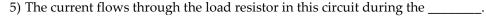
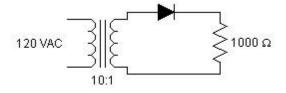

Electronic Devices and Circuit Theory 11th Edition Boylestad Test Bank

Full Download: http://testbanklive.com/download/electronic-devices-and-circuit-theory-11th-edition-boylestad-test-bank/

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) For this circuit, determine the load-line intersection with the two axis.

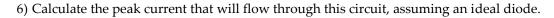


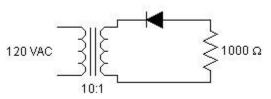

C) positive logic OR gate

D) negative logic AND gate

5) _____

1) ____

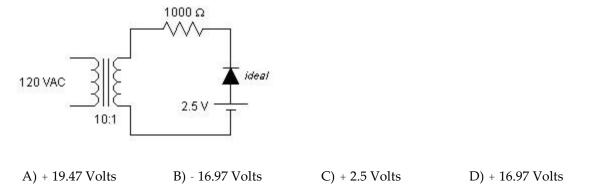



A) The diode will block all current and there will be no current flowing through the load. B) positive half cycle of the input waveform

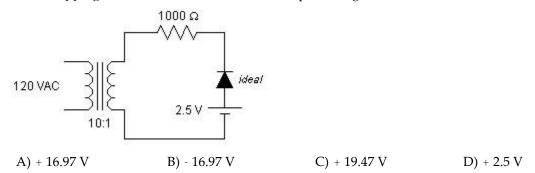
Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

C) negative half cycle of the input waveform

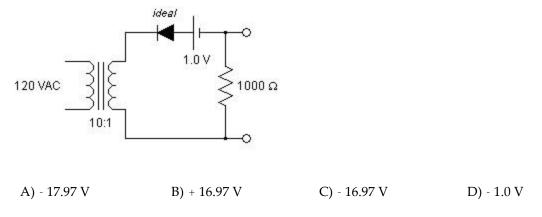
D) entire input waveform

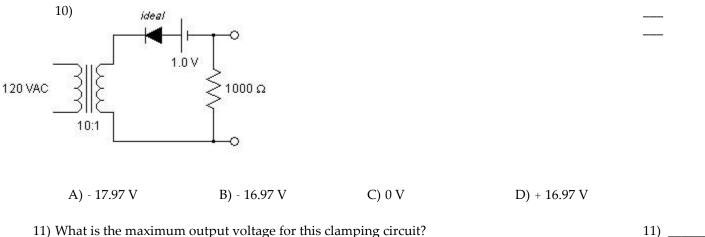

A) 16.97 mA during the positive half cycle C) 12 mA during the negative half cycle B) 16.97 mA during the negative half cycleD) 12 mA during the positive half cycle

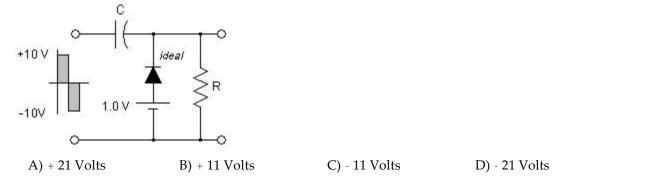
6) _


7) _____

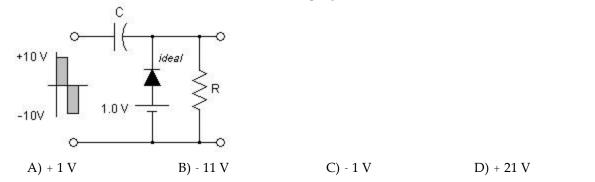
9) ____


7) For this clipping circuit, what will be the maximum output voltage when the diode is conducting?

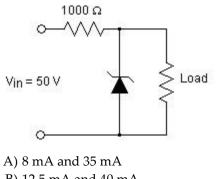

8) For this clipping circuit, what is the maximum output voltage when the diode is not conducting? 8) _____


9) For this clipping circuit, what is the minimum output voltage when the diode is conducting?

10) What is the minimum output voltage for this clipping circuit when the diode is not conducting?



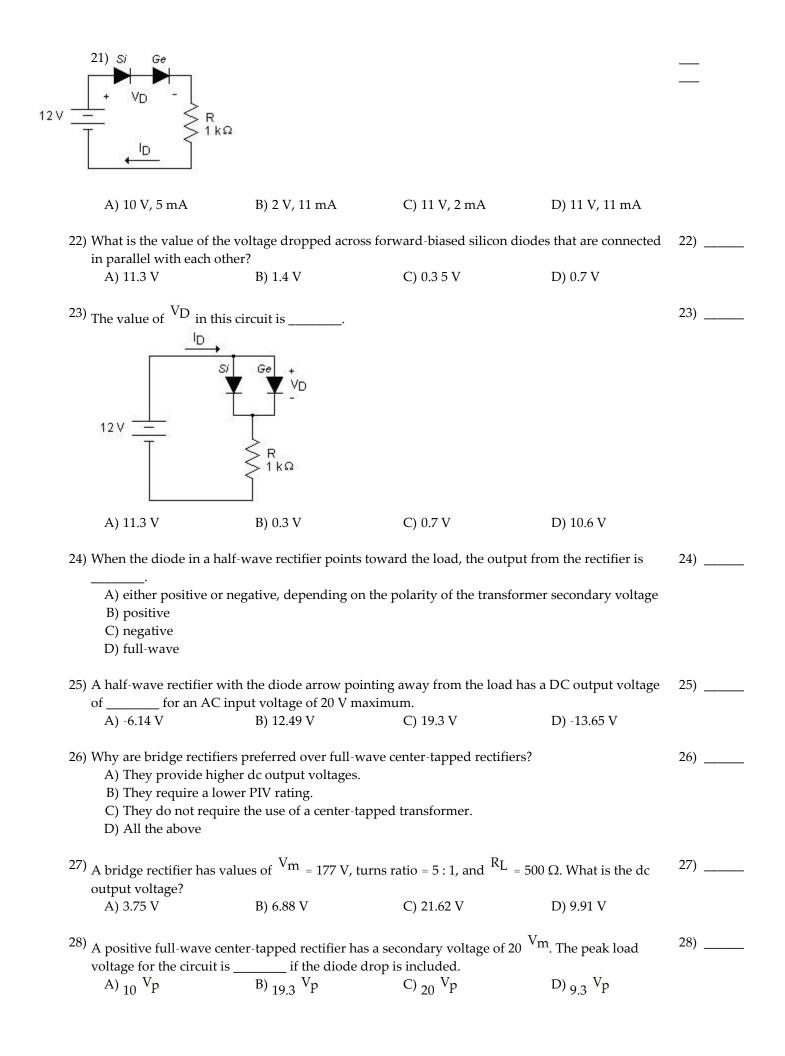
11) What is the maximum output voltage for this clamping circuit?



12) ____

12) What is the minimum output voltage for this clamping circuit?

13) What are the minimum and maximum values of current flowing in the variable load resistor 13) while the diode is operating in the Zener region? The zener voltage is 10 V.


- B) 12.5 mA and 40 mA
- C) Need to know the load resistance to determine the values.
- D) 8 mA and 40 mA

14) The point of intersection between the characteristic curve of the diode and the resistors loadline known is

as the 14) A) quiescent point B) Q-point C) point of operation D) All of the above 15) Given a series silicon diode circuit with the resistor R = 2 k Ω ohms and an applied voltage of 10 15) _ V, what is ^IDQ? A) 4.65 mA B) 0.5 mA C) 1.0 mA D) 10 mA ¹⁶⁾ A series silicon diode circuit has a 2 k Ω resistor and a 10 V source. Determine VDQ if IDQ is 4.5 16) ____ mA. A) 0.7 V B) 2 V C) 1 V D) 11.5 V 17 For this series diode configuration, use the diode characteristic to estimate the value of VR . 17) ____ D (mA 10 9 8 7 6 5 E 4 10 V 3 2 1 0 A) 10 V B) 92 mV C) 0.92 V D) 9.2 V 18) Generally a silicon diode is in the ______ state if the current established by the applied voltage 18) source is in the direction of the diode symbol's arrow and ^{VD} is greater than or equal to 0.7 V. A) saturated B) on C) off D) reverse-biased 19) Generally a germanium diode is in the ______ state when the current established by the 19) applied voltage source is in the direction of the diode symbol's arrow and ^{VD} is greater than or equal to 0.3 V. B) reverse-biased C) saturated D) off A) on $^{20)}$ The practical value of the current $^{I\!R}$ in this circuit is 20)

 $\begin{array}{c|c} E & VD & V \\ 0.5 V & & VR \\ \end{array} \xrightarrow{\ } R \\ 1 k\Omega \\ \end{array}$ A) 0 A B) 0.5 mA C) 5 mA D) 0.5 A

21) The resistor voltage and resistor current in this circuit are _____.

29)	A full-wave center-tapped	rectifier has a seconda	ary maximum voltage of 20	$0\stackrel{\rm V_{m}}{=}$ and a 4.7 k Ω	29)	
	load resistance. What is the A) 2.61 mA	e dc load current for th B) 629.8 mA	ne circuit? C) 1.26 mA	D) 1.4 mA		
30)	Which of the following circuits is used to eliminate a portion of a signa				30)	
,	A) Voltage multiplier		B) Clipper			
	C) Voltage divider		D) Damper			
31)	The two general categories	of clippers are			31)	
,	A) half-wave and full-wa		B) series and parallel	B) series and parallel D) regenerator and eliminator		
	C) dc restorer and dc eli	minator	D) regenerator and el			
32)	The circuit shown here is a		32)			
,	R				,	
	°-∽√-t-°					
	vi 🛉 vo					
	4 V					
	A) series clamper	B) shunt clamper	C) shunt clipper	D) series clipper		
33)	B) A(n) is commonly used to provide transient protection.					
,	A) eliminator	B) clipper	C) clamper	D) multiplier	33)	
	34) Which of the following circuits is used to change the dc reference of a signal without changing					
	the shape of the signal?					
	A) a clamper C) a voltage divider			B) a voltage multiplier		
	C) a voltage divider		D) a clipper			
	A clamper must have a(n) that is large enough to maintain the capacitor's charge					
	during diode conduction.		P) applied veltage			
	A) dc restorer C) diode voltage		B) applied voltageD) RC time constant			
	e) aloue (ollage					
36)	This circuit uses a 1µF				36)	
		-0				
	Ť N L	~				
	$v_i \qquad \blacklozenge \leq d$	100 kΩ				
	5v ?	v _o				
	ā	-0				
	A) negative clipper		B) positive clamper			
	C) positive clipper		D) negative clamper			

37) Assuming this circuit uses a silicon diode, the output voltage is clamped to ______.

37) 1μF +10 V + v _i -20 V-+	> 100 κΩ > v ₀				
A) 4.3 V	B) 5.3 V	C) 5.7 V	D) 10.7 V		
 38) The biased clamper has a de A) approximately equal t B) dependent on the peat C) equal to the dc averag D) approximately equal t 	o zero volts k-to-peak value of the ac e of the circuits output s	e input signal		38)	
39) Given that a 1000 Hz signal minimum value of capacito	r needed to maintain sa	fe clamping action?		39)	
A) 0.25 pF	B) 250 pF	C) 5 pF	D) 10 pF		
 40) When the output signal to a clamper circuit is clamped to zero, the total swing of the output is equal to A) the total diode voltage drop B) half the total voltage drop C) half the total input voltage swing D) the total input voltage swing 					
41) The Zener diode is on if the $A)$ $_V$ $_<$ VZ / 2	applied voltage, V, is _ B) $_{V \ge} V_{Z}$	C) _{V > 2} VZ	D) $_{V < VZ}$	41)	
 42) When in its "on" state, the voltage across an ideal Zener diode, ^{VZ} A) increases sharply with a decrease in applied voltage B) gets smaller with an increase in applied voltage C) gets larger with an increase in applied voltage D) None of these 					
43) The Zener diode must be op ^{A)} the applied voltage is ^{C) PZ} is less than the spe	greater than V_Z	B) $I_{Z \times} V_{Z =} P_{Z}$ D) All of these		43)	
44) The most frequent applicati A) Zener diode C) ideal diode	on for a is in r	egulator networks and as B) half-wave rectifier D) full-wave rectifier	a reference voltage.	44)	
 45) A typical Zener diode regul A) resistor in parallel wit B) Zener diode in paralle C) dropping resistor in section D) Zener diode in series 	h the load I with the series resistor eries with the load			45)	

46) When the Zener regulator is used to stabilize the output voltage, given a fixed input voltage and a variabl

e load 46) resistanc e, a load resistanc e that is too small results in A) V_L being greater than $\,V_Z$ B) V_Z being equal to V_{in} C) VL being equal to VZ D) V_L being less than V_Z 47) When a Zener diode circuit is used to stabilize the output voltage given a fixed load resistor and 47) _____ a variable input voltage, the input voltage must be _____ A) small enough to turn off the Zener diode B) large enough to turn on the Zener diode C) small enough to turn on the Zener diode D) large enough to turn off the Zener diode 48) Two Zener diodes connected _____ can be used as an ac regulator. 48) A) in series with the load B) in series with the input voltage C) in parallel with each other D) back-to-back 49) ____ 49) A Zener diode is designed to operate in the _____ region of its characteristic curve. A) reverse breakdown B) reverse bias C) zero voltage D) forward operating 50) ____ 50) When analyzing a diode circuit with both a dc and ac source ______. A) first determine the bulk resistance of the diode

- B) only the dc source is considered
- C) use superposition
- D) Thevenize the circuit

Electronic Devices and Circuit Theory 11th Edition Boylestad Test Bank

Full Download: http://testbanklive.com/download/electronic-devices-and-circuit-theory-11th-edition-boylestad-test-bank/

1)	C		
2)			
3)	D		
4)	С		
5)			
6)			
7)	C		
8)			
9)	D		
10)	С		
11)	А		
12)			
13)			
14)	D		
15)	А		
16)	С		
17)			
18)			
10) 19)	^		
20)			
21)			
22)	D		
23)	В		
24)			
25)			
26) 26)			
27)			
28)			
29)			
30)			
31)	В		
32)			
33)			
34)			
35)			
36)			
37)			
38)	D		
39)	В		
40)			
41)			
42)			
43)			
44)			
45)	С		
46)	D		
47)	В		
48)	D		
49)			
50)	C		