
Chapter 2

First-Order Differential Equations

2.1 Solution Curves Without a Solution
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15. (a) The isoclines have the form y = −x + c, which are straight

lines with slope −1.
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38 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) The isoclines have the form x2 + y2 = c, which are circles

centered at the origin.
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16. (a) When x = 0 or y = 4, dy/dx = −2 so the lineal elements have slope −2. When y = 3 or

y = 5, dy/dx = x− 2, so the lineal elements at (x, 3) and (x, 5) have slopes x− 2.

(b) At (0, y0) the solution curve is headed down. If y → ∞ as x increases, the graph must

eventually turn around and head up, but while heading up it can never cross y = 4

where a tangent line to a solution curve must have slope −2. Thus, y cannot approach

∞ as x approaches ∞.

17. When y < 1
2x

2, y′ = x2 − 2y is positive and the portions of

solution curves “outside” the nullcline parabola are increasing.

When y > 1
2x

2, y′ = x2 − 2y is negative and the portions of the

solution curves “inside” the nullcline parabola are decreasing.
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18. (a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the

nullclines are x2 − y2 = 0 or y = ±x. In Problem 3 the nullclines are 1 − xy = 0 or

y = 1/x. In Problem 4 the nullclines are (sinx) cos y = 0 or x = nπ and y = π/2 + nπ,

where n is an integer. The graphs on the next page show the nullclines for the equations

in Problems 1, 3, and 4 superimposed on the corresponding direction field.
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(b) An autonomous first-order differential equation has the form y′ = f(y). Nullclines have

the form y = c where f(c) = 0. These are the graphs of the equilibrium solutions of the

differential equation.

19. Writing the differential equation in the form dy/dx = y(1 − y)(1 + y) we see that
critical points are y = −1, y = 0, and y = 1. The phase portrait is shown at the
right.
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20. Writing the differential equation in the form dy/dx = y2(1 − y)(1 + y) we see that
critical points are y = −1, y = 0, and y = 1. The phase portrait is shown at the
right.
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40 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

21. Solving y2 − 3y = y(y − 3) = 0 we obtain the critical points 0 and 3. From the
phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable
(repeller).

0

3

22. Solving y2−y3 = y2(1−y) = 0 we obtain the critical points 0 and 1. From the phase
portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.

0

1

23. Solving (y − 2)4 = 0 we obtain the critical point 2. From the phase portrait we see
that 2 is semi-stable.

2
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24. Solving 10 + 3y − y2 = (5 − y)(2 + y) = 0 we obtain the critical points −2 and 5.
From the phase portrait we see that 5 is asymptotically stable (attractor) and −2 is
unstable (repeller).

–2

5

25. Solving y2(4 − y2) = y2(2 − y)(2 + y) = 0 we obtain the critical points −2, 0, and
2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is
semi-stable, and −2 is unstable (repeller).

–2

0

2

26. Solving y(2− y)(4− y) = 0 we obtain the critical points 0, 2, and 4. From the phase
portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable
(repellers).

0

2

4
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27. Solving y ln(y+2) = 0 we obtain the critical points−1 and 0. From the phase portrait
we see that −1 is asymptotically stable (attractor) and 0 is unstable (repeller).

–1

–2

0

28. Solving yey − 9y = y(ey − 9) = 0 (since ey is always positive) we obtain the
critical points 0 and ln 9. From the phase portrait we see that 0 is asymptotically
stable (attractor) and ln 9 is unstable (repeller).

0

1n 9

29. The critical points are 0 and c because the graph of f(y) is 0 at these points. Since f(y) > 0

for y < 0 and y > c, the graph of the solution is increasing on the y-intervals (−∞, 0) and

(c,∞). Since f(y) < 0 for 0 < y < c, the graph of the solution is decreasing on the y-interval

(0, c).
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30. The critical points are approximately at −2, 2, 0.5, and 1.7. Since f(y) > 0 for y < −2.2

and 0.5 < y < 1.7, the graph of the solution is increasing on the y-intervals (−∞,−2.2) and

(0.5, 1.7). Since f(y) < 0 for −2.2 < y < 0.5 and y > 1.7, the graph is decreasing on the

y-interval (−2.2, 0.5) and (1.7,∞).
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31. From the graphs of z = π/2 and z = sin y we see that

(2/π)y−sin y = 0 has only three solutions. By inspection

we see that the critical points are −π/2, 0, and π/2.
y
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π–

2

π π
2
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–

From the graph at the right we see that

2

π
y − sin y

{

< 0 for y < −π/2

> 0 for y > π/2

2

π
y − sin y

{

> 0 for − π/2 < y < 0

< 0 for 0 < y < π/2

0

2

π

2

π
–

This enables us to construct the phase portrait shown at the right. From this portrait we see

that π/2 and −π/2 are unstable (repellers), and 0 is asymptotically stable (attractor).

32. For dy/dx = 0 every real number is a critical point, and hence all critical points are noniso-

lated.

33. Recall that for dy/dx = f(y) we are assuming that f and f ′ are continuous functions of y

on some interval I. Now suppose that the graph of a nonconstant solution of the differential

equation crosses the line y = c. If the point of intersection is taken as an initial condition

we have two distinct solutions of the initial-value problem. This violates uniqueness, so the
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graph of any nonconstant solution must lie entirely on one side of any equilibrium solution.

Since f is continuous it can only change signs at a point where it is 0. But this is a critical

point. Thus, f(y) is completely positive or completely negative in each region Ri. If y(x) is

oscillatory or has a relative extremum, then it must have a horizontal tangent line at some

point (x0, y0). In this case y0 would be a critical point of the differential equation, but we saw

above that the graph of a nonconstant solution cannot intersect the graph of the equilibrium

solution y = y0.

34. By Problem 33, a solution y(x) of dy/dx = f(y) cannot have relative extrema and hence must

be monotone. Since y′(x) = f(y) > 0, y(x) is monotone increasing, and since y(x) is bounded

above by c2, limx→∞ y(x) = L, where L ≤ c2. We want to show that L = c2. Since L is a

horizontal asymptote of y(x), limx→∞ y′(x) = 0. Using the fact that f(y) is continuous we

have

f(L) = f
(

lim
x→∞

y(x)
)

= lim
x→∞

f(y(x)) = lim
x→∞

y′(x) = 0.

But then L is a critical point of f . Since c1 < L ≤ c2, and f has no critical points between

c1 and c2, L = c2.

35. Assuming the existence of the second derivative, points of inflection of y(x) occur where

y′′(x) = 0. From dy/dx = f(y) we have d2y/dx2 = f ′(y) dy/dx. Thus, the y-coordinate of a

point of inflection can be located by solving f ′(y) = 0. (Points where dy/dx = 0 correspond

to constant solutions of the differential equation.)

36. Solving y2 − y − 6 = (y − 3)(y + 2) = 0 we see that 3 and −2

are critical points. Now d2y/dx2 = (2y − 1) dy/dx = (2y − 1)(y −
3)(y + 2), so the only possible point of inflection is at y = 1

2 ,

although the concavity of solutions can be different on either side

of y = −2 and y = 3. Since y′′(x) < 0 for y < −2 and 1
2 < y < 3,

and y′′(x) > 0 for −2 < y < 1
2 and y > 3, we see that solution

curves are concave down for y < −2 and 1
2 < y < 3 and concave

up for −2 < y < 1
2 and y > 3. Points of inflection of solutions of

autonomous differential equations will have the same y-coordinates

because between critical points they are horizontal translations of

each other.

x

y

5–5

–5

5

37. If (1) in the text has no critical points it has no constant solutions. The solutions have

neither an upper nor lower bound. Since solutions are monotonic, every solution assumes all

real values.
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38. The critical points are 0 and b/a. From the phase portrait we see that 0 is an
attractor and b/a is a repeller. Thus, if an initial population satisfies P0 > b/a,
the population becomes unbounded as t increases, most probably in finite time,
i.e.P (t) → ∞ as t → T . If 0 < P0 < b/a, then the population eventually dies out,
that is, P (t) → 0 as t → ∞. Since population P > 0 we do not consider the case
P0 < 0. 0

b

a

39. From the equation dP/dt = k (P − h/k) we see that the only critical point of the autonomous

differential equationis the positive number h/k. A phase portrait shows that this point is

unstable, that is, h/k is a repeller. For any initial condition P (0) = P0 for which 0 < P0 < h/k,

dP/dt < 0 which means P (t) is monotonic decreasing and so the graph of P (t) must cross the

t-axis or the line P − 0 at some time t1 > 0. But P (t1) = 0 means the population is extinct

at time t1.

40. Writing the differential equation in the form

dv

dt
=

k

m

(mg

k
− v
)

we see that a critical point is mg/k.

From the phase portrait we see that mg/k is an asymptotically stable critical point.
Thus, lim

t→∞
v = mg/k.

mg

k

41. Writing the differential equation in the form

dv

dt
=

k

m

(mg

k
− v2

)

=
k

m

(√
mg

k
− v

)(√
mg

k
+ v

)

we see that the only physically meaningful critical point is
√

mg/k.

From the phase portrait we see that
√

mg/k is an asymptotically stable critical

point. Thus, lim
t→∞

v =
√

mg/k.

mg

k√

42. (a) From the phase portrait we see that critical points are α and β. LetX(0) = X0.
If X0 < α, we see that X → α as t → ∞. If α < X0 < β, we see that X → α
as t → ∞. If X0 > β, we see that X(t) increases in an unbounded manner,
but more specific behavior of X(t) as t → ∞ is not known.

β

α
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(b) When α = β the phase portrait is as shown. If X0 < α, then X(t) → α
as t → ∞. If X0 > α, then X(t) increases in an unbounded manner. This
could happen in a finite amount of time. That is, the phase portrait does not
indicate that X becomes unbounded as t → ∞.

α

(c) When k = 1 and α = β the differential equation is dX/dt = (α − X)2. For

X(t) = α− 1/(t+ c) we have dX/dt = 1/(t+ c)2 and

(α−X)2 =

[

α−
(

α− 1

t+ c

)]2

=
1

(t+ c)2
=

dX

dt
.

For X(0) = α/2 we obtain

X(t) = α− 1

t+ 2/α
.

For X(0) = 2α we obtain

X(t) = α− 1

t− 1/α
.

t

x

–2 / α

α

α / 2
t

x

1 / α

α

2α

For X0 > α, X(t) increases without bound up to t = 1/α. For t > 1/α, X(t) increases

but X → α as t → ∞.

2.2 Separable Variables

In many of the following problems we will encounter an expression of the form ln |g(y)| = f(x)+c.

To solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = ef(x)+c = ecef(x)

which implies g(y) = ±ecef(x). Letting c1 = ±ec we obtain g(y) = c1e
f(x).

1. From dy = sin 5x dx we obtain y = −1
5 cos 5x+ c.

2. From dy = (x+ 1)2 dx we obtain y = 1
3(x+ 1)3 + c.
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3. From dy = −e−3x dx we obtain y = 1
3e

−3x + c.

4. From
1

(y − 1)2
dy = dx we obtain − 1

y − 1
= x+ c or y = 1− 1

x+ c
.

5. From
1

y
dy =

4

x
dx we obtain ln |y| = 4 ln |x|+ c or y = c1x

4.

6. From
1

y2
dy = −2x dx we obtain −1

y
= −x2 + c or y =

1

x2 + c1
.

7. From e−2ydy = e3xdx we obtain 3e−2y + 2e3x = c.

8. From yeydy =
(
e−x + e−3x

)
dx we obtain yey − ey + e−x +

1

3
e−3x = c.

9. From

(

y + 2 +
1

y

)

dy = x2 lnx dx we obtain
y2

2
+ 2y + ln |y| = x3

3
ln |x| − 1

9
x3 + c.

10. From
1

(2y + 3)2
dy =

1

(4x+ 5)2
dx we obtain

2

2y + 3
=

1

4x+ 5
+ c.

11. From
1

csc y
dy = − 1

sec2 x
dx or sin y dy = − cos2 x dx = −1

2(1 + cos 2x) dx we obtain

− cos y = −1
2x− 1

4 sin 2x+ c or 4 cos y = 2x+ sin 2x+ c1.

12. From 2y dy = − sin 3x

cos3 3x
dx or 2y dy = − tan 3x sec2 3x dx we obtain y2 = −1

6 sec
2 3x+ c.

13. From
ey

(ey + 1)2
dy =

−ex

(ex + 1)3
dx we obtain − (ey + 1)−1 = 1

2 (e
x + 1)−2 + c.

14. From
y

(1 + y2)1/2
dy =

x

(1 + x2)1/2
dx we obtain

(
1 + y2

)1/2
=
(
1 + x2

)1/2
+ c.

15. From
1

S
dS = k dr we obtain S = cekr.

16. From
1

Q− 70
dQ = k dt we obtain ln |Q− 70| = kt+ c or Q− 70 = c1e

kt.

17. From
1

P − P 2
dP =

(
1

P
+

1

1− P

)

dP = dt we obtain ln |P | − ln |1− P | = t + c so that

ln

∣
∣
∣
∣

P

1− P

∣
∣
∣
∣
= t+ c or

P

1− P
= c1e

t. Solving for P we have P =
c1e

t

1 + c1et
.

18. From
1

N
dN =

(
tet+2 − 1

)
dt we obtain ln |N | = tet+2 − et+2 − t+ c or N = c1e

tet+2−et+2−t.

19. From
y − 2

y + 3
dy =

x− 1

x+ 4
dx or

(

1− 5

y + 3

)

dy =

(

1− 5

x+ 4

)

dx we obtain

y − 5 ln |y + 3| = x− 5 ln |x+ 4|+ c or

(
x+ 4

y + 3

)5

= c1e
x−y.
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20. From
y + 1

y − 1
dy =

x+ 2

x− 3
dx or

(

1 +
2

y − 1

)

dy =

(

1 +
5

x− 3

)

dx we obtain

y + 2 ln |y − 1| = x+ 5 ln |x− 3|+ c or
(y − 1)2

(x− 3)5
= c1e

x−y.

21. From x dx =
1

√

1− y2
dy we obtain 1

2x
2 = sin−1 y + c or y = sin

(
x2

2
+ c1

)

.

22. From
1

y2
dy =

1

ex + e−x
dx =

ex

(ex)2 + 1
dx we obtain −1

y
= tan−1 ex + c or

y = − 1

tan−1 ex + c
.

23. From
1

x2 + 1
dx = 4 dt we obtain tan−1 x = 4t+ c. Using x(π/4) = 1 we find c = −3π/4. The

solution of the initial-value problem is tan−1 x = 4t− 3π

4
or x = tan

(

4t− 3π

4

)

.

24. From
1

y2 − 1
dy =

1

x2 − 1
dx or

1

2

(
1

y − 1
− 1

y + 1

)

dy =
1

2

(
1

x− 1
− 1

x+ 1

)

dx we obtain

ln |y − 1| − ln |y + 1| = ln |x− 1| − ln |x+ 1| + ln c or
y − 1

y + 1
=

c(x− 1)

x+ 1
. Using y(2) = 2 we

find c = 1. A solution of the initial-value problem is
y − 1

y + 1
=

x− 1

x+ 1
or y = x.

25. From
1

y
dy =

1− x

x2
dx =

(
1

x2
− 1

x

)

dx we obtain ln |y| = −1

x
− ln |x| = c or xy = c1e

−1/x.

Using y(−1) = −1 we find c1 = e−1. The solution of the initial-value problem is xy = e−1−1/x

or y = e−(1+1/x)/x.

26. From
1

1− 2y
dy = dt we obtain −1

2 ln |1− 2y| = t+ c or 1− 2y = c1e
−2t. Using y(0) = 5/2 we

find c1 = −4. The solution of the initial-value problem is 1− 2y = −4e−2t or y = 2e−2t + 1
2 .

27. Separating variables and integrating we obtain

dx√
1− x2

− dy
√

1− y2
= 0 and sin−1 x− sin−1 y = c.

Setting x = 0 and y =
√
3/2 we obtain c = −π/3. Thus, an implicit solution of the initial-

value problem is sin−1 x − sin−1 y = π/3. Solving for y and using an addition formula from

trigonometry, we get

y = sin
(

sin−1 x+
π

3

)

= x cos
π

3
+
√

1− x2 sin
π

3
=

x

2
+

√
3
√
1− x2

2
.
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28. From
1

1 + (2y)2
dy =

−x

1 + (x2)2
dx we obtain

1

2
tan−1 2y = −1

2
tan−1 x2 + c or tan−1 2y + tan−1 x2 = c1.

Using y(1) = 0 we find c1 = π/4. Thus, an implicit solution of the initial-value problem is

tan−1 2y + tan−1 x2 = π/4 . Solving for y and using a trigonometric identity we get

2y = tan
(π

4
− tan−1 x2

)

y =
1

2
tan

(π

4
− tan−1 x2

)

=
1

2

tan π
4 − tan (tan−1 x2)

1 + tan π
4 tan (tan

−1 x2)

=
1

2

1− x2

1 + x2
.

29. Separating variables and then proceeding as in Example 5 we get

dy

dx
= ye−x2

1

y

dy

dx
= e−x2

ˆ x

4

1

y(t)

dy

dt
dt =

ˆ x

4
e−t2 dt

ln y(t)
∣
∣
∣

x

4
=

ˆ x

4
e−t2 dt

ln y(x)− ln y(4) =

ˆ x

4
e−t2 dt

ln y(x) =

ˆ x

4
e−t2 dt

y(x) = e
´

x

4
e−t

2
dt
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30. Separating variables and then proceeding as in Example 5 we get

dy

dx
= y2 sin (x2)

1

y2
dy

dx
= sin (x2)

ˆ x

−2

1

y2(t)

dy

dt
dt =

ˆ x

−2
sin (t2) dt

−1

y(t)

∣
∣
∣

x

−2
=

ˆ x

−2
sin (t2) dt

−1

y(x)
+

1

y(−2)
=

ˆ x

−2
sin (t2) dt

−1

y(x)
+ 3 =

ˆ x

−2
sin (t2) dt

y(x) =

[

3−
ˆ x

−2
sin (t2) dt

]−1

31. Separating variables we get

dy

dx
=

2x+ 1

2y

2y dy = (2x+ 1) dx

ˆ

2y dy =

ˆ

(2x+ 1) dx

y2 = x2 + x+ c

The condition y(−2) = −1 implies c = −1. Thus y2 = x2 + x − 1 and y = −
√
x2 + x− 1 in

order for y to be negative. Moreover for an interval containing −2 for values of x such that

x2 + x− 1 > 0 we get

(

−∞,−1

2
−

√
5

2

)

.
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32. Separating variables we get

(2y − 2)
dy

dx
= 3x2 + 4x+ 2

(2y − 2) dy =
(
3x2 + 4x+ 2

)
dx

ˆ

(2y − 2) dy =

ˆ

(
3x2 + 4x+ 2

)
dx

ˆ

2 (y − 1) dy =

ˆ

(
3x2 + 4x+ 2

)
dx

(y − 1)2 = x3 + 2x2 + 2x+ c

The condition y(1) = −2 implies c = 4. Thus y = 1 −
√
x3 + 2x2 + 2x+ 4 where the minus

sign is indicated by the initial condition. Now x3+2x2+2x+4 = (x+ 2)
(
x2 + 1

)
> 0 implies

x > −2, so the interval of definition is (−2,∞).

33. Separating variables we get

ey dx− e−x dy = 0

ey dx = e−x dy

ex dx = e−y dy

ˆ

ex dx =

ˆ

e−y dy

ex = −e−y + c

The condition y(0) = 0 implies c = 2. Thus e−y = 2− ex. Therefore y = − ln (2− ex). Now

we must have 2 − ex > 0 or ex < 2. Since ex is an increasing function this imples x < ln 2

and so the interval of definition is (−∞, ln 2).

34. Separating variables we get

sinx dx+ y dy = 0

ˆ

sinx dx+

ˆ

y dy =

ˆ

0 dx

− cosx+
1

2
y2 = c

The condition y(0) = 1 implies c = −1
2 . Thus − cos x + 1

2y
2 = −1

2 or y2 = 2cos x − 1.

Therefore y =
√
2 cos x− 1 where the positive root is indicated by the initial condition. Now

we must have 2 cos x− 1 > 0 or cos x > 1
2 . This means −π/3 < x < π/3, so the the interval

of definition is (−π/3, π/3).

35. (a) The equilibrium solutions y(x) = 2 and y(x) = −2 satisfy the initial conditions y(0) = 2
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and y(0) = −2, respectively. Setting x = 1
4 and y = 1 in y = 2(1 + ce4x)/(1 − ce4x) we

obtain

1 = 2
1 + ce

1− ce
, 1− ce = 2 + 2ce, −1 = 3ce, and c = − 1

3e
.

The solution of the corresponding initial-value problem is

y = 2
1− 1

3e
4x−1

1 + 1
3e

4x−1
= 2

3− e4x−1

3 + e4x−1
.

(b) Separating variables and integrating yields

1

4
ln |y − 2| − 1

4
ln |y + 2|+ ln c1 = x

ln |y − 2| − ln |y + 2|+ ln c = 4x

ln
∣
∣
∣
c(y − 2)

y + 2

∣
∣
∣ = 4x

c
y − 2

y + 2
= e4x .

Solving for y we get y = 2(c + e4x)/(c − e4x). The initial condition y(0) = −2 implies

2(c + 1)/(c − 1) = −2 which yields c = 0 and y(x) = −2. The initial condition y(0) = 2

does not correspond to a value of c, and it must simply be recognized that y(x) = 2 is a

solution of the initial-value problem. Setting x = 1
4 and y = 1 in y = 2(c+ e4x)/(c− e4x)

leads to c = −3e. Thus, a solution of the initial-value problem is

y = 2
−3e+ e4x

−3e− e4x
= 2

3− e4x−1

3 + e4x−1
.

36. Separating variables, we have

dy

y2 − y
=

dx

x
or

ˆ

dy

y(y − 1)
= ln |x|+ c.

Using partial fractions, we obtain

ˆ

(
1

y − 1
− 1

y

)

dy = ln |x|+ c

ln |y − 1| − ln |y| = ln |x|+ c

ln

∣
∣
∣
∣

y − 1

xy

∣
∣
∣
∣
= c

y − 1

xy
= ec = c1.

Solving for y we get y = 1/(1− c1x). We note by inspection that y = 0 is a singular solution

of the differential equation.
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(a) Setting x = 0 and y = 1 we have 1 = 1/(1 − 0), which is true for all values of c1. Thus,

solutions passing through (0, 1) are y = 1/(1 − c1x).

(b) Setting x = 0 and y = 0 in y = 1/(1− c1x) we get 0 = 1. Thus, the only solution passing

through (0, 0) is y = 0.

(c) Setting x = 1
2 and y = 1

2 we have 1
2 = 1/(1 − 1

2 c1), so c1 = −2 and y = 1/(1 + 2x).

(d) Setting x = 2 and y = 1
4 we have 1

4 = 1/(1 − 2c1), so c1 = −3
2 and

y = 1/(1 + 3
2 x) = 2/(2 + 3x).

37. Singular solutions of dy/dx = x
√

1− y2 are y = −1 and y = 1. A singular solution of

(ex + e−x)dy/dx = y2 is y = 0.

38. Differentiating ln (x2 + 10) + csc y = c we get

2x

x2 + 10
− csc y cot y

dy

dx
= 0,

2x

x2 + 10
− 1

sin y
· cos y
sin y

dy

dx
= 0,

or

2x sin2 y dx− (x2 + 10) cos y dy = 0.

Writing the differential equation in the form

dy

dx
=

2x sin2 y

(x2 + 10) cos y

we see that singular solutions occur when sin2 y = 0, or y = kπ, where k is an integer.

39. The singular solution y = 1 satisfies the initial-value problem.

x

y

0.97

0.98

1

1.01

–0.004 –0.002 0.002 0.004
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40. Separating variables we obtain
dy

(y − 1)2
= dx. Then

− 1

y − 1
= x+ c and y =

x+ c− 1

x+ c
.

Setting x = 0 and y = 1.01 we obtain c = −100. The solution
is

y =
x− 101

x− 100
.

–0.004 –0.002 0.002 0.004
x

0.98

0.99

1.01

1.02
y

41. Separating variables we obtain
dy

(y − 1)2 + 0.01
= dx. Then

10 tan−1 10(y − 1) = x+ c and y = 1 +
1

10
tan

x+ c

10
.

Setting x = 0 and y = 1 we obtain c = 0. The solution is

y = 1 +
1

10
tan

x

10
.

–0.004 –0.002 0.002 0.004
x

0.9996

0.9998

1.0002

1.0004

y

42. Separating variables we obtain
dy

(y − 1)2 − 0.01
= dx. Then,

with u = y − 1 and a = 1
10 , we get

5 ln

∣
∣
∣
∣

10y − 11

10y − 9

∣
∣
∣
∣
= x+ c.

Setting x = 0 and y = 1 we obtain c = 5 ln 1 = 0. The
solution is

5 ln

∣
∣
∣
∣

10y − 11

10y − 9

∣
∣
∣
∣
= x.

–0.004 –0.002 0.002 0.004
x

0.9996

0.9998

1.0002

1.0004

y

Solving for y we obtain

y =
11 + 9ex/5

10 + 10ex/5
.

Alternatively, we can use the fact that

ˆ

dy

(y − 1)2 − 0.01
= − 1

0.1
tanh−1 y − 1

0.1
= −10 tanh−1 10(y − 1).

(We use the inverse hyperbolic tangent because |y − 1| < 0.1 or 0.9 < y < 1.1. This

follows from the initial condition y(0) = 1.) Solving the above equation for y we get y =

1 + 0.1 tanh (x/10).
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43. Separating variables, we have

dy

y − y3
=

dy

y(1− y)(1 + y)
=

(
1

y
+

1/2

1− y
− 1/2

1 + y

)

dy = dx.

Integrating, we get

ln |y| − 1

2
ln |1− y| − 1

2
ln |1 + y| = x+ c.

When y > 1, this becomes

ln y − 1

2
ln (y − 1)− 1

2
ln (y + 1) = ln

y
√

y2 − 1
= x+ c.

Letting x = 0 and y = 2 we find c = ln (2/
√
3 ). Solving for y we get y1(x) = 2ex/

√
4e2x − 3 ,

where x > ln (
√
3/2).

When 0 < y < 1 we have

ln y − 1

2
ln (1− y)− 1

2
ln (1 + y) = ln

y
√

1− y2
= x+ c.

Letting x = 0 and y = 1
2 we find c = ln (1/

√
3 ). Solving for y we get y2(x) = ex/

√
e2x + 3 ,

where −∞ < x < ∞.

When −1 < y < 0 we have

ln (−y)− 1

2
ln (1− y)− 1

2
ln (1 + y) = ln

−y
√

1− y2
= x+ c.

Letting x = 0 and y = −1
2 we find c = ln (1/

√
3 ). Solving for y we get y3(x) = −ex/

√
e2x + 3 ,

where −∞ < x < ∞.

When y < −1 we have

ln (−y)− 1

2
ln (1− y)− 1

2
ln (−1− y) = ln

−y
√

y2 − 1
= x+ c.

Letting x = 0 and y = −2 we find c = ln (2/
√
3 ). Solving for y we get

y4(x) = −2ex/
√
4e2x − 3 , where x > ln (

√
3/2).

1 2 3 4 5
x

–4

–2

2

4

y

–4 –2 2 4
x

–4

–2

2

4

y

1 2 3 4 5
x

–4

–2

2

4

y

–4 –2 2 4
x

–4

–2

2

4

y
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44. (a) The second derivative of y is

d2y

dx2
= − dy/dx

(y − 1)2
= −1/(y − 3)

(y − 3)2
= − 1

(y − 3)3
.

The solution curve is concave down when d2y/dx2 < 0

or y > 3, and concave up when d2y/dx2 > 0 or y < 3.

From the phase portrait we see that the solution curve

is decreasing when y < 3 and increasing when y > 3.

–4 –2 2 4
x

–2

2

4

6

8

y

3

(b) Separating variables and integrating we obtain

(y − 3) dy = dx

1

2
y2 − 3y = x+ c

y2 − 6y + 9 = 2x+ c1

(y − 3)2 = 2x+ c1

y = 3±
√
2x+ c1 .

–1 1 2 3 4 5
x

–2

2

4

6

8
y

The initial condition dictates whether to use the plus or minus sign.

When y1(0) = 4 we have c1 = 1 and y1(x) = 3 +
√
2x+ 1 where (−1/2,∞).

When y2(0) = 2 we have c1 = 1 and y2(x) = 3−
√
2x+ 1 where (−1/2,∞).

When y3(1) = 2 we have c1 = −1 and y3(x) = 3−
√
2x− 1 where (1/2,∞).

When y4(−1) = 4 we have c1 = 3 and y4(x) = 3 +
√
2x+ 3 where (−3/2,∞).

45. We separate variables and rationalize the denominator. Then

dy =
1

1 + sinx
· 1− sinx

1− sinx
dx =

1− sinx

1− sin2 x
dx =

1− sinx

cos2 x
dx

=
(
sec2 x− tanx sec x

)
dx.

Integrating, we have y = tanx− sec x+ C.

46. Separating variables we have
√
y dy = sin

√
x dx. Then

ˆ √
y dy =

ˆ

sin
√
x dx and

2

3
y3/2 =

ˆ

sin
√
x dx.

To integrate sin
√
x we first make the substitution u =

√
x. Then du =

1

2
√
x
dx = 1

2u du and

ˆ

sin
√
x dx =

ˆ

(sinu) (2u) du = 2

ˆ

u sinu du.
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Using integration by parts we find

ˆ

u sinu du = −u cos u+ sinu = −
√
x cos

√
x+ sin

√
x.

Thus

2

3
y =

ˆ

sin
√
x dx = −2

√
x cos

√
x+ 2 sin

√
x+ C

and

y = 32/3
(
−
√
x cos

√
x+ sin

√
x+ C

)
.

47. Separating variables we have dy/
(√

y + y
)
= dx/ (

√
x + x). To integrate

ˆ

dx/
(√

x + x
)

we substitute u2 = x and get

ˆ

2u

u+ u2
du =

ˆ

2

1 + u
du = 2 ln |1 + u|+ c = 2 ln

(
1 +

√
x
)
+ c.

Integrating the separated differential equation we have

2 ln (1 +
√
y) = 2 ln

(
1 +

√
x
)
+ c or ln (1 +

√
y) = ln

(
1 +

√
x
)
+ ln c1.

Solving for y we get y = [c1 (1 +
√
x)− 1]

2
.

48. Separating variables and integrating we have

ˆ

dy

y2/3
(
1− y1/3

) =

ˆ

dx

ˆ

y2/3

1− y1/3
dy = x+ c1

−3 ln
∣
∣
∣1− y1/3

∣
∣
∣ = x+ c1

ln
∣
∣
∣1− y1/3

∣
∣
∣ = −x

3
+ c2

∣
∣
∣1− y1/3

∣
∣
∣ = c3e

−x/3

1− y1/3 = c4e
−x/3

y1/3 = 1 + c5e
−x/3

y =
(

1 + c5e
−x/3

)3
.
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49. Separating variables we have y dy = e
√
x dx. If u =

√
x , then u2 = x and 2u du = dx. Thus,

ˆ

e
√
x dx =

ˆ

2ueu du and, using integration by parts, we find

ˆ

y dy =

ˆ

e
√
x dx so

1

2
y2 =

ˆ

2ueu du = −2eu +C = 2
√
x e

√
x − 2e

√
x + C,

and

y = 2

√√
x e

√
x − e

√
x + C .

To find C we solve y(1) = 4.

y(1) = 2

√√
1 e

√
1 − e

√
1 + C = 2

√
C = 4 so C = 4.

and the solution of the intial-value problem is y = 2
√√

x e
√
x − e

√
x + 4 .

50. Seperating variables we have y dy = x tan−1 x dx. Integrating both sides and using integration

by parts with u = tan−1 x and dv = x dx we have

ˆ

y dy = x tan−1 x dx

1

2
y2 =

1

2
x2 tan−1 x− 1

2
x+

1

2
tan−1 x+ C

y2 = x2 tan−1 x− x+ tan−1 x+ C1

y =
√

x2 tan−1 x− x+ tan−1 x+ C1

To find C1 we solve y(0) = 3.

y(0) =
√

02 tan−1 0− 0 + tan−1 0 + C1 =
√

C1 = 3 so C1 = 9,

and the solution of the initial-value problem is y =
√
x2 tan−1 x− x+ tan−1 x+ 9 .

51. (a) While y2(x) = −
√
25− x2 is defined at x = −5 and x = 5, y′2(x) is not defined at these

values, and so the interval of definition is the open interval (−5, 5).

(b) At any point on the x-axis the derivative of y(x) is undefined, so no solution curve can

cross the x-axis. Since −x/y is not defined when y = 0, the initial-value problem has no

solution.

52. The derivative of y =
(
1
4x

2 − 1
)2

is dy/dx = x
(
1
4x

2 − 1
)
. We note that xy1/2 = x

∣
∣1
4x

2 − 1
∣
∣.

We see from the graphs of y (black), dy/dx (red), and xy1/2 (blue), below that dy/dx = xy1/2

on (−∞, 2] and [2,∞).
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Alternatively, because
√
X2 = |X| we can write

xy1/2 = x
√
y = x

√
(
1

4
x2 − 1

)2

= x

∣
∣
∣
∣

1

4
x2 − 1

∣
∣
∣
∣
=







x
(
1
4x

2 − 1
)
, −∞ < x ≤ −2

−x
(
1
4x

2 − 1
)
, −2 < x < 2

x
(
1
4x

2 − 1
)
, 2 ≤ x < ∞ .

From this we see that dy/dx = xy1/2 on (−∞,−2] and on [2,∞).

53. Separating variables we have dy/
(√

1 + y2 sin2 y
)

= dx

which is not readily integrated (even by a CAS). We

note that dy/dx ≥ 0 for all values of x and y and that

dy/dx = 0 when y = 0 and y = π, which are equilibrium

solutions.
–6 –4 –2 2 4 6 8

x

0.5

1

1.5

2

2.5

3

3.5
y

54. (a) The solution of y′ = y, y(0) = 1, is y = ex. Using separation of variables we find that the

solution of y′ = y [1 + 1/ (x lnx)], y(e) = 1, is y = ex−e lnx. Solving the two solutions

simultaneously we obtain

ex = ex−e lnx, so ee = lnx and x = ee
e

.

(b) Since y = e(e
e
e

) ≈ 2.33 × 101,656,520, the y-coordinate of the point of intersection of the

two solution curves has over 1.65 million digits.

55. We are looking for a function y(x) such that

y2 +

(
dy

dx

)2

= 1.

Using the positive square root gives

dy

dx
=
√

1− y2

dy
√

1− y2
= dx

sin−1 y = x+ c.
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Thus a solution is y = sin (x+ c). If we use the negative square root we obtain

y = sin (c− x) = − sin (x− c) = − sin (x+ c1).

Note that when c = c1 = 0 and when c = c1 = π/2 we obtain the well known particular

solutions y = sinx, y = − sinx, y = cos x, and y = − cosx. Note also that y = 1 and y = −1

are singular solutions.

56. (a) x

x

y

–3 3

–3

3

(b) For |x| > 1 and |y| > 1 the differential equation is dy/dx =
√

y2 − 1 /
√
x2 − 1 . Separat-

ing variables and integrating, we obtain

dy
√

y2 − 1
=

dx√
x2 − 1

and cosh−1 y = cosh−1 x+ c.

Setting x = 2 and y = 2 we find c = cosh−1 2 − cosh−1 2 = 0 and cosh−1 y = cosh−1 x.

An explicit solution is y = x.

57. Since the tension T1 (or magnitude T1) acts at the lowest point of the cable, we use symmetry

to solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform

(that is, weighs a constant ρ pounds per horizontal foot) implies W = ρx, where x is measured

in feet and 0 ≤ x ≤ L/2. Therefore (10) becomes dy/dx = (ρ/T1)x. This last equation is a

separable equation of the form given in (1) of Section 2.2 in the text. Integrating and using the

initial condition y(0) = a shows that the shape of the cable is a parabola: y(x) = (ρ/2T1)x
2+a.

In terms of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that

y(L/2) = h+a. By applying this last condition to y(x) = (ρ/2T1)x
2+a enables us to express

ρ/2T1 in terms of h and L: y(x) = (4h/L2)x2 + a. Since y(x) is an even function of x, the

solution is valid on −L/2 ≤ x ≤ L/2.

58. (a) Separating variables and integrating, we have

(3y2 + 1) dy = −(8x+ 5) dx and y3 + y = −4x2 − 5x+ c.

Using a CAS we show various contours of

f(x, y) = y3 + y + 4x2 + 5x. The plots shown on

[−5, 5]×[−5, 5] correspond to c-values of 0, ±5, ±20, ±40,

±80, and ±125.

–4 –2 0 2 4
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0

2

4

x

y



2.2 Separable Variables 61

(b) The value of c corresponding to y(0) = −1 is f(0,−1) = −2;

to y(0) = 2 is f(0, 2) = 10; to y(−1) = 4 is f(−1, 4) = 67;

and to y(−1) = −3 is −31.

–4 –2 0 2 4

–4

–2

0

2

4

x

y

59. (a) An implicit solution of the differential equation (2y + 2)dy − (4x3 + 6x) dx = 0 is

y2 + 2y − x4 − 3x2 + c = 0.

The condition y(0) = −3 implies that c = −3. Therefore y2 + 2y − x4 − 3x2 − 3 = 0.

(b) Using the quadratic formula we can solve for y in terms of x:

y =
−2±

√

4 + 4(x4 + 3x2 + 3)

2
.

The explicit solution that satisfies the initial condition is then

y = −1−
√

x4 + 3x3 + 4 .

(c) From the graph of the function f(x) = x4 + 3x3 + 4 below we see that f(x) ≤ 0 on the

approximate interval −2.8 ≤ x ≤ −1.3. Thus the approximate domain of the function

y = −1−
√

x4 + 3x3 + 4 = −1−
√

f(x)

is x ≤ −2.8 or x ≥ −1.3. The graph of this function is shown below.

–4 –2
x

–4

–2

2

4

f(x)

2
x
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–1 – √f(x)
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(d) Using the root finding capabilities of a CAS, the zeros of f are found

to be −2.82202 and −1.3409. The domain of definition of the solution

y(x) is then x > −1.3409. The equality has been removed since the

derivative dy/dx does not exist at the points where f(x) = 0. The

graph of the solution y = φ(x) is given on the right.

2
x

–10

–8

–6

–4

–2

–1 – √f(x)

60. (a) Separating variables and integrating, we have

(−2y + y2) dy = (x− x2) dx

and

−y2 +
1

3
y3 =

1

2
x2 − 1

3
x3 + c

Using a CAS we show some contours of

f(x, y) = 2y3 − 6y2 + 2x3 − 3x2. –6 –4 –2 0 2 4 6

x

y

–4

–2

0

2

4

The plots shown on [−7, 7]× [−5, 5] correspond to c-values of −450, −300, −200, −120,

−60, −20, −10, −8.1, −5, −0.8, 20, 60, and 120.

(b) The value of c corresponding to y(0) = 3
2 is

f
(
0, 32

)
= −27

4 . The portion of the graph be-

tween the dots corresponds to the solution curve

satisfying the intial condition. To determine the

interval of definition we find dy/dx for

2y3 − 6y2 + 2x3 − 3x2 = −27

4
.

–2 0 2 4 6
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Using implicit differentiation we get y′ = (x−x2)/(y2−2y), which is infinite when y = 0

and y = 2. Letting y = 0 in 2y3−6y2+2x3−3x2 = −27
4 and using a CAS to solve for x

we get x = −1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest interval

of definition is approximately (−1.13232, 1.71299).
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(c) The value of c corresponding to y(0) = −2 is

f(0,−2) = −40. The portion of the graph to the

right of the dot corresponds to the solution curve

satisfying the initial condition. To determine the

interval of definition we find dy/dx for

2y3 − 6y2 + 2x3 − 3x2 = −40.

x

y

–4 –2 0 2 4 6 8 10

–8

–6

–4

–2

0

2

4

Using implicit differentiation we get y′ = (x−x2)/(y2−2y), which is infinite when y = 0

and y = 2. Letting y = 0 in 2y3− 6y2+2x3 − 3x2 = −40 and using a CAS to solve for x

we get x = −2.29551. The largest interval of definition is approximately (−2.29551,∞).

2.3 Linear Equations

1. For y′ − 5y = 0 an integrating factor is e−
´

5 dx = e−5x so that
d

dx

[
e−5xy

]
= 0 and y = ce5x

for −∞ < x < ∞.

2. For y′ +2y = 0 an integrating factor is e
´

2 dx = e2x so that
d

dx

[
e2xy

]
= 0 and y = ce−2x for

−∞ < x < ∞. The transient term is ce−2x.

3. For y′+y = e3x an integrating factor is e
´

dx = ex so that
d

dx
[exy] = e4x and y = 1

4e
3x+ce−x

for −∞ < x < ∞. The transient term is ce−x.

4. For y′+4y = 4
3 an integrating factor is e

´

4 dx = e4x so that
d

dx

[
e4xy

]
= 4

3e
4x and y = 1

3+ce−4x

for −∞ < x < ∞. The transient term is ce−4x.

5. For y′ + 3x2y = x2 an integrating factor is e
´

3x2 dx = ex
3

so that
d

dx

[

ex
3

y
]

= x2ex
3

and

y = 1
3 + ce−x3

for −∞ < x < ∞. The transient term is ce−x3

.

6. For y′ + 2xy = x3 an integrating factor is e
´

2x dx = ex
2

so that
d

dx

[

ex
2

y
]

= x3ex
2

and

y = 1
2x

2 − 1
2 + ce−x2

for −∞ < x < ∞. The transient term is ce−x2

.

7. For y′+
1

x
y =

1

x2
an integrating factor is e

´

(1/x) dx = x so that
d

dx
[xy] =

1

x
and y =

1

x
lnx+

c

x

for 0 < x < ∞. The entire solution is transient.
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8. For y′−2y = x2+5 an integrating factor is e−
´

2 dx = e−2x so that
d

dx

[
e−2xy

]
= x2e−2x+5e−2x

and y = −1
2x

2 − 1
2x− 11

4 + ce2x for −∞ < x < ∞. There is no transient term.

9. For y′ − 1

x
y = x sinx an integrating factor is e−

´

(1/x) dx =
1

x
so that

d

dx

[
1

x
y

]

= sinx and

y = cx− x cos x for 0 < x < ∞. There is no transient term.

10. For y′+
2

x
y =

3

x
an integrating factor is e

´

(2/x)dx = x2 so that
d

dx

[
x2y
]
= 3x and y = 3

2+cx−2

for 0 < x < ∞. The trancient term is cx−2.

11. For y′ +
4

x
y = x2 − 1 an integrating factor is e

´

(4/x)dx = x4 so that
d

dx

[
x4y
]
= x6 − x4 and

y = 1
7x

3 − 1
5x+ cx−4 for 0 < x < ∞. The transient term is cx−4.

12. For y′ − x

(1 + x)
y = x an integrating factor is e−

´

[x/(1+x)]dx = (x + 1)e−x so that

d

dx

[
(x+ 1)e−xy

]
= x(x + 1)e−x and y = −x − 2x+ 3

x+ 1
+

cex

x+ 1
for −1 < x < ∞. There

is no transient term.

13. For y′+

(

1 +
2

x

)

y =
ex

x2
an integrating factor is e

´

[1+(2/x)]dx = x2ex so that
d

dx
[x2exy] = e2x

and y =
1

2

ex

x2
+

ce−x

x2
for 0 < x < ∞. The transient term is

ce−x

x2
.

14. For y′ +

(

1 +
1

x

)

y =
1

x
e−x sin 2x an integrating factor is e

´

[1+(1/x)]dx = xex so that

d

dx
[xexy] = sin 2x and y = − 1

2x
e−x cos 2x +

ce−x

x
for 0 < x < ∞. The entire solution

is transient.

15. For
dx

dy
− 4

y
x = 4y5 an integrating factor is e−

´

(4/y) dy = eln y−4

= y−4 so that
d

dy

[
y−4x

]
= 4y

and x = 2y6 + cy4 for 0 < y < ∞. There is no transient term.

16. For
dx

dy
+

2

y
x = ey an integrating factor is e

´

(2/y) dy = y2 so that
d

dy

[
y2x
]
= y2ey and

x = ey − 2

y
ey +

2

y2
ey +

c

y2
for 0 < y < ∞. The transient term is

c

y2
.
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17. For y′+(tanx)y = sec x an integrating factor is e
´

tan xdx = sec x so that
d

dx
[(sec x)y] = sec2 x

and y = sinx+ c cos x for −π/2 < x < π/2. There is no transient term.

18. For y′ + (cot x)y = sec2 x csc x an integrating factor is e
´

cot xdx = eln | sinx| = sinx so that

d

dx
[(sinx) y] = sec2 x and y = sec x+ c csc x for 0 < x < π/2. There is no transient term.

19. For y′ +
x+ 2

x+ 1
y =

2xe−x

x+ 1
an integrating factor is e

´

[(x+2)/(x+1)]dx = (x + 1)ex, so

d

dx
[(x+ 1)exy] = 2x and y =

x2

x+ 1
e−x +

c

x+ 1
e−x for −1 < x < ∞. The entire

solution is transient.

20. For y′ +
4

x+ 2
y =

5

(x+ 2)2
an integrating factor is e

´

[4/(x+2)] dx = (x + 2)4 so that

d

dx

[
(x+ 2)4y

]
= 5(x + 2)2 and y =

5

3
(x + 2)−1 + c(x + 2)−4 for −2 < x < ∞. The

entire solution is transient.

21. For
dr

dθ
+ r sec θ = cos θ an integrating factor is e

´

sec θ dθ = eln | secx+tan x| = sec θ + tan θ so

that
d

dθ
[(sec θ + tan θ)r] = 1 + sin θ and (sec θ + tan θ)r = θ − cos θ + c for −π/2 < θ < π/2.

There is no transient term.

22. For
dP

dt
+ (2t− 1)P = 4t− 2 an integrating factor is e

´

(2t−1) dt = et
2−t so that

d

dt

[

et
2−tP

]

=

(4t− 2)et
2−t and P = 2 + cet−t2 for −∞ < t < ∞. The transient term is cet−t2 .

23. For y′+

(

3 +
1

x

)

y =
e−3x

x
an integrating factor is e

´

[3+(1/x)]dx = xe3x so that
d

dx

[
xe3xy

]
= 1

and y = e−3x +
ce−3x

x
for 0 < x < ∞. The transient term is ce−3x/x.

24. For y′ +
2

x2 − 1
y =

x+ 1

x− 1
an integrating factor is e

´

[2/(x2−1)]dx =
x− 1

x+ 1

so that
d

dx

[
x− 1

x+ 1
y

]

= 1 and (x − 1)y = x(x + 1) + c(x + 1) for −1 < x < 1. There is no

transient term.
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25. For y′ − 5y = x an integrating factor is e
´

−5 dx = e−5x so that
d

dx

[
e−5xy

]
= xe−5x and

y = e5x
ˆ

xe−5x dx = e5x
(

−1

5
xe−5x − 1

25
e−5x + c

)

= −1

5
x− 1

25
+ ce5x.

If y(0) = 3 then c =
1

25
and y = −1

5
x− 1

25
+
76

25
e5x. The solution is defined on I = (−∞,∞).

26. For y′ + 3y = 2x and integrating factor is e
´

3 dx = e3x so that
d

dx

[
e3xy

]
= 2xe3x and

y = e−3x

ˆ

2xe3x dx = e−3x

(
2

3
xe3x − 2

9
e3x + c

)

=
2

3
x− 2

9
+ ce−3x.

If y(0) =
1

3
then c =

5

9
and y =

2

3
x− 2

9
+

5

9
e−3x. THe solution is defined on I = (−∞,∞).

27. For y′+
1

x
y =

1

x
ex an integrating factor is e

´

(1/x)dx = x so that
d

dx
[xy] = ex and y =

1

x
ex+

c

x

for 0 < x < ∞. If y(1) = 2 then c = 2− e and y =
1

x
ex +

2− e

x
. The solution is defined on

I = (0,∞).

28. For
dx

dy
− 1

y
x = 2y an integrating factor is e−

´

(1/y)dy =
1

y
so that

d

dy

[
1

y
x

]

= 2 and

x = 2y2 + cy for 0 < y < ∞. If y(1) = 5 then c = −49/5 and x = 2y2 − 49

5
y. The solution is

defined on I = (0,∞).

29. For
di

dt
+

R

L
i =

E

L
an integrating factor is e

´

(R/L) dt = eRt/L so that
d

dt

[

eRt/L i
]

=
E

L
eRt/L

and i =
E

R
+ ce−Rt/L for −∞ < t < ∞. If i(0) = i0 then c = i0 − E/R and i =

E

R
+

(

i0 −
E

R

)

e−Rt/L. The solution is defined on I = (−∞,∞)

30. For
dT

dt
−kT = −Tmk an integrating factor is e

´

(−k) dt = e−kt so that
d

dt
[e−ktT ] = −Tmke−kt

and T = Tm+cekt for −∞ < t < ∞. If T (0) = T0 then c = T0−Tm and T = Tm+(T0−Tm)ekt.

The solution is defined on I = (−∞,∞)

31. For y′ +
1

x
y = 4 +

1

x
an integrating factor is e

´

(1/x) dx = x so that
d

dx
[xy] = 4x+ 1 and

y =
1

x

ˆ

(4x+ 1) dx =
1

x

(
2x2 + x+ c

)
= 2x+ 1 +

c

x
.
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If y(1) = 8 then c = 5 and y = 2x+ 1 +
5

x
. The solution is defined on I = (0,∞).

32. For y′ + 4xy = x3ex
2

an integrating factor is e
´

4x dx = e2x
2

so that
d

dx
[e2x

2

y] = x3e3x
2

and

y = e−2x2

ˆ

x3e3x
2

dx = e−2x2

(
1

6
x2e3x

2 − 1

18
e3x

2

+ c

)

=
1

6
x2ex

2 − 1

18
ex

2

+ ce−2x2

.

If y(0) = −1 then c = −17

18
and y =

1

6
x2ex

2 − 1

18
ex

2 − 17

18
e−2x2

. The solution is defined on

I = (−∞,∞).

33. For y′+
1

x+ 1
y =

lnx

x+ 1
an integrating factor is e

´

[1/(x+1)] dx = x+1 so that
d

dx
[(x+1)y] = lnx

and

y =
x

x+ 1
lnx− x

x+ 1
+

c

x+ 1
for 0 < x < ∞.

If y(1) = 10 then c = 21 and y =
x

x+ 1
lnx − x

x+ 1
+

21

x+ 1
. The solution is defined on

I = (0,∞).

34. For y′ +
1

x+ 1
y =

1

x (x+ 1)
an integrating factor is e

´

[1/(x+1)] dx = x + 1 so that

d

dx
[(x+ 1) y] =

1

x
and

y =
1

x+ 1

ˆ

1

x
dx =

1

x+ 1
(lnx+ c) =

lnx

x+ 1
+

c

x+ 1
.

If y(e) = 1 then c = e and y =
lnx

x+ 1
+

e

x+ 1
. The solution is defined on I = (0,∞).

35. For y′ − (sinx) y = 2 sin x an integrating factor is e
´

(− sinx) dx = ecos x so that
d

dx
[ecos xy] =

2 (sinx) ecos x and

y = e− cos x

ˆ

2 (sinx) ecos x dx = e− cos x (−2ecos x + c) = −2 + ce− cos x.

If y(π/2) = 1 then c = 3 and y = −2 + 3e− cos x. The solution is defined on I = (−∞,∞).
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36. For y′ + (tan x)y = cos2 x an integrating factor is e
´

tanx dx = eln | sec x| = sec x so that

d

dx
[(sec x) y] = cos x and y = sinx cos x + c cos x for −π/2 < x < π/2. If y(0) = −1

then c = −1 and y = sinx cos x− cos x. The solution is defined on I = (−π/2, π/2).

37. For y′ + 2y = f(x) an integrating factor is e2x so that

ye2x =







1

2
e2x + c1, 0 ≤ x ≤ 3

c2, x > 3.

If y(0) = 0 then c1 = −1/2 and for continuity we must

have c2 =
1
2e

6 − 1
2 so that

y =







1

2
(1− e−2x), 0 ≤ x ≤ 3

1

2
(e6 − 1)e−2x, x > 3.

x

y

5

1

38. For y′ + y = f(x) an integrating factor is ex so that

yex =







ex + c1, 0 ≤ x ≤ 1

−ex + c2, x > 1.

If y(0) = 1 then c1 = 0 and for continuity we must have

c2 = 2e so that

y =







1, 0 ≤ x ≤ 1

2e1−x − 1, x > 1.

x

y

5

1

–1

39. For y′ + 2xy = f(x) an integrating factor is ex
2

so that

yex
2

=







1

2
ex

2

+ c1, 0 ≤ x ≤ 1

c2, x > 1.

If y(0) = 2 then c1 = 3/2 and for continuity we must have

c2 =
1
2e+

3
2 so that

y =







1

2
+

3

2
e−x2

, 0 ≤ x ≤ 1

(
1

2
e+

3

2

)

e−x2

, x > 1.

y

x3

2
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40. For

y′ +
2x

1 + x2
y =







x

1 + x2
, 0 ≤ x ≤ 1

−x

1 + x2
, x > 1,

an integrating factor is 1 + x2 so that

(
1 + x2

)
y =







1

2
x2 + c1, 0 ≤ x ≤ 1

−1

2
x2 + c2, x > 1.

x

y

5

–1

1

If

y(0) = 0 then c1 = 0 and for continuity we must have c2 = 1 so that

y =







1

2
− 1

2 (1 + x2)
, 0 ≤ x ≤ 1

3

2 (1 + x2)
− 1

2
, x > 1.

41. We first solve the initial-value problem y′ + 2y = 4x,

y(0) = 3 on the interval [0, 1]. The integrating factor is

e
´

2 dx = e2x, so

d

dx
[e2xy] = 4xe2x

e2xy =

ˆ

4xe2x dx = 2xe2x − e2x + c1

y = 2x− 1 + c1e
−2x.

x

y

3

5

10

15

20

Using the initial condition, we find y(0) = −1 + c1 = 3, so c1 = 4 and y = 2x − 1 + 4e−2x,

0 ≤ x ≤ 1. Now, since y(1) = 2 − 1 + 4e−2 = 1 + 4e−2, we solve the initial-value problem

y′ − (2/x)y = 4x, y(1) = 1 + 4e−2 on the interval (1,∞). The integrating factor is

e
´

(−2/x) dx = e−2 lnx = x−2, so

d

dx
[x−2y] = 4xx−2 =

4

x

x−2y =

ˆ

4

x
dx = 4 ln x+ c2

y = 4x2 lnx+ c2x
2.

(We use lnx instead of ln |x| because x > 1.) Using the initial condition we find
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y(1) = c2 = 1 + 4e−2, so y = 4x2 lnx+ (1 + 4e−2)x2, x > 1. Thus,

y =

⎧

⎪⎨

⎪⎩

2x− 1 + 4e−2x, 0 ≤ x ≤ 1

4x2 lnx+
(
1 + 4e−2

)
x2, x > 1.

42. We first solve the initial-value problem y′ + y = 0,

y(0) = 4 on the interval [0, 2]. The integrating factor

is e
´

1 dx = ex, so

d

dx
[exy] = 0

exy =

ˆ

0 dx = c1

y = c1e
−x.

x

y

5

1

–1

Using the initial condition, we find y(0) = c1 = 4, so c1 = 4 and y = 4e−x, 0 ≤ x ≤ 2. Now,

since y(2) = 4e−2, we solve the initial-value problem y′ + 5y = 0, y(1) = 4e−2 on the interval

(2,∞). The integrating factor is e
´

5 dx = e5x, so

d

dx

[
e5xy

]
= 0

e5xy =

ˆ

0 dx = c2

y = c2e
−5x.

Using the initial condition we find y(2) = c2e−10 = 4e−2, so c2 = 4e8 and y = 4e8e−5x =

4e8−5x, x > 2. Thus, the solution of the original initial-value problem is

y =

⎧

⎪⎨

⎪⎩

4e−x, 0 ≤ x ≤ 2

4x8−5x, x > 2.
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43. An integrating factor for y′ − 2xy = 1 is e−x2

. Thus

d

dx
[e−x2

y] = e−x2

e−x2

y =

ˆ x

0
e−t2 dt =

√
π

2
erf(x) + c

y =

√
π

2
ex

2

erf(x) + cex
2

.

From y(1) = (
√
π/2)e erf(1) + ce = 1 we get c = e−1 −

√
π
2 erf(1). The solution of the

initial-value problem is

y =

√
π

2
ex

2

erf(x) +

(

e−1 −
√
π

2
erf(1)

)

ex
2

= ex
2−1 +

√
π

2
ex

2

(erf(x)− erf(1)).

44. An integrating factor for y′ − 2xy = −1 is e−x2

. Thus

d

dx
[e−x2

y] = −e−x2

e−x2

y = −
ˆ x

0
e−t2 dt = −

√
π

2
erf(x) + c.

From y(0) =
√
π/2, and noting that erf(0) = 0, we get c =

√
π/2. Thus

y = ex
2

(

−
√
π

2
erf(x) +

√
π

2

)

=

√
π

2
ex

2

(1− erf(x)) =

√
π

2
ex

2

erfc (x).

45. For y′ + exy = 1 an integrating factor is ee
x

. Thus

d

dx

[
ee

x

y
]
= ee

x

and ee
x

y =

ˆ x

0
ee

t

dt+ c.

From y(0) = 1 we get c = e, so y = e−ex
´ x
0 ee

t

dt+ e1−ex .

46. Dividing by x2 we have y′ − 1

x2
y = x. An integrating factor is e1/x. Thus

d

dx

[

e1/xy
]

= xe1/x and e1/xy =

ˆ x

1
te1/t dt+ c.

From y(1) = 0 we get c = 0, so y = e−1/x
´ x
1 te1/t dt.
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47. An integrating factor for

y′ +
2

x
y =

10 sin x

x3

is x2. Thus

d

dx

[
x2y
]
= 10

sin x

x

x2y = 10

ˆ x

0

sin t

t
dt+ c

y = 10x−2 Si (x) + cx−2.

From y(1) = 0 we get c = −10 Si (1). Thus

y = 10x−2 Si (x)− 10x−2 Si (1) = 10x−2 (Si (x)− Si (1)) .

48. The integrating factor for y′ −
(
sinx2

)
y = 0 is e−

´

x

0
sin t2 dt. Then

d

dx

[

e−
´

x

0
sin t2 dty

]

= 0

e−
´

x

0
sin t2 dty = c1

y = c1e
´

x

0
sin t2 dt

Letting t =
√

π/2u we have dt =
√

π/2 du and

ˆ x

0
sin t2 dt =

√
π

2

ˆ

√
2/π x

0
sin
(π

2
u2
)

du =

√
π

2
S

(√

2

π
x

)

so y = c1e

√
π/2S

(√
2/π x

)

. Using S(0) = 0 and y(0) = c1 = 5 we have y = 5e

√
π/2S

(√
2/π x

)

.

49. We want 4 to be a critical point, so we use y′ = 4− y.

50. (a) All solutions of the form y = x5ex − x4ex + cx4 satisfy the initial condition. In this case,

since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied

and the initial-value problem does not have a unique solution.
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(b) The differential equation has no solution satisfying y(0) = y0, y0 > 0.

(c) In this case, since x0 > 0, Theorem 1.2.1 applies and the initial-value problem has a

unique solution given by y = x5ex − x4ex + cx4 where c = y0/x
4
0 − x0e

x0 + ex0 .

51. On the interval (−3, 3) the integrating factor is

e
´

x dx/(x2−9) = e−
´

xdx/(9−x2) = e
1

2
ln (9−x2) =

√

9− x2

and so

d

dx

[√

9− x2 y
]

= 0 and y =
c√

9− x2
.

52. We want the general solution to be y = 3x − 5 + ce−x. (Rather than e−x, any function that

approaches 0 as x → ∞ could be used.) Differentiating we get

y′ = 3− ce−x = 3− (y − 3x+ 5) = −y + 3x− 2,

so the differential equation y′ + y = 3x− 2 has solutions asymptotic to the line y = 3x− 5.

53. The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at x = 1

is 1− 1/e. Thus, y is not differentiable at x = 1.

54. (a) Differentiating yc = c/x3 we get

y′c = −3c

x4
= −3

x

c

x3
= −3

x
yc

so a differential equation with general solution yc = c/x3 is xy′ + 3y = 0. Now using

yp = x3

xy′p + 3yp = x(3x2) + 3(x3) = 6x3

so a differential equation with general solution y = c/x3 + x3 is xy′ + 3y = 6x3. This

will be a general solution on (0,∞).
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(b) Since y(1) = 13−1/13 = 0, an initial condition is y(1) = 0.

Since y(1) = 13+2/13 = 3, an initial condition is y(1) = 3.

In each case the interval of definition is (0,∞). The initial-

value problem xy′+3y = 6x3, y(0) = 0 has solution y = x3

for −∞ < x < ∞. In the figure the lower curve is the

graph of y(x) = x3 − 1/x3, while the upper curve is the

graph of y = x3 − 2/x3.

x

y

5

–3

3

(c) The first two initial-value problems in part (b) are not unique. For example, setting

y(2) = 23 − 1/23 = 63/8, we see that y(2) = 63/8 is also an initial condition leading to

the solution y = x3 − 1/x3.

55. Since e
´

P (x) dx+c = ece
´

P (x) dx = c1e
´

P (x) dx, we would have

c1e
´

P (x) dxy = c2 +

ˆ

c1e
´

P (x) dxf(x) dx and e
´

P (x) dxy = c3 +

ˆ

e
´

P (x) dxf(x) dx,

which is the same as (4) in the text.

56. We see by inspection that y = 0 is a solution.

57. The solution of the first equation is x = c1e
−λ1t. From x(0) = x0 we obtain c1 = x0 and so

x = x0e
−λ1t. The second equation then becomes

dy

dt
= x0λ1e

−λ1t − λ2y or
dy

dt
+ λ2y = x0λ1e

−λ1t

which is linear. An integrating factor is eλ2t. Thus

d

dt

[

eλ2ty
]

= x0λ1e
−λ1teλ2t = x0λ1e

(λ2−λ1)t

eλ2ty =
x0λ1

λ2 − λ1
e(λ2−λ1)t + c2

y =
x0λ1

λ2 − λ1
e−λ1t + c2e

−λ2t.
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From y(0) = y0 we obtain c2 = (y0λ2 − y0λ1 − x0λ1) / (λ2 − λ1). The solution is

y =
x0λ1

λ2 − λ1
e−λ1t +

y0λ2 − y0λ1 − x0λ1

λ2 − λ1
e−λ2t.

58. Writing the differential equation as
dE

dt
+

1

RC
E = 0 we see that an integrating factor is

et/RC . Then

d

dt

[

et/RCE
]

= 0

et/RCE = c

E = ce−t/RC

From E(4) = ce−4/RC = E0 we find c = E0e
4/RC . Thus, the solution of the initial-value

problem is

E = E0e
4/RCe−t/RC = E0e

−(t−4)/RC .

59. (a) x

x

y

5

5

(b) Using a CAS we find y(2) ≈ 0.226339.

60. (a) x

x

y

1 2 3 4 5

–5

–4

–3

–2

–1

1

2
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(b) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7.

Using the root-finding capability of a CAS and solving y′(x) = 0 for x we see that the

absolute maximum is (1.688, 1.742).

61. (a) x

x

y

–10 –5

5

10

105

(b) From the graph we see that as x → ∞, y(x) oscillates with decreasing amplitudes ap-

proaching 9.35672. Since lim
x→∞

S(x) =
1

2
, we have lim

x→∞
y(x) = 5e

√
π/8 ≈ 9.357, and

since lim
x→−∞

S(x) = −1

2
, we have lim

x→−∞
y(x) = 5e−

√
π/8 ≈ 2.672.

(c) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7

and the absolute minimum occurs around x = −1.8. Using the root-finding capability of

a CAS and solving y′(x) = 0 for x, we see that the absolute maximum is (1.772, 12.235)

and the absolute minimum is (−1.772, 2.044).

2.4 Exact Equations

1. Let M = 2x − 1 and N = 3y + 7 so that My = 0 = Nx. From fx = 2x − 1 we obtain

f = x2 − x+ h(y), h′(y) = 3y + 7, and h(y) = 3
2y

2 + 7y. A solution is x2 − x+ 3
2y

2 + 7y = c.

2. Let M = 2x+ y and N = −x− 6y. Then My = 1 and Nx = −1, so the equation is not exact.

3. Let M = 5x + 4y and N = 4x − 8y3 so that My = 4 = Nx. From fx = 5x + 4y we obtain

f = 5
2x

2 + 4xy + h(y), h′(y) = −8y3, and h(y) = −2y4. A solution is 5
2x

2 + 4xy − 2y4 = c.

4. Let M = sin y − y sinx and N = cos x+ x cos y − y so that My = cos y − sinx = Nx. From

fx = sin y − y sinx we obtain f = x sin y + y cos x+ h(y), h′(y) = −y, and h(y) = −1
2y

2. A

solution is x sin y + y cos x− 1
2y

2 = c.



2.4 Exact Equations 77

5. Let M = 2y2x− 3 and N = 2yx2 +4 so that My = 4xy = Nx. From fx = 2y2x− 3 we obtain

f = x2y2 − 3x+ h(y), h′(y) = 4, and h(y) = 4y. A solution is x2y2 − 3x+ 4y = c.

6. Let M = 4x3 − 3y sin 3x − y/x2 and N = 2y − 1/x + cos 3x so that My = −3 sin 3x − 1/x2

and Nx = 1/x2 − 3 sin 3x. The equation is not exact.

7. Let M = x2 − y2 and N = x2 − 2xy so that My = −2y and Nx = 2x− 2y. The equation is

not exact.

8. Let M = 1+ lnx+ y/x and N = −1+ lnx so that My = 1/x = Nx. From fy = −1+ lnx we

obtain f = −y+ y lnx+ h(x), h′(x) = 1+ lnx, and h(x) = x lnx. A solution is −y+ y lnx+

x lnx = c.

9. Let M = y3 − y2 sinx− x and N = 3xy2 + 2y cos x so that My = 3y2 − 2y sinx = Nx. From

fx = y3 − y2 sinx− x we obtain f = xy3 + y2 cos x− 1
2x

2 + h(y), h′(y) = 0, and h(y) = 0. A

solution is xy3 + y2 cos x− 1
2x

2 = c.

10. Let M = x3 + y3 and N = 3xy2 so that My = 3y2 = Nx. From fx = x3 + y3 we obtain

f = 1
4x

4 + xy3 + h(y), h′(y) = 0, and h(y) = 0. A solution is 1
4x

4 + xy3 = c.

11. Let M = y ln y − e−xy and N = 1/y + x ln y so that My = 1 + ln y + xe−xy and Nx = ln y.

The equation is not exact.

12. Let M = 3x2y+ ey and N = x3+xey −2y so that My = 3x2+ ey = Nx. From fx = 3x2y+ ey

we obtain f = x3y+xey+h(y), h′(y) = −2y, and h(y) = −y2. A solution is x3y+xey−y2 = c.

13. Let M = y − 6x2 − 2xex and N = x so that My = 1 = Nx. From fx = y − 6x2 − 2xex

we obtain f = xy − 2x3 − 2xex + 2ex + h(y), h′(y) = 0, and h(y) = 0. A solution is

xy − 2x3 − 2xex + 2ex = c.

14. Let M = 1 − 3/x + y and N = 1 − 3/y + x so that My = 1 = Nx. From fx = 1 − 3/x + y

we obtain f = x − 3 ln |x| + xy + h(y), h′(y) = 1 − 3

y
, and h(y) = y − 3 ln |y|. A solution is

x+ y + xy − 3 ln |xy| = c.

15. Let M = x2y3 − 1/
(
1 + 9x2

)
and N = x3y2 so that My = 3x2y2 = Nx. From

fx = x2y3 − 1/
(
1 + 9x2

)
we obtain f = 1

3x
3y3 − 1

3 arctan (3x) + h(y), h′(y) = 0, and

h(y) = 0. A solution is x3y3 − arctan (3x) = c.

16. Let M = −2y and N = 5y − 2x so that My = −2 = Nx. From fx = −2y we obtain

f = −2xy + h(y), h′(y) = 5y, and h(y) = 5
2y

2. A solution is −2xy + 5
2y

2 = c.

17. Let M = tan x − sinx sin y and N = cos x cos y so that My = − sinx cos y = Nx. From

fx = tan x− sinx sin y we obtain f = ln | sec x| + cos x sin y + h(y), h′(y) = 0, and h(y) = 0.

A solution is ln | sec x|+ cosx sin y = c.
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18. Let M = 2y sinx cos x− y + 2y2exy
2

and N = −x+ sin2 x+ 4xyexy
2

so that

My = 2 sin x cos x− 1 + 4xy3exy
2

+ 4yexy
2

= Nx.

From fx = 2y sinx cos x− y + 2y2exy
2

we obtain f = y sin2 x− xy + 2exy
2

+ h(y), h′(y) = 0,

and h(y) = 0. A solution is y sin2 x− xy + 2exy
2

= c.

19. Let M = 4t3y − 15t2 − y and N = t4 + 3y2 − t so that My = 4t3 − 1 = Nt. From

ft = 4t3y − 15t2 − y we obtain f = t4y − 5t3 − ty + h(y), h′(y) = 3y2, and h(y) = y3.

A solution is t4y − 5t3 − ty + y3 = c.

20. Let M = 1/t+ 1/t2 − y/
(
t2 + y2

)
and N = yey + t/

(
t2 + y2

)
so that

My =
(
y2 − t2

)
/
(
t2 + y2

)2
= Nt. From ft = 1/t + 1/t2 − y/

(
t2 + y2

)
we obtain

f = ln |t| − 1

t
− arctan

(
t

y

)

+ h(y), h′(y) = yey, and h(y) = yey − ey. A solution is

ln |t| − 1

t
− arctan

(
t

y

)

+ yey − ey = c.

21. Let M = x2 + 2xy + y2 and N = 2xy + x2 − 1 so that My = 2(x + y) = Nx. From

fx = x2 + 2xy + y2 we obtain f = 1
3x

3 + x2y + xy2 + h(y), h′(y) = −1, and h(y) = −y. The

solution is 1
3x

3+x2y+xy2−y = c. If y(1) = 1 then c = 4/3 and a solution of the initial-value

problem is 1
3x

3 + x2y + xy2 − y = 4
3 .

22. Let M = ex + y and N = 2 + x + yey so that My = 1 = Nx. From fx = ex + y we

obtain f = ex + xy + h(y), h′(y) = 2 + yey, and h(y) = 2y + yey − ey. The solution is

ex +xy+2y+ yey − ey = c. If y(0) = 1 then c = 3 and a solution of the initial-value problem

is ex + xy + 2y + yey − ey = 3.

23. Let M = 4y + 2t − 5 and N = 6y + 4t − 1 so that My = 4 = Nt. From ft = 4y + 2t − 5

we obtain f = 4ty + t2 − 5t + h(y), h′(y) = 6y − 1, and h(y) = 3y2 − y. The solution is

4ty+ t2−5t+3y2− y = c. If y(−1) = 2 then c = 8 and a solution of the initial-value problem

is 4ty + t2 − 5t+ 3y2 − y = 8.

24. Let M = t/2y4 and N =
(
3y2 − t2

)
/y5 so that My = −2t/y5 = Nt. From ft = t/2y4 we

obtain f =
t2

4y4
+ h(y), h′(y) =

3

y3
, and h(y) = − 3

2y2
. The solution is

t2

4y4
− 3

2y2
= c. If

y(1) = 1 then c = −5/4 and a solution of the initial-value problem is
t2

4y4
− 3

2y2
= −5

4
.

25. Let M = y2 cos x− 3x2y− 2x and N = 2y sinx−x3 + ln y so that My = 2y cos x− 3x2 = Nx.

From fx = y2 cos x − 3x2y − 2x we obtain f = y2 sinx − x3y − x2 + h(y), h′(y) = ln y, and

h(y) = y ln y − y. The solution is y2 sinx− x3y − x2 + y ln y − y = c. If y(0) = e then c = 0

and a solution of the initial-value problem is y2 sinx− x3y − x2 + y ln y − y = 0.

26. Let M = y2 + y sinx and N = 2xy− cos x− 1/
(
1 + y2

)
so that My = 2y + sinx = Nx. From

fx = y2 + y sinx we obtain f = xy2 − y cos x+ h(y), h′(y) =
−1

1 + y2
, and h(y) = − tan−1 y.
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The solution is xy2 − y cosx− tan−1 y = c. If y(0) = 1 then c = −1− π/4 and a solution of

the initial-value problem is xy2 − y cos x− tan−1 y = −1− π

4
.

27. Equating My = 3y2 + 4kxy3 and Nx = 3y2 + 40xy3 we obtain k = 10.

28. Equating My = 18xy2 − sin y and Nx = 4kxy2 − sin y we obtain k = 9/2.

29. Let M = −x2y2 sinx+ 2xy2 cos x and N = 2x2y cosx so that

My = −2x2y sinx+4xy cos x = Nx. From fy = 2x2y cos x we obtain f = x2y2 cos x+h(y),

h′(y) = 0, and h(y) = 0. A solution of the differential equation is x2y2 cos x = c.

30. Let M = (x2 + 2xy − y2)/(x2 + 2xy + y2) and N = (y2 + 2xy − x2)/(y2 + 2xy + x2) so

that My = −4xy/(x + y)3 = Nx. From fx =
(
x2 + 2xy + y2 − 2y2

)
/(x + y)2 we obtain

f = x+
2y2

x+ y
+ h(y), h′(y) = −1, and h(y) = −y. A solution of the differential equation is

x2 + y2 = c(x+ y).

31. We note that (My−Nx)/N = 1/x, so an integrating factor is e
´

dx/x = x. Let M = 2xy2+3x2

and N = 2x2y so that My = 4xy = Nx. From fx = 2xy2+3x2 we obtain f = x2y2+x3+h(y),

h′(y) = 0, and h(y) = 0. A solution of the differential equation is x2y2 + x3 = c.

32. We note that (My −Nx)/N = 1, so an integrating factor is e
´

dx = ex. Let

M = xyex + y2ex + yex and N = xex + 2yex so that My = xex + 2yex + ex = Nx. From

fy = xex + 2yex we obtain f = xyex + y2ex + h(x), h′(x) = 0, and h(x) = 0. A solution of

the differential equation is xyex + y2ex = c.

33. We note that (Nx −My)/M = 2/y, so an integrating factor is e
´

2 dy/y = y2. Let M = 6xy3

and N = 4y3+9x2y2 so that My = 18xy2 = Nx. From fx = 6xy3 we obtain f = 3x2y3+h(y),

h′(y) = 4y3, and h(y) = y4. A solution of the differential equation is 3x2y3 + y4 = c.

34. We note that (My − Nx)/N = − cot x, so an integrating factor is e−
´

cot x dx = csc x. Let

M = cosx csc x = cot x and N = (1 + 2/y) sin x cscx = 1 + 2/y, so that My = 0 = Nx. From

fx = cot x we obtain f = ln (sinx) + h(y), h′(y) = 1 + 2/y, and h(y) = y + ln y2. A solution

of the differential equation is ln (sinx) + y + ln y2 = c.

35. We note that (My −Nx)/N = 3, so an integrating factor is e
´

3 dx = e3x. Let

M = (10 − 6y + e−3x)e3x = 10e3x − 6ye3x + 1 and N = −2e3x, so that My = −6e3x = Nx.

From fx = 10e3x− 6ye3x+1 we obtain f = 10
3 e

3x− 2ye3x+x+h(y), h′(y) = 0, and h(y) = 0.

A solution of the differential equation is 10
3 e

3x − 2ye3x + x = c.

36. We note that (Nx − My)/M = −3/y, so an integrating factor is e−3
´

dy/y = 1/y3. Let

M = (y2 + xy3)/y3 = 1/y + x and N = (5y2 − xy+ y3 sin y)/y3 = 5/y − x/y2 + sin y, so that

My = −1/y2 = Nx. From fx = 1/y+x we obtain f = x/y+ 1
2x

2+h(y), h′(y) = 5/y+sin y, and

h(y) = 5 ln |y|− cos y. A solution of the differential equation is x/y+ 1
2x

2+5 ln |y|− cos y = c.
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37. We note that (My −Nx)/N = 2x/(4 + x2), so an integrating factor is

e−2
´

xdx/(4+x2) = 1/(4 + x2). Let M = x/(4 + x2) and N = (x2y + 4y)/(4 + x2) = y, so

that My = 0 = Nx. From fx = x(4 + x2) we obtain f = 1
2 ln (4 + x2) + h(y), h′(y) = y, and

h(y) = 1
2y

2. A solution of the differential equation is 1
2 ln (4 + x2)+ 1

2y
2 = c. Multiplying both

sides by 2 the last equation can be written as ey
2 (

x2 + 4
)
= c1. Using the initial condition

y(4) = 0 we see that c1 = 20. A solution of the initial-value problem is ey
2 (

x2 + 4
)
= 20.

38. We note that (My−Nx)/N = −3/(1+x), so an integrating factor is e−3
´

dx/(1+x) = 1/(1+x)3.

Let M = (x2 + y2 − 5)/(1 + x)3 and N = −(y + xy)/(1 + x)3 = −y/(1 + x)2, so that

My = 2y/(1 + x)3 = Nx. From fy = −y/(1 + x)2 we obtain f = −1
2y

2/(1 + x)2 + h(x),

h′(x) = (x2 − 5)/(1 + x)3, and h(x) = 2/(1 + x)2 + 2/(1 + x) + ln |1 + x|. A solution of the

differential equation is

− y2

2(1 + x)2
+

2

(1 + x)2
+

2

(1 + x)
+ ln |1 + x| = c.

Using the initial condition y(0) = 1 we see that c = 7/2. A solution of the initial-value

problem is

− y2

2 (1 + x)2
+

2

(1 + x)2
+

2

1 + x
+ ln |1 + x| = 7

2

39. (a) Implicitly differentiating x3 + 2x2y + y2 = c and solving for dy/dx we obtain

3x2 + 2x2
dy

dx
+ 4xy + 2y

dy

dx
= 0 and

dy

dx
= −3x2 + 4xy

2x2 + 2y
.

By writing the last equation in differential form we get (4xy+3x2)dx+(2y+2x2)dy = 0.

(b) Setting x = 0 and y = −2 in x3 + 2x2y + y2 = c we find c = 4, and setting x = y = 1 we

also find c = 4. Thus, both initial conditions determine the same implicit solution.

(c) Solving x3 + 2x2y + y2 = 4 for y we get

y1(x) = −x2 −
√

4− x3 + x4

and

y2(x) = −x2 +
√

4− x3 + x4 .

Observe in the figure that y1(0) = −2 and y2(1) = 1.

–4 –2 42
x

–6

–4

–2

2

4
y

y
1

y
2

40. To see that the equations are not equivalent consider dx = −(x/y) dy. An integrating factor

is µ(x, y) = y resulting in y dx+ x dy = 0. A solution of the latter equation is y = 0, but this

is not a solution of the original equation.
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41. The explicit solution is y =
√

(3 + cos2 x)/(1 − x2) . Since 3 + cos2 x > 0 for all x we must

have 1− x2 > 0 or −1 < x < 1. Thus, the interval of definition is (−1, 1).

42. (a) Since fy = N(x, y) = xexy + 2xy + 1/x we obtain f = exy + xy2 +
y

x
+ h(x) so that

fx = yexy + y2 − y

x2
+ h′(x). Let M(x, y) = yexy + y2 − y

x2
.

(b) Since fx = M(x, y) = y1/2x−1/2 + x
(
x2 + y

)−1
we obtain

f = 2y1/2x1/2 +
1

2
ln
∣
∣x2 + y

∣
∣+ g(y) so that fy = y−1/2x1/2 +

1

2

(
x2 + y

)−1
+ g′(y). Let

N(x, y) = y−1/2x1/2 +
1

2

(
x2 + y

)−1
.

43. First note that

d
(√

x2 + y2
)

=
x

√

x2 + y2
dx+

y
√

x2 + y2
dy.

Then x dx+ y dy =
√

x2 + y2 dx becomes

x
√

x2 + y2
dx+

y
√

x2 + y2
dy = d

(√

x2 + y2
)

= dx.

The left side is the total differential of
√

x2 + y2 and the right side is the total differential of

x+ c. Thus
√

x2 + y2 = x+ c is a solution of the differential equation.

44. To see that the statement is true, write the separable equation as −g(x) dx + dy/h(y) = 0.

Identifying M = −g(x) and N = 1/h(y), we see that My = 0 = Nx, so the differential

equation is exact.

45. (a) In differential form

(
v2 − 32x

)
dx+ xv dv = 0

This is not an exact equation, but µ(x) = x is an integrating factor. The new equation
(
xv2 − 32x2

)
dx+x2v dv = 0 is exact and solving yields 1

2x
2v2− 32

3 x
3 = c. When x = 3,

v = 0 and so c = −288. Solving 1
2x

2v2 − 32
3 x

3 = −288 for v yields the explicit solution

v(x) = 8

√

x

3
− 9

x2
.

(b) The chain leaves the platform when x = 8, and so

v(8) = 8

√

8

3
− 9

64
≈ 12.7 ft/s

46. (a) Letting

M(x, y) =
2xy

(x2 + y2)2
and N(x, y) = 1 +

y2 − x2

(x2 + y2)2

we compute

My =
2x3 − 8xy2

(x2 + y2)3
= Nx,
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so the differential equation is exact. Then we have

∂f

∂x
= M(x, y) =

2xy

(x2 + y2)2
= 2xy(x2 + y2)−2

f(x, y) = −y(x2 + y2)−1 + g(y) = − y

x2 + y2
+ g(y)

∂f

∂y
=

y2 − x2

(x2 + y2)2
+ g′(y) = N(x, y) = 1 +

y2 − x2

(x2 + y2)2
.

Thus, g′(y) = 1 and g(y) = y. The solution is y− y

x2 + y2
= c. When c = 0 the solution

is x2 + y2 = 1.

(b) The first graph below is obtained in Mathematica using f(x, y) = y − y/(x2 + y2) and

ContourPlot[f[x, y], {x, -3, 3}, {y, -3, 3},
Axes−>True, AxesOrigin−>{0, 0}, AxesLabel−>{x, y},
Frame−>False, PlotPoints−>100, ContourShading−>False,

Contours−>{0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8}]

The second graph uses

x = −
√

y3 − cy2 − y

c− y
and x =

√

y3 − cy2 − y

c− y
.

In this case the x-axis is vertical and the y-axis is horizontal. To obtain the third graph,

we solve y−y/(x2+y2) = c for y in a CAS. This appears to give one real and two complex

solutions. When graphed in Mathematica however, all three solutions contribute to the

graph. This is because the solutions involve the square root of expressions containing c.

For some values of c the expression is negative, causing an apparent complex solution to

actually be real.
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2.5 Solutions by Substitutions

1. Letting y = ux we have

(x− ux) dx+ x(u dx+ x du) = 0

dx+ x du = 0

dx

x
+ du = 0

ln |x|+ u = c

x ln |x|+ y = cx.

2. Letting y = ux we have

(x+ ux) dx+ x(u dx+ x du) = 0

(1 + 2u) dx + x du = 0

dx

x
+

du

1 + 2u
= 0

ln |x|+ 1

2
ln |1 + 2u| = c

x2
(

1 + 2
y

x

)

= c1

x2 + 2xy = c1.

3. Letting x = vy we have

vy(v dy + y dv) + (y − 2vy) dy = 0

vy2 dv + y
(
v2 − 2v + 1

)
dy = 0

v dv

(v − 1)2
+

dy

y
= 0

ln |v − 1| − 1

v − 1
+ ln |y| = c

ln

∣
∣
∣
∣

x

y
− 1

∣
∣
∣
∣
− 1

x/y − 1
+ ln |y| = c

(x− y) ln |x− y| − y = c(x− y).
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4. Letting x = vy we have

y(v dy + y dv)− 2(vy + y) dy = 0

y dv − (v + 2) dy = 0

dv

v + 2
− dy

y
= 0

ln |v + 2| − ln |y| = c

ln

∣
∣
∣
∣

x

y
+ 2

∣
∣
∣
∣
− ln |y| = c

x+ 2y = c1y
2.

5. Letting y = ux we have

(
u2x2 + ux2

)
dx− x2(u dx+ x du) = 0

u2 dx− x du = 0

dx

x
− du

u2
= 0

ln |x|+ 1

u
= c

ln |x|+ x

y
= c

y ln |x|+ x = cy.

6. Letting y = ux and using partial fractions, we have

(
u2x2 + ux2

)
dx+ x2(u dx+ x du) = 0

x2
(
u2 + 2u

)
dx+ x3 du = 0

dx

x
+

du

u(u+ 2)
= 0

ln |x|+ 1

2
ln |u| − 1

2
ln |u+ 2| = c

x2u

u+ 2
= c1

x2
y

x
= c1

(y

x
+ 2
)

x2y = c1(y + 2x).
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7. Letting y = ux we have

(ux− x) dx− (ux+ x)(u dx + x du) = 0
(
u2 + 1

)
dx+ x(u+ 1) du = 0

dx

x
+

u+ 1

u2 + 1
du = 0

ln |x|+ 1

2
ln
(
u2 + 1

)
+ tan−1 u = c

lnx2
(
y2

x2
+ 1

)

+ 2 tan−1 y

x
= c1

ln
(
x2 + y2

)
+ 2 tan−1 y

x
= c1

8. Letting y = ux we have

(x+ 3ux) dx− (3x+ ux)(u dx+ x du) = 0
(
u2 − 1

)
dx+ x(u+ 3) du = 0

dx

x
+

u+ 3

(u− 1)(u + 1)
du = 0

ln |x|+ 2 ln |u− 1| − ln |u+ 1| = c

x(u− 1)2

u+ 1
= c1

x
(y

x
− 1
)2

= c1

(y

x
+ 1
)

(y − x)2 = c1(y + x).

9. Letting y = ux we have

−ux dx+ (x+
√
ux)(u dx+ x du) = 0

(x2 + x2
√
u ) du+ xu3/2 dx = 0

(

u−3/2 +
1

u

)

du+
dx

x
= 0

−2u−1/2 + ln |u|+ ln |x| = c

ln |y/x|+ ln |x| = 2
√

x/y + c

y(ln |y| − c)2 = 4x.
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10. Letting y = ux we have

√

x2 − u2x2 dx− x2 du = 0

x
√

1− u2 dx− x2 du = 0, (x > 0)

dx

x
− du√

1− u2
= 0

lnx− sin−1 u = c

sin−1 u = lnx+ c1

sin−1 y

x
= lnx+ c2

y

x
= sin (lnx+ c2)

y = x sin (lnx+ c2).

See Problem 33 in this section for an analysis of the solution.

11. Letting y = ux we have

(
x3 − u3x3

)
dx+ u2x3(u dx + x du) = 0

dx+ u2x du = 0

dx

x
+ u2 du = 0

ln |x|+ 1

3
u3 = c

3x3 ln |x|+ y3 = c1x
3.

Using y(1) = 2 we find c1 = 8. The solution of the initial-value problem is 3x3 ln |x|+y3 = 8x3.

12. Letting y = ux we have

(x2 + 2u2x2)dx− ux2(u dx+ x du) = 0

x2(1 + u2)dx− ux3 du = 0

dx

x
− u du

1 + u2
= 0

ln |x| − 1

2
ln(1 + u2) = c

x2

1 + u2
= c1

x4 = c1(x
2 + y2).

Using y(−1) = 1 we find c1 = 1/2. The solution of the initial-value problem is 2x4 = y2 +x2.
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13. Letting y = ux we have

(x+ uxeu) dx− xeu(u dx+ x du) = 0

dx− xeu du = 0

dx

x
− eu du = 0

ln |x| − eu = c

ln |x| − ey/x = c.

Using y(1) = 0 we find c = −1. The solution of the initial-value problem is ln |x| = ey/x − 1.

14. Letting x = vy we have

y(v dy + y dv) + vy(ln vy − ln y − 1) dy = 0

y dv + v ln v dy = 0

dv

v ln v
+

dy

y
= 0

ln |ln |v||+ ln |y| = c

y ln

∣
∣
∣
∣

x

y

∣
∣
∣
∣
= c1.

Using y(1) = e we find c1 = −e. The solution of the initial-value problem is y ln

∣
∣
∣
∣

x

y

∣
∣
∣
∣
= −e.

15. From y′ +
1

x
y =

1

x
y−2 and w = y3 we obtain

dw

dx
+

3

x
w =

3

x
. An integrating factor is x3 so

that x3w = x3 + c or y3 = 1 + cx−3.

16. From y′ − y = exy2 and w = y−1 we obtain
dw

dx
+ w = −ex. An integrating factor is ex so

that exw = −1
2e

2x + c or y−1 = −1
2e

x + ce−x.

17. From y′ + y = xy4 and w = y−3 we obtain
dw

dx
− 3w = −3x. An integrating factor is e−3x so

that e−3xw = xe−3x + 1
3e

−3x + c or y−3 = x+ 1
3 + ce3x.

18. From y′ −
(

1 +
1

x

)

y = y2 and w = y−1 we obtain
dw

dx
+

(

1 +
1

x

)

w = −1. An integrating

factor is xex so that xexw = −xex + ex + c or y−1 = −1 +
1

x
+

c

x
e−x.

19. From y′ − 1

t
y = − 1

t2
y2 and w = y−1 we obtain

dw

dt
+

1

t
w =

1

t2
. An integrating factor is t so

that tw = ln t+ c or y−1 =
1

t
ln t+

c

t
. Writing this in the form

t

y
= ln t+ c, we see that the

solution can also be expressed in the form et/y = c1t.
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20. From y′ +
2

3 (1 + t2)
y =

2t

3 (1 + t2)
y4 and w = y−3 we obtain

dw

dt
− 2t

1 + t2
w =

−2t

1 + t2
. An

integrating factor is
1

1 + t2
so that

w

1 + t2
=

1

1 + t2
+ c or y−3 = 1 + c

(
1 + t2

)
.

21. From y′ − 2

x
y =

3

x2
y4 and w = y−3 we obtain

dw

dx
+

6

x
w = − 9

x2
. An integrating factor

is x6 so that x6w = −9
5x

5 + c or y−3 = −9
5x

−1 + cx−6. If y(1) = 1
2 then c = 49

5 and

y−3 = −9
5x

−1 + 49
5 x

−6.

22. From y′ + y = y−1/2 and w = y3/2 we obtain
dw

dx
+

3

2
w =

3

2
. An integrating factor is e3x/2 so

that e3x/2w = e3x/2 + c or y3/2 = 1 + ce−3x/2. If y(0) = 4 then c = 7 and y3/2 = 1 + 7e−3x/2.

23. Let u = x+ y + 1 so that du/dx = 1 + dy/dx. Then
du

dx
− 1 = u2 or

1

1 + u2
du = dx. Thus

tan−1 u = x+ c or u = tan (x+ c), and x+ y + 1 = tan (x+ c) or y = tan (x+ c)− x− 1.

24. Let u = x + y so that du/dx = 1 + dy/dx. Then
du

dx
− 1 =

1− u

u
or u du = dx. Thus

1
2u

2 = x+ c or u2 = 2x+ c1, and (x+ y)2 = 2x+ c1.

25. Let u = x + y so that du/dx = 1 + dy/dx. Then
du

dx
− 1 = tan2 u or cos2 u du = dx. Thus

1
2u + 1

4 sin 2u = x + c or 2u + sin 2u = 4x + c1, and 2(x + y) + sin 2(x+ y) = 4x + c1 or

2y + sin 2(x+ y) = 2x+ c1.

26. Let u = x + y so that du/dx = 1 + dy/dx. Then
du

dx
− 1 = sinu or

1

1 + sinu
du = dx.

Multiplying by (1−sin u)/(1−sin u) we have
1− sinu

cos2 u
du = dx or (sec2 u−sec u tan u)du = dx.

Thus tanu− sec u = x+ c or tan (x+ y)− sec (x+ y) = x+ c.

27. Let u = y− 2x+3 so that du/dx = dy/dx− 2. Then
du

dx
+2 = 2+

√
u or

1√
u
du = dx. Thus

2
√
u = x+ c and 2

√
y − 2x+ 3 = x+ c.

28. Let u = y − x+ 5 so that du/dx = dy/dx − 1. Then
du

dx
+ 1 = 1 + eu or e−udu = dx. Thus

−e−u = x+ c and −e−y+x−5 = x+ c.

29. Let u = x+ y so that du/dx = 1+ dy/dx. Then
du

dx
− 1 = cos u and

1

1 + cos u
du = dx. Now

1

1 + cosu
=

1− cos u

1− cos2 u
=

1− cos u

sin2 u
= csc2 u− csc u cot u

so we have
´

(csc2 u− cscu cot u) du =
´

dx and − cot u+csc u = x+ c. Thus − cot (x+ y)+

csc (x+ y) = x+ c. Setting x = 0 and y = π/4 we obtain c =
√
2− 1. The solution is

csc (x+ y)− cot (x+ y) = x+
√
2− 1.



2.5 Solutions by Substitutions 89

30. Let u = 3x + 2y so that du/dx = 3 + 2 dy/dx. Then
du

dx
= 3 +

2u

u+ 2
=

5u+ 6

u+ 2
and

u+ 2

5u+ 6
du = dx. Now by long division

u+ 2

5u+ 6
=

1

5
+

4

25u+ 30

so we have
ˆ

(
1

5
+

4

25u + 30

)

du = dx

and 1
5u+ 4

25 ln |25u + 30| = x+ c. Thus

1

5
(3x+ 2y) +

4

25
ln |75x+ 50y + 30| = x+ c.

Setting x = −1 and y = −1 we obtain c = 4
25 ln 95. The solution is

1

5
(3x+ 2y) +

4

25
ln |75x+ 50y + 30| = x+

4

25
ln 95

or

5y − 5x+ 2 ln |75x + 50y + 30| = 2 ln 95

31. We write the differential equation M(x, y)dx+N(x, y)dy = 0 as dy/dx = f(x, y) where

f(x, y) = −M(x, y)

N(x, y)
.

The function f(x, y) must necessarily be homogeneous of degree 0 when M and N are ho-

mogeneous of degree α. Since M is homogeneous of degree α, M(tx, ty) = tαM(x, y), and

letting t = 1/x we have

M(1, y/x) =
1

xα
M(x, y) or M(x, y) = xαM(1, y/x).

Thus
dy

dx
= f(x, y) = −xαM(1, y/x)

xαN(1, y/x)
= −M(1, y/x)

N(1, y/x)
= F

(y

x

)

.

32. Rewrite (5x2 − 2y2)dx− xy dy = 0 as

xy
dy

dx
= 5x2 − 2y2

and divide by xy, so that
dy

dx
= 5

x

y
− 2

y

x
.

We then identify

F
(y

x

)

= 5
(y

x

)−1
− 2

(y

x

)

.
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33. (a) By inspection y = x and y = −x are solutions of the differential equation and not

members of the family y = x sin (lnx+ c2).

(b) Letting x = 5 and y = 0 in sin−1 (y/x) = lnx+ c2 we get

sin−1 0 = ln 5 + c2 or c2 = − ln 5. Then

sin−1 (y/x) = lnx− ln 5 = ln (x/5). Because the range of

the arcsine function is [−π/2, π/2] we must have

−π

2
≤ ln

x

5
≤ π

2

e−π/2 ≤ x

5
≤ eπ/2

5e−π/2 ≤ x ≤ 5eπ/2
5 10 15 20

x

5

10

15

20

y

The interval of definition of the solution is approximately [1.04, 24.05].

34. As x → −∞, e6x → 0 and y → 2x+3. Now write (1+ce6x)/(1−ce6x) as (e−6x+c)/(e−6x−c).

Then, as x → ∞, e−6x → 0 and y → 2x− 3.

35. (a) The substitutions y = y1 + u and

dy

dx
=

dy1
dx

+
du

dx

lead to

dy1
dx

+
du

dx
= P +Q(y1 + u) +R(y1 + u)2

= P +Qy1 +Ry21 +Qu+ 2y1Ru+Ru2

or
du

dx
− (Q+ 2y1R)u = Ru2.

This is a Bernoulli equation with n = 2 which can be reduced to the linear equation

dw

dx
+ (Q+ 2y1R)w = −R

by the substitution w = u−1.

(b) Identify P (x) = −4/x2, Q(x) = −1/x, and R(x) = 1. Then
dw

dx
+

(

−1

x
+

4

x

)

w = −1.

An integrating factor is x3 so that x3w = −1
4x

4 + c or u =
[
−1

4x+ cx−3
]−1

. Thus,

y =
2

x
+ u or y =

2

x
+

(

−1

4
x+ cx−3

)−1

36. Write the differential equation in the form x(y′/y) = lnx + ln y and let u = ln y. Then

du/dx = y′/y and the differential equation becomes x(du/dx) = lnx+ u or du/dx− u/x =
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(ln x)/x, which is first-order and linear. An integrating factor is e−
´

dx/x = 1/x, so that

(using integration by parts)

d

dx

[
1

x
u

]

=
lnx

x2
and

u

x
= −1

x
− lnx

x
+ c.

The solution is

ln y = −1− lnx+ cx or y =
ecx−1

x
.

37. Write the differential equation as

dv

dx
+

1

x
v = 32v−1,

and let u = v2 or v = u1/2. Then

dv

dx
=

1

2
u−1/2 du

dx
,

and substituting into the differential equation, we have

1

2
u−1/2 du

dx
+

1

x
u1/2 = 32u−1/2 or

du

dx
+

2

x
u = 64.

The latter differential equation is linear with integrating factor e
´

(2/x) dx = x2, so

d

dx

[
x2u

]
= 64x2

and

x2u =
64

3
x3 + c or v2 =

64

3
x+

c

x2
.

38. Write the differential equation as dP/dt− aP = −bP 2 and let u = P−1 or P = u−1. Then

dp

dt
= −u−2 du

dt
,

and substituting into the differential equation, we have

−u−2 du

dt
− au−1 = −bu−2 or

du

dt
+ au = b.

The latter differential equation is linear with integrating factor e
´

a dt = eat, so

d

dt
[eatu] = beat

and

eatu =
b

a
eat + c

eatP−1 =
b

a
eat + c

P−1 =
b

a
+ ce−at

P =
1

b/a+ ce−at
=

a

b+ c1e−at
.
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2.6 A Numerical Method

1. We identify f(x, y) = 2x− 3y + 1. Then, for h = 0.1,

yn+1 = yn + 0.1(2xn − 3yn + 1) = 0.2xn + 0.7yn + 0.1,

and

y(1.1) ≈ y1 = 0.2(1) + 0.7(5) + 0.1 = 3.8

y(1.2) ≈ y2 = 0.2(1.1) + 0.7(3.8) + 0.1 = 2.98

For h = 0.05,

yn+1 = yn + 0.05(2xn − 3yn + 1) = 0.1xn + 0.85yn + 0.1,

and

y(1.05) ≈ y1 = 0.1(1) + 0.85(5) + 0.1 = 4.4

y(1.1) ≈ y2 = 0.1(1.05) + 0.85(4.4) + 0.1 = 3.895

y(1.15) ≈ y3 = 0.1(1.1) + 0.85(3.895) + 0.1 = 3.47075

y(1.2) ≈ y4 = 0.1(1.15) + 0.85(3.47075) + 0.1 = 3.11514

2. We identify f(x, y) = x+ y2. Then, for h = 0.1,

yn+1 = yn + 0.1(xn + y2n) = 0.1xn + yn + 0.1y2n,

and

y(0.1) ≈ y1 = 0.1(0) + 0 + 0.1(0)2 = 0

y(0.2) ≈ y2 = 0.1(0.1) + 0 + 0.1(0)2 = 0.01

For h = 0.05,

yn+1 = yn + 0.05(xn + y2n) = 0.05xn + yn + 0.05y2n,

and

y(0.05) ≈ y1 = 0.05(0) + 0 + 0.05(0)2 = 0

y(0.1) ≈ y2 = 0.05(0.05) + 0 + 0.05(0)2 = 0.0025

y(0.15) ≈ y3 = 0.05(0.1) + 0.0025 + 0.05(0.0025)2 = 0.0075

y(0.2) ≈ y4 = 0.05(0.15) + 0.0075 + 0.05(0.0075)2 = 0.0150

3. Separating variables and integrating, we have

dy

y
= dx and ln |y| = x+ c.

Thus y = c1e
x and, using y(0) = 1, we find c = 1, so y = ex is the solution of the initial-value

problem.
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x
n

y
n

Actual

Value

Abs.

Error

%Rel.

Error

0.00

1.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.0000

1.1000

1.2100

1.3310

1.4641

1.6105

1.7716

1.9487

2.1436

2.3579

2.5937

1.0000

1.1052

1.2214

1.3499

1.4918

1.6487

1.8221

2.0138

2.2255

2.4596

2.7183

0.0000

0.0052

0.0114

0.0189

0.0277

0.0382

0.0506

0.0650

0.0820

0.1017

0.1245

0.00

0.47

0.93

1.40

1.86

2.32

2.77

3.23

3.68

4.13

4.58

x
n

y
n

Actual

Value

Abs.

Error

%Rel.

Error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.0000

1.0500

1.1025

1.1576

1.2155

1.2763

1.3401

1.4071

1.4775

1.5513

1.6289

1.7103

1.7959

1.8856

1.9799

2.0789

2.1829

2.2920

2.4066

2.5270

2.6533

1.0000

1.0513

1.1052

1.1618

1.2214

1.2840

1.3499

1.4191

1.4918

1.5683

1.6487

1.7333

1.8221

1.9155

2.0138

2.1170

2.2255

2.3396

2.4596

2.5857

2.7183

0.0000

0.0013

0.0027

0.0042

0.0059

0.0077

0.0098

0.0120

0.0144

0.0170

0.0198

0.0229

0.0263

0.0299

0.0338

0.0381

0.0427

0.0476

0.0530

0.0588

0.0650

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

1.08

1.20

1.32

1.44

1.56

1.68

1.80

1.92

2.04

2.15
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h = 0.1 h = 0.05

4. Separating variables and integrating, we have

dy

y
= 2x dx and ln |y| = x2 + c.

Thus y = c1e
x2

and, using y(1) = 1, we find c = e−1, so y = ex
2−1 is the solution of the

initial-value problem.
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0.00
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1.47

2.27

3.11

4.00
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h = 0.1 h = 0.05
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5. x h = 0.1 h = 0.05
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6. x h = 0.1 h = 0.05
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7. x h = 0.1 h = 0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

x
n

y
n

0.00

0.10

0.20

0.30

0.40

0.50

0.5000

0.5250

0.5431

0.5548

0.5613

0.5639

0.5000

0.5125

0.5232

0.5322

0.5395

0.5452

0.5496

0.5527

0.5547

0.5559

0.5565

x
n

y
n

8. x h = 0.1 h = 0.05
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10. x h = 0.1 h = 0.05
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11. Tables of values were computed using the Euler and RK4 methods. The resulting points were

plotted and joined using ListPlot in Mathematica.
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12. See the comments in Problem 11 above.
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13. Using separation of variables we find that the solution of the differential equation is y =

1/(1 − x2), which is undefined at x = 1, where the graph has a vertical asymptote. Because

the actual solution of the differential equation becomes unbounded at x approaches 1, very

small changes in the inputs x will result in large changes in the corresponding outputs y. This

can be expected to have a serious effect on numerical procedures. The graphs below were

obtained as described in Problem 11.
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14. (a) The graph to the right was obtained using RK4
and ListPlot in Mathematicawith h = 0.1.
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(b) Writing the differential equation in the form y′ + 2xy = 1 we see that an integrating

factor is e
´

2xdx = ex
2

, so
d

dx
[ex

2

y] = ex
2

and

y = e−x2

ˆ x

0
et

2

dt+ ce−x2

.

This solution can also be expressed in terms of the inverse error function as

y =

√
π

2
e−x2

erfi(x) + ce−x2

.

Letting x = 0 and y(0) = 0 we find c = 0, so the solution of the initial-value problem is

y = e−x2

ˆ x

0
et

2

dt =

√
π

2
e−x2

erfi(x).

(c) Using FindRoot in Mathematica we see that y′(x) = 0 when x = 0.924139. Since

y(0.924139) = 0.541044, we see from the graph in part (a) that (0.924139, 0.541044) is

a relative maximum. Now, using the substitution u = −t in the integral below, we have

y(−x) = e−(−x)2
ˆ −x

0
et

2

dt = e−x2

ˆ x

0
e(−u)2 (−du) = −e−x2

ˆ x

0
eu

2

du = −y(x).

Thus, y(x) is an odd function and (−0.924139,−0.541044) is a relative minimum.

Chapter 2 in Review

1. Writing the differential equation in the form y′ = k(y + A/k) we see that the critical point

−A/k is a repeller for k > 0 and an attractor for k < 0.

2. Separating variables and integrating we have

dy

y
=

4

x
dx

ln y = 4 lnx+ c = lnx4 + c

y = c1x
4.

We see that when x = 0, y = 0, so the initial-value problem has an infinite number of solutions

for k = 0 and no solutions for k 6= 0.

3. True; y = k2/k1 is always a solution for k1 6= 0.

4. True; writing the differential equation as a1(x) dy + a2(x)y dx = 0 and separating variables

yields
dy

y
= −a2(x)

a1(x)
dx.
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5.
d3y

dx3
= x sin y (There are many answers.)

6. False:
dr

dθ
= rθ + r + θ + 1 = (r + 1) (θ + 1).

7. True

8. Since the differential equation in the form y′ = 2− |y| is seen to be autonomous, 2− |y| = 0

has critical points 2 and −2 so y1 = 2 and y2 = −2 are constant (equilibrium) solutions.

9.
dy

y
= ex dx

ln y = ex + c

y = ee
x+c = ecee

x

or y = c1e
ex

10. y′ = |x| , y(−1) = 2

dy

dx
=

{

−x, x < 0

x, x ≥ 0

y =







−1

2
x2 + c1, x < 0

1

2
x2 + c2, x ≥ 0

The initial condition y(−1) = 2 implies 2 = −1

2
+ c1 and thus c1 =

5

2
. Now y(x) is supposed

to be differentiable and so continuous. At x = 0 the two parts of the functions must agree

and so c2 = c1 =
5

2
. So,

y =







1

2

(
5− x2

)
, x < 0

1

2

(
x2 + 5

)
, x ≥ 0

-4 -2 2 4
x

-10

-5

5

10
y

11. y = ecos x
ˆ x

0
te− cos t dt

dy

dx
= ecos xxe− cos x + (− sinx) ecos x

ˆ x

0
te− cos t dt

dy

dx
= x− (sinx) y or

dy

dx
+ (sinx) y = x.

12.
dy

dx
= y + 3,

dy

dx
= (y + 3)2
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13.
dy

dx
= (y − 1)2(y − 3)2

14.
dy

dx
= y(y − 2)2(y − 4)

15. When n is odd, xn < 0 for x < 0 and xn > 0 for x > 0. In this case 0 is unstable. When n is

even, xn > 0 for x < 0 and for x > 0. In this case 0 is semi-stable.

When n is odd, −xn > 0 for x < 0 and −xn < 0 for x > 0. In this case 0 is asymptotically

stable. When n is even, −xn < 0 for x < 0 and for x > 0. In this case 0 is semi-stable.

16. Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the graph

we observe that dP/dt > 0 for P < 1.3214 and dP/dt < 0 for P > 1.3214, so P = 1.3214 is

an asymptotically stable critical point. Thus, lim
t→∞

P (t) = 1.3214.

17. x

x

y

18.

(a) linear in y, homogeneous, exact (b) linear in x

(c) separable, exact, linear in x and y (d) Bernoulli in x

(e) separable (f) separable, linear in x, Bernoulli

(g) linear in x (h) homogeneous

(i) Bernoulli (j) homogeneous, exact, Bernoulli

(k) linear in x and y, exact, separable,
homogeneous

(l) exact, linear in y

(m) homogeneous (n) separable

19. Separating variables and using the identity cos2 x = 1
2(1 + cos 2x), we have

cos2 x dx =
y

y2 + 1
dy,

1

2
x+

1

4
sin 2x =

1

2
ln
(
y2 + 1

)
+ c,
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and

2x+ sin 2x = 2 ln
(
y2 + 1

)
+ c.

20. Write the differential equation in the form

y ln
x

y
dx =

(

x ln
x

y
− y

)

dy.

This is a homogeneous equation, so let x = uy. Then dx = u dy + y du and the differential

equation becomes

y lnu(u dy + y du) = (uy lnu− y) dy or y lnu du = −dy.

Separating variables, we obtain

lnu du = −dy

y

u ln |u| − u = − ln |y|+ c

x

y
ln

∣
∣
∣
∣

x

y

∣
∣
∣
∣
− x

y
= − ln |y|+ c

x(lnx− ln y)− x = −y ln |y|+ cy.

21. The differential equation
dy

dx
+

2

6x+ 1
y = − 3x2

6x+ 1
y−2

is Bernoulli. Using w = y3, we obtain the linear equation

dw

dx
+

6

6x+ 1
w = − 9x2

6x+ 1
.

An integrating factor is 6x+ 1, so

d

dx
[(6x+ 1)w] = −9x2,

w = − 3x3

6x+ 1
+

c

6x+ 1
,

and

(6x+ 1)y3 = −3x3 + c.

(Note: The differential equation is also exact.)

22. Write the differential equation in the form (3y2 + 2x)dx + (4y2 + 6xy)dy = 0. Letting

M = 3y2 + 2x and N = 4y2 + 6xy we see that My = 6y = Nx, so the differential equation is

exact. From fx = 3y2+2x we obtain f = 3xy2+x2+h(y). Then fy = 6xy+h′(y) = 4y2+6xy

and h′(y) = 4y2 so h(y) = 4
3y

3. A one-parameter family of solutions is

3xy2 + x2 +
4

3
y3 = c.
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23. Write the equation in the form
dQ

dt
+

1

t
Q = t3 ln t.

An integrating factor is eln t = t, so

d

dt
[tQ] = t4 ln t

tQ = − 1

25
t5 +

1

5
t5 ln t+ c

and

Q = − 1

25
t4 +

1

5
t4 ln t+

c

t
.

24. Letting u = 2x+ y + 1 we have
du

dx
= 2 +

dy

dx
,

and so the given differential equation is transformed into

u

(
du

dx
− 2

)

= 1 or
du

dx
=

2u+ 1

u
.

Separating variables and integrating we get

u

2u+ 1
du = dx

(
1

2
− 1

2

1

2u+ 1

)

du = dx

1

2
u− 1

4
ln |2u+ 1| = x+ c

2u− ln |2u+ 1| = 4x+ c1.

Resubstituting for u gives the solution

4x+ 2y + 2− ln |4x+ 2y + 3| = 4x+ c1

or

2y + 2− ln |4x+ 2y + 3| = c1.

25. Write the equation in the form

dy

dx
+

8x

x2 + 4
y =

2x

x2 + 4
.

An integrating factor is
(
x2 + 4

)4
, so

d

dx

[(
x2 + 4

)4
y
]

= 2x
(
x2 + 4

)3

(
x2 + 4

)4
y =

1

4

(
x2 + 4

)4
+ c
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and

y =
1

4
+ c

(
x2 + 4

)−4
.

26. Letting M = 2r2 cos θ sin θ + r cos θ and N = 4r + sin θ − 2r cos2 θ we see that

Mr = 4r cos θ sin θ + cos θ = Nθ, so the differential equation is exact. From

fθ = 2r2 cos θ sin θ + r cos θ we obtain f = −r2 cos2 θ + r sin θ + h(r). Then

fr = −2r cos2 θ + sin θ + h′(r) = 4r + sin θ − 2r cos2 θ and h′(r) = 4r so h(r) = 2r2. The

solution is

−r2 cos2 θ + r sin θ + 2r2 = c.

27. We put the equation
dy

dx
+ 4 (cos x) y = x in the standard form

dy

dx
+ 2 (cos x) y =

1

2
x then

the integrating factor is e
´

2 cos xdx = e2 sinx. Therefore

d

dx

[
e2 sinxy

]
=

1

2
xe2 sinx

ˆ x

0

d

dt

[
e2 sin ty(t)

]
dt =

1

2

ˆ x

0
te2 sin t dt

e2 sinxy(x)− e0
1
︷︸︸︷

y(0) =
1

2

ˆ x

0
te2 sin t dt

e2 sinxy(x)− 1 =
1

2

ˆ x

0
te2 sin t dy

y(x) = e−2 sinx +
1

2
e−2 sinx

ˆ x

0
te2 sin t dt

28. The equation
dy

dx
− 4xy = sinx2 is already in standard form so the integrating factor is

e−
´

4x dx = e−2x2

. Therefore
d

dx

[

e−2x2

y
]

= e−2x2

sinx2. Because of the initial condition

y(0) = 7 we write

ˆ x

0

d

dt

[

e−2t2y(t)
]

dt =

ˆ x

0
e−2t2 sin t2 dt

e−2x2

y(x)− e0
7
︷︸︸︷

y(0) =

ˆ x

0
e−2t2 sin t2 dt

y(x) = 7e2x
2

+ e2x
2

ˆ x

0
e−2t2 sin t2 dt
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29. We put the equation x dy
dx+2y = xex

2

into standard form
dy

dx
+

2

x
y = ex

2

. Then the integrating

factor is e
´

2

x
dx = elnx2

= x2. Therefore

x2
dy

dx
+ 2xy = x2ex

2

d

dx

[
x2y
]
= x2ex

2

ˆ x

1

d

dt

[
t2y(t)

]
dt =

ˆ x

1
t2et

2

dt

x2y(x)−
3
︷︸︸︷

y(1) =

ˆ x

1
t2et

2

dt

y(x) =
3

x2
+

1

x2

ˆ x

1
t2et

2

dt

30.

x
dy

dx
+ (sinx) y = 0

dy

dx
+

sinx

x
y = 0

The integrating factor is e
´

x

0

sin t

t
dy. Therefore,

d

dx

[

e
´

x

0

sin t

t
dty
]

= 0

ˆ x

0

d

dt

[

e
´

t

0

sinu

u
duy(t)

]

dt =

ˆ x

0
0 dt = 0

e
´

x

0

sin t

t
dty(x)− e0

10
︷︸︸︷

y(0) = 0

y(x) = 10e−
´

x

0

sin t

t
dt

31.

dy

dx
+ y = f(x), y(0) = 5, where f(x) =

{

e−x, 0 ≤ x < 1

0, x ≥ 1

For 0 ≤ x < 1,

d

dx
[exy] = 1

exy = x+ c1

y = xe−x + c1e
−x
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Using y(0) = 5, we have c1 = 5. Therefore y = xe−x + 5e−x. Then for x ≥ 1,

d

dx
[exy] = 0

exy = c2

y = c2e
−x

Requiring that y(x) be continuous at x = 1 yields

c2e
−1 = e−1 + 5e−1

c2 = 6

Therefore

y(x) =

{

xe−x + 5e−x, 0 ≤ x < 1

6e−x, x ≥ 1

32.

dy

dx
+ P (x)y = ex, y(0) = −1, where P (x) =

{

1, 0 ≤ x < 1

−1, x ≥ 1

For 0 ≤ x < 1,

d

dx
[exy] = e2x

exy =
1

2
e2x + c1

y =
1

2
ex + c1e

−x

Using y(0) = −1, we have c1 = −3
2 . Therefore y = 1

2e
x − 3

2e
−x. Then for x ≥ 1,

d

dx

[
e−xy

]
= 1

e−xy = x+ c2

y = xex + c2e
x

Requiring that y(x) be continuous at x = 1 yields

e+ c2e =
1

2
e− 3

2
e−1

c2 = −1

2
− 3

2
e−2

Therefore

y(x) =







1

2
ex − 3

2
e−x, 0 ≤ x < 1

xex − 1

2
ex − 3

2
ex−2, x ≥ 1
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33. The differential equation has the form (d/dx) [(sin x)y] = 0. Integrating, we have (sinx)y = c

or y = c/ sin x. The initial condition implies c = −2 sin (7π/6) = 1. Thus, y = 1/ sin x, where

the interval (π, 2π) is chosen to include x = 7π/6.

34. Separating variables and integrating we have

dy

y2
= −2(t+ 1) dt

−1

y
= −(t+ 1)2 + c

y =
1

(t+ 1)2 + c1
, where − c = c1

The initial condition y(0) = −1
8 implies c1 = −9, so a solution of the initial-value problem is

y =
1

(t+ 1)2 − 9
or y =

1

t2 + 2t− 8
,

where −4 < t < 2.

35. (a) For y < 0,
√
y is not a real number.

(b) Separating variables and integrating we have

dy√
y
= dx and 2

√
y = x+ c.

Letting y(x0) = y0 we get c = 2
√
y0 − x0, so that

2
√
y = x+ 2

√
y0 − x0 and y =

1

4
(x+ 2

√
y0 − x0)

2.

Since
√
y > 0 for y 6= 0, we see that dy/dx = 1

2(x+ 2
√
y0 − x0) must be positive. Thus,

the interval on which the solution is defined is (x0 − 2
√
y0,∞).

36. (a) The differential equation is homogeneous and we let y = ux. Then

(x2 − y2) dx+ xy dy = 0

(x2 − u2x2) dx+ ux2(u dx+ x du) = 0

dx+ ux du = 0

u du = −dx

x

1

2
u2 = − ln |x|+ c

y2

x2
= −2 ln |x|+ c1.

The initial condition gives c1 = 2, so an implicit solution is y2 = x2(2− 2 ln |x|).



Chapter 2 in Review 105

(b) Solving for y in part (a) and being sure that the initial con-

dition is still satisfied, we have y = −
√
2 |x|(1 − ln |x|)1/2,

where −e ≤ x ≤ e so that 1 − ln |x| ≥ 0. The graph of

this function indicates that the derivative is not defined at

x = 0 and x = e. Thus, the solution of the initial-value

problem is y = −
√
2x(1− lnx)1/2, for 0 < x < e.

–2 –1 1 2
x

–2

–1

1

2

y

37. The graph of y1(x) is the portion of the closed blue curve lying in the fourth quadrant. Its

interval of definition is approximately (0.7, 4.3). The graph of y2(x) is the portion of the

left-hand blue curve lying in the third quadrant. Its interval of definition is (−∞, 0).

38. The first step of Euler’s method gives y(1.1) ≈ 9+0.1(1+3) = 9.4. Applying Euler’s method

one more time gives y(1.2) ≈ 9.4 + 0.1(1 + 1.1
√
9.4 ) ≈ 9.8373.

39. Since the differential equation is autonomous, all lineal

elements on a given horizontal line have the same slope.

The direction field is then as shown in the figure at the

right. It appears from the figure that the differential

equation has critical points at −2 (an attractor) and

at 2 (a repeller). Thus, −2 is an aymptotically stable

critical point and 2 is an unstable critical point.

40. Since the differential equation is autonomous, all lineal

elements on a given horizontal line have the same slope.

The direction field is then as shown in the figure at the

right. It appears from the figure that the differential

equation has no critical points.
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