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Chapter 2 

 2.1  

 (a)  

 

 [k(1)] = 

1 1

1 1

0 – 0

0 0 0 0

– 0 0

0 0 0 0

k k

k k
 

 [k(2)] = 
2 2

2 2

0 0 0 0

0 0 0 0

0 0 –

0 0 –

k k

k k

 

 [k 3
(3)] = 

3 3

3 3

0 0 0 0

0 0 –

0 0 0 0

0 – 0

k k

k k

 

 [K] = [k(1)] + [k(2)] + [k(3)] 

 [K] = 

1 1

3 3

1 1 2 2

3 2 2 3

0 – 0

0 0 –

– 0 –

0 – –

k k

k k

k k k k

k k k k

 

(b) Nodes 1 and 2 are fixed so u1 = 0 and u2 = 0 and [K] becomes 

 [K] = 
1 2 2

2 2 3

–

–

k k k

k k k
 

 {F} = [K] {d} 

 
3

4

x

x

F

F
 = 

1 2 2

2 2 3

–

–

k k k

k k k

3

4

u

u
 

  
0

P
 = 

1 2 2

2 2 3

–

–

k k k

k k k

3

4

u

u
 

 {F} = [K] {d}  [K] 
–1 {F} = [K ]–1 [K] {d} 
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    K] 
–1 {F} = {d} 

  Using the adjoint method to find [K 
–1]  

  C11 = k2 + k3 C21 = (– 1)3 (– k2) 

  C12 = (– 1)1 + 2 (– k2) = k2 C22 = k1 + k2 

  [C] = 
2 3 2

2 1 2

k k k

k k k
 and CT = 

2 3 2

2 1 2

k k k

k k k
 

 det [K] = | [K] | = (k1 + k2) (k2 + k3) – ( – k2) (– k2) 

  | [K] | = (k1 + k2) (k2 + k3) – k2
2 

  [K 
–1] = 

[ ]

det

TC

K
 

  [K 
–1] = 

2 3 2

2 1 2

2
1 2 2 3 2( ) ( ) –

k k k

k k k

k k k k k
= 

2 3 2

2 1 2

1 2 1 3 2 3

k k k

k k k

k k k k k k
 

  
3

4

u

u
 = 

2 3 2

2 1 2

1 2 1 3 2 3

0k k k

k k k P

k k k k k k
 

  u3 = 2

1 2 1 3 2 3

k P

k k k k k k
 

  u4 = 1 2

1 2 1 3 2 3

( )k k P

k k k k k k
  

 (c) In order to find the reaction forces we go back to the global matrix F = [K]{d} 

  

1

2

3

4

x

x

x

x

F

F

F

F

 = 

11 1

23 3

1 1 2 2 3

3 2 2 3 4

0 0

0 0

0

0

uk k

uk k

k k k k u

k k k k u

 

  F1x = – k1 u3 = – k1 
2

1 2 1 3 2 3

k P

k k k k k k
 

  F1x = 1 2

1 2 1 3 2 3

k k P

k k k k k k
 

  F2x = – k3 u4 = – k3
1 2

1 2 1 3 2 3

( )k k P

k k k k k k
 

  F2x = 3 1 2

1 2 1 3 2 3

( )k k k P

k k k k k k
 

 2.2 
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 k1 = k2 = k3 = 1000 
lb

in.
 

  (1)  (2)  (2)  (3) 

 [k(1)] =  
(1)

(2)

k k

k k
;   [k(2)] = 

(2)

(3)

k k

k k
 

  By the method of superposition the global stiffness matrix is constructed. 

     (1)     (2)       (3) 

 [K] = 

0 (1)

(2)

0 (3)

k k

k k k k

k k

 [K] = 

0

2

0

k k

k k k

k k

 

  Node 1 is fixed  u1 = 0 and u3 =  

 {F} =  [K] {d} 

 

1

2

3

?

0

?

x

x

x

F

F

F

 =  

0

2

0

k k

k k k

k k

 

1

2

3

0

?

u

u

u

 
 

 
   

 

 
3

0

xF
 = 

22

3 2

0 22

x

k u kk k u

F k u kk k
 

  u2 = 
2k

k
 = 

2
 = 

1 in.

2
  u2 = 0.5  

 F3x = – k (0.5) + k (1) 

 F3x = (– 1000 
lb

in.
) (0.5) + (1000 

lb

in.
) (1) 

 F3x = 500 lbs 

  Internal forces 

  Element (1) 

 

(1)
1

(2)
2

x

x

f

f
 = 

1

2

0

0.5

uk k

k k u
 

   (1)
1xf  = (– 1000 

lb

in.
) (0.5)  (1)

1xf  = – 500 lb 

 (1)
2xf  = (1000 

lb

in.
) (0.5)  (1)

2xf  = 500 lb 

  Element (2) 
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(2)
2

(2)
3

x

x

f

f
 = 

2 2

3 3

0.5 0.5

1 1

u uk k k k

u uk k k k
 

(2)
2

(2)
3

– 500 lb

500 lb

x

x

f

f
  

 2.3 

  

 (a) [k(1)] = [k(2)] = [k(3)] = [k(4)] = 
k k

k k
 

  By the method of superposition we construct the global [K] and knowing {F} = [K] {d} 

  we have 

 

1

2

3

4

5

?

0

0

?

x

x

x

x

x

F

F

F P

F

F

 = 

0 0 0

2 0 0

0 2 0

0 0 2

0 0 0

k k

k k k

k k k

k k k

k k

1

2

3

4

5

0

0

u

u

u

u

u

    

 (b) 

0

0

P  = 

2 2 3

3 2 3 4

3 44

2 0 0 2

2 2

0 2 0 2

uk k ku ku

k k k u P ku ku ku

k k ku kuu

 

  u2 = 3

2

u
 ; u4 = 3

2

u
 

  Substituting in the second equation above 

  P = – k u2 + 2k u3 – k u4 

  P = – k 3

2

u
 + 2k u3 – k 3

2

u
 

   P = ku3 

   u3 = 
P

k
 

  u2 = 
2

P

k
 ; u4 = 

2

P

k
 

 (c) In order to find the reactions at the fixed nodes 1 and 5 we go back to the global 

equation {F} = [K] {d} 

 F1x = – ku2 = –
2

P
k

k
  F1x = 

2

P
 

 F5x = – ku4 = –
2

P
k

k
  F5x = 

2

P
 

  Check 

 Fx = 0  F1x + F5x + P = 0 

(1) 

(2) 

(3) 
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2

P
 + 

2

P
  + P = 0 

   0 = 0 

  2.4 

 

 (a) [k(1)] = [k(2)] = [k(3)] = [k(4)] = 
k k

k k
 

  By the method of superposition the global [K] is constructed. 

 Also {F} = [K] {d} and u1 = 0 and u5 =  

 

1

2

3

4

5

?

0

0

0

?

x

x

x

x

x

F

F

F

F

F

 = 

0 0 0

2 0 0

0 2 0

0 0 2

0 0 0

k k

k k k

k k k

k k k

k k

1

2

3

4

5

0

?

?

?

u

u

u

u

u

 

 (b) 0 = 2k u2 – k u3 (1) 

 0 = – ku2 + 2k u3 – k u4 (2) 

 0 = – k u3 + 2k u4 – k   (3) 

 From (2) 

 u3 = 2 u2 

 From (3) 

 u4 = 22

2

u
 

  Substituting in Equation (2)  

  – k (u2) + 2k (2u2) – k 22

2

u  
 
 

 

   – u2 + 4 u2 – u2 – 
2

 = 0  u2 = 
4

 

 u3 = 2
4

  u3 = 
2

 

 u4 = 4
2

2
  u4 = 

3

4
 

 (c) Going back to the global equation 



 

8 
© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in 

whole or in part. 

 

 

 {F} = [K]{d} 

 F1x = – k u2 = 
4

k   F1x = 
4

k
 

 F5x = – k u4 + k  = – k
3

4
 + k  

  F5x = 
4

k
 

 2.5 

 

 u1  u2   u2  u4 

 [k (1)] = 
1 1

1 1
;    [k (2)] = 

2 2

2 2
 

 u2  u4  u2  u4 

 [k (3)] = 
3 3

3 3
;    [k (4)] = 

4 4

4 4
 

 u4  u3 

 [k (5)] = 
5 5

5 5
 

  Assembling global [K] using direct stiffness method 

 [K] = 

1 1 0 0

1 1 2 3 4 0 2 3 4

0 0 5 5

0 2 3 4 5 2 3 4 5

 

  Simplifying 

 [K] = 

1 1 0 0

1 10 0 9 kip

0 0 5 5 in.

0 9 5 14

 

 2.6 Now apply + 3 kip at node 2 in spring assemblage of P 2.5. 

  F2x = 3 kip 

 [K]{d} = {F} 



 

9 
© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in 

whole or in part. 

 

 

  [K] from P 2.5 

  

1 1 0 0

1 10 0 9

0 0 5 5

0 9 5 14

1

2

3

4

0

0

u

u

u

u

 = 

1

3

3

0

F

F

 
 
 
 
 
  

 (A) 

  where u1 = 0, u3 = 0 as nodes 1 and 3 are fixed.  

  Using Equations (1) and (3) of (A) 

 
2

4

10 9

9 14

u

u
 = 

3

0

 
 
 

 

  Solving 

 u2 =  0.712 in.,   u4 = 0.458 in. 

 2.7 

 

 f1x = C,  f2x = – C 

 f = – k = – k(u2 – u1) 

  f1x = – k(u2 – u1) 

  f2x = – (– k) (u2 – u1) 

 
1

2

x

x

f

f
 =  

k –k

–k k

1

2

u

u
 

  [K] = 
k –k

–k k

same as for

tensile element
 

 2.8 

 

  k1 =  1000
1 1

1 1
; k2 = 1000

1 1

1 1
 

  So 
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 [K] =  1000 

1 1 0

1 2 1

0 1 1

 

 {F} =  [K] {d} 

 

1

2

3

?

0

500

F

F

F

 
 
 

  

 =  

1 1 0

10 1 2 100

0 1 1

 
  
 

  

1

2

3

0

?

?

u

u

u

 

  0 = 2000 u2 – 1000 u3  (1) 

 500 =   – 1000 u2 + 1000 u3  (2) 

 From (1) 

  u2 = 
1000

2000
 u3  u2 = 0.5 u3  (3) 

  Substituting (3) into (2) 

  500 = – 1000 (0.5 u3) + 1000 u3 

  500 = 500 u3 

  u3 = 1 in. 

  u2 = (0.5) (1 in.)  u2 = 0.5 in. 

  Element 1–2 

 

(1)
1

(1)
2

x

x

f

f
 = 1000

(1)
1

(1)
2

500lb1 1 0 in.

1 1 0.5 in. 500lb

x

x

f

f

    
      

 

  Element 2–3 

 

(2)
2

(2)
3

x

x

f

f
 =  1000 

(2)
2

(2)
3

500 lb1 1 0.5 in.

1 1 1 in. 500 lb

x

x

f

f

    
      

 

 F1x =  500 [1  –1  0] 1

0

0.5 in. 500 lb

1 in.

xF

 
    
 
  

 

 2.9 

 

 (1) (2)                   

 [k(1)] = 
5000 5000

5000 5000

 
  

 

   (2) (3) 
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 [k(2)] = 
5000 5000

5000 5000

 
  

 

 (3) (4) 

 [k(3)] = 
5000 5000

5000 5000

 
  

 

 (1) (2) (3) (4) 

 [K] =  

5000 5000 0 0

5000 10000 5000 0

0 5000 10000 5000

0 0 5000 5000

 
  
 

  
 

 

 

 

1

2

3

4

?

1000

0

4000

x

x

x

x

F

F

F

F

=  

5000 5000 0 0

5000 10000 5000 0

0 5000 10000 5000

0 0 5000 5000

 
  
 

  
 

 

1

2

3

4

0u

u

u

u

 

  u1 = 0 in. 

 u2 =  0.6 in. 

 u3 =  1.4 in. 

 u4 = 2.2 in. 

  Reactions 

 F1x =  [5000   – 5000   0   0] 

1

2

3

4

0

0.6

1.4

2.2

u

u

u

u

 
  
 

 
  

F1x = – 3000 lb 

  Element forces 

  Element (1) 

 

(1)
1

(1)
2

x

x

f

f
 =  

5000 5000 0

5000 5000 0.6

   
     

 

(1)
1

(1)
2

3000lb

3000lb

x

x

f

f
 

  Element (2) 

 

(2)
2

(2)
3

x

x

f

f
 =  

5000 5000 0.6

5000 5000 1.4

   
     

 

(2)
2

(2)
3

4000lb

4000lb

x

x

f

f
 

  Element (3) 

 

(3) (3)
3 3

(3) (3)
4 4

x x

x x

f f

f f
 =  

5000 5000 1.4

5000 5000 2.2

   
     

 

(3)
3

(3)
4

4000lb

4000lb

x

x

f

f
 

 2.10 
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 [k(1)] = 
1000 1000

1000 1000
 

 [k(2)] = 
500 500

500 500
 

 [k(3)] = 
500 500

500 500
 

 {F} =  [K] {d} 

 

1

2

3

4

?

– 8000

?

?

x

x

x

x

F

F

F

F

 
  
 

 
  

 =  

1

2

3

4

01000 1000 0 0

?1000 2000 500 500

00 500 500 0

0 500 0 500 0

u

u

u

u

 

  u2 = 
8000

2000


 = – 4 in. 

  Reactions 

 

1

2

3

4

x

x

x

x

F

F

F

F

 =  

01000 1000 0 0

1000 2000 500 500 4

0 500 500 0 0

0 500 0 500 0

   
         

   
      

 

   

1

2

3

4

x

x

x

x

F

F

F

F

 = 

4000

8000

2000

2000

 
  
 
 
  

 lb 

  Element (1) 

 

(1)
1

(1)
2

x

x

f

f
 =  

1000 1000 0

1000 1000 –4

   
     

 

(1)
1

(1)
2

x

x

f

f
 = 

4000

4000

 
 
 

lb 

  Element (2) 

 

(2)
2

(2)
3

x

x

f

f
 =  

500 500 4

500 500 0

   
     

 

(2)
2

(2)
3

x

x

f

f
 = 

– 2000

2000

 
 
 

lb 

  Element (3) 
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(3)
2

(3)
4

x

x

f

f
 =  

500 500 4

500 500 0

   
     

 

(3)
2

(3)
4

x

x

f

f

2000

2000

 
 
 

lb 

 2.11 

 

 [k(1)] = 
1000 1000

1000 1000

 
  

;   [k(2)] = 
3000 3000

3000 3000

 
  

 

 {F} = [K] {d} 

 

1

2

3

?

0

?

x

x

x

F

F

F

 =  

1000 1000 0

1000 4000 3000

0 3000 3000

 
  
 

  

1

2

3

0

?

0.02 m

u

u

u

 

  u2 = 0.015 m 

  Reactions 

 F1x = (– 1000) (0.015)  F1x = – 15 N 

  Element (1) 

 
1

2

x

x

f

f

 
 
 

 = 
1000 1000

1000 1000

 
  

 
0

0.015

 
 
 

 
1

2

x

x

f

f

 
 
 


15

15

 
 
 

N 

  Element (2) 

 
2

3

x

x

f

f

 
 
 

 = 
3000 –3000

–3000 3000

 
 
 

0.015

0.02

 
 
 

 
2

3

x

x

f

f

 
 
 

 = 
15

15

 
 
 

N 

 2.12 

 

 [k(1)] = [k(3)] = 10000 
1 1

1 1
 

 [k(2)] = 10000 
3 3

3 3

 
 
 

  

 {F}  = [K] {d} 
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1

2

3

4

?

450 N

0

?

x

x

x

x

F

F

F

F

 
  
 

 
  

 = 10000 

1 1 0 0

1 4 3 0

0 3 4 1

0 0 1 1

 
  
 

  
 

 

 

1

2

3

4

0

?

?

0

u

u

u

u

 

   0 = – 3 u2 + 4 u3  u2 = 
4

3
 u3  u2 = 1.33 u3 

 450 N = 40000 (1.33 u3) – 30000 u3 

  450 N = (23200 
N

m
) u3  u3 = 1.93  10–2 m 

  u2 = 1.5 (1.94  10–2)  u2 = 2.57  10–2 m  

  Element (1) 

 
1

2

x

x

f

f

 
 
 

 = 10000 
1 1

1 1
 

2

0

2.57 10
 
 

 
 

(1)
1

(1)
2

257 N

257 N

x

x

f

f

 


 

  Element (2) 

 
2

3

x

x

f

f

 
 
 

= 30000 
1 1

1 1
 

2

2

2.57 10

1.93 10





  
 

  

 

(2)
2

(2)
3

193 N

193 N

x

x

f

f



 
   

  Element (3) 

 
3 3

4 4

x x

x x

f f

f f

   
   
   

= 10000 
1 1

1 1
 

21.93 10

0

 
 
 

  

(3)
3

(3)
4

193 N

193 N

x

x

f

f



 
 

  Reactions 

 {F1x} = (10000 
N

m
) [1 – 1] 

2

0

2.57 10
 
 

 
 F1x = – 257 N 

 {F4x} = (10000 
N

m
) [–1   1] 

21.93 10

0

 
 
 

 

  F4x = – 193 N 

 2.13 

 

 [k(1)] = [k(2)] = [k(3)] = [k(4)] = 60 
1 1

1 1
 

 {F} = [K]{d} 
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1

2

3

4

5

?

0

5 kN

0

?

x

x

x

x

x

F

F

F

F

F

 
 
  

 
 
 

  

 = 60 

1 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 1

 

1

2

3

4

5

0

?

?

?

0

u

u

u

u

u

 

  
2 3 2 3

3 4 4 3

0 2 – 0.5

0 – 2 0.5

u u u u

u u u u
  u2 = u4 

  5 kN = – 60 u2 + 120 (2 u2) – 60 u2 

  5 = 120 u2  u2 = 0.042 m 

  u4 = 0.042 m 

  u3 = 2(0.042)  u3 = 0.084 m 

  Element (1) 

 
1

2

x

x

f

f

 
 
 

 = 60 
1 1

1 1
 

0

0.042

 
 
 

 

(1)
1

(1)
2

2.5 kN

2.5 kN

x

x

f

f

 


 

  Element (2) 

 
2

3

x

x

f

f

 
 
 

= 60 
1 1 1 1

1 1 1 1
 

0.042

0.084

 
 
 

 

(2)
2

(2)
3

2.5 kN

2.5 kN

x

x

f

f

 


 

  Element (3)  

 
3 3

4 4

x x

x x

f f

f f
=  60 

1 1 1 1

1 1 1 1
 

0.084

0.042

 
 
 

 

(3) (3)
3 3

(3) (3)
4 4

2.5 kN 2.5 kN

2.5 kN 2.5 kN

x x

x x

f f

f f
 

  Element (4) 

 
4 4

5 5

x x

x x

f f

f f

   
   
   

= 60 
1 1 1 1

1 1 1 1
 

0.042

0

 
 
 

 

(4) (4)
4 4

(4) (4)
5 5

2.5 kN 2.5 kN

2.5 kN 2.5 kN

x x

x x

f f

f f

 

   
 

 F1x = 60 [1   –1] 
0

0.042

 
 
 

 F1x = – 2.5 kN 

 F5x = 60 [–1   1] 
0.042

0

 
 
 

 F5x = – 2.5 kN 

 2.14 

 

  [k(1)] = [k(2)] = 4000 
1 1

1 1
 

 {F} = [K]d} 
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1

2

3

?

100

200

x

x

x

F

F

F

 = 4000 

1 1 0

1 2 1

0 1 1

 

1

2

3

0

?

?

u

u

u

 

 100 = 8000 u2 – 4000 u3 

 – 200 = – 4000 u2 + 4000 u3   

 – 100 = 4000 u2  u2 = – 0.025 m 

 100 = 8000 (– 0.025) – 4000 u3  u3 = – 0.075 m 

  Element (1) 

 
1

2

x

x

f

f

 
 
 

 = 4000 
1 1

1 1
 

0

0.025

 
 
 

  

(1)
1

(1)
2

100 N

100 N

x

x

f

f



 
 

  Element (2) 

 
2 2

3 3

x x

x x

f f

f f

   
   
   

 = 4000 
1 –1

–1 1
 

0.025

0.075

 
 
 

  

(2)
2

(2)
3

200 N

200 N

x

x

f

f



 
 

  Reaction 

 {F1x} = 4000 [1   –1] 
0

0.025

 
 
 

  F1x = 100 N 

 2.15 

  

 [k(1)] = 
500 500

500 500
;  [k(2)] = 

500 500

500 500
;  [k(3)] = 

1000 1000

1000 1000
 

 

1

2

3

4

?

?

4 kN

?

x

x

x

x

F

F

F

F

 
  
 

 
  

 = 

500 0 500 0

0 500 500 0

500 500 2000 1000

0 0 1000 1000

 

1

2

3

4

0

0

?

0

u

u

u

u

 

  u3 = 0.002 m 

  Reactions 

 F1x = (– 500) (0.002)  F1x = – 1.0 kN 

 F2x = (– 500) (0.002)  F2x = – 1.0 kN 

 F4x = (– 1000) (0.002)  F4x = – 2.0 kN 

  Element (1) 

 
1

3

x

x

f

f

 
 
 

 = 
500 500

500 500
 

0

0.002

 
 
 

 
1

3

x

x

f

f

 
 
 

 = 
1.0 kN

1.0 kN
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  Element (2) 

 
2

3

x

x

f

f

 
 
 

 = 
500 500 500 500

500 500 500 500
 

0

0.002

 
 
 

 
2

3

x

x

f

f

 
 
 

 = 
1.0 kN 1.0 kN

1.0 kN 1.0 kN

    
   
   

 

  Element (3) 

 
3

4

x

x

f

f

 
 
 

 = 
1000 1000

1000 1000
 

0.001 0.002

0 0

   
   
   

 
3

4

x

x

f

f

 
 
 

 = 
2.0 kN

2.0 kN

 
 
 

 

 2.16 

 

 

1

4

200

200

x

x

F

F

 
 
 
 
 
  

 = 

100 100 0 0

100 100 100 100 0

0 100 100 100 100

0 0 100 100

 
2

3

0

0

u

u
 

 
200

200

 
 
 

 = 
200 100

100 200
 

2

3

u

u
 

 u2 = 
2

3
 in. 

 u3 = – 
2

3
 in. 

 2.17 

 

 

1

4

?

0

1000 N

?

x

x

F

F

 = 

500 –500 0 0

400 300
500 –300 – 300 –400

500 300

0 –300 – 300 (300 300 400) –400

0 –400 – 400 400 400

1

2

3

4

0

0

u

u

u

u

 

 0  = 1500 u2 – 600 u3 

 1000  = – 600 u2 + 1000 u3 
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 u3  = 
15 0 0

6 0 0
  u2 =  2.5 u2 

 1000  =  – 600 u2 + 1000 (2.5 u2) 

 1000  = 1900 u2 

 u2  = 
1000

1900
 = 

1

1.9
 mm = 0.526 mm 

 u3  = 2.5 
1

1.9
 mm = 1.316 mm 

 F1x  =  – 500 
1

1.9
 = – 263.16 N 

 F4x  = – 400 
1

1.9
 – 400  

1
2.5

1.9
 

  = – 400 
1 2.5

1.9 1.9
 = –736.84 N 

    Fx = – 263.16 + 1000 – 736.84 = 0 

 2.18  

 (a) 

 

  As in Example 2.4 

 p = U +  

 U = 
1

2
 k x2,  = – Fx 

  Set up table 

 p = 
1

2
 (2000) x2 – 1000 x = 1000 x2 – 1000 x 

Deformation x, in. p, lbin. 

– 3.0 6000 

– 2.0 3000 

– 1.0 1000 

   0.0 0 

   0.5 – 125 

1.0 0 
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2.0 1000 

  
p

x
 = 2000 x – 1000 = 0  x = 0.5 in. yields minimum p as table verifies. 

 

 (b) 

 

 p = 
1

2
 kx2 – Fx = 250 x2 – 1000 x 

x, in. p, lbin. 

– 3.0 11250 

– 2.0 3000 

– 1.0 1250 

0 0 

1.0 – 750 

2.0 – 1000 

3.0 – 750 

 
p

x
 = 500 x – 1000 = 0  

  x = 2.0 in. yields p minimum 

 (c) 
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 p = 
1

2
 (2000) x2 – 3924 x = 1000 x2 – 3924 x 

 
p

x
 = 2000 x – 3924 = 0 

  x = 1.962 mm yields p minimum 

 p min = 
1

2
 (2000) (1.962)2 – 3924 (1.962) 

  p min = – 3849.45 Nmm 

 (d)   p = 
1

2
 (400) x2 – 981 x 

 
p

x
 = 400 x – 981 = 0 

  x = 2.4525 mm yields p minimum 

 p min = 
1

2
 (400) (2.4525)2 – 981 (2.4525) 

  p min = – 1202.95 Nmm 

 2.19 

  

 p = 
1

2
 kx2 – Fx 

 p = 
1

2
 (500) x2 – 1000 x 

 p = 250 x2 – 1000 x 
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p

x
 = 500 x  – 1000 = 0 

  x = 2.0 in.  

 2.20 

  

 F = k2 (x = ) 

 dU = F dx 

  U = 
0

x
(kx2) dx 

 U = 
3

3

k x
 

  = – Fx 

 p = 
1

3
 kx3 – 500 x 

 
p

x
 = 0 = kx2 – 500 

 0 = 1000 x2 – 500 

   x = 0.707 in.   (equilibrium value of displacement) 

 p min = 
1

3
 (1000) (0.707)3 –500 (0.707) 

 p min = – 235.7 lbin. 

 2.21 Solve Problem 2.10 using P.E. approach 
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 p = 
3

1e

p (e) = 
1

2
 k1 (u2 – u1)2 + 

1

2
 k2 (u3 – u2)2 + 

1

2
 k3 (u4 – u2)2 

  – f1x
(1) u1 – f2x

(1) u2 – f2x
(2) u2 

  – f3x
(2) u3 – f2x

(3) u2 – f4x
(3) u4 

 
1

p

u
 = – k1 u2 + k1 u1 – f1x

(1) = 0 (1) 

 
2

p

u
 = k1 u2 – k1 u1 – k2 u3 + k2 u2 – k3 u4  

+ k3 u2 – f2x
(1) – f2x

(2) – f2x
(3) = 0 

(2) 

 
3

p

u
 = k2 u3 – k2 u2 – f3x

(2) = 0 
(3) 

 
4

p

u
 = k3 u4 – k3 u2 – f4x

(3) = 0 
(4) 

  In matrix form (1) through (4) become 

 

1 1

1 1 2 3 2 3

2 2

3 3

0 0

0 0

0 0

k k

k k k k k k

k k

k k

 

1

2

3

4

u

u

u

u

 = 

(1)
1

(1) (2) (3)
2 2 2

(2)
3

(3)
4

x

x x x

x

x

f

f f f

f

f

 (5) 

  or using numerical values 

 

1000 1000 0 0

1000 2000 500 –500

0 500 500 0

0 500 0 500

 

1

2

3

4

0

0

0

u

u

u

u

 = 

1

3

4

8000

x

x

x

F

F

F

 
  
 
 
  

 (6) 

  Solution now follows as in Problem 2.10 

  Solve 2nd of Equations (6) for u2 = – 4 in. 

  For reactions and element forces, see solution to Problem 2.10 

 2.22 Solve Problem 2.15 by P.E. approach 
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 p = 
3

1e

p (e) = 
1

2
 k1 (u3 – u1)2 + 

1

2
 k2

 (u3 – u2)2  

  + 
1

2
 k3 (u4 – u3)2 –  f1x

(1) u1 

  – f3x
(1) u3 – f2x

(2) u2 – f3x
(2) u3 

  – f3x
(3) u3 – f3x

(4) u4 

 
1

p

u
 = 0 = – k1 u3 + k1 u1 – f1x

(1) 

 
2

p

u
 = 0 = – k2 u3 + k2 u2 – f2x

(2) 

 
3

p

u
 = 0 = k1 u3 + k2 u3 – k2 u2 – k3 u4 + k3 u3 – f3x

(2) – f3x
(3) – f3x

(1) – k1 u1 

 
4

p

u
 = 0 = k3 u4 – k3 u3 – f3x

(4) 

  In matrix form 

  

1 1

2 2

1 2 1 2 3 3

3 3

0 0

0 0

0 0

k k

k k

k k k k k k

k k

 

1

2

3

4

u

u

u

u

 = 

1

2

3

4

4 kN

x

x

x

x

F

F

F

F

 
 
 
 

 
  

 

  For rest of solution, see solution of Problem 2.15. 

 2.23  

 I = a1 + a2 x 

 I (0) = a1 = I1 

 I (L) = a1 + a2 L = I2 

 a2 = 2 1I I

L
 

     I  = I1 +  2 1I I
x

L
 

 Now V = IR 

 V = – V1 = R (I2 – I1) 

 V = V2 = R (I2 – I1) 

 
1

2

V

V
 = R 

1 1

1 1
 

1

2

I

I
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Chapter 2 
Introduction to 
the Stiffness 

(Displacement) 
Method

1
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2

• To define the stiffness matrix

• To derive the stiffness matrix for a spring element

• To demonstrate how to assemble stiffness matrices into a 
global stiffness matrix

• To illustrate the concept of direct stiffness method to obtain 
the global stiffness matrix and solve a spring assemblage 
problem

• To describe and apply the different kinds of boundary 
conditions relevant for spring assemblages

• To show how the potential energy approach can be used to 
both derive the stiffness matrix for a spring and solve a 
spring assemblage problem

Learning Objectives
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• For an element, a stiffness matrix [k] is a matrix 
such that:

Where [k] relates nodal displacements {d} to 
nodal forces {f} of a single element, such as to the 
single spring element below

Definition of the Stiffness Matrix
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• For a structure comprising of a series of elements 
such as the three-spring assemblage shown below:

• The stiffness matrix of the whole spring assemblage 
[K] relates global-coordinate nodal displacements {d} 
to global forces {F} by the relation:

4

Definition of the Stiffness Matrix
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• Consider the following linear spring element:

• Points 1 and 2 are reference points called nodes

• f1x and f2x are the local nodal forces on the x-axis

• µ1 and µ2 are the local nodal displacements

• k is the spring constant or stiffness of the spring

• L is the distance between the nodes 

Derivation of the Stiffness Matrix 
for a Spring Element
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• We have selected our element type and now need to define 
the deformation relationships

• For the spring subject to tensile forces at each node:

δ = µ2 - µ1 &    T = kδ

Where δ is the total deformation and T is the tensile force

• Combine to obtain: T = k(µ2 - µ1 )

6

Derivation of the Stiffness Matrix 
for a Spring Element
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• Performing a basic force balance yields:

• Combining these force eqs with the previous eqs:

• Express in matrix form:

Derivation of the Stiffness Matrix 
for a Spring Element
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• The stiffness matrix for a linear element is derived as:

• Here [k] is called the local stiffness matrix for the 
element.

• Observe that this matrix is symmetric, is square, and 
is singular.

• This was the basic process of deriving the stiffness 
matrix for any element.

8

Derivation of the Stiffness Matrix 
for a Spring Element
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• Consider the two-spring assemblage:

• Node 1 is fixed and axial forces are applied at 
nodes 3 and 2.

• The x-axis is the global axis of the assemblage.

Establishing the Global Stiffness 
Matrix for a Spring Assemblage
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• For element 1:

• For element 2:

• Elements 1 and 2 must remain connected at common 
node 3. The is called the continuity or compatibility 
requirement given by:

Establishing the Global Stiffness 
Matrix for a Spring Assemblage
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• From the Free-body diagram of the assemblage:

• We can write the equilibrium nodal equations:

Establishing the Global Stiffness 
Matrix for a Spring Assemblage
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• Combining the nodal equilibrium equations with the 
elemental force/displacement/stiffness relations we obtain 
the global relationship:

• Which takes the form: {F} = [K]{d}

• {F} is the global nodal force matrix

• {d} is the global nodal displacement matrix

• [K] is the total or global or system stiffness matrix

12

Establishing the Global Stiffness 
Matrix for a Spring Assemblage
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• Reliable method of directly assembling individual 
element stiffness matrices to form the total 
structure stiffness matrix and the total set of 
stiffness equations

• Individual element stiffness matrices are 
superimposed to obtain the global stiffness 
matrix.

• To superimpose the element matrices, they must 
be expanded to the order (size) of the total 
structure stiffness matrix.

Direct Stiffness Method 
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• We must specify boundary (or support) conditions for 
structure models or [K] will be singular.

• This means that the structural system is unstable.

• Without specifying proper kinematic constraints or 
support conditions, the structure will be free to move as 
a rigid body and not resist any applied loads.

• In general, the number of boundary conditions 
necessary is equal to the number of possible rigid body 
modes.

Boundary Conditions
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• Homogeneous boundary conditions

• Most common type

• Occur at locations completely prevented 
from moving

• Zero degrees of freedom

• Nonhomogeneous boundary conditions

• Occur where finite nonzero values of 
displacements are specified

• Nonzero degree of freedom

• i.e. the settlement of a support

Boundary Conditions
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• Where is the homogenous boundary condition for 
the spring assemblage?

• It is at the location which is fixed, Node 1

• Because Node 1 is fixed µ1 = 0 

• The system relation can be written as:

Homogenous Boundary 
Conditions
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• For all homogenous boundary conditions, we can 
delete the row and columns corresponding to the 
zero-displacement degrees of freedom.

• This makes solving for the unknown 
displacements possible.

• Appendix B.4 presents a practical, computer-
assisted scheme for solving systems of 
simultaneous equations.

Homogenous Boundary 
Conditions
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• Consider the case where there is a known 
displacement, δ, at Node 1 

• Let µ1 = δ

Nonhomogeneous Boundary 
Conditions
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• By considering only the second and third force 
equations we can arrive at the equation:

• It can be seen that for nonhomogeneous 
boundary conditions we cannot initially delete row 
1 and column 1 like was done for homogenous 
boundary conditions.

Nonhomogeneous Boundary 
Conditions
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• In general for nonhomogeneous boundary 
conditions, we must transform the terms 
associated with the known displacements to the 
force matrix before solving for the unknown nodal 
displacements.

Nonhomogeneous Boundary 
Conditions
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• Alternative method often used to derive the 
element equations and stiffness matrix.

• More adaptable to the determination of element 
equations for complicated elements such as:

• Plane stress/strain element

• Axisymmetric stress element

• Plate bending element

• Three-dimensional solid stress element

Minimum Potential Energy 
Approach
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• Principle of minimum potential energy is only 
applicable to elastic materials.

• Categorized as a “variational method” of FEM

• Use the potential energy approach to derive the 
spring element equations as we did earlier with 
the direct method.

Minimum Potential Energy 
Approach
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• Defined as the sum of the internal strain energy, 
U, and the potential energy of the external forces, 
Ω

• Strain energy is the capacity of internal forces to 
do work through deformations in the structure.

• The potential energy of external forces is the 
capacity of forces such as body forces, surface 
traction forces, or applied nodal forces to do work 
through deformation of the structure.

Total Potential Energy
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• A force is applied to a spring and the force-
deformation curve is given.

• The external work is given by the area under the 
force-deformation curve where the slope is equal 
to the spring constant k

Concept of External Work
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• From basic mechanics principles the external 
work is expressed as:

• From conservation of mechanical energy principle 
external work is expressed as:

• For when the external work is transformed into 
the internal strain energy of the spring

External Work and Internal 
Strain Energy
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• The strain energy can be expressed as:

• The potential energy of the external force can be 
expressed as:

• Therefore, the total potential energy of a spring is:

Total Potential Energy of Spring
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• Consider the linear spring subject to nodal forces:

• The total potential energy is:

Potential Energy Approach to 
Derive Spring Element Eqs.
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• To minimize the total potential energy the partial 
derivatives of πp with respect to each nodal 
displacement must be taken:

Potential Energy Approach to 
Derive Spring Element Eqs.
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• Simplify to:

• In matrix form:

• The results are identical to the direct method

Potential Energy Approach to 
Derive Spring Element Eqs.
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• Defined the stiffness matrix

• Derived the stiffness matrix for a spring element

• Established the global stiffness matrix for a spring 
assemblage

• Discussed boundary conditions (homogenous & 
nonhomogeneous)

• Introduced the potential energy approach

• Reviewed minimum potential energy, external work, and 
strain energy

• Derived the spring element equations using the potential 
energy approach

Summary
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