rises to 8 bars. What is the initial volume? Find the final volume for 
both isothermal compression and isentropic compression. 
 
Solution 1.14. Use the perfect gas law but explicitly separate the mass M of the air and the 
volume V it occupies via the substitution ρ = M/V: 

p = ρRT = (M/V)RT. 
Solve for V at the initial time: 

Vi = initial volume = MRT/pi = (2 kg)(287 m2/s2K)(273 + 50°)/(300 kPa) = 0.618 m3. 
For an isothermal process: 

Vf = final volume = MRT/pf = (2 kg)(287 m2/s2K)(273 + 50°)/(800 kPa) = 0.232 m3. 
For an isentropic process: 

Vf =Vi pi pf( )
1 γ
= 0.618m3 300kPa 800kPa( )1 1.4 = 0.307m3 . 
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Exercise 1.15. Derive (1.35) starting from Figure 1.9 and the discussion at the beginning of 
Section 1.10.  
 
Solution 1.15. Take the z axis vertical, and consider a small fluid element δm of fluid having 
volume δV that starts at height z0 in a stratified fluid medium having a vertical density profile = 
ρ(z), and a vertical pressure profile p(z). Without any vertical displacement, the small mass and 
its volume are related by δm = ρ(z0)δV. If the small mass is displaced vertically a small distance 
ζ via an isentropic process, its density will change isentropically according to: 

€ 

ρa (z0 + ζ ) = ρ(z0) + dρa dz( )ζ + ... 
where dρa/dz is the isentropic density gradient at z0. For a constant δm, the volume of the fluid 
element will be: 

€ 

δV =
δm
ρa

=
δm

ρ(z0) + dρa dz( )ζ + ...
=

δm
ρ(z0)

1− 1
ρ(z0)

dρa
dz

ζ + ...
& 

' 
( 

) 

* 
+  

The background density at z0 + ζ is: 

€ 

ρ(z0 + ζ ) = ρ(z0) + dρ dz( )ζ + ... 
If g is the acceleration of gravity, the (upward) buoyant force on the element at the vertically 
displaced location will be gρ(z0 + ζ)δV, while the (downward) weight of the fluid element at any 
vertical location is gδm. Thus, a vertical application Newton's second law implies: 

€ 

δm d2ζ
dt 2

= +gρ(z0 + ζ )δV − gδm = g ρ(z0) + dρ dz( )ζ + ...( ) δm
ρ(z0)

1− 1
ρ(z0)

dρa
dz

ζ + ...
& 

' 
( 

) 

* 
+ − gδm , 

where the second equality follows from substituting for ρ(z0 + ζ) and δV from the above 
equations. Multiplying out the terms in (,)-parentheses and dropping second order terms 
produces: 

€ 

δm d2ζ
dt 2

= gδm +
gδm
ρ(z0)

dρ
dz
ζ −

gδm
ρ(z0)

dρa
dz

ζ + ...− gδm ≅
gδm
ρ(z0)

dρ
dz

−
dρa
dz

' 

( 
) 

* 

+ 
, ζ  

Dividing by δm and moving all the terms to the right side of the equation produces: 

€ 

d2ζ
dt 2

−
g

ρ(z0)
dρ
dz

−
dρa
dz

% 

& 
' 

( 

) 
* ζ = 0 

Thus, for oscillatory motion at frequency N, we must have  

€ 

N 2 = −
g

ρ(z0)
dρ
dz

−
dρa
dz

$ 

% 
& 

' 

( 
) , 

which is (1.35).  
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Exercise 1.16. Starting with the hydrostatic pressure law (1.14), prove (1.36) without using 
perfect gas relationships. 
 
Solution 1.16. The adiabatic temperature gradient dTa/dz, can be written terms of the pressure 
gradient: 

€ 

dTa
dz

=
∂T
∂p
# 

$ 
% 

& 

' 
( 
s

dp
dz

= −gρ ∂T
∂p
# 

$ 
% 

& 

' 
( 
s

 

where the hydrostatic law dp/dz = –ρg has been used to reach the second equality. Here, the final 
partial derivative can be exchanged for one involving υ = 1/ρ and s, by considering: 

€ 

dh =
∂h
∂s
# 

$ 
% 

& 

' 
( 
p

ds+
∂h
∂p
# 

$ 
% 

& 

' 
( 
s

dp = Tds+υdp . 

Equality of the crossed second derivatives of h, 

€ 

∂
∂p

∂h
∂s
# 

$ 
% 

& 

' 
( 
p

# 

$ 
% 

& 

' 
( 
s

=
∂
∂s

∂h
∂p
# 

$ 
% 

& 

' 
( 
s

# 

$ 
% 

& 

' 
( 
p

, implies: 

€ 

∂T
∂p
# 

$ 
% 

& 

' 
( 
s

=
∂υ
∂s
# 

$ 
% 

& 

' 
( 
p

=
∂υ
∂T
# 

$ 
% 

& 

' 
( 
p

∂T
∂s
# 

$ 
% 

& 

' 
( 
p

=
∂υ
∂T
# 

$ 
% 

& 

' 
( 
p

∂s
∂T
# 

$ 
% 

& 

' 
( 
p

, 

where the second two equalities are mathematical manipulations that allow the introduction of 

€ 

α = −
1
ρ
∂ρ
∂T
& 

' 
( 

) 

* 
+ 
p

= ρ
∂υ
∂T
& 

' 
( 

) 

* 
+ 
p
,  and  cp =

∂h
∂T
!

"
#

$

%
&
p

= T ∂s
∂T
!

"
#

$

%
&
p

. 

Thus,  
dTa
dz

= −gρ ∂T
∂ p
"

#
$

%

&
'
s

= −gρ ∂υ
∂T
"

#
$

%

&
'
p

∂s
∂T
"

#
$

%

&
'
p

= −gα
cp
T
"

#
$

%

&
'= −

gαT
cp

. 
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Exercise 1.17. Assume that the temperature of the atmosphere varies with height z as T = T0 + 

Kz where K is a constant. Show that the pressure varies with height as p = p0
T0

T0 +Kz
!

"
#

$

%
&

g KR

 where 

g is the acceleration of gravity and R is the gas constant for the atmospheric gas. 
 
Solution 1.17. Start with the hydrostatic and perfect gas laws, dp/dz = –ρg, and p = ρRT, 
eliminate the density, and substitute in the given temperature profile to find:  

€ 

dp
dz

= −ρg = −
p
RT

g = −
p

R(T0 + Kz)
g  or  

€ 

dp
p

= −
g
R

dz
(T0 + Kz)

. 

The final form may be integrated to find: 

€ 

ln p = −
g
RK

ln T0 + Kz( ) + const. 

At z = 0, the pressure must be p0, therefore: 

€ 

ln p0 = −
g
RK

ln T0( ) + const. 

Subtracting this from the equation above and invoking the properties of logarithms produces: 

€ 

ln p
p0

" 

# 
$ 

% 

& 
' = −

g
RK

ln T0 + Kz
T0

" 

# 
$ 

% 

& 
'  

Exponentiating produces: 

€ 

p
p0
= T0 + Kz

T0

" 

# 
$ 

% 

& 
' 

−g/KR

, which is the same as: 

€ 

p = p0
T0

T0 + Kz
" 

# 
$ 

% 

& 
' 

g/KR

. 

 

Fluid Mechanics 6th Edition Kundu Solutions Manual
Full Download: https://testbanklive.com/download/fluid-mechanics-6th-edition-kundu-solutions-manual/

Full download all chapters instantly please go to Solutions Manual, Test Bank site: TestBankLive.com

https://testbanklive.com/download/fluid-mechanics-6th-edition-kundu-solutions-manual/

	sm ch (1).pdf (p.1-60)

