Elementary Geometry for College Students 6th Edition Alexander Solutions Manual

Full Download: http://testbanklive.com/download/elementary-geometry-for-college-students-6th-edition-alexander-solutions-manu

Chapter 1 Line and Angle Relationships

SECTION 1.1: Sets, Statements, and Reasoning

- 1. a. Not a statement.
 - **b.** Statement; true
 - c. Statement; true
 - d. Statement; false
- 2. a. Statement; true
 - **b.** Not a statement.
 - c. Statement; false
 - d. Statement; false
- **3. a.** Christopher Columbus did not cross the Atlantic Ocean.
 - **b.** Some jokes are not funny.
- 4. a. Someone likes me.
 - **b.** Angle 1 is not a right angle.
- **5.** Conditional
- 6. Conjunction
- 7. Simple
- 8. Disjunction
- 9. Simple
- 10. Conditional
- **11.** H: You go to the game.
 - C: You will have a great time.
- 12. H: Two chords of a circle have equal lengths.
 - C: The arcs of the chords are congruent.
- **13.** H: The diagonals of a parallelogram are perpendicular.
 - C: The parallelogram is a rhombus.
- **14.** H: $\frac{a}{b} = \frac{c}{d} (b \neq 0, d \neq 0)$
 - C: $a \cdot d = b \cdot c$
- **15.** H: Two parallel lines are cut by a transversal.
 - C: Corresponding angles are congruent.
- **16.** H: Two lines intersect.
 - C: Vertical angles are congruent.

- **17.** First, write the statement in "If, then" form. If a figure is a square, then it is a rectangle.
 - H: A figure is a square.
 - C: It is a rectangle.
- **18.** First, write the statement in "If, then" form. If angles are base angles, then they are congruent.
 - H: Angles are base angles of an isosceles triangle.
 - C: They are congruent.
- 19. True
- 20. True
- **21.** True
- 22. False
- 23. False
- 24. True
- 25. Induction
- **26.** Intuition
- 27. Deduction
- 28. Deduction
- **29.** Intuition
- **30.** Induction
- 31. None
- 32. Intuition
- **33.** Angle 1 looks equal in measure to angle 2.
- **34.** \overline{AM} has the same length as \overline{MB} .
- **35.** Three angles in one triangle are equal in measure to the three angles in the other triangle.
- **36.** The angles are not equal in measure.
- **37.** *A Prisoner of Society* might be nominated for an Academy Award.
- **38.** Andy is a rotten child.
- **39.** The instructor is a math teacher.
- 40. Your friend likes fruit.
- **41.** Angles 1 and 2 are complementary.
- 42. Kathy Jones will be a success in life.
- 43. Alex has a strange sense of humor.
- 44. None
- 45. None

© 2015 Cengage Learning. All rights reserved.

46.	None		
47.	June Jesse will be in the public eye.		
48.	None		
49.	Marilyn is a happy person.		
50.	None		
51.	Valid		
52.	Not valid		
53.	Not valid		
54.	Valid		
55.	a. True		
	b. True		
	c. False		
56.	a. False		
	b. False		
57.	a. True		
	b. True		
SECTION 1.2: Informal Geometry and Measurement			

1.	AB < CD
2.	$m \angle ABC < m \angle DEF$
3.	Two; one
4.	No
5.	One; none
6.	Three
7.	$\angle ABC$, $\angle ABD$, $\angle DBC$
8.	23°, 90°, 110.5°
9.	Yes; no; yes
10.	A-X-B
11.	$\angle ABC$, $\angle CBA$
12.	Yes; yes
13.	Yes; no
14.	a, d
15.	a, d
16.	<i>R</i> ; they are equal.
17.	a. 3

	b. $2\frac{1}{2}$
18.	a. 1.5
	b. 5
19.	a. 40°
	b. 50°
20.	a. 90°
	b. 25°
21.	Congruent; congruent
22.	Equal; yes
23.	Equal
24.	2 inches
25.	No
26.	Yes
27.	Yes
28.	No
29.	Congruent
30.	Congruent
31.	\overline{MN} and \overline{QP}
32.	Equal
33.	\overline{AB}
34.	$\angle ABD$
35.	22
36.	14
37.	x + x + 3 = 21 2x = 18 x = 9
38.	x + y
39.	124°
40.	2x + x = 180 $3x = 180$ $x = 60$
	$m \angle 1 = 120^{\circ}$
41.	71°
42.	34°
43.	x + 2x + 3 = 72 3x = 69 x = 23

50. S 66° E

SECTION 1.3: Early Definitions and Postulates

Ē

1. *AC*

- 2. Midpoint
- **3.** $6.25 \text{ ft} \cdot 12 \text{ in./ft} = 75 \text{ in.}$
- 4. 52 in. \div 12 in./ft = $4\frac{1}{3}$ ft or 4 ft 4 in.
- 5. $\frac{1}{2}$ m · 3.28 ft/m = 1.64 feet
- 6. 16.4 ft ÷ 3.28 ft/m = 5 m
- **7.** 18 − 15 = 3 mi
- 300 + 450 + 600 = 1350 ft
 1350 ft ÷ 15 ft/s = 90 s or 1 min 30 s
- 9. a. A-C-D
 - **b.** *A*, *B*, *C* or *B*, *C*, *D* or *A*, *B*, *D*
- 10. a. Infinite
 - b. One
 - c. None
 - d. None

- **11.** \overrightarrow{CD} means line *CD*;
 - \overline{CD} means segment CD;

CD means the measure or length of \overline{CD} ;

- \overrightarrow{CD} means ray CD with endpoint C.
- 12. a. No difference
 - **b.** No difference
 - c. No difference
 - d. CD is the ray starting at C and going to the right.
 DC is starting at D and going to the left.
- **13. a.** *m* and *t*
 - **b.** m and p or p and t
- 14. a. False
 - b. False
 - c. True
 - d. True
 - e. False

15. 2x + 1 = 3x - 2-x = -3x = 3AM = 7

- **16.** 2(x+1) = 3(x-2)2x+2 = 3x-6-1x = -8x = 8AB = AM + MBAB = 18 + 18 = 36
- **17.** 2x + 1 + 3x = 6x 4 5x + 3 = 6x - 4 -1x = -7 x = 7AB = 38
- 18. No; Yes; Yes; No
- **19.** a. \overrightarrow{OA} and \overrightarrow{OD}
 - **b.** \overrightarrow{OA} and \overrightarrow{OB} (There are other possible answers.)
- **20.** \overrightarrow{CD} lies on plane *X*.

- **23.** Planes *M* and *N* intersect at \overrightarrow{AB} .
- **24.** *B*
- **25.** A
- 26. a. One
 - **b.** Infinite
 - c. One
 - **d.** None
- 27. a. C
 - **b.** C
 - **c.** H
- 28. a. Equal
 - b. Equal
 - **c.** AC is twice DC.
- **29.** Given: \overline{AB} and \overline{CD} as shown (AB > CD) Construct \overline{MN} on line *l* so that MN = AB + CD

30. Given: \overline{AB} and \overline{CD} as shown (AB > CD)Construct: \overline{EF} so that EF = AB - CD.

31. Given: \overline{AB} as shown Construct: \overline{PQ} on line *n* so that PQ = 3(AB)

32. Given: \overline{AB} as shown Construct: \overline{TV} on line *n* so that $TV = \frac{1}{2}(AB)$

33. a. No

- b. Yes
- c. No
- d. Yes
- **34.** A segment can be divided into 2^n congruent parts where $n \ge 1$.
- 35. Six
- **36.** Four
- 37. Nothing
- **38.** a. One

b. One

- c. None
- d. One
- e. One
- f. One
- g. None
- **39. a.** Yes
 - **b.** Yes
 - c. No
- 40. a. Yes
 - b. No
 - c. Yes

41.
$$\frac{1}{3}a + \frac{1}{2}b$$
 or $\frac{2a+3b}{6}$

SECTION 1.4: Angles and Their Relationships

1. a. Acute

- b. Right
- c. Obtuse

- 2. a. Obtuse
 - b. Straight
 - c. Acute
- 3. a. Complementary
 - b. Supplementary
- 4. a. Congruent
 - **b.** None
- 5. Adjacent
- 6. Vertical
- 7. Complementary (also adjacent)
- 8. Supplementary
- 9. Yes; No
- 10. a. True
 - **b.** False
 - c. False
 - d. False
 - e. True
- 11. a. Obtuse
 - b. Straight
 - c. Acute
 - d. Obtuse
- **12.** *B* is not in the interior of $\angle FAE$; the Angle-Addition Postulate does not apply.
- **13.** $m \angle FAC + m \angle CAD = 180$ $\angle FAC$ and $\angle CAD$ are supplementary.
- **14. a.** x + y = 180
 - **b.** x = y
- **15. a.** x + y = 90
 - **b.** x = y
- **16.** 62°
- **17.** 42°

18. 2x + 9 + 3x - 2 = 675x + 7 = 675x = 60x = 12 19. 2x-10+x+6 = 4(x-6) 3x-4 = 4x-24 20 = x x = 20m∠RSV = 4(20-6) = 56° 20. 5(x+1)-3+4(x-2)+3 = 4(2x+3)-7 5x+5-3+4x-8+3 = 8x+12-7 9x-3 = 8x+5 x = 8m∠RSV = 4(2 ⋅ 8 + 3) − 7 = 69°

21.
$$\frac{x}{2} + \frac{x}{4} = 45$$

Multiply by LCD, 4

2x + x = 180

3x = 180

 $x = 60; m \angle RST = 30^{\circ}$

22.
$$\frac{2x}{3} + \frac{x}{2} = 49$$

Multiply by LCD, 6

4x + 3x = 294

- 7x = 294
- $x = 42; m \angle TSV = \frac{x}{2} = 21^{\circ}$

23.
$$x + y = 2x - 2y$$

 $x + y + 2x - 2y = 64$

$$-1x + 3y = 0$$
$$3x - 1y = 64$$
$$-3x + 9y = 0$$
$$3x - y = 64$$
$$8y = 64$$

24. 2x + 3y = 3x - y + 22x + 3y + 3x - y + 2 = 80

25. $\angle CAB \cong \angle DAB$

$$-1x + 4y = 2$$

$$5x + 2y = 78$$

$$-5x + 20y = 10$$

$$5x + 2y = 78$$

$$22y = 88$$

$$y = 4; x = 14$$

y = 8; x = 24

26.
$$x + y = 90$$

 $x = 12 + y$
 $x + y = 90$
 $\frac{x - y = 12}{2x}$
 $x = 51$
 $51 + y = 90$
 $y = 39$
27. $x + y = 180$
 $x - 2y = 24$
 $-2x + 2y = 360$
 $\frac{x - 2y = 24}{3x}$
 384
 $x = 128; y = 52$
 $\angle s \text{ are } 128^{\circ} \text{ and } 52^{\circ}.$
28. a. $(90 - x)^{\circ}$
b. $(90 - (3x - 12))^{\circ} = (102 - 3x)^{\circ}$
c. $90 - (2x + 5y) = (90 - 2x - 5y)^{\circ}$
29. a. $(180 - x)^{\circ}$
b. $180 - (3x - 12) = (192 - 3x)^{\circ}$
c. $180 - (2x + 5y)$
 $(180 - 2x - 5y)^{\circ}$
30. $x - 92 = 92 - 53$
 $x - 92 = 39$
 $x = 131$
31. $x - 92 + (92 - 53) = 90$
 $x - 92 + 39 = 90$
 $x - 53 = 90$
 $x = 143$

32. a. True

b. False

c. False

33. Given: Obtuse $\angle MRP$ Construct: With \overrightarrow{OA} as one side, an angle $\cong \angle MRP$.

34. Given: Obtuse $\angle MRP$ Construct: \overrightarrow{RS} , the angle-bisector of $\angle MRP$.

35. Given: Obtuse $\angle MRP$ Construct: Rays *RS*, *RT*, and *RU* so that $\angle MRP$ is divided into $4 \cong$ angles.

36. Given: Straight angle *DEF* Construct: a right angle with vertex at *E*.

37. For the triangle shown, the angle bisectors are been constructed.

It appears that the angle bisectors meet at one point.

38. Given: Acute $\angle 1$ Construct: Triangle *ABC* which has

- **39.** It appears that the two sides opposite $\angle sA$ and *B* are congruent.
- **40.** Given: Straight angle *ABC* Construct: Bisectors of $\angle ABD$ and $\angle DBC$.

It appears that a right angle is formed.

- **41. a.** 90°
 - **b.** 90°
 - c. Equal
- **42.** Let $m \angle USV = x$, then $m \angle TSU = 38 x$
 - 38 x + 40 = 61
 - 78 x = 61
 - 78 61 = x
 - x = 17; m $\angle USV = 17^{\circ}$

43. x + 2z + x - z + 2x - z = 604x = 60x = 15If x = 15, then $m \angle USV = 15 - z$, $m \angle VSW = 30 - z$, and $m \angle USW = 3x - 6 = 3(15) - 6 = 39$ So 15 - z + 2(15) - z = 3945 - 2z = 396 = 2zz = 3**44. a.** 52° **b.** 52° c. Equal **45.** 90 + x + x = 3602x = 270 $x = 135^{\circ}$ 46. 90

SECTION 1.5: Introduction to Geometric Proof

- 1. Division Property of Equality or Multiplication Property of Equality
- **2.** Distributive Property [x + x = (1+1)x = 2x]
- 3. Subtraction Property of Equality
- 4. Addition Property of Equality
- 5. Multiplication Property of Equality
- 6. Addition Property of Equality
- **7.** If 2 angles are supplementary, then the sum of their measures is 180°.
- **8.** If the sum of the measures of 2 angles is 180°, then the angles are supplementary.
- 9. Angle-Addition Property
- 10. Definition of angle-bisector
- **11.**AM + MB = AB
- **12.** AM = MB
- **13.** \overrightarrow{EG} bisects $\angle DEF$
- **14.** $m \angle 1 = m \angle 2$ or $\angle 1 \cong \angle 2$
- **15.** $m \angle 1 + m \angle 2 = 90^{\circ}$
- **16.** $\angle 1$ and $\angle 2$ are complementary

- **17.** 2x = 10
- **18.** x = 7
- **19.** 7x + 2 = 30
- **20.** $\frac{1}{2} = 50\%$
- **21.** 6x 3 = 27
- **22.** x = -20
- 23. 1. Given
 - 2. Distributive Property
 - 3. Addition Property of Equality
 - 4. Division Property of Equality
- 24. 1. Given
 - 2. Subtraction Property of Equality
 - 3. Division Property of Equality
- **25.** 1. 2(x+3) 7 = 11
 - **2.** 2x + 6 7 = 11
 - 3. 2x 1 = 11
 - **4.** 2x = 12
 - 5. x = 6
- **26.** 1. $\frac{x}{5} + 3 = 9$
 - **2.** $\frac{x}{5} = 6$
 - 3. x = 30
- 27. 1. Given
 - 2. Segment-Addition Postulate
 - 3. Subtraction Property of Equality
- 28. 1. Given
 - **2.** The midpoint forms 2 segments of equal measure.
 - 3. Segment-Addition Postulate
 - 4. Substitution
 - 5. Distributive Property
 - 6. Multiplication Property of Equality
- 29. 1. Given
 - **2.** If an angle is bisected, then the two angles formed are equal in measure.
 - 3. Angle-Addition Postulate

- 4. Substitution
- 5. Distribution Property
- 6. Multiplication Property of Equality
- 30. 1. Given
 - 2. Angle-Addition Postulate
 - **3.** Subtraction Property of Equality
- **31. S1.** *M*-*N*-*P*-*Q* on *MQ*

R1. Given

- 2. Segment-Addition Postulate
- 3. Segment-Addition Postulate
- $4. \quad MN + NP + PQ = MQ$
- **32.** 1. $\angle TSW$ with \overline{SU} and \overline{SV} ; Given
 - 2. Angle-Addition Postulate
 - 3. Angle-Addition Postulate
 - 4. $m \angle TSW = m \angle TSU + m \angle USV + m \angle VSW$
- **33.** $5 \cdot x + 5 \cdot y = 5(x + y)$
- **34.** $5 \cdot x + 7 \cdot x = (5+7)x = 12x$
- **35.** (-7)(-2) > 5(-2) or 14 > -10

36.
$$\frac{12}{-4} < \frac{-4}{-4}$$
 or $-3 < 1$

- 37. 1. Given
 - **2.** Addition Property of Equality

3. Given

4. Substitution

38. 1. a = b 1. Given

a - c = b - c
 Subtraction Property of Equality
 c = d
 Given

- **4.** a c = b d **4.** Substitution

SECTION 1.6: Relationships: Perpendicular Lines

- 1. 1. Given
 - 2. If $2 \angle s$ are \cong , then they are equal in measure.
 - 3. Angle-Addition Postulate
 - 4. Addition Property of Equality

- 5. Substitution
- 6. If $2 \angle s$ are = in measure, then they are \cong .
- 2. 1. Given
 - **2.** The measure of a straight angle is 180° .
 - 3. Angle-Addition Postulate
 - 4. Substitution
 - 5. Given
 - 6. The measure of a right $\angle = 90^{\circ}$.
 - 7. Substitution
 - 8. Subtraction Property of Equality
 - 9. Angle-Addition Postulate
 - 10. Substitution
 - **11.** If the sum of measures of 2 angles is 90°, then the angles are complementary.
- **3.** 1. $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$
 - **2.** $\angle 1 \cong \angle 3$
- 4. 1. $m \angle AOB = m \angle 1$ and $m \angle BOC = m \angle 1$
 - **2.** $m \angle AOB = m \angle BOC$
 - **3.** $\angle AOB \cong \angle BOC$
 - 4. \overrightarrow{OB} bisects $\angle AOC$
- 5. Given: Point *N* on line *s*. Construct: Line *m* through *N* so that $m \perp s$.

6. Given: \overrightarrow{OA} Construct: Right angle *BOA* (Hint: Use the straightedge to extend \overrightarrow{OA} to the left.)

7. Given: Line ℓ containing point *A* Construct: A 45° angle with vertex at *A*

8. Given: \overline{AB}

Construct: The perpendicular bisector of \overline{AB}

9. Given: Triangle *ABC* Construct: The perpendicular bisectors of each side, \overline{AB} , \overline{AC} , and \overline{BC} .

- **10.** It appears that the perpendicular bisectors meet at one point.
- 11. 1. Given
 - 3. Substitution
 - 4. $m \angle l = m \angle 2$
 - 5. $\angle 1 \cong \angle 2$
- 12. 1. Given
 - **2.** $m \angle 1 = m \angle 2$ and $m \angle 3 = m \angle 4$
 - 3. Given
 - **4.** $m \angle 2 + m \angle 3 = 90$
 - 5. Substitution
 - **6.** \angle s 1 and 4 are comp.
- 13. No; Yes; No
- 14. No; No; Yes

- **15.** No; Yes; No
- 16. No; No; Yes
- 17. No; Yes; Yes
- 18. No; No; No
- 19. a. perpendicular
 - b. angles
 - c. supplementary
 - d. right
 - e. measure of angle
- 20. a. postulate
 - **b.** union
 - c. empty set
 - **d.** less than
 - e. point
- 21. a. adjacent
 - b. complementary
 - c. ray AB
 - d. is congruent to
 - e. vertical
- **22.** In space, there are an infinite number of lines perpendicular to a given line at a point on the line.
- 23.STATEMENTSREASONS1.M N P Q on \overline{MQ} 1. Given2.MN + NQ = MQ2. Segment-Addition
Postulate3.NP + PQ = NQ3. Segment-Addition
Postulate4.MN + NP + PQ = MQ4. Substitution
- $24. \quad AE = AB + BC + CD + DE$

25.		STATEMENTS		REASONS
	1.	$\angle TSW$ with \overrightarrow{SU}	1.	Given
		and \overrightarrow{SV}		
	2.	m∠TSW	2.	Angle-Addition
		$= m \angle TSU + m \angle USW$		Postulate
	3.	m∠USW	3.	Angle-Addition
		$= m \angle USV + m \angle VSW$		Postulate
	4.	$m \angle TSW = m \angle TSU$	4.	Substitution
		$+m \angle USV + m \angle VSW$		

- **26.** $m \angle GHK = m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4$
- **27.** In space, there are an infinite number of lines that perpendicularly bisect a given line segment at its midpoint.

- 28. 1. Given
 - If 2 ∠s are comp., then the sum of their measures is 90°.
 - 3. Given
 - **4.** The measure of an acute angle is between 0 and 90°.
 - 5. Substitution
 - 6. Subtraction Prop. of Eq.
 - 7. Subtraction Prop. of Inequality
 - 8. Addition Prop. of Inequality
 - 9. Transitive Prop. of Inequality
 - 10. Substitution
 - **11.** If the measure of an angle is between 0 and 90°, then the angle is an acute \angle .
- **29.** Angles 1, 2, 3, and 4 are adjacent and form the straight angle *AOB* which measures 180. Therefore, $m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 = 180$.
- 30. If ∠2 and ∠3 are complementary, then m∠2 + m∠3 = 90. From Exercise 29, m∠1 + m∠2 + m∠3 + m∠4 = 180. Therefore, m∠1 + m∠4 = 90 and ∠1 and ∠4 are complementary.

SECTION 1.7: The Formal Proof of a Theorem

- **1.** H: A line segment is bisected.
 - C: Each of the equal segments has half the length of the original segment.
- **2.** H: Two sides of a triangle are congruent.
 - C: The triangle is isosceles.
- **3.** First write the statement in the "If, then" form. If a figure is a square, then it is a quadrilateral.
 - H: A figure is a square.
 - C: It is a quadrilateral.
- **4.** First write the statement in the "If, then" form. If a polygon is a regular polygon, then it has congruent interior angles.
 - H: A polygon is a regular polygon.
 - C: It has congruent interior angles.
- 5. H: Each is a right angle.
 - C: Two angles are congruent.

- **6.** First write the statement in the "If, then" form. If polygons are similar, then the lengths of corresponding sides are proportional.
 - H: Polygons are similar.
 - C: The lengths of corresponding sides are proportional.
- 7. Statement, Drawing, Given, Prove, Proof
- 8. a. Hypothesis
 - b. Hypothesis
 - c. Conclusion
- 9. a. Given b. Prove
- **10.** *a*, *c*, *d*
- 11. After the theorem has been proved.
- 12. No

Figure for exercises 13 and 14.

- **14.** Given: $\angle AEC$ is a right angle Prove: $\overrightarrow{AB} \perp \overrightarrow{CD}$
- **15.** Given: $\angle 1$ is comp to $\angle 3$ $\angle 2$ is comp to $\angle 3$ Prove: $\angle 1 \cong \angle 2$

16. Given: $\angle 1$ is supp to $\angle 3$ $\angle 2$ is supp to $\angle 3$ Prove: $\angle 1 \cong \angle 2$

17. Given: Lines *l* and *m* Prove: $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$

18. Given: $\angle 1$ and $\angle 2$ are right angles Prove: $\angle 1 \cong \angle 2$

- **19.** $m \angle 2 = 55^{\circ}$, $m \angle 3 = 125^{\circ}$, $m \angle 4 = 55^{\circ}$
- **20.** $m \angle 1 = 133^{\circ}$, $m \angle 3 = 133^{\circ}$, $m \angle 4 = 47^{\circ}$
- 21. $m \angle 1 = m \angle 3$ 3x + 10 = 4x - 30 $x = 40; m \angle 1 = 130^{\circ}$

22.
$$m \angle 2 = m \angle 4$$

 $6x + 8 = 7x$
 $x = 8; m \angle 2 = 56^{\circ}$

23. $m \angle 1 + m \angle 2 = 180^{\circ}$ 2x + x = 180 3x = 180 $x = 60; m \angle 1 = 120^{\circ}$

24.
$$m \angle 2 + m \angle 3 = 180^{\circ}$$

 $x + 15 + 2x = 180$
 $3x = 165$
 $x = 55; m \angle 2 = 110^{\circ}$

25.
$$\frac{x}{2} - 10 + \frac{x}{3} + 40 = 180$$

 $\frac{x}{2} + \frac{x}{3} + 30 = 180$
 $\frac{x}{2} + \frac{x}{3} = 150$
Multiply by 6
 $3x + 2x = 900$
 $5x = 900$
 $x = 180; m \angle 2 = 80^{\circ}$
26. $x + 20 + \frac{x}{3} = 180$
 $x + \frac{x}{3} = 160$

Multiply by 3

3x + x = 480

$$4x = 480$$

 $x = 120; m \angle 4 = 40^{\circ}$

- 27. 1. Given
 - If 2 ∠ s are comp., then the sum of their measures is 90.
 - 3. Substitution
 - 4. Subtraction Property of Equality
 - 5. If $2 \angle s$ are = in measure, then they are \cong .
- **28.** Given: $\angle 1$ is supp to $\angle 2$ $\angle 3$ is supp to $\angle 2$ Prove: $\angle 1 \cong \angle 3$

29. If 2 lines intersect, the vertical angles formed are congruent.

Given: \overrightarrow{AB} and \overrightarrow{CD} intersect at *E* Prove: $\angle 1 \cong \angle 2$

30. Any two right angles are congruent. Given: $\angle 1$ is a rt. \angle $\angle 2$ is a rt. \angle Prove: $\angle 1 \cong \angle 2$ 2 **STATEMENTS** REASONS **1.** $\angle 1$ is a rt. \angle 1. Given $\angle 2$ is a rt. \angle **2.** m∠1=90 2. Measure of a right $\angle = 90.$ $m \angle 2 = 90$ 3. Substitution 3. $m \angle l = m \angle 2$ **4.** ∠1≅∠2 4. If $2 \angle s$ are = in measure, then they are \cong .

31. 1. Given

- **2.** $\angle ABC$ is a right \angle .
- **3.** The measure of a rt. $\angle = 90$.
- 4. Angle-Addition Postulate
- 6. $\angle 1$ is comp. to $\angle 2$.

32. If 2 segments are congruent, then their midpoints separate these segments into four congruent segments. Given: $\overline{AB} \cong \overline{DC}$

M is the midpoint of \overline{AB} *N* is the midpoint of \overline{DC} Prove: $\overline{AM} \cong \overline{MB} \cong \overline{DN} \cong \overline{NC}$

D N	С
STATEMENTS	REASONS
1. $\overline{AB} \cong \overline{DC}$	1. Given
2. <i>AB</i> = <i>DC</i>	2. If 2 segments are
	\cong , then their
	lengths are $=$.
3. $AB = AM + MB$	3. Segment-Addition
DC = DN + NC	Post.
4. AM + MB = DN + NC	4. Substitution
5. <i>M</i> is the midpt of \overline{AB}	5. Given
N is the midpt of \overline{DC}	
6. $AM = MB$ and	6. If a pt. is the
DN = NC	midpt of a
	segment, it forms
	2 segments equal
	in measure.
7. $AM + AM = DN + DN$	7. Substitution
or $2 \cdot AM = 2 \cdot DN$	
8. $AM = DN$	8. Division Prop.
	of Eq.
9. $AM = MB = DN = NC$	9. Substitution
10. $\overline{AM} \cong \overline{MB} \cong \overline{DN} \cong \overline{NC}$	10. If segments are =
	in length, then
	they are \cong .

33. If 2 angles are congruent, then their bisectors separate these angles into four congruent angles. Given: $\angle ABC \cong \angle EFG$

Ē	\overrightarrow{D} bised	ets ZAI	BC
\overline{F}	\overrightarrow{H} bise	cts $\angle E$	FG
Prove: ∠	$1 \cong \angle 2 \equiv$	≝∠3 ≅ .	∠4

	A 🖌	Ε	1
	/ D	/	H
	1	3	
L	2	4	
В	C F		G
	STATEMENTS	1	REASONS
1	$\angle ABC \simeq \angle EEG$	1.	Given
2	m/ABC = m/EFG	2	If 2 angles are
			\cong then their
			measures are $=$.
3.	$m \angle ABC = m \angle 1 + m \angle 2$	3.	Angle-Addition
	$m \angle EFG = m \angle 3 + m \angle 4$		Post.
4.	m∠l+m∠2	4.	Substitution
	$=m \angle 3 + m \angle 4$		
5.	\overrightarrow{BD} bisects $\angle ABC$	5.	Given
	\overrightarrow{FH} bisects $\angle EFG$		
6.	$m \angle 1 = m \angle 2$ and	6.	If a ray bisects
	m∠3=m∠4		an \angle , then 2 \angle s
			of equal measure
			are formed.
7.	m∠l+m∠l	7.	Substitution
	$=m\angle 3+m\angle 3$ or		
	$2 \cdot m \angle 1 = 2 \cdot m \angle 3$		
8.	m∠1=m∠3	8.	Division Prop.
			of Eq.
9.	m∠1=m∠2	9.	Substitution
	=m∠3=m∠4		
10.	$\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$	10.	If $\angle s$ are = in
			measure, then

they are \cong .

34. The bisectors of two adjacent supplementary angles form a right angle. Given: $\angle ABC$ is supp. to $\angle CBD$

Given: $\angle ABC$ is supp. to $\angle CBD$		
\overrightarrow{BE} bisects $\angle ABC$		
\overrightarrow{RF} bisects /CRD		
Prove: $\angle ERE$ is a rt \angle		
	1	
	F	*
$\left \right\rangle_{2}$	∕∙	r ·
1		
4 B		
		D
STATEMENTS		REASONS
1. $\angle ABC$ is supp	1.	Given
to $\angle CBD$		
2. $m \angle ABC + m \angle CBD$	2.	The sum of the
=180		measures of supp
		angles is 180.
3. $m \angle ABC = m \angle 1 + m \angle 2$	3.	Angle-Addition
$m\angle CBD = m\angle 3 + m\angle 4$		Post.
4. m∠1+m∠2+m∠3	4.	Substitution
+m∠4=180		
5. <i>BE</i> bisects $\angle ABC$	5.	Given
\overrightarrow{BF} bisects $\angle CBD$		
6. $m \angle 1 = m \angle 2$ and	6.	If a ray bisects
m∠3=m∠4		an \angle , then 2 \angle s
		of equal measure
		are formed.
7. m∠2+m∠2+m∠3	7.	Substitution
$+m\angle 3=180 \text{ or}$		
$2 \cdot m \angle 2 + 2 \cdot m \angle 3 = 180$		
8. m∠2+m∠3=90	8.	Division Prop.
		of Eq.
9. $m \angle EBF = m \angle 2 + m \angle 3$	9.	Angle-Addition
		Post.
10. m $\angle EBF = 90$	10.	Substitution
11. $\angle EBF$ is a rt. \angle	11.	If the measure of

an \angle is 90, then the \angle is a rt. \angle .

CHAPTER REVIEW

- Undefined terms, defined terms, axioms or postulates, theorems
- 2. Induction, deduction, intuition
- 3. 1. Names the term being defined.
 - 2. Places the term into a set or category.
 - **3.** Distinguishes the term from other terms in the same category.
 - 4. Reversible
- 4. Intuition
- 5. Induction
- 6. Deduction
- 7. H: The diagonals of a trapezoid are equal in length.
 - C: The trapezoid is isosceles.
- **8.** H: The parallelogram is a rectangle.
 - C: The diagonals of a parallelogram are congruent.

- 9. No conclusion
- **10.** Jody Smithers has a college degree.
- **11.** Angle *A* is a right angle.
- **12.** *C*
- **13.** $\angle RST$, $\angle S$, more than 90°.
- 14. Diagonals are \perp and they bisect each other.

28.
$$2x-6+3(2x-6) = 90$$

 $2x-6+6x-18 = 90$
 $8x = 24 = 90$
 $8x = 114$
 $x = 14\frac{1}{4}$
 $m\angle EFH = 3(2x-6) = 3\left(28\frac{1}{2}-6\right)$
 $= 3\cdot22\frac{1}{2}$
 $= 67\frac{1^{\circ}}{2}$
29. $x+(40+4x) = 180$
 $5x + 40 = 180$
 $5x + 40 = 180$
 $5x = 140$
 $x = 28^{\circ}$
 $40 + 4x = 152^{\circ}$
30. a. $2x+3+3x-2+x+7=6x+8$
b. $6x+8 = 32$
 $6x = 24$
 $x = 4$
c. $2x+3 = 2(4)+3 = 11$
 $3x-2 = 3(4)-2 = 10$
 $x+7 = 4+7 = 11$
31. The measure of angle 3 is less than 50.
32. The four foot board is 48 inches. Subtract 6
inches on each end leaving 36 inches.
 $4(n-1) = 36$
 $4n = 40$
 $n = 10$
 \therefore 10 pegs will fit on the board.
33. S
34. S
35. A
36. S
37. N
38. 2. $\angle 4 \equiv \angle P$
3. $\angle 1 \equiv \angle 4$
4. If $2 \angle s$ are \equiv , then their measures are $=$
5. Given
6. $m\angle 2 = m\angle 3$
7. $m\angle 1 + m\angle 2 = m\angle 4 + m\angle 3$
8. Angle-Addition Postulate
9. Substitution
10. $\angle TVP \equiv \angle MVP$

=.

49. Given: Triangle *PQR* Construct: The three angle bisectors.

It appears that the three angle bisectors meet at one point inside the triangle.

50. Given: \overline{AB} , \overline{BC} , and $\angle B$ as shown Construct: Triangle ABC

51. Given: $m \angle B = 50^{\circ}$ Construct: An angle whose measure is 20°.

52. $m \angle 2 = 270^{\circ}$

CHAPTER TEST

- 1. Induction
- **2.** $\angle CBA$ or $\angle B$
- **3.** $\overline{AP} + \overline{PB} = \overline{AB}$
- 4. a. Point
 - b. Line
- 5. a. Right
 - **b.** Obtuse
- 6. a. Supplementary
 - b. Congruent
- 7. $m \angle MNP = m \angle PNQ$

- 8. a. Right
 - b. Supplementary
- 9. Kianna will develop reasoning skills.
- **10.** 3.2 + 7.2 = 10.4 in.
- 11. a. x + x + 5 = 27 2x + 5 = 27 2x = 22x = 11

b.
$$x + 5 = 11 + 5 = 16$$

- **12.** $m \angle 4 = 35^{\circ}$
- **13.** a. x + 2x 3 = 693x - 3 = 693x = 72 $x = 24^{\circ}$
 - **b.** $m \angle 4 = 2(24) 3 = 45^{\circ}$
- **14. a.** $m \angle 2 = 137^{\circ}$
 - **b.** $m \angle 2 = 43^{\circ}$
- **15. a.** 2x 3 = 3x 28 $x = 25^{\circ}$
 - **b.** $m \angle 1 = 3(25) 28 = 47^{\circ}$
- **16.** a. 2x 3 + 6x 1 = 1808x - 4 = 1808x = 184 $x = 23^{\circ}$

b.
$$m \angle 2 = 6(23) - 1 = 137^{\circ}$$

17.
$$x + y = 90$$

Elementary Geometry for College Students 6th Edition Alexander Solutions Manual

Full Download: http://testbanklive.com/download/elementary-geometry-for-college-students-6th-edition-alexander-solutions-manual-

Chapter Test

21

- 20. 1. Given
 - 2. Segment-Addition Postulate
 - 3. Segment-Addition Postulate
 - 4. Substitution
- **21.** 1. 2x 3 = 17
 - **2.** 2x = 20
 - 3. x = 10
- 22. 1. Given
 - **2.** 90°
 - 3. Angle-Addition Postulate
 - **4.** 90°
 - 5. Given
 - 6. Definition of Angle-Bisector
 - 7. Substitution
 - 8. $m \angle 1 = 45^{\circ}$
- **23.** 108°