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Chapter 2 Exercises

2.1
The electric field outside a charged sphere is the same as for a point source,
Q
E(r)=———
(r) Aregr?’

where () is the charge on the inner surface of radius a. The potential drop is the integral

- = 1 (5
47regr2 47T€0 a b/

_Q_ ab
C_AV_47TEO<b—a>

This is inversely proportional to the resistance found in Exercise 1.4.

The capacitance is therefore

2.2
The planar capacitor formula is
Akeg
C = :
d
Solving for A,
cd (1 F)(107° m)

A— = 1.1 m®.

ko 10(8.85 x 1012 C2/N2 — m?)

2.3
The solenoid inductor formula is

A/L()NQ
T
The loop area is A ~ (5 cm?) = 76 cm? = 7.6 x 107® m?. The density of coils is N/l ~

(6% — 42)/(.05%)(27(.05 m)) = 2.5 x 10*/m.
Solving for [,

L:

L 1H
~ Apo(NJI? (7.6 x 1073 m2) (47 x 107 N/A?)(2.5 x 10*/m)?

= 17 cm.

2.4
Integrate the flux over a rectangular section between the wires of length [. The magnetic

field from a wire is
Fol
onr’

B =
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The flux from one wire is

l/ Mol _ oH In(a/b).

27rr
The second wire contributes flux in the same dlrectlon, so the total flux is

Mo]]

Dy = In(b/a).

The voltage drop is
0Pyt Mol
AV = b
Dot ()

Therefore l
=" "~ In(a/b).

[Note: Technically we should account for the magnetic field inside each wire. The current
inside the radius r is I7?/b%. B(27r) = uolr?/b?, so

ol
272

inside the wire. The integral of the flux is inside the wire is

—l/ porl Mof
2mh?

The contribution to the inductance L from both wires is then

Fol
27

which implies L/L" = 21n(a/b), which means the field inside the wire is negligible if a > b. |

L'=

2.5

The Biot-Savart law is L.
o ldlX R

47 RB

For a loop of radius L centered at (0,0), the unit vector along dl'is

dB(r)

6 = —Zsinf + ycosb.

The distance from a point of the circle to a point r on the z-axis is

= |L(cosf,sinf) — (r,0)| = \/(L cosf — )2 + L2sin?

The direction of R is

L(cos®,sinf) — (r,0) 1

R=— I —E(:IAZ'(LCOSQ—T)—l—QLSin@).
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The cross product is X
0x R= —%(rcos@ —L).

The integral of the Biot-Savart element is then

g__,uolé/% rcost — L
0

4 [(Lcos® —r)?+ L2sin?0]3/2

This function involves elliptic integrals. Doing it numerically for » = 0 (the center of the
loop), gives

5 HolZ
B =
4L’
while at r = L/2, it is
5 ol z
B =(3.91 .
o1/mt]

The magnitude of B rises sharply near r = L.

2.6

0 oV,
Vo=1IR=ROZ(V ~V,) = —RCS".

This has the solution
Vo(t) = Ve /R

2.7

Kirchhoff: 3V
o + ‘/O.

O:RCat

This has the general solution
Vo(t) = Vie RC 1 Vs,

Setting this to V' at t =ty gives
V = Vie /RO 4 1,

The current through the capacitor is

Vv 0
I(to) = —E = Ca(‘/leit/Rc + ‘/zR)

i _
_ o2 /RC)
t=to ( RC’B

which implies V; = Veo/EC, Plugging this into the above gives V, = 0, so the solution is
V,(t) = Ve (to)/RC,

This is decay to zero with the same time constant RC'.
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2.8
The integrator circuit of Figure 2.16(a) is governed by equation (2.4.13),

V, + ROV, = V.
For V, = sinwt, this implies
sinwt + wRC coswt = V.

When wRC > 1, the sinwt term is negligible, and V; is proportional to V,, i.e., V, is
proportional to the antiderivative of V.
The differentiator circuit of Figure 2.16(b) is governed by equation (2.4.17),

A 7
V,+ =% =V,
*Ro

For V, = sinwt, this implies

1 .
w cos wt + @smwt =V.

When wRC < 1, the coswt term is negligible, and V; is proportional to V,, i.e., V, is
proportional to the derivative of V.

2.9
This is the circuit shown in Fig. 2.18(b). We have
Vv, R _ R
Vi R+Zc R—ijwC
Vo > R R B R? B 1
Vil R—i/wCR+i/wC R2+1/w2C? 14 1/w2R2C?

2.10

Vo Zy  wl
Vi R+2Z, R+iwl
This is a high-pass filter.

2.11 From Exercise 2.9, we have

2 1
T 1+ 1Jw2R2C?

Vo
v,

Solve for w:

1 1 —-1/2
w=— | — 1
RC <|V0/Vz|2 >
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—3 dB = 101log,, |V, /Vi|?
V,/Vi]> =10% =05 - w = 1/RC

b)
V,/Vi? =107 =0.1 = w = 1/3RC
c)
V,/Vi> =1072 = 0.01 — w = 1/10RC
2.12

10 dBm = 201log,(V/Vh)

Vg
0
V=31V=1V
I Ve
P=—=1 .
o 0 mW
We could also have done this just by noting that 10 dBm is 10 times greater than 0 dBm.
b)
35 dB = 201log;, Vo/V3

“f = 10%/20 = 56
1
2.13
eiwt _ e—iwt

T

sin w %
From (2.7.11),

Flw') = 27T6(w’ —w) —0(w +w)

2

2.14
f(t) is given by (note typo in book)

I, mn=1)T<t<(n-1/2)T
f(t):{ 0, (n—1/2)T <t<nT.

18



1 M
c, = — 67227rnt/Tdt
T J1/2
B 6—i27rn _ e—iﬁn
N —i2mn
—3imn/2( ,—imn/2 __ imn/2 1 )
_ e (€_i27rn e ) _ %efsmnﬂ sin(wn/Q)
n Cn
1
01 3
+1 | int
+2 0
+3 %71'_1
4] 0
+5 | ot
6| 0
i, —1
+7 ?7T
f(t) — i Cn6i27rnt/T _ 1 + i i(eﬂwnt/T . €—i27rm€/T) _ 1 o i i Sln(?ﬂnt/T)
o 2 ™ 2

The sum of the terms up through n = 7 (first five nonzero terms) is shown in Figure 6.

15
10

05

Figure 6: Fourier sum for Exercise 2.14.
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2.15
The Fourier transform is

F@Q:/mf@€W%t

f(t) is given by
(1, n-DT<t<(n—1/2)T
ﬂ”—{o, (n—1/2)T <t <nT.

The transform is

ne——oo n—1)T n:—oow
_ g(ein/2 . ein)) Z p—iwnT

The sum will be equal to infinity for w = 27n’/T and zero otherwise (this is equivalent to a
d-function). Thus we have

-2 —1

e T~ @ ET

Flw) =
0, else.

This is the same as the result of Exercise 2.14.

2.16
The Fourier transform is

F(w) = /Oo O(t)e e “tdt = /OOO e SteT Wt = — =

—0o0

The response function (2.5.7) is

and the product is

The reverse Fourier transform is

f() = 217r /_O:o (w_j/z]/%}20> (w:iis> et

For t > 0, w — +ioco converges, so this becomes

ft) = i(— Z/RC)iiez(i/RC)t_f_i(—i/RC)

YAV i(is)E
i/RC —is is—i/RC< e
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Setting s = 0 gives
ft) = 1—eRC,

2.17
Loops:

Vi=IR+1.Z¢
Vi=IR+1.7]

Node:
I =1-+1;

Solution:

" RZc+RZy+ZcoZ;, ' —iRJwC +iwRL+L/C "
L/C

—iR/wC +iwRL+ L/C

Ic

Ve =lcZc = Vi

2.18
(2.8.2) is
R
R—i/wC +iwL’

Vo _
=

(2.8.12) is
L I .
Vi=IR+ —=+ LI.
et
For V; = V;(0)e™t and I = Ioe™'*?, this becomes

Z'w‘/;(O)eMt = iwIORel(””‘i)) + aoel(wﬂrd)) _ Lw2joel(wt+¢).
The output V, is across R, so V, = IgRe?“*®) The above equation therefore becomes

L
1wV, = wV, + Vo — 2wV,

Solving for V,/V; gives

V, w

Vi  iw+1/RC —w?L/R

which is the same as (2.8.2).
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2.19
We want a high-pass filter like that shown in Fig. 2.18(b), which has response (see
Exercise 2.9)
2 1
T 1+ 1Jw2R2C?

Vo
v,

We solve for C:

w 1 27(100 Hz)
=2 1= f17(95)2 — 1 = 0.6 uF.
R\ [V, V2 50 x 100 o V 1/ (%) a
2.20

Solve for 10% value:
e /27 = 1

th = —272 111(01)
For 90% value,
tgo =/ —272 ID(OQ)

On the positive side,

tio — tao = /=272 In(0.9) — \/—2721n(0.1) = 7v/2(1/— In(0.1) — /= In(0.9)) = 1.2v/2r.

2.21
The electric field is purely radial. For charge +() on the inner sphere and —() on the
outer sphere, the electric field is
B(r) = 2

4megr?

and the potential drop is

AV(r) == [ Br)dr = @ @

r Aregry  4Amegry

Comparing to the definition Q = C AV, this gives

-1
C = 4meg (1—1> )

(&1 T2

2.22
The electric field from a line charge is found from Gauss’s law,
Y
C 27rey’
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where o = @)/l is the charge density. The voltage drop from wire of radius b to a distance a
is
@ Q / l
AV = - [ E(r)d In(a/b
V= [ Er)ar = 5= wn(ayp)

By superposition, the other wire contributes the same, so we multiply by 2. This implies

Tegl
In(a/b)
2.23 A /
€0 WeEQ
C = — =
d d
I — pold
w
1 1 1 c
Wy = = —.
VLC Old lweo T Viel?
2.24
The high-pass filter of Fig. 2.18(b) has response (see Exercise 2.9)
Vo R _ R(R+i/wC)
Vi R—i/wC R2+1/w20C?
From (2.5.9),
Im V,/V;
t — ol
an ¢ Re V,/V,
_ lwC
R

At high frequency, ¢ = 0. At low frequency, ¢ = 7/2.
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2.25

Vs, iwlL  iwL/R
Vi iwL+ R  iwL/R+1°
Figure 7?7 shows the plot with frequency in units of R/L.

01 1 10
Figure 7: Response function for Exercise 2.25.

2.26
|V,|? is increased by (3/2)? = 2.25.
10(log, 2.25) = 3.52 dB

2.27
From Exercises 2.9 and 2.18:

2 1
T 1+ 1/w?R2C?

Vo
v;

Solving for w,
1 1 X 201
w = — —_ — —_— —
RC \ |V, /Vi[? RC

2.28
The low-pass filter response (2.5.7

) is
Vo —i/wC
V= R i/l



Power response is

Vo —ifwC  ifwC 1jC* 1
Vil R—i/wCR+i/wC R2+1/w2C? W (RC)2+1°
Solve for w:
we L
- ROV Vo/Vi?
10%:
Rl
- RC”
90%:
B 1
YT 3RC
10-90 range:
2.667
Aw = —nr.
“~ RO
2.29

E — 10AdB/20 — 1013/20 =45
Vi
The amplitude signal-to-noise ratio increases by a factor of 4.5, i.e. from 2 to 9.
It is also common to talk in terms of the signal-to-noise power ratio.

2.30
The circuit is shown in Figure 8.

Figure 8: Circuit for Exercise 2.30.
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Loops:

Vi=LRi+IcnZe
Vi=LR+ LRy +V,

Vo = 1rZc
Node:
I =1cq + Iy

Set Ry = Ry = R, 'y = (5 = C. Solution:

Vo 7%

Vi R2+4+3RZo+ 7%
Vol 1
Vil 14+ 7C2R%w? 4+ CARAw?

In the Figure 9, the lower curve is this response function, while the upper curve is the
single low-pass response, from Exercise 2.27.

[Vo/Vi[A2
1

001

1074t

106 &

0.1 1 10 100
Figure 9: Response functions for Exercise 2.30.

2.31

Assuming perfect detector; no current flows into output; I, is the current flowing from
top to bottom in the right side of the circuit.

Loops:

R
Vi=IcnZc + 1335

26



Z
Vi=IrnR+ 10370
Vi =]R1R+IOR]%|-VO
Vo =1,Z¢c + IR3§

Nodes:

Ipy = Ics + 1,
Icn +1, = Ips
Solution:

Vo (—1+ C?R*w?)
Vi —1—4iCRw + C2R2w?
This is plotted in Figure 10. When w = 1/RC, this equals 0. When w — 0 or w — o0, it
approaches unity.

[V_o/V_i|A2
10

08 _

06

04 _

02

1
001 100

Figure 10: Response function for Exercise 2.31.

2.32
The circuit in the book is missing a 50-€ resistor between V; and the rest of the circuit—as
drawn, the circuit will give V, = V; for all inputs. Putting a resistor there gives

Loops:

V;=IR+V,
Vo =1(Zcr + Z11)
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Vo =12(Zco+ Z12)

Node:
I=5L+1

Solution:

‘/o (—1 -+ 01L1w2)<—1 + CQL2w2)

‘/; - 1+ iClRw + z'Cng — C’lLle — CQLQW2 — iCngLlRw?’ — i01C2L2Rw3 + C102L1L2w4

This is a double notch filter, with zeroes where the two terms in the numerator vanish.
Figure 11 shows a plot for the values given:

[Vo/Vo|r2
10
I \
08
06
04
02
L L L L L w
2.0x10° 30x100 50%10° 7.0%10° 1.0x107 15x107  20x107

Figure 11: Double notch response function, for Exercise 2.32.

2.33

a) Capacitor relation:
OAVe

_[:
Cat

Loops:

Vs =1LR + bRy s
Vi=AVot Voo Vi= 5 +V
Vo= 1R,

These become

28



Vs =1LR+ bRy
iwViet = < iwVace@ite)

Voo + Vacel@+9) = LR,

Node:
IC + Il == IQ.

Write Iy = I1ipc + L1ac and Iy = Iype + Izac (note that there is no DC component
through the capacitor), and set DC terms equal and AC terms equal:

Vs = IipcR1 + Iapc Ry

0= hacR1 + Iaac Ry
iwVyet = EC + iwVyoet @t te)
Vbc = Ihpc R

Vace' @) = [ yc Ry

Ic + Iiac = laac

ILipc = Ihpc

We solve these for I, I pc, Liac, Ianc, Isac, Voo, and Vace®, which gives

RV
DC — Rl + R27
: CRlew
Vace? = V;
Ace iRy — iRy + CRiRow "
o CReffw
n —1 + OReﬁw !
where RR
R = _use
i Ry + Ry
2.34

We want a low-pass filter that eliminates AC frequency of 60 Hz. We use the circuit
shown in Fig. 2.18(a) with a polarized capacitor with the negative side grounded. Formula

(2.5.11) gives us
1

1+ w2R2C?
We would like low series R to prevent DC droop of the voltage supply. Pick R = 1 €2, which
is small compared to a typical 50 2 load impedance. Solve for C:

1
= /1 12 1
C=—=V1/IVe/Vi

V,/Vi|* =

29
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To eliminate 99% of the ripple, pick |V,/V;|*> = .01. Setting w = 27(60 Hz) = 377 s~1, we

then have {
C = v99 = 0.00053 F = 530 uF.
(377 s~1)(50 Q) a
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