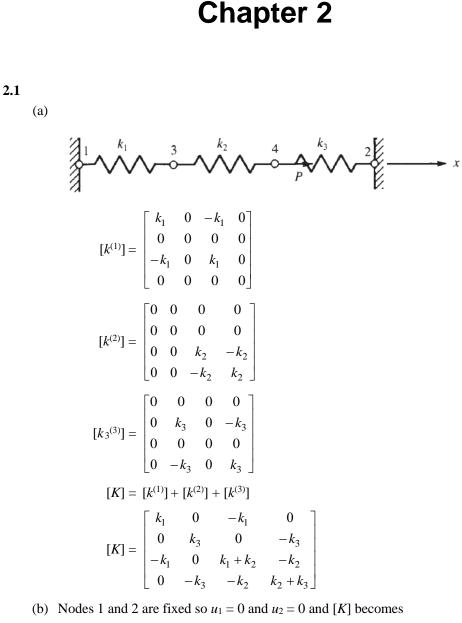
First Course in the Finite Element Method 6th Edition Logan Solutions Manual

Full Download: http://testbanklive.com/download/first-course-in-the-finite-element-method-6th-edition-logan-solutions-manual/



$$[K] = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix}$$
$$\{F\} = [K] \{d\}$$
$$\begin{cases} F_{3x} \\ F_{4x} \end{cases} = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix} \begin{cases} u_3 \\ u_4 \end{cases}$$
$$\Rightarrow \begin{cases} 0 \\ P \end{cases} = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix} \begin{cases} u_3 \\ u_4 \end{cases}$$
$$\{F\} = [K] \{d\} \Rightarrow [K]^{-1} \{F\} = [K]^{-1} [K] \{d\}$$

3

© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

 $\Rightarrow [K]^{-1} \{F\} = \{d\}$

Using the adjoint method to find $[K^{-1}]$

$$C_{11} = k_{2} + k_{3} \qquad C_{21} = (-1)^{3} (-k_{2})$$

$$C_{12} = (-1)^{1+2} (-k_{2}) = k_{2} \qquad C_{22} = k_{1} + k_{2}$$

$$[C] = \begin{bmatrix} k_{2} + k_{3} & k_{2} \\ k_{2} & k_{1} + k_{2} \end{bmatrix} \text{ and } C^{T} = \begin{bmatrix} k_{2} + k_{3} & k_{2} \\ k_{2} & k_{1} + k_{2} \end{bmatrix}$$

$$\det [K] = |[K]| = (k_{1} + k_{2}) (k_{2} + k_{3}) - (-k_{2}) (-k_{2})$$

$$\Rightarrow \quad |[K]| = (k_{1} + k_{2}) (k_{2} + k_{3}) - k_{2}^{2}$$

$$[K^{-1}] = \frac{[C^{T}]}{\det K}$$

$$[K^{-1}] = \frac{\left[k_{2} + k_{3} & k_{2} \\ k_{2} & k_{1} + k_{2} \right]}{(k_{1} + k_{2}) (k_{2} + k_{3}) - k_{2}^{2}} = \frac{\left[k_{2} + k_{3} & k_{2} \\ k_{2} & k_{1} + k_{2} \right]}{k_{1} k_{2} + k_{1} k_{3} + k_{2} k_{3}}$$

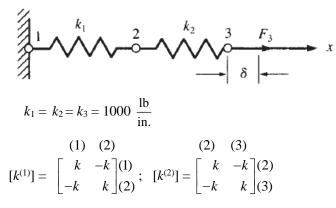
$$\begin{cases} u_{3} \\ u_{4} \\ v_{4} \\ \end{cases} = \frac{\left[k_{2} + k_{3} & k_{2} \\ k_{2} & k_{1} + k_{2} \right] \left\{ 0 \\ P \\ k_{1} & k_{2} + k_{1} & k_{3} + k_{2} & k_{3} \\ \end{cases}$$

$$\Rightarrow \quad u_{3} = \frac{k_{2} P}{k_{1} k_{2} + k_{1} & k_{3} + k_{2} & k_{3} \\ \Rightarrow \quad u_{4} = \frac{(k_{1} + k_{2}) P}{k_{1} k_{2} + k_{1} & k_{3} + k_{2} & k_{3} \\ \end{cases}$$

(c) In order to find the reaction forces we go back to the global matrix $F = [K] \{d\}$

$$\begin{cases} F_{1x} \\ F_{2x} \\ F_{3x} \\ F_{4x} \end{cases} = \begin{bmatrix} k_1 & 0 & -k_1 & 0 \\ 0 & k_3 & 0 & -k_3 \\ -k_1 & 0 & k_1 + k_2 & -k_2 \\ 0 & -k_3 & -k_2 & k_2 + k_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$
$$F_{1x} = -k_1 u_3 = -k_1 \frac{k_2 P}{k_1 k_2 + k_1 k_3 + k_2 k_3}$$
$$\Rightarrow F_{1x} = \frac{-k_1 k_2 P}{k_1 k_2 + k_1 k_3 + k_2 k_3}$$
$$F_{2x} = -k_3 u_4 = -k_3 \frac{(k_1 + k_2) P}{k_1 k_2 + k_1 k_3 + k_2 k_3}$$
$$\Rightarrow F_{2x} = \frac{-k_3 (k_1 + k_2) P}{k_1 k_2 + k_1 k_3 + k_2 k_3}$$

2.2



By the method of superposition the global stiffness matrix is constructed.

(1) (2) (3)

$$[K] = \begin{bmatrix} k & -k & 0 \\ -k & k+k & -k \\ 0 & -k & k \end{bmatrix} (2) \Rightarrow [K] = \begin{bmatrix} k & -k & 0 \\ -k & 2k & -k \\ 0 & -k & k \end{bmatrix}$$

Node 1 is fixed $\Rightarrow u_1 = 0$ and $u_3 = \delta$

$$\{F\} = [K] \{d\}$$

$$\begin{cases}
F_{1x} = ? \\
F_{2x} = 0 \\
F_{3x} = ?
\end{cases} = \begin{bmatrix}
k & k & 0 \\
-k & 2k & -k \\
0 & -k & k
\end{bmatrix} \begin{cases}
u_2 = ? \\
u_3 = \delta
\end{cases}$$

$$\Rightarrow \begin{cases}
0 \\
F_{3x}
\end{cases} = \begin{bmatrix}
2k & -k \\
-k & k
\end{bmatrix} \begin{cases}
u_2 \\
\delta
\end{cases} \Rightarrow \begin{cases}
0 = & 2k \, u_2 - k\delta \\
F_{3x} = & -k \, u_2 + k\delta
\end{cases}$$

$$\Rightarrow \quad u_2 = \frac{k\delta}{2k} = \frac{\delta}{2} = \frac{1 \text{ in.}}{2} \Rightarrow u_2 = 0.5''$$

$$F_{3x} = & -k \, (0.5'') + k \, (1'')$$

$$F_{3x} = & (-1000 \, \frac{1b}{\text{ in.}}) \, (0.5'') + (1000 \, \frac{1b}{\text{ in.}}) \, (1'')$$

$$F_{3x} = & 500 \, \text{lbs}$$

Internal forces

Element (1)

$$\begin{cases} f_{1x}^{(1)} \\ f_{2x}^{(2)} \end{cases} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{cases} u_1 = 0 \\ u_2 = 0.5'' \end{cases}$$
$$\Rightarrow \quad f_{1x}^{(1)} = (-1000 \ \frac{\text{lb}}{\text{in.}}) \ (0.5'') \Rightarrow f_{1x}^{(1)} = -500 \ \text{lb} \\ f_{2x}^{(1)} = (1000 \ \frac{\text{lb}}{\text{in.}}) \ (0.5'') \Rightarrow f_{2x}^{(1)} = 500 \ \text{lb} \end{cases}$$

Element (2)

$$\begin{cases} f_{2x}^{(2)} \\ f_{3x}^{(2)} \end{cases} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{cases} u_2 = 0.5'' \\ u_3 = 1'' \end{cases} \Rightarrow \frac{f_{2x}^{(2)} = -500 \text{ lb}}{f_{3x}^{(2)} = 500 \text{ lb}}$$

$$\begin{bmatrix} k^{(1)} \end{bmatrix} = \begin{bmatrix} k^{(2)} \end{bmatrix} = \begin{bmatrix} k^{(4)} \end{bmatrix} = \begin{bmatrix} k & -k \end{bmatrix}$$

(a)
$$[k^{(1)}] = [k^{(2)}] = [k^{(3)}] = [k^{(4)}] = \begin{bmatrix} k & k \\ -k & k \end{bmatrix}$$

By the method of superposition we construct the global [K] and knowing $\{F\} = [K] \{d\}$ we have

$$\begin{cases} F_{1x} = ?\\ F_{2x} = 0\\ F_{3x} = P\\ F_{4x} = 0\\ \hline F_{5x} = ? \end{bmatrix} = \begin{bmatrix} -k & 0 & 0 & 0\\ -k & 2k & -k & 0 & 0\\ 0 & -k & 2k & -k & 0\\ 0 & 0 & -k & 2k & -k & 1\\ \hline u_{2}\\ u_{3}\\ u_{4}\\ u_{5} = 0 \end{bmatrix}$$

(b)
$$\begin{cases} 0\\ P\\ 0\\ 0\\ \end{bmatrix} = \begin{bmatrix} 2k & -k & 0\\ -k & 2k & -k\\ 0 & -k & 2k \end{bmatrix} \begin{cases} u_{2}\\ u_{3}\\ u_{4}\\ u_{5} = 0 \end{cases}$$

(c)
$$0 = 2ku_{2} - ku_{3} & (1)\\ u_{5} = 0 \end{cases}$$

(c)
$$0 = 2ku_{2} - ku_{3} & (1)\\ 0 = -ku_{2} + 2ku_{3} - ku_{4} & (2)\\ 0 = -ku_{3} + 2ku_{4} & (3) \end{cases}$$

$$\Rightarrow u_{2} = \frac{u_{3}}{2}; u_{4} = \frac{u_{3}}{2}$$

Substituting in the second equation above

$$P = -k u_{2} + 2k u_{3} - k u_{4}$$

$$\Rightarrow P = -k \left(\frac{u_{3}}{2}\right) + 2k u_{3} - k \left(\frac{u_{3}}{2}\right)$$

$$\Rightarrow P = k u_{3}$$

$$\Rightarrow u_{3} = \frac{P}{k}$$

$$u_{2} = \frac{P}{2k} ; u_{4} = \frac{P}{2k}$$

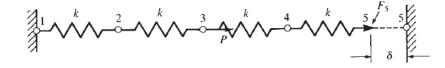
(c) In order to find the reactions at the fixed nodes 1 and 5 we go back to the global equation $\{F\} = [K] \{d\}$

$$F_{1x} = -k \ u_2 = -k \ \frac{P}{2k} \implies F_{1x} = -\frac{P}{2}$$
$$F_{5x} = -k \ u_4 = -k \ \frac{P}{2k} \implies F_{5x} = -\frac{P}{2}$$

Check

$$\Sigma F_x = 0 \Longrightarrow F_{1x} + F_{5x} + P = 0$$

$$\Rightarrow -\frac{P}{2} + \left(-\frac{P}{2}\right) + P = 0$$
$$\Rightarrow 0 = 0$$



(a)
$$[k^{(1)}] = [k^{(2)}] = [k^{(3)}] = [k^{(4)}] = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix}$$

By the method of superposition the global [K] is constructed.

Also
$$\{F\} = [K] \{d\}$$
 and $u_1 = 0$ and $u_5 = \delta$

$\left(\frac{F_{1x}-?}{F_{1x}-?} \right)$		<i>k</i>	-0	-0	-07	$\frac{1}{u_1 = 0}$
$F_{2x} = 0$	<i>−k</i>	2k	-k	0	0	$u_2 = ?$
$\{F_{3x} = 0\} =$	Ø	-k	2k	-k	0	$\left\{ u_3 = ? \right\}$
$F_{4x} = 0$	Ø	0	-k	2k	-k	$u_4 = ?$
$\left(\frac{F_{5x}}{F_{5x}} = ? \right)$		-0-	-0-	<u>-</u> k	k	$\left\{u_5 = \delta\right\}$

(b)
$$0 = 2k u_2 - k u_3$$
 (1)

$$0 = -ku_2 + 2k u_3 - k u_4 \tag{2}$$

$$0 = -k u_3 + 2k u_4 - k \delta \tag{3}$$

From (2)

$$u_3 = 2 u_2$$

From (3)

$$u_4 = \frac{\delta + 2 u_2}{2}$$

Substituting in Equation (2)

$$\Rightarrow -k (u_2) + 2k (2 u_2) - k \left(\frac{\delta + 2u_2}{2}\right)$$
$$\Rightarrow -u_2 + 4 u_2 - u_2 - \frac{\delta}{2} = 0 \Rightarrow u_2 = \frac{\delta}{4}$$
$$\Rightarrow u_3 = 2 \frac{\delta}{4} \Rightarrow u_3 = \frac{\delta}{2}$$
$$\Rightarrow u_4 = \frac{\delta + 2 \frac{\delta}{4}}{2} \Rightarrow u_4 = \frac{3 \delta}{4}$$

(c) Going back to the global equation

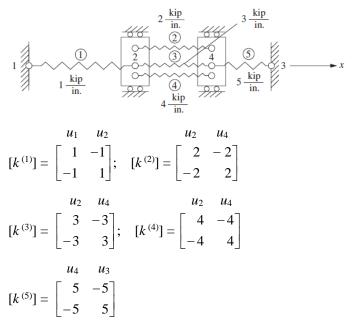
7

$$\{F\} = [K] \{d\}$$

$$F_{1x} = -k \ u_2 = -k \ \frac{\delta}{4} \Rightarrow F_{1x} = -\frac{k \ \delta}{4}$$

$$F_{5x} = -k \ u_4 + k \ \delta = -k \left(\frac{3 \ \delta}{4}\right) + k \ \delta$$

$$\Rightarrow F_{5x} = \frac{k \ \delta}{4}$$



Assembling global [K] using direct stiffness method

$$[K] = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 1+2+3+4 & 0 & -2-3-4 \\ 0 & 0 & 5 & -5 \\ 0 & -2-3-4 & -5 & 2+3+4+5 \end{bmatrix}$$

Simplifying

$$[K] = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 10 & 0 & -9 \\ 0 & 0 & 5 & -5 \\ 0 & -9 & -5 & 14 \end{bmatrix} \frac{\text{kip}}{\text{in.}}$$

2.6 Now apply + 3 kip at node 2 in spring assemblage of P 2.5.

$$\therefore F_{2x} = 3 \text{ kip}$$
$$[K]{d} = {F}$$

[*K*] from P 2.5

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 10 & 0 & -9 \\ 0 & 0 & 5 & -5 \\ 0 & -9 & -5 & 14 \end{bmatrix} \begin{bmatrix} u_1 = 0 \\ u_2 \\ u_3 = 0 \\ u_4 \end{bmatrix} = \begin{cases} F_1 \\ 3 \\ F_3 \\ 0 \end{bmatrix}$$
(A)

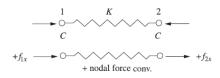
where $u_1 = 0$, $u_3 = 0$ as nodes 1 and 3 are fixed. Using Equations (1) and (3) of (A)

$$\begin{bmatrix} 10 & -9 \\ -9 & 14 \end{bmatrix} \begin{bmatrix} u_2 \\ u_4 \end{bmatrix} = \begin{cases} 3 \\ 0 \end{bmatrix}$$

Solving

$$u_2 = 0.712$$
 in., $u_4 = 0.458$ in

2.7



$$f_{1x} = C, \quad f_{2x} = -C$$

$$f = -k\delta = -k(u_2 - u_1)$$

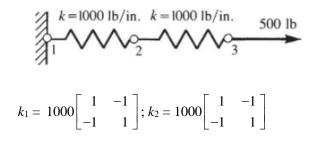
$$\therefore \quad f_{1x} = -k(u_2 - u_1)$$

$$f_{2x} = -(-k)(u_2 - u_1)$$

$$\begin{cases} f_{1x} \\ f_{2x} \end{cases} = \begin{cases} k & -k \\ -k & k \end{cases} \begin{cases} u_1 \\ u_2 \end{cases}$$

$$\therefore \quad [K] = \begin{cases} k & -k \\ -k & k \end{cases} \text{ same as for tensile element}$$

2.8



So

© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$[K] = 1000 \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\{F\} = [K] \{d\}$$

$$\Rightarrow \begin{bmatrix} F_1 = ? \\ F_2 = 0 \\ F_3 = 500 \end{bmatrix} = 1000 \begin{bmatrix} \frac{1}{1 - 1} & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{cases} u_1 = 0 \\ u_2 = ? \\ u_3 = ? \end{cases}$$

$$\Rightarrow \quad 0 = 2000 \ u_2 - 1000 \ u_3 \qquad (1)$$

$$500 = -1000 \ u_2 + 1000 \ u_3 \qquad (2)$$

From (1)

$$u_2 = \frac{1000}{2000} \ u_3 \Longrightarrow u_2 = 0.5 \ u_3 \tag{3}$$

Substituting (3) into (2)

$$\Rightarrow 500 = -1000 (0.5 u_3) + 1000 u_3$$

$$\Rightarrow 500 = 500 u_3$$

$$\Rightarrow u_3 = 1 \text{ in.}$$

$$\Rightarrow u_2 = (0.5) (1 \text{ in.}) \Rightarrow u_2 = 0.5 \text{ in.}$$

Element 1-2

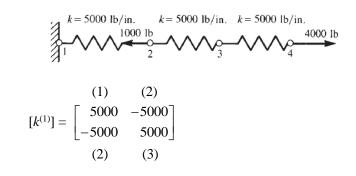
$$\begin{cases} f_{1x}^{(1)} \\ f_{2x}^{(1)} \end{cases} = 1000 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 0 & \text{in.} \\ 0.5 & \text{in.} \end{cases} \Rightarrow \begin{cases} f_{1x}^{(1)} = -500 \text{ lb} \\ f_{2x}^{(1)} = -500 \text{ lb} \end{cases}$$

Element 2-3

$$\begin{cases} f_{2x}^{(2)} \\ f_{3x}^{(2)} \end{cases} = 1000 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 0.5 \text{ in.} \\ 1 \text{ in.} \end{cases} \Rightarrow \begin{cases} f_{2x}^{(2)} = -500 \text{ lb} \\ f_{3x}^{(2)} = 500 \text{ lb} \end{cases}$$

$$F_{1x} = 500 \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0.5 & \text{in.} \\ 1 & \text{in.} \end{bmatrix} \Rightarrow F_{1x} = -500 \text{ lb}$$

2.9



10 © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$[k^{(2)}] = \begin{bmatrix} 5000 & -5000 \\ -5000 & 5000 \end{bmatrix}$$

$$(3) \quad (4)$$

$$[k^{(3)}] = \begin{bmatrix} 5000 & -5000 \\ -5000 & 5000 \end{bmatrix}$$

$$(1) \quad (2) \quad (3) \quad (4)$$

$$[K] = \begin{bmatrix} 5000 & -5000 & 0 & 0 \\ -5000 & 10000 & -5000 & 0 \\ 0 & -5000 & 10000 & -5000 \\ 0 & 0 & -5000 & 5000 \end{bmatrix}$$

$$\begin{bmatrix} F_{1x} = ? \\ F_{2x} = -1000 \\ F_{3x} = 0 \\ F_{4x} = 4000 \end{bmatrix} = \begin{bmatrix} 5000 & -5000 & 0 & 0 \\ -5000 & 10000 & -5000 & 0 \\ 0 & -5000 & 10000 & -5000 \\ 0 & 0 & -5000 & 5000 \end{bmatrix} \begin{bmatrix} u_1 = 0 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

$$\Rightarrow \quad u_1 = 0 \text{ in.}$$

$$u_2 = 0.6 \text{ in.}$$

$$u_3 = 1.4 \text{ in.}$$

$$u_4 = 2.2 \text{ in.}$$

Reactions

$$F_{1x} = \begin{bmatrix} 5000 & -5000 & 0 & 0 \end{bmatrix} \begin{cases} u_1 = & 0 \\ u_2 = & 0.6 \\ u_3 = & 1.4 \\ u_4 = & 2.2 \end{cases} \Rightarrow F_{1x} = -3000 \text{ lb}$$

Element forces

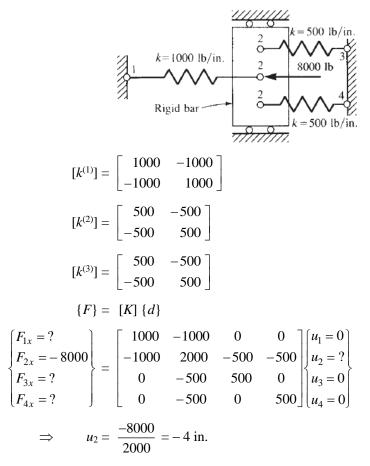
Element (1)

$$\begin{cases} f_{1x}^{(1)} \\ f_{2x}^{(1)} \end{cases} = \begin{bmatrix} 5000 & -5000 \\ -5000 & 5000 \end{bmatrix} \begin{cases} 0 \\ 0.6 \end{cases} \Rightarrow \begin{cases} f_{1x}^{(1)} = -30001b \\ f_{2x}^{(1)} = & 30001b \end{cases}$$

Element (2)
$$\begin{cases} f_{2x}^{(2)} \\ f_{3x}^{(2)} \end{cases} = \begin{bmatrix} 5000 & -5000 \\ -5000 & 5000 \end{bmatrix} \begin{cases} 0.6 \\ 1.4 \end{cases} \Rightarrow \begin{cases} f_{2x}^{(2)} = -40001b \\ f_{3x}^{(2)} = & 40001b \end{cases}$$

Element (3)
$$\begin{cases} f_{3x}^{(3)} \\ f_{4x}^{(3)} \end{cases} = \begin{bmatrix} 5000 & -5000 \\ -5000 & 5000 \end{bmatrix} \begin{cases} 1.4 \\ 2.2 \end{cases} \Rightarrow \begin{cases} f_{3x}^{(3)} = -40001b \\ f_{4x}^{(3)} = & 40001b \end{cases}$$

2.10



Reactions

Element (1)

$$\begin{cases} f_{1x}^{(1)} \\ f_{2x}^{(1)} \end{cases} = \begin{bmatrix} 1000 & -1000 \\ -1000 & 1000 \end{bmatrix} \begin{cases} 0 \\ -4 \end{cases} \Rightarrow \begin{cases} f_{1x}^{(1)} \\ f_{2x}^{(1)} \end{cases} = \begin{cases} 4000 \\ -4000 \end{cases} lb$$

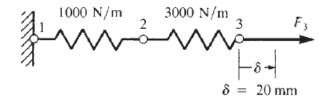
Element (2)

$$\begin{cases} f_{2x}^{(2)} \\ f_{3x}^{(2)} \end{cases} = \begin{bmatrix} 500 & -500 \\ -500 & 500 \end{bmatrix} \begin{cases} -4 \\ 0 \end{cases} \Rightarrow \begin{cases} f_{2x}^{(2)} \\ f_{3x}^{(2)} \end{cases} = \begin{cases} -2000 \\ 2000 \end{cases} lb$$

Element (3)

12

$$\begin{cases} f_{2x}^{(3)} \\ f_{4x}^{(3)} \end{cases} = \begin{bmatrix} 500 & -500 \\ -500 & 500 \end{bmatrix} \begin{cases} -4 \\ 0 \end{cases} \Rightarrow \begin{cases} f_{2x}^{(3)} \\ f_{4x}^{(3)} \end{cases} \begin{cases} -2000 \\ 2000 \end{cases} \text{lb}$$



$$[k^{(1)}] = \begin{bmatrix} 1000 & -1000 \\ -1000 & 1000 \end{bmatrix}; \quad [k^{(2)}] = \begin{bmatrix} 3000 & -3000 \\ -3000 & 3000 \end{bmatrix}$$
$$\{F\} = [K] \{d\}$$
$$F_{1x} = ?$$
$$F_{2x} = 0$$
$$F_{2x} = 0$$
$$F_{3x} = ? \end{bmatrix} = \begin{bmatrix} 1000 & -1000 & 0 \\ -1000 & 4000 & -3000 \\ 0 & -3000 & 3000 \end{bmatrix} \begin{bmatrix} u_1 = 0 \\ u_2 = ? \\ u_3 = 0.02 \text{ m} \end{bmatrix}$$
$$\Rightarrow \quad u_2 = 0.015 \text{ m}$$

Reactions

$$F_{1x} = (-1000) (0.015) \Longrightarrow F_{1x} = -15 \text{ N}$$

Element (1)

$$\begin{cases} f_{1x} \\ f_{2x} \end{cases} = \begin{bmatrix} 1000 & -1000 \\ -1000 & 1000 \end{bmatrix} \begin{cases} 0 \\ 0.015 \end{cases} \Rightarrow \begin{cases} f_{1x} \\ f_{2x} \end{cases} = \begin{cases} -15 \\ 15 \end{cases} N$$

Element (2)

$$\begin{cases} f_{2x} \\ f_{3x} \end{cases} = \begin{bmatrix} 3000 & -3000 \\ -3000 & 3000 \end{bmatrix} \begin{cases} 0.015 \\ 0.02 \end{cases} \Rightarrow \begin{cases} f_{2x} \\ f_{3x} \end{cases} = \begin{cases} -15 \\ 15 \end{cases} N$$

2.12

$$[k^{(1)}] = [k^{(3)}] = 10000 \begin{cases} 1 & -1 \\ -1 & 1 \end{cases}$$
$$[k^{(2)}] = 10000 \begin{cases} 3 & -3 \\ -3 & 3 \end{cases}$$
$$\{F\} = [K] \{d\}$$

13

© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$\begin{cases} F_{1x} = ? \\ F_{2x} = 450 \text{ N} \\ F_{3x} = 0 \\ F_{4x} = ? \end{cases} = 10000 \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 4 & -3 & 0 \\ 0 & -3 & 4 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{pmatrix} u_1 = 0 \\ u_2 = ? \\ u_3 = ? \\ u_4 = 0 \end{bmatrix}$$
$$0 = -3 \ u_2 + 4 \ u_3 \Rightarrow u_2 = \frac{4}{3} \ u_3 \Rightarrow u_2 = 1.33 \ u_3$$
$$450 \text{ N} = 40000 \ (1.33 \ u_3) - 30000 \ u_3$$
$$\Rightarrow 450 \text{ N} = (23200 \ \frac{\text{N}}{\text{m}}) \ u_3 \Rightarrow u_3 = 1.93 \times 10^{-2} \text{ m}$$
$$\Rightarrow u_2 = 1.5 \ (1.94 \times 10^{-2}) \Rightarrow u_2 = 2.57 \times 10^{-2} \text{ m}$$
Element (1)

$$\begin{cases} f_{1x} \\ f_{2x} \end{cases} = 10000 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 0 \\ 2.57 \times 10^{-2} \end{cases} \Rightarrow \begin{cases} f_{1x}^{(1)} = -257 \text{ N} \\ f_{2x}^{(1)} = 257 \text{ N} \end{cases}$$

Element (2)

$$\begin{cases} f_{2x} \\ f_{3x} \end{cases} = 30000 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 2.57 \times 10^{-2} \\ 1.93 \times 10^{-2} \end{cases} \Rightarrow \begin{cases} f_{2x}^{(2)} = 193 \text{ N} \\ f_{3x}^{(2)} = -193 \text{ N} \end{cases}$$

Element (3)

$$\begin{cases} f_{3x} \\ f_{4x} \end{cases} = 10000 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 1.93 \times 10^{-2} \\ 0 \end{cases} \Rightarrow \begin{cases} f_{3x}^{(3)} = 193 \text{ N} \\ f_{4x}^{(3)} = -193 \text{ N} \end{cases}$$

Reactions

$$\{F_{1x}\} = (10000 \ \frac{\text{N}}{\text{m}}) [1-1] \begin{cases} 0\\ 2.57 \times 10^{-2} \end{cases} \Rightarrow F_{1x} = -257 \text{ N}$$
$$\{F_{4x}\} = (10000 \ \frac{\text{N}}{\text{m}}) [-1 \ 1] \begin{cases} 1.93 \times 10^{-2}\\ 0 \end{cases}$$
$$\Rightarrow F_{4x} = -193 \text{ N}$$

2.13

$$\begin{bmatrix} 60 \text{ kN/m} & 60 \text{ kN/m} & 5 \text{ kN} & 60 \text{ kN/m} & 6$$

© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$\begin{cases} F_{1x} = ? \\ F_{2x} = 0 \\ F_{3x} = 5 \text{ kN} \\ F_{4x} = 0 \\ F_{5x} = ? \end{cases} = 60 \begin{cases} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{cases} \begin{cases} u_1 = 0 \\ u_2 = ? \\ u_3 = ? \\ u_4 = ? \\ u_5 = 0 \end{cases}$$
$$\begin{cases} u_1 = 0 \\ u_2 = ? \\ u_3 = ? \\ u_4 = ? \\ u_5 = 0 \end{cases}$$
$$0 = 2u_2 - u_3 \implies u_2 = 0.5 u_3 \\ 0 = -u_3 + 2u_4 \implies u_4 = 0.5 u_3 \end{cases} \implies u_2 = u_4$$
$$\implies 5 \text{ kN} = -60 \ u_2 + 120 \ (2 \ u_2) - 60 \ u_2$$
$$\implies 5 = 120 \ u_2 \implies u_2 = 0.042 \text{ m}$$
$$\implies u_4 = 0.042 \text{ m}$$
$$\implies u_3 = 2(0.042) \implies u_3 = 0.084 \text{ m}$$

Element (1)

$$\begin{cases} f_{1x} \\ f_{2x} \end{cases} = 60 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 0 \\ 0.042 \end{cases} \Rightarrow \frac{f_{1x}^{(1)} = -2.5 \text{ kN}}{f_{2x}^{(1)} = 2.5 \text{ kN}}$$

Element (2)

$$\begin{cases} f_{2x} \\ f_{3x} \end{cases} = 60 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 0.042 \\ 0.084 \end{cases} \Rightarrow \frac{f_{2x}^{(2)} = -2.5 \text{ kN}}{f_{3x}^{(2)} = 2.5 \text{ kN}}$$

Element (3)

$$\begin{cases} f_{3x} \\ f_{4x} \end{cases} = 60 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 0.084 \\ 0.042 \end{cases} \Rightarrow \frac{f_{3x}^{(3)} = 2.5 \text{ kN}}{f_{4x}^{(3)} = -2.5 \text{ kN}}$$

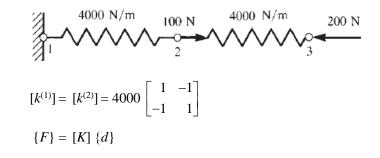
Element (4)

$$\begin{cases} f_{4x} \\ f_{5x} \end{cases} = 60 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 0.042 \\ 0 \end{cases} \Rightarrow \frac{f_{4x}^{(4)} = 2.5 \text{ kN}}{f_{5x}^{(4)} = -2.5 \text{ kN}}$$

$$F_{1x} = 60 \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{cases} 0 \\ 0.042 \end{cases} \Rightarrow F_{1x} = -2.5 \text{ kN}$$

$$F_{5x} = 60 \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{cases} 0.042 \\ 0 \end{cases} \Rightarrow F_{5x} = -2.5 \text{ kN}$$

2.14



© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$\begin{cases} F_{1x} = ?\\ F_{2x} = 100\\ F_{3x} = -200 \end{cases} = 4000 \boxed{\begin{vmatrix} 1 & 1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1 \end{vmatrix}} \begin{cases} u_1 = 0\\ u_2 = ?\\ u_3 = ? \end{cases}$$
$$100 = 8000 \ u_2 - 4000 \ u_3$$
$$\frac{-200 = -4000 \ u_2 + 4000 \ u_3}{-100 = 4000 \ u_2 \Rightarrow u_2 = -0.025 \ m}$$
$$100 = 8000 \ (-0.025) - 4000 \ u_3 \Rightarrow u_3 = -0.075 \ m$$

Element (1)

$$\begin{cases} f_{1x} \\ f_{2x} \end{cases} = 4000 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} 0 \\ -0.025 \end{cases} \Rightarrow \frac{f_{1x}^{(1)} = 100 \text{ N}}{f_{2x}^{(1)} = -100 \text{ N}}$$

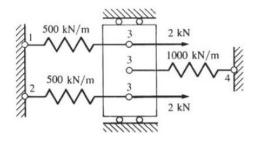
Element (2)

$$\begin{cases} f_{2x} \\ f_{3x} \end{cases} = 4000 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} -0.025 \\ -0.075 \end{cases} \Rightarrow \frac{f_{2x}^{(2)} = 200 \text{ N}}{f_{3x}^{(2)} = -200 \text{ N}}$$

Reaction

$$\{F_{1x}\} = 4000 \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{cases} 0 \\ -0.025 \end{cases} \Rightarrow F_{1x} = 100 \text{ N}$$

2.15



$$[k^{(1)}] = \begin{bmatrix} 500 & -500 \\ -500 & 500 \end{bmatrix}; [k^{(2)}] = \begin{bmatrix} 500 & -500 \\ -500 & 500 \end{bmatrix}; [k^{(3)}] = \begin{bmatrix} 1000 & -1000 \\ -1000 & 1000 \end{bmatrix}$$
$$\begin{cases} F_{1x} = ? \\ F_{2x} = ? \\ F_{3x} = 4 \text{ kN} \\ F_{4x} = ? \end{cases} = \begin{bmatrix} 500 & 0 & -500 & 0 \\ 0 & 500 & -500 & 0 \\ -500 & -500 & 2000 & -1000 \\ 0 & 0 & -1000 & 1000 \end{bmatrix} \begin{cases} u_1 = 0 \\ u_2 = 0 \\ u_3 = ? \\ u_4 = 0 \end{cases}$$
$$\Rightarrow \quad u_3 = 0.002 \text{ m}$$

Reactions

$$F_{1x} = (-500) (0.002) \Rightarrow F_{1x} = -1.0 \text{ kN}$$

$$F_{2x} = (-500) (0.002) \Rightarrow F_{2x} = -1.0 \text{ kN}$$

$$F_{4x} = (-1000) (0.002) \Rightarrow F_{4x} = -2.0 \text{ kN}$$

Element (1)

$$\begin{cases} f_{1x} \\ f_{3x} \end{cases} = \begin{bmatrix} 500 & -500 \\ -500 & 500 \end{bmatrix} \begin{cases} 0 \\ 0.002 \end{cases} \Rightarrow \begin{cases} f_{1x} \\ f_{3x} \end{cases} = \begin{cases} -1.0 \text{ kN} \\ 1.0 \text{ kN} \end{cases}$$

Element (2) $\begin{cases}
f_{2x} \\
f_{3x}
\end{cases} = \begin{bmatrix}
500 & -500 \\
-500 & 500
\end{bmatrix}
\begin{cases}
0 \\
0.002
\end{cases} \Rightarrow \begin{cases}
f_{2x} \\
f_{3x}
\end{cases} = \begin{cases}
-1.0 \text{ kN} \\
1.0 \text{ kN}
\end{cases}$ Element (3) $\begin{cases}
f_{3x} \\
f_{4x}
\end{cases} = \begin{bmatrix}
1000 & -1000 \\
-1000 & 1000
\end{bmatrix}
\begin{cases}
0.002 \\
0
\end{cases} \Rightarrow \begin{cases}
f_{3x} \\
f_{4x}
\end{cases} = \begin{cases}
2.0 \text{ kN} \\
-2.0 \text{ kN}
\end{cases}$

$$\begin{cases} k = 100 \text{ lb/in.} & k = 100 \text{ lb/in.} & k = 100 \text{ lb/in.} \\ 200 \text{ lb} & 200 \text{ lb} & 200 \text{ lb} \\ \end{cases}$$

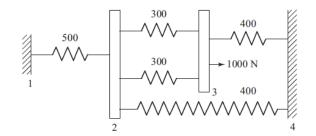
$$\begin{cases} F_{1x} \\ 200 \\ -200 \\ F_{4x} \end{pmatrix} = \begin{bmatrix} 100 & -100 & 0 & 0 \\ -100 & 100 + 100 & -100 & 0 \\ 0 & -100 & 100 + 100 & -100 \\ 0 & 0 & -100 & 100 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ u_3 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 200 \\ -200 \\ -200 \\ -200 \\ \end{bmatrix} = \begin{cases} 200 & -100 \\ -100 & 200 \\ \end{bmatrix} \begin{cases} u_2 \\ u_3 \\ u_3 \\ \end{bmatrix}$$

$$u_2 = \frac{2}{3} \text{ in.}$$

$$u_3 = -\frac{2}{3} \text{ in.}$$

2.17



$$\begin{cases} F_{1x} = ? \\ 0 \\ 1000 \text{ N} \\ F_{4x} = ? \end{cases} = \begin{bmatrix} -500 & -500 & 0 \\ -500 & (400 + 300) \\ 0 & -500 & (300 + 300) & -400 \\ 0 & -300 - 300 & (300 + 300 + 400) & -400 \\ 0 & -400 & -400 & 400 - 400 \end{bmatrix} \begin{bmatrix} u_1 = 0 \\ u_2 \\ u_3 \\ u_4 = 0 \end{bmatrix}$$

$$0 = 1500 \ u_2 - 600 \ u_3$$

$$1000 = -600 \ u_2 + 1000 \ u_3$$

© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$u_{3} = \frac{15 \cancel{0} \cancel{0}}{6 \cancel{0} \cancel{0}} \quad u_{2} = 2.5 \, u_{2}$$

$$1000 = -600 \, u_{2} + 1000 \, (2.5 \, u_{2})$$

$$1000 = 1900 \, u_{2}$$

$$u_{2} = \frac{1000}{1900} = \frac{1}{1.9} \, \text{mm} = 0.526 \, \text{mm}$$

$$u_{3} = 2.5 \, \left(\frac{1}{1.9}\right) \, \text{mm} = 1.316 \, \text{mm}$$

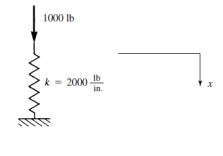
$$F_{1x} = -500 \, \left(\frac{1}{1.9}\right) = -263.16 \, \text{N}$$

$$F_{4x} = -400 \, \left(\frac{1}{1.9}\right) - 400 \, \left(2.5 \left(\frac{1}{1.9}\right)\right)$$

$$= -400 \, \left(\frac{1}{1.9} + \frac{2.5}{1.9}\right) = -736.84 \, \text{N}$$

$$\Sigma F_{x} = -263.16 + 1000 - 736.84 = 0$$

(a)



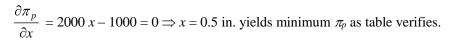
As in Example 2.4

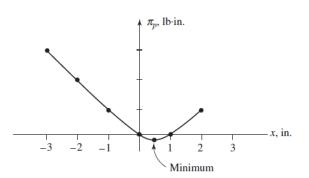
$$\pi_p = U + \Omega$$
$$U = \frac{1}{2} k x^2, \Omega = -Fx$$

Set up table

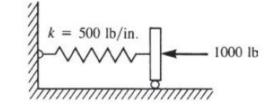
$$\pi_p = \frac{1}{2} (2000) x^2 - 1000 x = 1000 x^2 - 1000 x$$
Deformation x, in. π_p , lb·in.
$$-3.0 \qquad 6000 \\ -2.0 \qquad 3000 \\ -1.0 \qquad 1000 \\ 0.0 \qquad 0 \\ 0.5 \qquad -125 \\ 1.0 \qquad 0$$

18 © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.





(b)



$$\pi_p = \frac{1}{2} kx^2 - F_x = 250 x^2 - 1000 x$$

<i>x</i> , in.	π_p , lb·in.
- 3.0	11250
- 2.0	3000
- 1.0	1250
0	0
1.0	- 750
2.0	-1000
3.0	- 750

$$\frac{\partial \pi_p}{\partial x} = 500 \ x - 1000 = 0$$

$$\Rightarrow$$
 $x = 2.0$ in. yields π_p minimum

$$\pi_{p} = \frac{1}{2} (2000) x^{2} - 3924 x = 1000 x^{2} - 3924 x$$

$$\frac{\partial \pi_{p}}{\partial x} = 2000 x - 3924 = 0$$

$$\Rightarrow \quad x = 1.962 \text{ mm yields } \pi_{p} \text{ minimum}$$

$$\pi_{p} \min = \frac{1}{2} (2000) (1.962)^{2} - 3924 (1.962)$$

$$\Rightarrow \quad \pi_{p} \min = -3849.45 \text{ N} \cdot \text{mm}$$
(d)
$$\pi_{p} = \frac{1}{2} (400) x^{2} - 981 x$$

$$\frac{\partial \pi_{p}}{\partial x} = 400 x - 981 = 0$$

$$\Rightarrow \quad x = 2.4525 \text{ mm yields } \pi_{p} \text{ minimum}$$

$$\pi_{p} \min = \frac{1}{2} (400) (2.4525)^{2} - 981 (2.4525)$$

$$\Rightarrow \quad \pi_{p} \min = -1202.95 \text{ N} \cdot \text{mm}$$

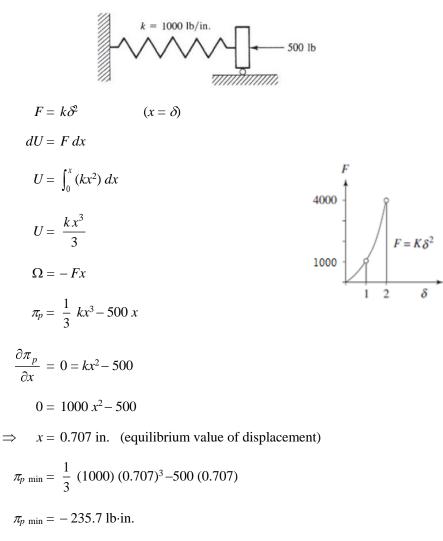
 x^{\dagger} F = 1000 lbNow let positive x be upward $k = 500 \frac{\text{lb}}{\text{in.}}$

$$\pi_p = \frac{1}{2} kx^2 - Fx$$

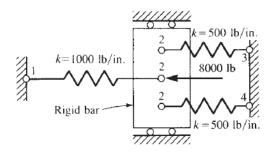
$$\pi_p = \frac{1}{2} (500) x^2 - 1000 x$$

$$\pi_p = 250 x^2 - 1000 x$$

$$\frac{\partial \pi_p}{\partial x} = 500 \ x - 1000 = 0$$
$$\implies x = 2.0 \text{ in.} \uparrow$$



2.21 Solve Problem 2.10 using P.E. approach



21 © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$\pi_{p} = \sum_{e=1}^{3} \pi_{p}^{(e)} = \frac{1}{2} k_{1} (u_{2} - u_{1})^{2} + \frac{1}{2} k_{2} (u_{3} - u_{2})^{2} + \frac{1}{2} k_{3} (u_{4} - u_{2})^{2}$$
$$-f_{1x}^{(1)} u_{1} - f_{2x}^{(1)} u_{2} - f_{2x}^{(2)} u_{2}$$
$$-f_{3x}^{(2)} u_{3} - f_{2x}^{(3)} u_{2} - f_{4x}^{(3)} u_{4}$$
$$\frac{\partial \pi_{p}}{\partial u_{1}} = -k_{1} u_{2} + k_{1} u_{1} - f_{1x}^{(1)} = 0$$
(1)

$$\frac{\partial u_p}{\partial u_2} = k_1 u_2 - k_1 u_1 - k_2 u_3 + k_2 u_2 - k_3 u_4 + k_3 u_2 - f_{2x}^{(1)} - f_{2x}^{(2)} - f_{2x}^{(3)} = 0$$
(2)

$$\frac{\partial \pi_p}{\partial u_3} = k_2 u_3 - k_2 u_2 - f_{3x}^{(2)} = 0$$
(3)

$$\frac{\partial \pi_p}{\partial u_4} = k_3 \, u_4 - k_3 \, u_2 - f_{4x}{}^{(3)} = 0 \tag{4}$$

.....

In matrix form (1) through (4) become

$$\begin{bmatrix} k_{1} & -k_{1} & 0 & 0 \\ -k_{1} & k_{1}+k_{2}+k_{3} & -k_{2} & -k_{3} \\ 0 & -k_{2} & k_{2} & 0 \\ 0 & -k_{3} & 0 & k_{3} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} = \begin{bmatrix} f_{1x}^{(1)} \\ f_{2x}^{(1)}+f_{2x}^{(2)}+f_{2x}^{(3)} \\ f_{3x}^{(2)} \\ f_{4x}^{(3)} \end{bmatrix}$$
(5)

or using numerical values

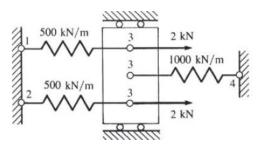
$$\begin{bmatrix} 1000 & -1000 & 0 & 0 \\ -1000 & 2000 & -500 & -500 \\ 0 & -500 & 500 & 0 \\ 0 & -500 & 0 & 500 \end{bmatrix} \begin{cases} u_1 = 0 \\ u_2 \\ u_3 = 0 \\ u_4 = 0 \end{cases} = \begin{cases} F_{1x} \\ -8000 \\ F_{3x} \\ F_{4x} \end{cases}$$
(6)

Solution now follows as in Problem 2.10

Solve 2^{nd} of Equations (6) for $u_2 = -4$ in.

For reactions and element forces, see solution to Problem 2.10

2.22 Solve Problem 2.15 by P.E. approach



22 © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$\pi_{p} = \sum_{e=1}^{3} \pi_{p}^{(e)} = \frac{1}{2} k_{1} (u_{3} - u_{1})^{2} + \frac{1}{2} k_{2} (u_{3} - u_{2})^{2}$$

$$+ \frac{1}{2} k_{3} (u_{4} - u_{3})^{2} - f_{1x}^{(1)} u_{1}$$

$$- f_{3x}^{(1)} u_{3} - f_{2x}^{(2)} u_{2} - f_{3x}^{(2)} u_{3}$$

$$- f_{3x}^{(3)} u_{3} - f_{3x}^{(4)} u_{4}$$

$$\frac{\partial \pi_{p}}{\partial u_{1}} = 0 = -k_{1} u_{3} + k_{1} u_{1} - f_{1x}^{(1)}$$

$$\frac{\partial \pi_{p}}{\partial u_{2}} = 0 = -k_{2} u_{3} + k_{2} u_{2} - f_{2x}^{(2)}$$

$$\frac{\partial \pi_{p}}{\partial u_{3}} = 0 = k_{1} u_{3} + k_{2} u_{3} - k_{2} u_{2} - k_{3} u_{4} + k_{3} u_{3} - f_{3x}^{(3)} - f_{3x}^{(1)} - k_{1} u_{1}$$

$$\frac{\partial \pi_{p}}{\partial u_{4}} = 0 = k_{3} u_{4} - k_{3} u_{3} - f_{3x}^{(4)}$$

In matrix form

$$\begin{bmatrix} k_1 & 0 & -k_1 & 0 \\ 0 & k_2 & -k_2 & 0 \\ -k_1 & -k_2 & k_1 + k_2 + k_3 & -k_3 \\ 0 & 0 & -k_3 & k_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} F_{1x} \\ F_{2x} \\ F_{3x} = 4 \text{ kN} \\ F_{4x} \end{bmatrix}$$

For rest of solution, see solution of Problem 2.15.

2.23

$$I = a_1 + a_2 x$$

$$I(0) = a_1 = I_1$$

$$I(L) = a_1 + a_2 L = I_2$$

$$a_2 = \frac{I_2 - I_1}{L}$$

$$\therefore \qquad I = I_1 + \frac{I_2 - I_1}{L} x$$

Now V = IR

$$V = -V_1 = R (I_2 - I_1)$$
$$V = V_2 = R (I_2 - I_1)$$
$$\begin{cases} V_1 \\ V_2 \end{cases} = R \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} I_1 \\ I_2 \end{cases}$$

A First Course in the Finite Element Method, 6th Edition

Sixth Edition

A First Course in the Finite Element Method

Chapter 2

Introduction to the Stiffness (Displacement) Method

© 2017 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Learning Objectives

- To define the stiffness matrix
- To derive the stiffness matrix for a spring element
- To demonstrate how to assemble stiffness matrices into a global stiffness matrix
- To illustrate the concept of direct stiffness method to obtain the global stiffness matrix and solve a spring assemblage problem
- To describe and apply the different kinds of boundary conditions relevant for spring assemblages
- To show how the potential energy approach can be used to both derive the stiffness matrix for a spring and solve a spring assemblage problem

Definition of the Stiffness Matrix

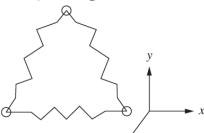
• For an element, a stiffness matrix [k] is a matrix such that:

 $\left\{f\right\}=[k]\left\{d\right\}$

Where [k] relates nodal displacements {d} to nodal forces {f} of a single element, such as to the single spring element below

Definition of the Stiffness Matrix

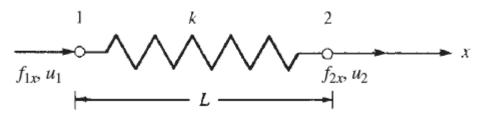
• For a structure comprising of a series of elements such as the three-spring assemblage shown below:



 The stiffness matrix of the whole spring assemblage
 [K] relates global-coordinate nodal displacements {d} to global forces {F} by the relation:

$$\{F\} = [K]\{d\}$$

• Consider the following linear spring element:

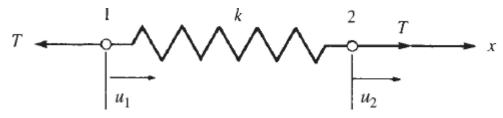


- Points 1 and 2 are reference points called <u>nodes</u>
- f_{1x} and f_{2x} are the local nodal forces on the x-axis
- μ_1 and μ_2 are the local nodal displacements
- k is the spring constant or stiffness of the spring
- L is the distance between the nodes

CENGAGE

Learning

• We have selected our element type and now need to define the deformation relationships



• For the spring subject to tensile forces at each node: $\delta = \mu_2 - \mu_1$ & T = k δ

Where δ is the total deformation and T is the tensile force

• Combine to obtain: $T = k(\mu_2 - \mu_1)$

6

• Performing a basic force balance yields:

$$f_{1x} = -T \qquad f_{2x} = T$$

• Combining these force eqs with the previous eqs:

$$f_{1x} = k(u_1 - u_2)$$

$$f_{2x} = k(u_2 - u_1)$$

• Express in matrix form:

$$\begin{cases} f_{1x} \\ f_{2x} \end{cases} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{cases} u_1 \\ u_2 \end{cases}$$

© 2017 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

• The stiffness matrix for a linear element is derived as:

$$\begin{bmatrix} k & -k \\ -k & k \end{bmatrix}$$

- Here [k] is called the local stiffness matrix for the element.
- Observe that this matrix is symmetric, is square, and is singular.
- This was the basic process of deriving the stiffness matrix for any element.

• Consider the two-spring assemblage:

$$\underbrace{ 1 } \underbrace{ 1 }$$

- Node 1 is fixed and axial forces are applied at nodes 3 and 2.
- The x-axis is the global axis of the assemblage.



• For element 1:

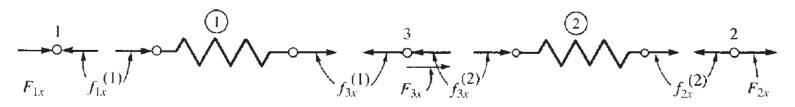
$$\begin{cases} f_{1x}^{(1)} \\ f_{3x}^{(1)} \end{cases} = \begin{bmatrix} k_1 & -k_1 \\ -k_1 & k_1 \end{bmatrix} \begin{cases} u_1^{(1)} \\ u_3^{(1)} \end{cases}$$
$$\begin{cases} f_{3x}^{(2)} \\ f_{2x}^{(2)} \end{cases} = \begin{bmatrix} k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_3^{(2)} \\ u_2^{(2)} \end{bmatrix}$$

- For element 2:
- Elements 1 and 2 must remain connected at common node 3. The is called the <u>continuity or compatibility</u> <u>requirement</u> given by:

$$u_3^{(1)} = u_3^{(2)} = u_3$$

© 2017 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

• From the Free-body diagram of the assemblage:



• We can write the equilibrium nodal equations:

$$F_{3x} = f_{3x}^{(1)} + f_{3x}^{(2)}$$
 $F_{2x} = f_{2x}^{(2)}$ $F_{1x} = f_{1x}^{(1)}$

• Combining the nodal equilibrium equations with the elemental force/displacement/stiffness relations we obtain the global relationship: $\begin{bmatrix} r \\ r \end{bmatrix} \begin{bmatrix} k & 0 \\ r \\ r \end{bmatrix} \begin{bmatrix} k & 0 \\ r \\ r \end{bmatrix} \begin{bmatrix} r \\ r \\ r \end{bmatrix}$

$$\begin{cases} F_{1x} \\ F_{2x} \\ F_{3x} \end{cases} = \begin{bmatrix} k_1 & 0 & -k_1 \\ 0 & k_2 & -k_2 \\ -k_1 & -k_2 & k_1 + k_2 \end{bmatrix} \begin{cases} u_1 \\ u_2 \\ u_3 \end{cases}$$

- Which takes the form: {F} = [K]{d}
- {F} is the global nodal force matrix
- {d} is the global nodal displacement matrix
- [K] is the total or global or system stiffness matrix

Direct Stiffness Method

- Reliable method of directly assembling individual element stiffness matrices to form the total structure stiffness matrix and the total set of stiffness equations
- Individual element stiffness matrices are superimposed to obtain the global stiffness matrix.
- To superimpose the element matrices, they must be expanded to the order (size) of the total structure stiffness matrix.

Boundary Conditions

- We must specify boundary (or support) conditions for structure models or [K] will be singular.
- This means that the structural system is unstable.
- Without specifying proper kinematic constraints or support conditions, the structure will be free to move as a rigid body and not resist any applied loads.
- In general, the number of boundary conditions necessary is equal to the number of possible rigid body modes.

Boundary Conditions

- Homogeneous boundary conditions
 - Most common type
 - Occur at locations completely prevented from moving
 - Zero degrees of freedom
- Nonhomogeneous boundary conditions
 - Occur where finite nonzero values of displacements are specified
 - Nonzero degree of freedom
 - i.e. the settlement of a support

A First Course in the Finite Element Method, 6th Edition

Homogenous Boundary Conditions

- Where is the homogenous boundary condition for the spring assemblage?
- It is at the location which is fixed, Node 1
- Because Node 1 is fixed $\mu_1 = 0$
- The system relation can be written as:

$$\begin{bmatrix} k_1 & 0 & -k_1 \\ 0 & k_2 & -k_2 \\ -k_1 & -k_2 & k_1 + k_2 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ u_3 \end{bmatrix} = \begin{cases} F_{1x} \\ F_{2x} \\ F_{3x} \end{bmatrix}$$

© 2017 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

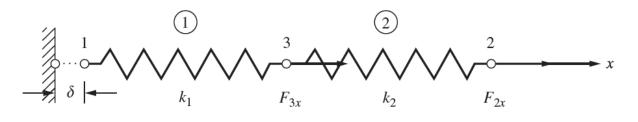
A First Course in the Finite Element Method, 6th Edition

Homogenous Boundary Conditions

- For all homogenous boundary conditions, we can delete the row and columns corresponding to the zero-displacement degrees of freedom.
- This makes solving for the unknown displacements possible.
- Appendix B.4 presents a practical, computerassisted scheme for solving systems of simultaneous equations.

Nonhomogeneous Boundary Conditions

 Consider the case where there is a known displacement, δ, at Node 1



• Let $\mu_1 = \delta$

$$\begin{bmatrix} k_1 & 0 & -k_1 \\ 0 & k_2 & -k_2 \\ -k_1 & -k_2 & k_1 + k_2 \end{bmatrix} \begin{bmatrix} \delta \\ u_2 \\ u_3 \end{bmatrix} = \begin{cases} F_{1x} \\ F_{2x} \\ F_{3x} \end{bmatrix}$$

© 2017 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Nonhomogeneous Boundary Conditions

• By considering only the second and third force equations we can arrive at the equation:

$$\begin{bmatrix} k_2 & -k_2 \\ -k_2 & k_1 + k_2 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{cases} F_{2x} \\ k_1\delta + F_{3x} \end{bmatrix}$$

 It can be seen that for nonhomogeneous boundary conditions we <u>cannot</u> initially delete row 1 and column 1 like was done for homogenous boundary conditions.

Nonhomogeneous Boundary Conditions

 In general for nonhomogeneous boundary conditions, we must transform the terms associated with the known displacements to the force matrix before solving for the unknown nodal displacements.

Minimum Potential Energy Approach

- Alternative method often used to derive the element equations and stiffness matrix.
- More adaptable to the determination of element equations for complicated elements such as:
 - Plane stress/strain element
 - Axisymmetric stress element
 - Plate bending element
 - Three-dimensional solid stress element

A First Course in the Finite Element Method, 6th Edition

Minimum Potential Energy Approach

- Principle of minimum potential energy is only applicable to elastic materials.
- Categorized as a "variational method" of FEM
- Use the potential energy approach to derive the spring element equations as we did earlier with the direct method.

Total Potential Energy

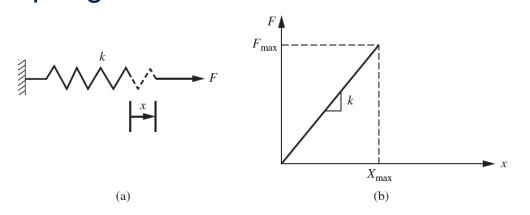
Defined as the sum of the internal strain energy,
 U, and the potential energy of the external forces,
 Ω

 $\pi_p = U + \Omega$

- <u>Strain energy</u> is the capacity of internal forces to do work through deformations in the structure.
- The <u>potential energy of external forces</u> is the capacity of forces such as body forces, surface traction forces, or applied nodal forces to do work through deformation of the structure.

Concept of External Work

- A force is applied to a spring and the forcedeformation curve is given.
- The external work is given by the area under the force-deformation curve where the slope is equal to the spring constant k



© 2017 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

External Work and Internal Strain Energy

• From basic mechanics principles the external work is expressed as:

$$W_e = \int F \cdot dx = \int_0^{x_{\text{max}}} F_{\text{max}}\left(\frac{x}{x_{\text{max}}}\right) dx = F_{\text{max}} x_{\text{max}}/2$$

• From conservation of mechanical energy principle external work is expressed as:

$$W_e = U = F_{\max} x_{\max}/2$$

• For when the external work is transformed into the internal strain energy of the spring

Total Potential Energy of Spring

• The strain energy can be expressed as:

$$U = k x_{\rm max}^2 / 2$$

• The potential energy of the external force can be expressed as:

$$\Omega = -F_{\max}x_{\max}$$

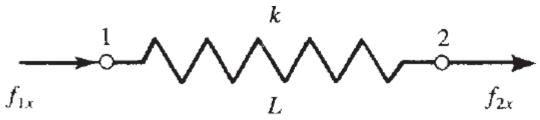
• Therefore, the total potential energy of a spring is:

$$\pi_p = \frac{1}{2}kx_{\max}^2 - F_{\max}x_{\max}$$

© 2017 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Potential Energy Approach to Derive Spring Element Eqs.

• Consider the linear spring subject to nodal forces:



• The total potential energy is:

$$\pi_p = \frac{1}{2}k(u_2 - u_1)^2 - f_{1x}u_1 - f_{2x}u_2$$

© 2017 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Potential Energy Approach to Derive Spring Element Eqs.

 To minimize the total potential energy the partial derivatives of π_p with respect to each nodal displacement must be taken:

$$\frac{\partial \pi_p}{\partial u_1} = \frac{1}{2}k(-2u_2 + 2u_1) - f_{1x} = 0$$
$$\frac{\partial \pi_p}{\partial u_2} = \frac{1}{2}k(2u_2 - 2u_1) - f_{2x} = 0$$

© 2017 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Potential Energy Approach to Derive Spring Element Eqs.

• Simplify to:

$$k(-u_2 + u_1) = f_{1x}$$

$$k(u_2 - u_1) = f_{2x}$$

• In matrix form:

$$\begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{cases} u_1 \\ u_2 \end{cases} = \begin{cases} f_{1x} \\ f_{2x} \end{cases}$$

• The results are identical to the direct method

A First Course in the Finite Element Method, 6th Edition

Summary

- Defined the stiffness matrix
- Derived the stiffness matrix for a spring element
- Established the global stiffness matrix for a spring assemblage
- Discussed boundary conditions (homogenous & nonhomogeneous)
- Introduced the potential energy approach
- Reviewed minimum potential energy, external work, and strain energy
- Derived the spring element equations using the potential energy approach

