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CHAPTER 3

POWER SERIES METHODS

SECTION 3.1
INTRODUCTION AND REVIEW OF POWER SERIES

The power series method consists of substituting a series y = X¢,x" into a given differential
equation in order to determine what the coefficients {c,} must be in order that the power series
will satisfy the equation. It might be pointed out that, if we find a recurrence relation in the form
cp1 = @P(n)c,, then we can determine the radius of convergence p of the series solution directly
from the recurrence relation

1

¢(n)

cn

n—->w

p = lim

n—o

.

cn+1

In Problems 1-10 we give first a recurrence relation that can be used to find the radius of
convergence and to calculate the succeeding coefficients ¢, c,, ¢;, - in terms of the arbitrary

constant cyp. Then we give the series itself.

1. Cn+l = Cy 5 it follows that Cn = C_o and p = llm(l’l+1) = o,
n+l n! n—>w
x2 3 x4 x xz x3 x4
2. Cho = 4c, ; it follows that ¢, = 4 and p = lim—n-'_1 = ©
n+1 n' n—wo 4
3 4
y(x) = CO(1+4x+8x2+32x +32x +)

( 4x 4°x* 4x° 4% J ax
= ¢y 1+—+ + + +.0 | = e
1! 2! 3! 4!

3. Cpy = 3, it follows that ¢, = £f_1_)__3__f9_

_ 2(n+1) _
mH 2(n+1)’ -

- and p = lim

2%nt n—ow

@) = c (L3 9 9% 27x'
M= Q| " T T 6 128
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3x  Fx* FxP 3y Z3%/2
= ¢,| 1- t— Tt | = e
112 212% 312° 412

When we substitute y = Z¢,x" into the equation y’'+2xy = 0, we find that
o+ [(m+2)c,,, +2¢,]x™ = 0.
n=0

Hence ¢; = 0 — which we see by equating constant terms on the two sides of this

equation—and ¢,,, = - 2¢, . It follows that
n+2
k

6 =¢ =¢ =-=cy =0 and c2k=(1k)'c°

Hence
4 6 2 4 6
S P RIS [ b D AR A

y(x) = co(l b +2 3 + ] co(l 1!+2! 3!+ j Co€

and p=o0.

When we substitute y = Zc,x" into the equation y’ = x’y, we find that

o +2¢,x+ i[(n +3)c

n+3

¢,]x™ = 0.

n=0

Hence ¢; = ¢, = 0 — which we see by equating constant terms and x-terms on the two

sides of this equation —and ¢, = o 3 It follows that
n+

Co Sy

Cirl = C3p2 = 0 and ¢, = 3.Geenn (3k) B K13k

Hence
x x* X * x* X ;
X) =¢|l+—+—+—+| =¢|1+—+ t—ter | = g™
&) "( 3 18 162 Uu3 2132 313 ’
and p=w
c,. . C, .,
Cpy = E—; it follows that ¢, = - and p = ’111_1)132 = 2.
X x2 x3 x4
= I+—=+—+—+—+--
y(x) c”( 27478 16
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7. ¢,., = 2c,; itfollowsthat ¢, = 2"¢c, and p = liml = %

n-w )

P(x) = (1+2x+4x” +8x" +16x* )

= a[1+(2x)+(20) +(2) + () + ] =

_(2n-1)c, 2n+2

8. w1 = —————=; itfollowsthat p = lim 1.
2n+2 n—o 2p—1
x x ¥ 5x
= l+—=—F ==
o) c°[ 278 16 128
Separation of variables gives y(x) = ¢,v1+x.
9. ol = w; it follows that ¢, = (n+1)c, and p = lim n+l 1.
n+l n—o 42
y(x) = co(1+2x+3x2 +4x’ +5x + )
Separation of variables gives y(x) = % >
(1-x)
10. el = M; it follows that p = lim 2nt2 _ L.
2n+2 n>0 Jp —3

(X) = ¢ 1_3_x+£+x_3+£+...
Y 0T T 16 128
3/2

Separation of variables gives y(x) = ¢,(1-x)"".

In Problems 11-14 the differential equations are second-order, and we find that the two initial
coefficients co and ¢; are both arbitrary. In each case we find the even-degree coefficients in
terms of ¢y and the odd-degree coefficients in terms of ¢;. The solution series in these
problems are all recognizable power series that have infinite radii of convergence.

11. Cpy = S . it follows that Cyp = —%0_ and Copy = S —
(n+1)(n+2) 2r)! Qk+1)!
¥ xt % ¥ X X :
y(x) = ¢|l+—+—+—+|+¢|X+—+—+—+| = ¢,coshx+¢ sinhx
21 41 6! 3t 517!
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12.

13.

14.

15.

2k 2%
cn+1 = _——EFL——, it fOHOWS that clk = -2—-—-0—0 and 02k+1 — 2 cl .
(n+1)(n+2) 2k)! Qk+1)!

, 2x' 4x° 2%’ 2x°  4x7
y(x) = | 14+2x" +——+—+- |+ | X+ —+—+ + e
3 45 315 315

= co(l+ @x)° + @)’ + @x)° + ---)+ﬁ((2x)+ @) + @x) + (2x)’ + ]
2! 41 6! 2 3! 5! 7!

= ¢,cosh2x + %‘-sinh 2x

_1\kQ2k _1\kR2k
Cpy = —i———; it follows that c,, = D3¢ and ¢, = M
(rn+1)(n+2) (2k)! QCk+1)!
9x* 27x' 8lx° 3x° 27x° 8lx’
y(x) = ¢ | 1- + - +ee 4o x— + - 4o
2 8 80 2 40 560
2 4 6 3 5 7
_ ¢, 1_(3x) +(3x) (3% P (3x)_(3x) +(3x) _(3%) .
2! 4! 6! 3 3! 5! 7!

cl -
¢, cos3x + ?smx

When we substitute y = Z¢x" into y”+y—x = 0 and split off the terms of degrees 0
and 1, we get

2cy+cp)+(6c3tcp—1)x+ Z[(rz + D(n + 2)c,,,+ ¢, 1x" = 0.
n=2
Hence ¢, = —C—O, c;=— G _1, and c¢,,, = —— S5 for n=2. It follows that
2 (n+D)(n+2)

2 4 6 3 5 7
Y(x) = [___)(1)(____]

2! 4! 6! 3t 5t 7
x2 x4 x6 x3 x5 x7
= x+c0(1——+———+---]+(c1 —1)(x——+————+---j
v 21 4! 6! 3t 517

X +cycosx+(c, —1)sinx.

Assuming a power series solution of the form y = Z¢,x", we substitute it into the
differential equation xy'+ y =0 and find that (n+ 1)c, = 0 forall » > 0. This

implies that ¢, = 0 forall » > 0, which means that the only power series solution of
our differential equation is the trivial solution y(x)=0. Therefore the equation has no

non-trivial power series solution.
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16.  Assuming a power series solution of the form y = Z¢,x", we substitute it into the
differential equation 2xy’ =y and find that 2nc, =c, forall » > 0. This implies that
Ocy =¢,, 2¢,=¢,, 4c, =c,, -, and hence that ¢, = 0 forall » > 0, which means that
the only power series solution of our differential equation is the trivial solution y(x)=0.
Therefore the equation has no non-trivial power series solution.

17. Assuming a power series solution of the form y = Z¢,x”, we substitute it into the
differential equation x? y'+y=0. Wefind that ¢¢ = ¢; = 0 and that ¢,y = —nc, for

n 2 1, so it follows that ¢, = 0 forall » > 0. Just as in Problems 15 and 16, this
means that the equation has no non-trivial power series solution.

18.  When we substitute and assumed power series solution y = T¢x" into x°y’ = 2y, we
findthat ¢y = ¢; = ¢; = 0 and that ¢,+» = nc,/2 for n > 1. Hence ¢, = 0 for all
n =0, justasin Problems 15-17.

In Problems 19-22 we first give the recurrence relation that results upon substitution of an
assumed power series solution y = Zc,x" into the given second-order differential equation.
Then we give the resulting general solution, and finally apply the initial conditions y(0) =c¢,

and 3'(0)=c, to determine the desired particular solution.

2 _1NVEn2k _q\kn2k
19. Cpiy = 2% for n=0, so ¢,, = V276 and c¢,,,, = ~(—~1)2—cl
(n+1)(n+2) (2k)! Qk+1)!
2°x> 2'xt 2%° 2°x° 2% 2%
y(x) = c{l— + - +---]+cl(x— + - +)
2! 4! 6! 3! 5! 7!
¢, =y(0)=0 and ¢, =)'(0)=3,s0
2°x* 2'x° 2%
) = 3(x_ 3 s g
3 5 7
B 0 O 2. 2.7 2. I
2 3! 5! 7! 2
2 2k 2k
200 ¢ 24 for n20, so ¢,, = 2 ¢ 274

ey = —2 and ¢, = .
(n+1)(n+2) (2k)! 2k+1)!
22x* 2%t 2%%¢ 22x° 2% 2%
y(x) = c0(1+ + + +---J+c1[x+ + + +]
2! 4! 6! 3! 5! 7!
¢, =y(0)=2 and ¢, =»'(0)=0,s0

2 4 6
y(x) = 2(1+(2x) +(2x) +(2x) +] = 2cosh2x.
2! 41 6!
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21.

22.

23.

24.

25.

2nc, —c¢

¢,y = —2—=21 for n=1; with ¢,=»(0)=0 and ¢, = »'(0) =1, we obtain
n(n+1)
c2=1, C3=l, c4=l:l’ csz—l—’:i, C6=L=l. EVldently c, = 1 , S0
2 6 3! 24 4! 120 5! (n-=-1)!
, x xt X x x xt x
yx) =x+x"+—+—+—+- = x| l+x+—+—+—+-| = xe".
21 3t 4! 20 3t 41
6y = =20 for 31 with ¢, = p(0)=1 and ¢, = y'(0) =2, we obtain
n(n+1)
=2 —————Z c —3—2—4 c ——i——z—s Apparently ¢ —+z
e T TR T T e A T
(22) (22 (22)' (2x) 2
y(x) =1-(2x)+ TR TR TR TR

¢o = ¢ = 0 and the recursion relation
W —n+Dep+@m=1Depg = 0

for n 2 2 imply that ¢, = 0 for » > 0. Thus any assumed power series solution
y = Zex" must reduce to the trivial solution y(x)=0.

(a) The factthat y(x) = (1 +x)“ satisfies the differential equation
(1+x)y' =ay follows immediately from the fact that 3'(x) = a(1+x)*".

(b)  When we substitute y = Z¢,x" into the differential equation (1+x)y =ay we
get the recurrence formula

_ (a=n)c,
T n+l

c

n+l

Cpt1 = (@ —n)c,/(n+1).

Since ¢y = 1 because of the initial condition »(0) = 1, the binomial series (Equation
(12) in the text) follows.

() The function (1 +x)* and the binomial series must agree on (-1, 1) because of
the uniqueness of solutions of linear initial value problems.

Substitution of Z:;O c,x" into the differential equation y" = y'+ y leads routinely —

via shifts of summation to exhibit x"-terms throughout — to the recurrence formula

(n+2)(n+1)c

n+2

= (n+1Dc,,, +c¢,,

n+l
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and the given initial conditions yield ¢, =0=F, and ¢, =1= F,. Butinstead of
proceeding immediately to calculate explicit values of further coefficients, let us first
multiply the recurrence relation by »!. This trick provides the relation

(n+2lec,,, = (n+lc,,, +nlc,

=F

n+l

that is, the Fibonacci-defining relation F

2 +F, where F, =nlc,, sowe see that

c,=F /n! asdesired.

26.  This problem is pretty fully outlined in the textbook. The only hard part is squaring the
power series:
(1 +ex° +ex’ + e x” +eox’ +opxt + -)2
= x> +2cx* + (032 + 2c5)x6 +(2¢565+2¢,)x" +
(cf +2¢,¢, +2¢, ) x4+ (2ese; +2¢50, + 20, ) x4 -+
27.  (b) The roots of the characteristic equation 7> = 1 are r; = 1, 1, = @ =
-1+ \/5)/2, and r3 = = (-1 —i\/g)/2. Then the general solution is
y(x) = Ae* + Be®* +Ce”. (*)
Imposing the initial conditions, we get the equations
A+ B+ C= 1
A+ aB+ pC = 1
A+ B+ FC = -1.
The solution of this systemis 4 = 1/3, B = (1 — i\/g)/?), C=(1+ i\/g)/3.
Substitution of these coefficients in (*) and use of Euler's relation ¢ =
cos @+ isin @ finally yields the desired result.
SECTION 3.2

SERIES SOLUTIONS NEAR ORDINARY POINTS

Instead of deriving in detail the recurrence relations and solution series for Problems 1 through
15, we indicate where some of these problems and answers originally came from. Each of the
differential equations in Problems 1-10 is of the form

168
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(Ax* + By"+ Cxy'+ Dy = 0

with selected values of the constants 4, B, C, D. When we substitute y = Z¢,x", shift indices
where appropriate, and collect coefficients, we get

@0

D [4n(n-1)c, + B(n+D(n+2)c,,, +Cne, + De, |x" = 0.

n=0

Thus the recurrence relation is

. - _An2+(C—A)n+DC for n > 0
2 B(n+D(n+2) -

It yields a solution of the form

Y = €0 Yeven t €1 Yodd

where Veven and yo.qq denote series with terms of even and odd degrees, respectively. The even-
degree series ¢, +c,x* +¢,x* +--- converges (by the ratio test) provided that

hm n+2 —
n—>o Cnx l B I

Hence its radius of convergence is at least p = /1B / 4|, asis that of the odd-degree series

¢x +¢;x° +cx* ++++. (See Problem 6 for an example in which the radius of convergence is,

surprisingly, greater than /!B/ A| 2

In Problems 1-15 we give first the recurrence relation and the radius of convergence, then the
resulting power series solution.

L Cniz = G p=L Co=6C=C =" C=C=Cp=r-"
Y(x) = ¢ ) X"+ X" = SFOX
=(} n=0 1— X
! G (=1)e
2. Cnvz = _Ecn; p=2 Cap = 2—;409 Con1 = o :
il 2n ) 2n+l
n X nX
Y = 6 (N S a D
n=0 2 n=0 2
c
3. c = - Bt = o0}
"2 T (n+2) p
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170

o = (=D"¢, _ (D¢,
o 2n(@2n-2)---4-2 ni2" ’
o = (-D’¢ _ (Dg
T oni)2n—1)--53  Q2n+D!

2n+1

y(x) = %Z( b’ ,2n 012( V' o Qn+D

n=0

_ _n+4c. ~1
n+2 ™ P

2n+2 2n 6 4 2n+2 .
¢, = (_ > )(_2’1_2) ..... (_Zj(_.z_j = (-1 = (-1)"(n+1)c,
( 2n+3]( 2n+1) ( 7)( 5) 2n+3
czn = —_ —_— e |4 s a e | — — —— — ( 1)
2n+1 2n-1 S)U 3

y(x) = cOZ( D (n+Dx* += cIZ( )" (2n + 3)x>"

n=0

c _ I’lCn .
" 3(n+2)’
2n-1 2n-3 3 1 _ ¢

et = 30,01 321 36) 337 T @+

p=3; c2=c4:(j6=:---:0

2n+1

c (n 3H(n- 4)

" T i D(nt2) "
The factor (rn—3) in the numerator yields ¢, =¢, =¢, =---=0, and the factor (n—4)
vields ¢, =c¢;=¢ =---=0. Hence yeven and yoqq are both polynomials with radius of

convergence O = oo.

y(x) = ¢,(1+6x> +x")+c (x+x°)

cn+2 = _(..’}._L n’ p > \/:—3-
3(n+1)(n+2)
The factor (n—4) yields ¢, =c;=c,,=--=0, SO Veven is a 4th-degree polynomial.

We find first that ¢; =—¢,/2 and ¢, =¢, /120, and then for # >3 that
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10.

2n-5)

Conel = ("

= (-1

[@n-51]

@=L r _
32n)2n+) )\ 32n-2)2n-1) 36)7) )

.G

[@n-51]

8 8 1
y(x) = co(l—§x2+57—x )+cl|:x—5x +—
_ (n-H(n+d) o232
T dn+D(m+2) " =

We find first that ¢,

=-5¢,/4 and c,

32 Qu+DC2n-1)-----7-6 120

= 9.(=1y"
Y @y @

[2n -5 (-1)"
9; Qn+1)3"

x2n+l ]

=7¢, /32, and then for n >3 that

. _(@n=5@n+3))\ @n-T)2n+D) )
T 202m@2n+1)

2(2n-2)(2n-1)
_ @n-3)NQ@n+3)Q2n+1)-9 T _

1-9 J
PR cs=
2(6)(7)
51 7 (2n=51Q2n+3)!!

222+ 1)2n)-7-6 75332 2@a+n 0
 @n=5N@n+ !
2n+l T 2n(2n+1)' 1
B , 5 Qn-HN2n+)! ..
y(x) = c0(1—4x +2x )+cl|ix—zx +— Za Gnr1) 2" X }
_ (n+3)(n+4) _1
e
_ @n+D@2n+2)  @n-D@n) 34 1
w = T anonen  Gndan-2 12% = 7" TDEnthe
@)y _@m@esn | 45 1 (n+1)(2n+ e
Cm@2n+l)  @n-2)2n-1) 2.3

y(x) = COZ(n +D)2n+Dx> +— 3 c,Z(n +1)(2n+3)x*"!

(n-4)
T3+ (n+2)

n+2

n=0

Gy p=

The factor (n—4) yields ¢, =c¢;=¢, =
We find first that ¢; =¢,/6 and ¢, =¢;/360, and then for n >3 that

Section 3.2
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-2n-5  -(2n-3) -1

i = 30n+ )20 32n-D2n-2)  37)6) "
Qn-5)1=D"" ¢
32 2n+1)(2n) - (7)(6) 360
_ 32-5!. Cn-51=D" e = 3.(211—5)!!(—1)"0
360 3"(2n+1)(2n)-----(7)(6)-5! 3Q2n+1)!
y(x) = ¢, (1 +%x2 +Lx ) +¢ [x +— 1 —x’ + z (2n-3)! !(——1)”x2,,+1}
3 27 6 = (Cn+D!3”
11. ne2 T M p=®
5(n+1)(n+2) "
The factor (n—5) yields ¢, =c,=¢;;=---=0, 50 yoqa is a Sth-degree polynomial.
We find first that ¢, =—¢|, ¢, =¢,/10 and ¢, =¢,/750, and then for n>4 that
. 2(@2n-T7) 2(2n-5) 2(1)
> 502m)(2n-1) . 52n-2)2n-3) 5(8)(7)
B 2"%(2n -1 C
T 53 Qm)2n—1)---8)T) 750
5°.6! 2"(2n -7 o = 15_2"(211—7)!!c
T 25750 5'(2n)(2n) - (8)(7)-6! ! 5@2n) °
y(x) = cl(x—if—+4i)+c{l +x_4+ 2(271 72" Z”J
15 375 10 750 = (Cm'5
12. Cpiz = nc—lr—IZ; p =0

When we substitute y = Z¢,x" into the given differential equation, we find first that
¢, =0, so the recurrence relation yields ¢; =¢; =¢;, =---=0 also.

3n ) x3n+1
y(x) = c0|:1+22 5., Bn- 1)] cl,,z(;n!?ﬁ”

c
13. c .. = ——"—; =00
" n+3 P
When we substitute y = Z¢,x" into the given differential equation, we find first that
¢, =0, so the recurrence relation yields ¢; =¢, =¢;; =---=0 also.
( 1 n 3n ( l)n 3n+l1
X) =¢

o) °Z_(; MED 12 Gn+l)
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C
4. ¢ =-a S =
" T T e 2)(nt3) p

When we substitute y = Z¢,x" into the given differential equation, we find first that

¢, =0, so the recurrence relation yields ¢; =¢, =¢;; =---=0 also. Then
6 =L -1 _ (-1,
o GBn)GBr-1) Bn-3)3n-4) 3.2° 33IntGBn-DGn-4)-----5-2°
-1 -1 -1 -1)"¢

G = Gn+1)(3n) Gn-2)3n-3) 4.3 “@ 7 3 Gn+D(Bn—-2)---4-1

0 (_l)nx?m © (_l)nx3n+l
xX) = 1+ +
Y () C"[ ;3";1!-2-5 ----- Gr-1) “ T A Gn+1)

n=0

C
15 ¢ = - G o
T T 3y (n+ 4) p

When we substitute y = Z¢,x" into the given differential equation, we find first that

¢, = ¢, =0, so the recurrence relation yields ¢; =c¢,,=---=0 and ¢, =¢,=---=0 also.
Then
6p =t -1 -1, _ D),
" (An)(4n-1) (4n—-4)dn-5) 43 °  4'nl(4n-D@n-5)----5-3
-1 -1 -1 (-D7¢

T apy )(4n) (4n-3)4n-4) 5.4 “F (4n+1)(@n-3)-----9.5

) ® (—l)nx4n w (_l)nx4n+l
7 = c°[1+24"n!-3-7-----(4n—1)}+cl[x+z4""!'5'9'"“(4"+1)}

n=1 n=1

16.  The recurrence relationis c,,, = - ¢, for n>1. The factor (n—1) inthe

n+l
numerator yields ¢; =c¢,=c¢, =---=0. When we substitute y = Z¢,x" into the given

differential equation, we find first that ¢, = ¢,, and then the recurrence relation gives

2n-3 2-5 3 1 _ (=p~

C bttt m—— s — —C, = Cn.
n 2n-1 2n-3 5 3% 2n-1"°
Hence
4 6 8
X x X
= ex+cy| 1+x* =+t
y(x) 1 0( 3 3 7 j
_ ¥ X X _ 1 tan-!
= clx+co+cox x—-?+?—7+--- = Clx+CO( + xtan JC).

With ¢p = 3(0) = 0 and ¢; = »(0) = 1 we obtain the particular solution y(x) = x.
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17.

18.

19.

20.

174

The recurrence relation

] (-2,

2 (n+1)(n+2)
yields ¢ = ¢ = (0) = 1 and ¢4 = ¢ = - = 0. Because ¢; = y'(0) = 0, it
follows also that ¢; = ¢3 = ¢5 = -+ = 0. Thus the desired particular solution is
px) = 1+

The substitution ¢ = x — 1 yields y" + #y'+y = 0, where primes now denote
differentiation with respect to z. When we substitute y = Zc,f* we get the recurrence
relation

c

n

n+2

cn+2

for n > 0, so the solution series has radius of convergence p =oo. The initial
conditions give ¢g = 2 and ¢; = 0, S0 coaa = 0 and it follows that

2 4 6
R P A |
224 246

_ =D x-Df =Dt (=D)"(x=1)*
y(x)"2(1 2 2.4 246 ) ZO a2

The substitution ¢ = x—1 yields (1 —)y"—61y'—4y = 0, where primes now denote
differentiation with respect to £. When we substitute y = Zc,/" we get the recurrence
relation

n+4

n+2 "

n+2

for n = 0, so the solution series has radius of convergence p =1, and therefore
converges if —1 <z <1. The initial conditions give ¢y = 0 and ¢; = 1, SO Ceyen = O
and

_ 2n+3 2n+l 75  2n+3

Conel = 1 =
m+1 2n-1 53 3
Thus

= %Z(2n +3)P = Z(2n+ 3)(x —1)*™,
n=0

n—O

and the x-series converges if 0 <x <2.

The substitution ¢ = x — 3 yields (7 + 1)y” — 41y’ + 6y = 0, where primes now denote
differentiation with respect to z. When we substitute y = Zc,” we get the recurrence
relation

c _ (n 2)(n— 3)
2 (n+1)(n+2)
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for n 2 0. The initial conditions give ¢y = 2 and c¢; = 0. It follows that coqq =
¢ = —6 and ¢4 = ¢¢ = --- = 0, so the solution reduces to

y =2-6f =2-6(x-3)

21.  The substitution ¢ = x +2 yields (4 +1)y" = 8y, where primes now denote

0,

differentiation with respect to . When we substitute y = Zc,/* we get the recurrence

relation
(n+2)

for n > 0. The initial conditions give ¢y = 1 and ¢; = 0. It follows that cy4q =
c2 =4 and ¢4 = ¢¢ = --- = 0, so the solution reduces to

y=2+47 = 1+4(x + 2~

0,

22.  The substitution ¢ = x+3 yields (#—9)y"+3n'—3y = 0, with primes now denoting
differentiation with respect to t. When we substitute y = Zc¢,/* we get the recurrence

relation
¢, = (n+3)(n-1) c
In+1)(n+2)

for n > 0. The initial conditions give ¢y = 0 and c¢; = 2. It follows that Ceyen =

and ¢3 = ¢5 = - =0, so

y =2t =2x+6.

0

In Problems 23-26 we first derive the recurrence relation, and then calculate the solution series

»(x) with ¢, =1 and ¢, =0 as well as the solution series y,(x) with ¢, =0 and ¢, =1.
23.  Substitution of y = Zc¢x" yields

¢y +2¢, + i[cn_1 +c, +(n+D(n+2)c,,|x" =0,

n=|

SO
cz——lco, n+2=—£~c—"—— for n>1.
(n+1)(n+2)
2 X xt © xt ¥
X) = l-"——Z4 2 4. X) = x— 4 2.
»(®) 26 24 7,(x) 6 12 120

24.  Substitution of y = Z¢x" yields
—2c¢, + Z[ch_l +n(n+1)c, —(n+D(n+2)c,,|x" =0,

n=1
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25.

26.

27.

176

)
_ 2¢,,+n(n+1)c,

c, =0, Cpia for n>1.
(n+1)(n+2)
3 xS xG x3 4 xS
x I+ —4+—4+—+- = X+—+—+—+--

Substitution of y = Z¢x" yields

+(n+D(n+2)c,,|x" =0,

n—1

26, +6c;x+ Y [¢,, +(n—1)c
n=2

SO
¢, =c¢;=0, Cpy = _m (=D, for nz2.
(n+D(n+2)
4 x7 x8 x4 x5 x7
X) = - m— b e X) = x-S 4
%) 12 126 | 672 »2(x) 1220 126

Substitution of y = Z¢,x" yields

2¢, +6¢,x +12¢,x” +(2¢, +20¢,)x” +

D s +(r=D(n—=2)c,, +(m+1)(n+2)c,,|x" =0,

n=4
SO
=6=¢=c=0, Cpoy = _Cuat(n=D(n—2)c,, for n>4.
n+1D)(n+2)
y(x) = 1_x_6+x_9_29x12 foeer (x) = x_X_7+ﬁ_41x‘3+
1 30 72 390 2 2790 6552

Substitution of y = Z¢x” yields

¢y +2¢, +(2¢,+6¢)x+ D [2¢,, +(n+1)c, +(n+D(n+2)c,,, |x" = 0,
n=2
SO

Cz=~—c—0, c3=—-&, Cn+2 = —zc"—2+(n+1)cn fOI‘ n=>2.
2 3 (n+D(n+2)

With ¢, =y(0)=1 and ¢, = »'(0) =—1, we obtain

2 x> xt X 29x% 13x7 143x®  31%°
x) =l-x——+——-—+—+ - - +
2 3 24 30 720 630 40320 22680
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28.

29.

30.

Finally, x=0.5 gives

$(0.5) = 1-0.5-0.125+0.041667 — 0.002604 + 0.001042
+0.000629 — 0.000161 — 0.000014 +0.000003 +---
1(0.5) ~ 0.415562 ~0.4156.

When we substitute y = Z¢,x” and e = Z(—l)" x"/n! and then collect coefficients
of the terms involving 1, x, x2, and x° , we find that

_ & -G _q __3c0+2c1
OF75, G=FE—— = G=m— ——
12 120

6
With the choices ¢, =1, ¢, =0 and ¢, =0, ¢, =1 we obtain the two series solutions

X X © xt X
x) = l=-—+——-—+-+ and X) = X——+————+---.
%) 2 6 40 »2(%) 6 12 60

When we substitute y = Z¢,x" and cosx = Z(—l)"xz” /(2n)! and then collect

6

coefficients of the terms involving 1, x, x%,---, x®, we obtain the equations

G+2¢, =0, ¢+6c; =0, 12¢, =0, -2¢,+20c, =0,
1 1
—2c2—504+30c6 = 0, ?‘:03—9¢:5+42c6 = 0,

——3—-2-602+%c4—14c(,+56c8 = 0.

Given ¢, and ¢, we can solve easily for c,,c,, -, ¢, in turn. With the choices
¢ =1 ¢=0 and ¢,=0, ¢, =1we obtain the two series solutions

¥ x5 138 X x 13x

X) = 1-—+—— +.- and X) = x-S
»(®) 2 " 720 " 40320 7 = %= e T 5040

When we substitute y = Zc¢,x”" and sinx = 2 (-1)"x*"/(2n + 1)!, and then collect
coefficients of the terms involving 1, x, x*,---, x°, we obtain the equations

¢t +2c, =0, ¢ +2¢c,+6c, =0, —%+cz+3c3+12c4 = 0,
—%?+c3+4c4+2005 =0, 1;—10——02—3—+c4+505+3006 = 0.

Given ¢, and ¢, we can solve easily for c,,c,, -, ¢, in turn. With the choices
¢, =1, ¢, =0 and ¢, =0, ¢, =1we obtain the two series solutions
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33.

178

3 6
X X x 2 xt 7 xS

X
X) =l-—t"-"t"tand y,(x) = x—"—+ -4 4.,
7 26 60 180 »,(%) 2 18 360 ' 900

Substitution of y = Xc,x" in Hermite's equation leads in the usual way to the recurrence

formula
c 2(a—-n)c,
e (n+1D(n+2)

Starting with ¢, =1, this formula yields

2 3
c2=_2‘.0ﬁ, c4=+2 a(a 2)’ Cs=_2 a(a-2)(a 4),
2! 4! 6!

Starting with ¢, =1, it yields

__Xe-Dh _

_ +22(a—1)(a-—3), .

_ P(a-1a-3)a-5)
3 31 ; 51 7T 7!

This gives the desired even-term and odd-term series y, and y,. If « is an integer,

then obviously one series or the other has only finitely many non-zero terms. For
instance, with o =4 we get

2
y(x) = A A St SV R SR S A i(16x4—48x2+12),
2 24 3 12
and with o =5 we get
2
y,(x) = x—2 4x3+2 4 2x5 = x—ix3'+ix5 = L(32x5——160x3+120).
6 120 3 15 120

The figure below shows the interlaced zeros of the 4th and 5th Hermite polynomials.

Y

100

Hs
-100 Hsg
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34.

Substitution of y = Zc,x" in the Airy equation leads upon shift of index and collection
of terms to

2¢, + i[(n +1)(n+2)c,,, —c,,]x" = 0.

n=1

The identity principle then gives ¢, =0 and the recurrence formula
c

Cps =
(n+2)(n+3)
Because of the "3-step" in indices, it follows that ¢, =¢; =¢; =¢;; = .- =0. Starting

with ¢, =1, we calculate

1 14 1.4 1-4.7
Cy = = s ens
6-8-9 9!

6‘3:—_

11
2-3 3!

Starting with ¢, =1, we calculate

1 2 2-5 2.5 2-5-8
5 A = G = =
71.9-10 10!

C4= _-3’ c7= =—,
3-4 41 4.6-7 7!

9 ese

Evidently we are building up the coefficients

_L4Gk-) 2.5 (3k-1)

o G Gt T T

that appear in the desired series for y,(x) and y,(x). Finally, the Mathematica
commands

A[1]=£;A[k] :=A4[k-_1]_
6 — 3k (3k-1)

B[1]=L;B[k] ;=M_
12 - 3k (3k+1)

n= 40;

n
vyl =1+ ZA[k] Bk
k=1

n
¥2 = X+ ZB[k] Bkl

k1
A = vl _ y2 .

3?3 Gama[2]  3Y/3Gamma[1]
B = vyl s ¥2

31/6Gamma[%] 3‘1/5Gamma[%] ’

Plot[ {yA, ¥B}, {x, -13.5, 3}, PlotRange » {-0.75, 1.5}71;
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1 Bi(x)

Ei(x)

~0.5}

produce the figure above. But with # =50 (instead of »=40) terms we get a figure that is
visually indistinguishable from Figure 3.2.3 in the textbook.

35. (a If
@n-Dlt , n
=1+ E o =1+ E a,z

n=l

(2n nn
2% !

where a, , then the radius of convergence of the seriesin z=x" is

Q2n-111/2"n! . 2(n+1)
m 3n+3 = hm——_ =
o Qu4+ DI/ 2P 4+1)! e 2p+l

. |a
p = lim—=
e an+1

Thus the series in z converges if —4 <z =x? <4, so the series y,(x) converges if
—2 < x <2, and thus has radius of convergence equal to 2.

(b) If
=x[1+) ————x" | =x|1+ > bzZ"
% ( 2T @ ) ( 2. )
!
where b =——""__ then the radius of convergence of the series in z is

"2"Qu+ DY

1/2" "
n!/2"2n+H!! _ lim2(2n+3) _

p = lim b, im = =
o (n4+D/2" 2r+3)!11 oo p+ld

b

Hence it follows as in part (a) that the series y,(x) has radius of convergence equal to 2.
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SECTION 3.3

REGULAR SINGULAR POINTS

1.

Upon division of the given differential equation by x we see that P(x) = 1 —x* and
O(x) = (sinx)/x. Because both are analytic at x = 0 — in particular, (sinx)/x —>1
as x — 0 because

Sinx 1 © ( l)n 2n+l © ( l)n 2n —:zci x4 x6

= — + +
x xi= 2n+1)! = 2r+1)! 31 517!
— it follows that x = 0 is an ordinary point.

Division of the differential equation by x yields

X

y"+xy’+e —~y =0.
Because the function
x _ © n w© n-1 2 3
x x\ &3 n! ~ n! 21 31 41

is analytic at the origin, we see that x = 0 is an ordinary point.

When we rewrite the given equation in the standard form of Equation (3) in this section,
we see that p(x) = (cos x)/x and g(x) = x. Because (cos x)/x > as x—0 it

follows that p(x) is not analyticatx = 0,s0 x = 0 is an irregular singular point.

When we rewrite the glven equation in the standard form of Equation (3), we have p(x)

= 2/3 and ¢(x) = (1 -x%/3x. Since g(x) is not analytic at the origin, x = 0 isan
irregular singular point.

In the standard form of Equation (3) we have p(x) = 2/(1 +x) and g(x) = 3x*/(1 +x).
Both are analyticx = 0,s0 x = 0 is a regular singular point. The indicial equation is

Hr—=D+2r =r+r=r@r+1) =
so the exponents are ; = 0 andr, = —1.
In the standard form of Equation (3) we have p(x) = 2/(1 —x%) and g(x) =

—2/(1 —x%), so x O is a regular singular point with py = 2 and qo = —2. The
indicial equationis > +r—2 = 0, so the exponents are » = -2, 1.
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10.

11.

182

In the standard form of Equation (3) we have p(x) = (6 sin x)/x and g(x) = 6, so
x =0 is aregular singular point with py = gy = 6. The indicial equation is * + 57 + 6
= 0, so the exponents are r; = -2 and r, = -3.

In the standard form of Equation (3) we have p(x) = 21/(6 + 2x) and q(x) =
o(x? — 1)/(6 +2x), so x = 0 is aregular singular point with py = 7/2 and qo = —3/2.
The indicial equation simplifies to 27+ 57 —3 = 0, so the exponents are » = —3, 1/2.

x2

The only singular point of the differential equation 3"+ TX_ V' + I
-x -Xx

Upon substituting # = x~1, x = r+1 we get the transformed equation
. t+1 , (417

Y 4 7 f

In the standard form of Equation (3) we have p(t) = —(1+1) and qg(t) = —t(1+1)>

Both these functions are analytic, so it follows that x = 1 is a regular singular point of
the original equation.

y=0isx = 1.

¥ = 0, where primes now denote differentiation with respect to +.

The only singular point of the differential equation "+ 2 1 y'+ " I 5
x— x-

x = 1. Upon substituting # = x~1, x = t+1 we get the transformed equation

>y = 0is

V' + % V' + }17 y = 0, where primes now denote differentiation with respect to 7. In the
standard form of Equation (3) we have p(¢) = 2 and ¢(f) = 1. Both these functions
are analytic, so it follows that x = 1 is a regular singular point of the original equation.

2x - 12
Y 1-x*

The only singular points of the differential equation " — y = 0 are

1-x*
x = +1 and x = —1.

x = +1: Upon substituting f = x—~1, x = r+1 we get the transformed equation
. 20+1) 12
+ V-
Ht+2) Hr+2)

y = 0, where primes now denote differentiation with respect to

t. In the standard form of Equation (3) we have p(f) = 20+1) an .

Both these functions are analytic at =0, so it follows that x = +1 isa regular singular
point of the original equation.

x = —1: Upon substituting ¢t = x+ 1, x = r—1 we get the transformed equation
. 20-1) 12
+ V'~
t(t-2) Hr—2)

b% ¥ = 0, where primes now denote differentiation with respect to

t. In the standard form of Equation (3) we have p(¢) = 20D —— .
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12.

13.

14.

Both these functions are analytic at ¢= 0, so it follows that x = —1 is a regular singular
point of the original equation.

3
4

y+ T
x-2 (x-2)
x = 2. Upon substituting ¢ = x -2, x = ¢+2 we get the transformed equation

The only singular point of the differential equation 3" +

y =01is

3
'+ —3— V' + u -;32) y = 0, where primes now denote differentiation with respect to 7. In
. (t+2)
the standard form of Equation (3) we have p(¢¥) = 3 and ¢(¢) = . Because ¢

is not analytic at ¢ =0, it follows that x = 2 is an irregular singular point of the original
equation.

The only singular points of the differential equation V' + 1 5 V' + 1 5 y = 0 are
X — X+

x = +2 and x = 2.

x = +2: Upon substituting ¢ = x~2, x = £+2 we get the transformed equation

"

1 1 . . - .
y'+ oY) '+ - ¥y = 0, where primes now denote differentiation with respect to 7. In the
+

standard form of Equation (3) we have p(f) = ﬁ and q(¢) = t. Both these
+
functions are analytic at # =0, so it follows that x = +2 is a regular singular point of the
original equation.
x = -2: Upon substituting ¢ = x+2, x = -2 we get the transformed equation

1 1 . . oy .
V' + ;y’ + Py ¥y = 0, where primes now denote differentiation with respect to ¢. In the

2

d R Both these

standard form of Equation (3) we have p(¢f) = 1 and q(¢) =

functions are analytic at #=0, so it follows that x = -2 is a regular singular point of the
original equation.

2 2 _
The only singular points of the differential equation "+ (;2 _+99)2 V' + (;2 _+94) >y =0

are x = +3 and x = 3.

x = +3: Upon substituting # = x—3, x = ¢+ 3 we get the transformed equation
, P+6t+13 , A +61+18

+ = 0, where primes now denote differentiation with
267 P16 P
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15.

16.

2
t—+26—t+—12§ is not analytic at ¢ =0, it follows that x = 3
1t +6)

is an irregular singular point of the original equation.

respect to £. Because p(f) =

x = =3: Upon substituting # = x+3, x = t—3 we get the transformed equation
, tP=6t+13 , 2 —61+18

26y’ T PE 67"

£ —6t+13
1 -6)*

is an irregular singular point of the original equation.

= 0, where primes now denote differentiation with

respect to 7. Because p(f)= is not analytic at ¢= 0, it follows that x = —3

x4 y X2
x-27 T (w-2)
x = 2. Upon substituting = x—2, x = +2 we get the transformed equation

t+4 r+4 . . .. .
" — "+ 2 y = 0, where primes now denote differentiation with respectto ¢. In

the standard form of Equation (3) we have p(f) = — (¢ + 4) and ¢(¢f) = t+4. Both

these functions are analytic, so it follows that x = 2 isa regular singular point of the
original equation.

The only singular point of the differential equation 3" — y =0is

W42 1 i
Pl-x"  Pd-xn’

The only singular points of the differential equation 3"+

are x = 0 and x = 1.

3x+2 nd

x = 0: In the standard form of Equation (3) we have p(x) = —5(1*) a
x(1-x

q(x) = 1—1—— Since p is not analytic at x =0, it follows that x =0 is an irregular
—x

singular point.

x = 1: Upon substituting t = x—1, x = r+1 we get the transformed equation
3t+5 t
14 !

Y ey Taey”
3
t(3t+53) and q(f) = — t :
(#+1) (t+1)
that x = 1 is aregular singular point of the original equation.

= 0, where primes now denote differentiation with respect

to . Both p(r) = - are analytic at 7= 0, so it follows

Each of the differential equations in Problems 17-20 is of the form

184

Axy"+By'+Cy = 0

Chapter 3

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



with indicial equation 47* + (B —A)r = 0. Substitution of ¥y = Zcx™" into the differential
equation yields the recurrence relation

c _ Ce,,
" Am+ryY +(B=A(n+r)

for n > 1. Inthese problems the exponents 7, = 0 and r, = (4 —B)/A4 do not differ by an
integer, so this recurrence relation yields two linearly independent Frobenius series solutions
when we apply it separately with » = | and with » = 7,.

17.  Withexponent =0: ¢, = ———f"‘l—
4n” -2n
2n
s .. 1y (4R)
= xO 1__£+x___x_+... = - — COS\/;
o ( 2 24 720 z(, (2n)!
With exponent 7, =l: c, = _%
2 4n” +2n
2n+l
s =, (-1 (Vx)
O] PUE. S SUE S DR <Ll ) Y
Y(x) = 6 120 5040 Z; Qn+1)!
18.  Withexponent n,=0: ¢, = 62,,_1
2n" +n

2 3 4 o0 n
e = x| 1424l X L X Lo Z*_x
3 30 630 22680 = 2+

c

n—1

" 2nt-n

With exponent r, = —% :

2 3 4 1 © xn
= x VP lexr i X o ey 2
Y(x) = x ( F 6 90 " 2520 N ,,Zl:n!(Zn—l)!!

19.  Withexponent #=0: ¢, = —21L

2 3 4 © n
) P I AN, N T S o S A
yl(x)_x[l ¥ J b e

n-1

n = 27 +3n

2 3 4 2 "
=212 X L X e 1+3) — =
ya(x) = x ( 570 1890 83160 2

With exponent 7, =
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20. Withexponent 7,=0: ¢ = —-—Znl_

2 3 4 w0 nAn _n
n(x) = xo(l—x+x——x—+ a J =1+ SR

5 60 1320 St 2.5 Gn=1)
1 2c
With exponent r,=~: ¢ = —_Z°nd
P S 3n*+n
2 3 4 o0 — n~n n
Y,(x) = x'? 1_£+x__x_+ X = s (-DH"2"x
2 14 210 5460 “pll4..... (Br+1)

The differential equations in Problems 21-24 are all of the form

AXy" + Bxy' +HC + D%y = 0 (1)

with indical equation
Hr) = A+ (B -Ar+C = 0. )

Substitution of y = Z¢x""" into the differential equation yields

$(r)c,x” + g(r +Dex™ + i[¢(r +n)c, +De,, |x™ = 0. . 3)

n=2

In each of Problems 21-24 the exponents 7; and 7, do not differ by an integer. Hence when
we substitute either » = r; or r = r, into Equation (*) above, we find that ¢, is arbitrary
because ¢(r) is then zero, that ¢; = 0 — because its coefficient #(r +1) is then nonzero —
and that
c = — Dc,_, _ Dc,_,
g #(r +n) An+r)’ +(B=A)(n+r)+C

4)

for n = 2. Thus this recurrence formula yields two linearly independent Frobenius series
solutions when we apply it separately with » = »; and with » = ra.

21. With exponent 7 =1: =0, ¢, = i”‘z—
n(2n+3)
2 4 6 w 2n
e I PRI 2 (N P x
) x( 7 154 6930 §n1.7.11 ..... (4n+3)
With exponent r, = —l: ¢ =0, ¢, = _2%;2_
2 n(2n-3)

»(x) = x71? 1+x2+£4—+—xé—+--- - L 1+i X
10 270 Jx S nl1-5--(4n—-3)
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