Full Download: https://testbanklive.com/download/engineering-economy-8th-edition-blank-solutions-manual/

Solutions to end-of-chapter problems Engineering Economy, 8th edition Leland Blank and Anthony Tarquin

Chapter 2 Factors: How Time and Interest Affect Money

Determination of F, P and A

2.1 (1) (F/P, 10%, 7) = 1.9487

- (2) (A/P, 12%, 10) = 0.17698
- (3) (P/G, 15%, 20) = 33.5822
- (4) (F/A, 2%, 50) = 84.5794
- (5) (A/G, 35%, 15) = 2.6889
- 2.2 F = 1,200,000(F/P,7%,4)
 - = 1,200,000(1.3108)
 - = \$1,572,960
- 2.3 F = 200,000(F/P,10%,3)= 200,000(1.3310) = \$266,200
- 2.4 P = 7(120,000)(P/F,10%,2)= 840,000(0.8264)= \$694,176
- 2.5 F = 100,000,000/30(F/A,10%,30)= 3,333,333(164.4940) = \$548,313,333
- 2.6 P = 25,000(P/F,10%,8)= 25,000(0.4665) = \$11,662.50

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

- 2.7 P = 8000(P/A, 10%, 10)= 8000(6.1446) = \$49,156.80
- 2.8 P = 100,000((P/A,12%,2))= 100,000(1.6901) = \$169,010
- 2.9 F = 12,000(F/A,10%,30)= 12,000(164.4940) = \$1,973,928
- 2.10 A = 50,000,000(A/F,20%,3) = 50,000,000(0.27473)
 - = \$13,736,500
- 2.11 F = 150,000(F/P,18%,5)
 - = 150,000(2.2878)
 - = \$343,170
- 2.12 P = 75(P/F, 18%, 2)
 - = 75(0.7182)
 - = \$53.865 million
- 2.13 A = 450,000(A/P,10%,3)= 450,000(0.40211)= \$180,950
- 2.14 P = 30,000,000(P/F,10%,5) 15,000,000= 30,000,000(0.6209) - 15,000,000 = \$3,627,000
- 2.15 F = 280,000(F/P,12%,2)= 280,000(1.2544) = \$351,232
- 2.16 F = (200 90)(F/A, 10%, 8)= 110(11.4359) = \$1,257,949

$$2.17 F = 125,000(F/A,10\%,4)$$
$$= 125,000(4.6410)$$
$$= $580,125$$

- 2.18 F = 600,000(0.04)(F/A,10%,3)= 24,000(3.3100) = \$79,440 2.19 P = 90,000(P/A,20%,3)
- P = 90,000(P/A,20%,5)= 90,000(2.1065)= \$189,585
- 2.20 A = 250,000(A/F,9%,5)= 250,000(0.16709)= \$41,772.50

$$2.21 \text{ A} = 1,150,000(\text{A/P},5\%,20)$$
$$= 1,150,000(0.08024)$$
$$= \$92,276$$

- 2.22 P = (110,000* 0.3)(P/A,12%,4)= (33,000)(3.0373) = \$100,231
- 2.23 A = 3,000,000(10)(A/P,8%,10)= 30,000,000(0.14903) = \$4,470,900
- 2.24 A = 50,000(A/F,20%,3)= 50,000(0.27473)= \$13,736

Factor Values

2.25 (a) 1. Interpolate between i = 8% and i = 9% at n = 15:

$$0.4/1 = x/(0.3152 - 0.2745)$$

 $x = 0.0163$
(P/F,8.4%,15) = $0.3152 - 0.0163$
 $= 0.2989$
2. Interpolate between i = 16% and i = 18% at n = 10:
 $1/2 = x/(0.04690 - 0.04251)$
 $x = 0.00220$
(A/F,17%,10) = $0.04690 - 0.00220$
 $= 0.04470$

(b) 1.
$$(P/F, 8.4\%, 15) = 1/(1 + 0.084)^{15}$$

= 0.2982
2. $(A/F, 17\%, 10) = 0.17/[(1 + 0.17)^{10} - 1]$
= 0.04466

(c) 1. =
$$-PV(8.4\%, 15, 1)$$
 displays 0.29824
2. = $-PMT(17\%, 10, 1)$ displays 0.04466

2.26 (a) 1. Interpolate between
$$i = 18\%$$
 and $i = 20\%$ at $n = 20$:
 $1/2 = x/40.06$
 $x = 20.03$
(F/A,19%,20) = 146.6280 + 20.03
=166.658

2. Interpolate between i = 25% and i = 30% at n = 15: 1/5 = x/0.5911 x = 0.11822 (P/A,26%,15) = 3.8593 - 0.11822 = 3.7411

(b) 1.
$$(F/A, 19\%, 20) = [(1+0.19)^{20} - 1]/0.19$$

= 165.418
2. $(P/A, 26\%, 15) = [(1+0.26)^{15} - 1]/[0.26(1+0.26)^{15}]$
= 3.7261

2.27 (a) 1. Interpolate between n = 32 and n = 34: 1/2 = x/78.3345 x = 39.1673(F/P,18%,33) = 199.6293 + 39.1673 = 238.79662. Interpolate between n = 50 and n = 55: 4/5 = x/0.0654 x = 0.05232(A/G,12%,54) = 8.1597 + 0.05232 = 8.2120

(b) 1. (F/P,18%,33) =
$$(1+0.18)^{33}$$

= 235.5625
2. (A/G,12%,54) = { $(1/0.12) - 54/(1+0.12)^{54} - 1$ }
= 8.2143

2.28 Interpolated value: Interpolate between n = 40 and n = 45:

3/5 = x/(72.8905 - 45.2593)x = 16.5787 (F/P,10%,43) = 45.2593 + 16.5787 = 61.8380

Formula value: $(F/P, 10\%, 43) = (1 + 0.10)^{43}$ = 60.2401

% difference = $[(61.8380 - 60.2401)/(60.2401)^*100$ = 2.65%

Arithmetic Gradient

2.29 (a) G =\$-300 (b) $CF_5 =$ \$2800 (c) n =9

2.30
$$P_0 = 500(P/A, 10\%, 9) + 100(P/G, 10\%, 9)$$

= 500(5.7590) + 100(19.4215)
= 2879.50 + 1942.15
= \$4821.65

2.31 (a) Revenue =
$$390,000 + 2(15,000)$$

= $$420,000$

(b)
$$A = 390,000 + 15,000(A/G,10\%,5)$$

= 390,000 + 15,000(1.8101)
= \$417,151.50

2.32 A =
$$9000 - 560(A/G, 10\%, 5)$$

= $9000 - 560(1.8101)$
= \$7986

2.33
$$500 = 200 + G(A/G, 10\%.7)$$

 $500 = 200 + G(2.6216)$
 $G = \$114.43$

$$2.34 A = 100,000 + 10,000(A/G,10\%,5)$$
$$= 100,000 + 10,000(1.8101)$$
$$= $118,101$$

$$F = 118,101(F/A,10\%,5)$$

= 118,101(6.1051)
= \$721,018

2.35 3500 = A + 40(A/G, 10%, 9)3500 = A + 40(3.3724)A = \$3365.10

2.36 In \$ billion units,

$$P = 2.1(P/F, 18\%, 5)$$

= 2.1(0.4371)
= 0.91791 = \$917,910,000

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

$$917,910,000 = 100,000,000(P/A,18\%,5) + G(P/G,18\%,5)$$

$$917,910,000 = 100,000,000(3.1272) + G(5.2312)$$

$$G = \$115,688,561$$

2.37 95,000 = 55,000 + G(A/G,10%,5) 95,000 = 55,000 + G(1.8101)G = \$22,098

2.38 P in year
$$0 = 500,000(P/F,10\%,10)$$

= 500,000(0.3855)
= \$192,750

$$192,750 = A + 3000(P/G,10\%,10)$$
$$192,750 = A + 3000(22.8913)$$
$$A = $124,076$$

Geometric Gradient

2.39 Find (P/A,g,i,n) using Equation [2.32] and
$$A_1 = 1$$

For n = 1: $P_g = 1*\{1 - [(1 + 0.05)/(1 + 0.10)]^1\}/(0.10 - 0.05)$
= 0.90909

For n = 2:
$$P_g = 1*\{1 - [(1 + 0.05)/(1 + 0.10)]^2\}/(0.10 - 0.05)$$

= 1.77686

- 2.40 Decrease deposit in year 4 by 7% per year for three years to get back to year 1. First deposit = $5550/(1 + 0.07)^3$ = \$4530.45
- 2.41 $P_g = 35,000\{1 [(1 + 0.05)/(1 + 0.10)]^6\}/(0.10 0.05)$ = \$170,486
- 2.42 $P_g = 200,000\{1 [(1 + 0.03)/(1 + 0.10)]^5\}/(0.10 0.03)$ = \$800,520

2.43 First find P_{a} and then convert to F in year 15

$$P_{g} = (0.10)(160,000)\{1 - [(1 + 0.03)/(1 + 0.07)]^{15}/(0.07 - 0.03)\}$$

= 16,000(10.883) = \$174,128.36
$$F = 174,128.36(F/P,7\%,15)$$

= 174,128.36 (2.7590)
= \$480,420.15
2.44 (a) $P_{g} = 260\{1 - [(1 + 0.04)/(1 + 0.06)]^{20}\}/(0.06 - 0.04)$
= 260(15.8399)
= \$4119.37

(b)
$$P_{Total} = (4119.37)(51,000)$$

=\$210,087,870

2.45 Solve for P_{g} in geometric gradient equation and then convert to A

$$A_{1} = 5,000,000(0.01) = 50,000$$

$$P_{g} = 50,000[1 - (1.10/1.08)^{5}]/(0.08 - 0.10)$$

$$= $240,215$$

$$A = 240,215(A/P,8\%,5)$$

$$= 240,215(0.25046)$$

$$= $60,164$$

2.46 First find $P_{\rm g}$ and then convert to F

$$P_{g} = 5000[1 - (0.95/1.08)^{5}]/(0.08 + 0.05)$$

= \$18,207

$$F = 18,207(F/P,8\%,5)$$

= 18,207(1.4693)
= \$26,751

Interest Rate and Rate of Return

```
2.47 1,000,000 = 290,000(P/A,i,5)
(P/A,i,5) = 3.44828
Interpolate between 12% and 14% interest tables or use Excel's RATE function
By RATE, i = 13.8%
```

```
2.48 50,000 = 10,000(F/P,i,17)

5.0000 = (F/P,i,17)

5.0000 = (1 + i)^{17}

i = 9.93\%
```

2.49 F = A(F/A,i%,5) 451,000 = 40,000(F/A,i%,5) (F/A,i%,5) = 11.2750Interpolate between 40% and 50% interest tables or use Excel's RATE function By RATE, i = 41.6%

2.50 Bonus/year =
$$6(3000)/0.05 = $360,000$$

1,200,000 = $360,000(P/A,i,10)$
(P/A,i,10) = 3.3333
 $i = 27.3\%$

2.51 Set future values equal to each other Simple: F = P + Pni= P(1 + 5*0.15)= 1.75P

> Compound: $F = P(1 + i)^n$ = $P(1 + i)^5$

$$1.75P = P(1 + i)^{5}$$

 $i = 11.84\%$

2.52 100,000 = 190,325(P/F,i,30)

(P/F,i,30) = 0.52542

Find i by interpolation between 2% and 3%, or by solving P/F equation, or by Excel

By RATE function, i = 2.17%

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

2.53 400,000 = 320,000 + 50,000(A/G,i,5) (A/G,i,5) = 1.6000 Interpolate between i = 22% and i = 24% i = 22.6%

Number of Years

- 2.54 160,000 = 30,000(P/A,15%,n) (P/A,15%,n) = 5.3333
 From 15% table, n is between 11 and 12 years; therefore, n = 12 years By NPER, n = 11.5 years
- 2.55 (a) 2,000,000 = 100,000(P/A,5%,n)(P/A,5\%,n) = 20.000

From 5% table, n is > 100 years. In fact, at 5% per year, her account earns \$100,000 per year. Therefore, she will be able to withdraw \$100,000 forever; actually, n is ∞ .

- (b) 2,000,000 = 150,000(P/A,5%,n)(P/A,5\%,n) = 13.333 By NPER, n = 22.5 years
- (c) The reduction is impressive from forever (n is infinity) to n = 22.5 years for a 50% increase in annual withdrawal. It is important to know how much can be withdrawn annually when a fixed amount and a specific rate of return are involved.

2.56 10A = A(F/A, 10%, n)(F/A, 10\%, n) = 10.000

From 10% factor table, n is between 7 and 8 years; therefore, n = 8 years

2.57 (a) 500,000 = 85,000(P/A,10%,n)(P/A,10\%,n) = 5.8824

From 10% table, n is between 9 and 10 years.

(b) Using the function = NPER(10%, -85000, 500000), the displayed n = 9.3 years.

2.58 1,500,000 = 6,000,000(P/F,25%,n)(P/F,25%,n) = 0.2500

From 25% table, n is between 6 and 7 years; therefore, n = 7 years

2.59 15,000 = 3000 + 2000(A/G,10%,n)(A/G,10\%,n) = 6.0000

From 10% table, n is between 17 and 18 years; therefore, n = 18 years. She is not correct; it takes longer.

2.60 First set up equation to find present worth of \$2,000,000 and set that equal to P in the geometric gradient equation. Then, solve for n.

P = 2,000,000(P/F,7%,n)

 $2,000,000(P/F,7\%,n) = 10,000\{1 - [(1+0.10)/(1+0.07)]^n\}/(0.07 - 0.10)$

Solve for n using Goal Seek or trial and error.

By trial and error, n = is between 25 and 26; therefore, n = 26 years

Exercises for Spreadsheets

2.61

Part	Function	Answer
а	= -FV(10%,30,10000000/30)	\$548,313,409
b	= -FV(10%,33,10000000/30)	\$740,838,481
С	= -FV(10%,33,10000000/30) + FV(10%,3,(10000000/30)*2)	\$718,771,814

2.62

	А	В	С	D	E	F
1	Part		Function	Result	Conclusion	
2	(a) \$12,000 for 30 years		= - FV(10%,30,12000)	\$1,973,928.27	Not quite reache	
3						
4	(a) \$8000 for 15; \$15,000	for 15 years	= - FV(10%,30,8000) - FV(10%,15,7000)	\$ 1,538,359.55	Not rea	ched
5						
6	(b) \$12,000 for n years		= NPER(10%,-12000,,2000000)	30.13	Years	
7						
8	(c) \$8000 for 15; \$15000 f	or 15 years				
	One solution: Continue the					
	deposits beyond year 30 and determine the future worth					
	year by year.	Year	Function	Accumulated	Conc	usion
10		31	= -FV(10%,\$B10,8000) - FV(10%,\$B10-15,7000)	\$ 1,707,195.51		
11		32	= -FV(10%,\$B11,8000) - FV(10%,\$B11-15,7000)	\$ 1,892,915.06		
12		33	= -FV(10%,\$B12,8000) - FV(10%,\$B12-15,7000)	\$ 2,097,206.57	33 y	ears
13		34	= -FV(10%,\$B13,8000) - FV(10%,\$B13-15,7000)	\$ 2,321,927.22		
14		35	= -FV(10%,\$B14,8000) - FV(10%,\$B14-15,7000)	\$ 2,569,119.94		

2.63 Goal Seek template before and result after with solution for G = \$115.69 million

	А	В	С	D	E	F	G	H
1	Gradi	ent amount	: is <mark>(\$1</mark> 000)	\$ 50.00				
2 3	Year	Deposit	PV in year 0	FV in year 5				
4	0				G	ioal Seek	8	x
5	1	100.00	\$84.75			S <u>e</u> t cell:	\$D\$9	
6	2	150.00	\$192.47			To <u>v</u> alue: By <u>c</u> hanging cell:	2100 \$D\$1	
7	3	200.00	\$314.20			OK	Can	
8	4	250.00	\$443.15		L	_		
9	5	300.00	\$574.28	\$1,313.81				
10								

	A	В	С	D	E
1	Gradient amount		is (\$1000)	\$ 115.69	
3	Year	Deposit	PV in year 0	FV in year 5	
4	0				
5	1	100.00	\$84.75		
6	2	215.69	\$239.65		
7	3	331.38	\$441.34		
8	4	447.08	\$671.94		
9	5	562.77	\$917.93	\$2,100.00	

Year,		Present worth	Future worth	Year,		Present worth	Future worth
n	Deposit	in year 0	in year n	n	Deposit	in year 0	in year n
0				0			
1	10,000	9,346	10,000	= \$A3+1	10000	=NPV(7%,\$B\$4:\$B4)	=-FV(7%,\$A4,,\$C4)
2	11,000	18,954	21,700	= \$A4+1	=\$B4*1.1	=NPV(7%,\$B\$4:\$B5)	= -FV(7%,\$A5,,\$C5)
3	12,100	28,831	35,319	= \$A5+1	=\$B5*1.1	=NPV(7%,\$B\$4:\$B6)	=-FV(7%,\$A6,,\$C6)
4	13,310	38,985	51,101	= \$A6+1	=\$B6*1.1	=NPV(7%,\$B\$4:\$B7)	=-FV(7%,\$A7,,\$C7)
5	14,641	49,424	69,319	= \$A7+1	=\$B7*1.1	=NPV(7%,\$B\$4:\$B8)	=-FV(7%,\$A8,,\$C8)
6	16,105	60,155	90,277	= \$A8+1	=\$B8*1.1	=NPV(7%,\$B\$4:\$B9)	=-FV(7%,\$A9,,\$C9)
7	17,716	71,188	114,312	= \$A9+1	=\$B9*1.1	=NPV(7%,\$B\$4:\$B10)	=-FV(7%,\$A10,,\$C1
8	19,487	82,529	141,801	= \$A10+1	=\$B10*1.1	=NPV(7%,\$B\$4:\$B11)	=-FV(7%,\$A11,,\$C1
9	21,436	94,189	173,163	= \$A11+1	=\$B11*1.1	=NPV(7%,\$B\$4:\$B12)	=-FV(7%,\$A12,,\$C1
10	23,579	106,176	208,864	= \$A12+1	=\$B12*1.1	=NPV(7%,\$B\$4:\$B13)	=-FV(7%,\$A13,,\$C1
11	25,937	118,498	249,422	= \$A13+1	=\$B13*1.1	=NPV(7%,\$B\$4:\$B14)	=-FV(7%,\$A14,,\$C1
12	28,531	131,167	295,412	=\$A14+1	=\$B14*1.1	=NPV(7%,\$B\$4:\$B15)	=-FV(7%,\$A15,,\$C1
13	31,384	144,190	347,475	= \$A15+1	=\$B15*1.1	=NPV(7%,\$B\$4:\$B16)	=-FV(7%,\$A16,,\$C1
14	34,523	157,578	406,321	=\$A16+1	=\$B16*1.1	=NPV(7%,\$B\$4:\$B17)	=-FV(7%,\$A17,,\$C1
15	37,975	171,342	472,739	=\$A17+1	=\$B17*1.1	=NPV(7%,\$B\$4:\$B18)	=-FV(7%,\$A18,,\$C1
16	41,772	185,492	547,603	=\$A18+1	=\$B18*1.1	=NPV(7%,\$B\$4:\$B19)	=-FV(7%,\$A19,,\$C1
17	45,950	200,039	631,885	= \$A19+1	=\$B19*1.1	=NPV(7%,\$B\$4:\$B20)	=-FV(7%,\$A20,,\$C2
18	50,545	214,993	726,662	= \$A20+1	=\$B20*1.1	=NPV(7%,\$B\$4:\$B21)	=-FV(7%,\$A21,,\$C2
19	55,599	230,367	833,127	= \$A21+1	=\$B21*1.1	=NPV(7%,\$B\$4:\$B22)	=-FV(7%,\$A22,,\$C2
20	61,159	246,171	952,605	= \$A22+1	=\$B22*1.1	=NPV(7%,\$B\$4:\$B23)	=-FV(7%,\$A23,,\$C2
21	67,275	262,419	1,086,563	=\$A23+1	=\$B23*1.1	=NPV(7%,\$B\$4:\$B24)	=-FV(7%,\$A24,,\$C2
22	74,002	279,122	1,236,624	= \$A24+1	=\$B24*1.1	=NPV(7%,\$B\$4:\$B25)	=-FV(7%,\$A25,,\$C2
23	81,403	296,294	1,404,591	= \$A25+1	=\$B25*1.1	=NPV(7%,\$B\$4:\$B26)	=-FV(7%,\$A26,,\$C2
24	89,543	313,947	1,592,455	=\$A26+1	=\$B26*1.1	=NPV(7%,\$B\$4:\$B27)	=-FV(7%,\$A27,,\$C2
25	98,497	332,095	1,802,424	= \$A27+1	=\$B27*1.1	=NPV(7%,\$B\$4:\$B28)	=-FV(7%,\$A28,,\$C2
26	108,347	350,752	2,036,941	= \$A28+1	=\$B28*1.1	=NPV(7%,\$B\$4:\$B29)	= -FV(7%,\$A29,,\$C2
27	119,182	369,932	2,298,709	= \$A29+1	=\$B29*1.1	=NPV(7%,\$B\$4:\$B30)	=-FV(7%,\$A30,,\$C3
28	131,100	389,650	2,590,718	= \$A30+1	=\$B30*1.1	=NPV(7%,\$B\$4:\$B31)	=-FV(7%,\$A31,,\$C3
29	144,210	409,920	2,916,279	= \$A31+1	=\$B31*1.1	=NPV(7%,\$B\$4:\$B32)	=-FV(7%,\$A32,,\$C3
30	158,631	430,759	3,279,049	= \$A32+1	= \$B32*1.1	=NPV(7%,\$B\$4:\$B33)	=-FV(7%,\$A33,,\$C3

2.64 Here is one approach to the solution using NPV and FV functions with results (left) and formulas (right).

Answers: (a) 26 years; (b) 30 years, only 4 years more than the \$2 million milestone.

2.65 (a) Present worth is the value of the savings for each bid

Bid 1: Savings = \$10,000

Bid 2: Savings = \$17,000

Bid 3: Savings = \$25,000

(b) and (c) Spreadsheet for A values and column chart

	А	В	С	D	Е	F	G	н	Ι
1			Part (b)			Part (c)			
2	Bid	Savings	AW formula	AW amount					
3	1	10,000	= - PMT(6%,10,\$B3)	\$1,358.68		AV	V of savii	ngs	
4	2	17,000	= - PMT(6%,10,\$B4)	\$2,309.76	4000				
5	3	25,000	= - PMT(6%,10,\$B5)	\$3,396.70	3000				
6					2000				
7					1000				
8					0				
9						1	2		3
10						E B	id 📕 AW am	ount	
11									

ADDITIONAL PROBLEMS AND FE REVIEW QUESTIONS

2.66 Answer is (a)

- 2.67 P = 840,000(P/F,10%,2)= 840,000(0.8264) = \$694,176 Answer is (a)
- 2.68 P = 81,000(P/F,6%,4)= 81,000(0.7921) = \$64,160 Answer is (d)
- 2.69 F = 25,000(F/P,10%,25)= 25,000(10.8347)= \$270,868Answer is (c)
- 2.70 A = 10,000,000(A/F,10%,5)= 10,000,000(0.16380) = \$1,638,000 Answer is (a)

2.71 A = 2,000,000(A/F,8%,30) = 2,000,000(0.00883) = \$17,660Answer is (a)

- 2.72 390 = 585(P/F,i,5) (P/F,i,5) = 0.6667 From tables, i is between 8% and 9% Answer is (c)
- 2.73 AW = 26,000 + 1500(A/G,8%,5)= \$28,770 Answer is (b)

2.74
$$30,000 = 4202(P/A,8\%,n)$$

(P/A,8%,5) = 7.1395
 $n = 11$ years
Answer is (d)

- 2.75 $23,632 = 3000\{1 [(1+0.04)^n/(1+0.06)^n]\}/(0.06-0.04)$ [(23,632*0.02)/3000]-1 = (0.98113)^n log 0.84245 = nlog 0.98113 n = 9 Answer is (b)
- 2.76 A = 800 100(A/G, 8%, 6)= 800 - 100(2.2763) = \$572.37 Answer is (c)
- 2.77 P = 100,000(P/A,10%,5) 5000(P/G,10%,5) = 100,000(3.7908) - 5000(6.8618) = \$344,771Answer is (a)
- 2.78 109.355 = 7(P/A,i,25)(P/A,i,25) = 15.6221

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

From tables, i = 4%Answer is (a) 2.79 28,800 = 7000(P/A,10%,5) + G(P/G,10%,5) 28,800 = 7000(3.7908) + G(6.8618) G = \$330 Answer is (d)

2.80 40,000 = 11,096(P/A,i,5)(P/A,i,5) = 3.6049 i = 12 %Answer is (c)

Solution to Case Study, Chapter 2

The Amazing Impact of Compound Interest

1. Ford Model T and a New Car

- (a) Inflation rate is substituted for i = 3.10% per year
- (b) Model T: Beginning cost in 1909: P = \$825Ending cost: n = 1909 to 2015 + 50 years = 156 years; F = \$96,562

 $F = P(1+i)^{n} = 825(1.031)^{156}$ = 825(117.0447) = \$96,562

New car: Beginning cost: P = \$28,000Ending cost: n = 50 years; F = \$128,853

> $F = P(1+i)^{n} = 28,000(1.031)^{50}$ = 28,000(4.6019) = \$128,853

2. Manhattan Island

(a) i = 6.0% per year

(b) Beginning amount in 1626: P = \$24Ending value: n = 391; F = \$188.3 billion

$$F = 24(1.06)^{391}$$

= 24(7,845,006.7)
= \$188,280,161 (\$188.3 billion)

3. Pawn Shop Loan

(a) i per week = (30/200)*100 = 15% per week

i per year = $[(1.15)^{52} - 1]*100 = 143,214\%$ per year

Subtraction of 1 considers repayment of the original loan of \$200 when the interest rate is calculated (see Chapter 4 for details.)

(b) Beginning amount: P = \$200Ending owed:1 year later, F = \$286,627

$$F = P(F/P, 15\%, 52)$$

= 200(1.15)⁵²
= 200(1433.1370)
= \$286,627

4. Capital Investment

(a) $i = 15^{+}\%$ per year

$$1,000,000 = 150,000(P/A,i\%,60)$$

(P/A,i\%,60) = 6.6667
 $i = 15^{+}\%$

(b) Beginning amount: P = \$1,000,000 invested Ending total amount over 60 years: 150,000(60) = \$9 million

Value:
$$F_{60} = 150,000(F/A,15\%,60)$$

= 150,000(29220.0)
= \$4,383,000,000 (\$4.38 billon)

5. Diamond Ring

(a) i = 4% per year

(b) Beginning price: P = \$50Ending value after 179 years: F = \$55,968

> n = great grandmother + grandmother + mother + girl= 65 + 60 + 30 + 24

Engineering Economy 8th Edition Blank Solutions Manual

Full Download: https://testbanklive.com/download/engineering-economy-8th-edition-blank-solutions-manual/

= 179 years F = 50(F/P,4%,179)= 50(1119.35) = \$55,968

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com