Data Communications and Computer Networks A Business Users Approach 8th Edition White Test Bank

Full Download: http://testbanklive.com/download/data-communications-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-and-computer-networks-a-business-users-approach-8th-educations-approach-8th-

Chapter 2: Fundamentals of Data and Signals

TR	HE	/FAI	LSE

1.	The terms "data" an	ıd "signa	al" mean the sar	me thin	g.
	ANS: F	PTS:	1	REF:	28
2.	By convention, the voltages.	minimuı	n and maximur	n value	s of analog data and signals are presented as
	ANS: T	PTS:	1	REF:	30
3.	One of the primary noise from the origin		-	data ar	nd analog signals is how difficult it is to separate
	ANS: T	PTS:	1	REF:	30
4.	The ability to separa	ate noise	from a digital	wavefo	rm is one of the great strengths of digital systems.
	ANS: T	PTS:	1	REF:	30
5.	A sine wave is com	mon exa	mple used to de	emonsti	rate an analog signal.
	ANS: T	PTS:	1	REF:	30
6.	The period of a sign	al can b	e calculated by	taking	the reciprocal of the frequency (1/frequency).
	ANS: T	PTS:	1	REF:	33
7.	The telephone syste	m transı	nits signals in t	he rang	e of 150 Hz to 1500 Hz.
	ANS: F	PTS:	1	REF:	34
8.	Attenuation in a me resistance within the		ch as copper wi	ire is a l	logarithmic loss and is a function of distance and the
	ANS: T	PTS:	1	REF:	34
9.	Like signals, data ca	an be an	alog or digital.		
	ANS: T	PTS:	1	REF:	31
10.	Telephones, AM rac examples of analog				sion, and cable television are the most common on.
	ANS: F	PTS:	1	REF:	38
11.	The NRZ-L encoding	ng schen	ne is simple to g	generate	e and inexpensive to implement in hardware.
	ANS: T	PTS:	1	REF:	39

12.	With NRZI, the rece or a 1.	iver has	s to check the v	oltage l	evel for each bit to determine whether the bit is a 0
	ANS: F	PTS:	1	REF:	39
13.	With NRZ-L, the red determine if it is a 0		as to check who	ether th	ere is a change at the beginning of the bit to
	ANS: F	PTS:	1	REF:	40
14.	An inherent problem in the data produce a				igital encoding schemes is that long sequences of 0s
	ANS: T	PTS:	1	REF:	40
15.	The big disadvantag transitions during ea		Manchester scl	hemes i	s that roughly half the time there will be two
	ANS: T	PTS:	1	REF:	40
16.	Under some circums schemes.	stances,	the baud rate m	nay equ	al the bps, such as in the Manchester encoding
	ANS: F	PTS:	1	REF:	41
17.	Amplitude shift key	ing is re	stricted to only	two po	essible amplitude levels: low and high.
	ANS: F	PTS:	1	REF:	43
18.	Amplitude shift key lightning storm.	ing is su	sceptible to suc	dden no	oise impulses such as the static charges created by a
	ANS: T	PTS:	1	REF:	44
19.	Frequency shift keyi	ng is su	sceptible to suc	dden no	ise spikes that can cause loss of data.
	ANS: F	PTS:	1	REF:	44
20.	Phase changes are no distortions.	ot affect	ted by amplitud	le chang	ges, nor are they affected by intermodulation
	ANS: T	PTS:	1	REF:	45
21.	The bps of the data t	ransmit	ted using quadr	rature a	mplitude modulation is four times the baud rate.
	ANS: F	PTS:	1	REF:	45
22.	•				reated by Nyquist, the sampling rate using pulse ighest frequency of the original analog waveform.
	ANS: F	PTS:	1	REF:	50
23.	One of the most con	nmon fo	rms of data trai	nsmitte	d between a transmitter and a receiver is textual data

	ANS: T	PTS:	1	REF:	49
24.	Certain control chara destination.	cters pr	ovide data tran	sfer coi	ntrol between a computer source and computer
	ANS: T	PTS:	1	REF:	51
25.	IBM mainframe com	puters a	are major users	of the l	EBCDIC character set.
	ANS: T	PTS:	1	REF:	51
26.	ASCII is a data code	rarely ı	used in the world	ld.	
	ANS: F	PTS:	1	REF:	52
27.	A byte consists of 8 b	oits.			
	ANS: T	PTS:	1	REF:	52
28.	One of the major pro the English language		with Unicode is	that it	cannot represent symbols other than those found in
	ANS: F	PTS:	1	REF:	53
29.	ASCII is one of the s	upporte	ed code charts is	n Unico	ode.
	ANS: T	PTS:	1	REF:	53
30.	In Unicode, the letter	"r" is 1	represented by t	the bina	ary value of 0000 0000 0101 0100 0010.
	ANS: F	PTS:	1	REF:	53
MUL'	TIPLE CHOICE				
1.		convey	meaning withi		nputer or computer system.
	a. Signalsb. Data				Impulse EMI
	ANS: B	PTS:	1	REF:	30
2.	If you want to transfe waves, the data has to		_		her, either via a physical wire or through radio
	a. hertzb. Unicode			c. d.	signal byte
	ANS: C	PTS:	1	REF:	30
3.				rms tha	t can be at an infinite number of points between
	some given minimum a. Analog signals	n and m	aximum.	c.	Digital data
	b. Digital signals				Digital pulses
	ANS: A	PTS:	1	REF:	30

4.	The most common a. sampling b. baud	n example ofo	c.	nan voice. digital analog
	ANS: D	PTS: 1	REF:	30
5.			from an analo c.	reform, and this makes it challenging, if not be waveform that represents data. hertz byte
	ANS: A	PTS: 1	REF:	31
6.	a. Analog signalb. Analog bauds	waveforms, rather the	c.	us waveforms. Digital signals Analog data
	ANS: C	PTS: 1	REF:	32
7.	The three basic co a. cycles b. baud	mponents of analog	c.	ignals are: amplitude, frequency, and hertz phase
	ANS: D	PTS: 1	REF:	33
8.	a. hertzb. amps	a signal can be expr	c.	s,, or watts. bits bytes
	ANS: B	PTS: 1	REF:	33
9.	frame.	nal is the number of	times a signa	al makes a complete cycle within a given time
	a. phaseb. amplitude		c. d.	period frequency
	ANS: D	PTS: 1	REF:	•
10.	Cycles per second	, or frequency, is re	epresented by	
10.	a. bytes	, or mequency, is re	c.	bits
	b. hertz		d.	watts
	ANS: B	PTS: 1	REF:	33
11.	than approximatel	•		sually goes no lower than 300 Hz and no higher
	a. 2200b. 2400			3400 5300
	ANS: C	PTS: 1	REF:	34
12.	The lowest note poa. 30 b. 80	ossible on the piano	c.	and the highest note possible is 4200 Hz. 300 450
	ANS: A	PTS· 1	RFF.	34

13.	The bandwidth of a t	telephon	e system that ti	ransmit	s a single voice in the range of 300 Hz to 3400 Hz is
	a. 10 b. 100				3100 3700
	ANS: C	PTS:	1	REF:	34
14.	When traveling throuto friction. This loss a. amplification b. friction			nal stre c.	nal always experiences some loss of its power due ength, is called decibel attenuation
	ANS: D	PTS:	1	REF:	35
15.	When a signal is ampa. decibels b. hertz	plified b	y an amplifier,	c.	nal gains in bytes watts
	ANS: A	PTS:	1	REF:	35
16.	a. Amplification b. Modulation	of sendir	ng data over a s	c.	y varying either its amplitude, frequency, or phase. Attenuation Digital encoding
	ANS: B	PTS:	1	REF:	38
17.	The encoding s beginning of a 0. a. nonreturn to zero b. nonreturn to zero	o inverte	ed (NRZI)	c.	t the beginning of a 1 and no voltage change at the Manchester Differential Manchester
	ANS: A	PTS:		REF:	
18.					Manchester scheme in that there is always a
	transition in the mide a. NRZ-L b. Bipolar-AMI	dle of th	e interval.		differential Manchester NRZI
	ANS: C	PTS:	1	REF:	40
19.	The Manchester encesimilar to seconds tide. continuous-clock b. analog-clocking	cking on		c.	discrete-clocking self-clocking
	ANS: D	PTS:	1	REF:	40
20.	The number of times a. hertz b. baud	s a signa	l changes value	c.	cond is called the rate. watts volts
	ANS: B	PTS:	1	REF:	41
21.	The data rate is measa. bits per second (b. bytes per second	bps)	·		bauds per second (bps) hertz per second (hps)

	ANS: A	PTS:	1	REF:	41
22.				ge or a r c.	zero voltage is transmitted. When the device negative voltage is transmitted. differential Manchester NRZ-L
	ANS: B	PTS:	1	REF:	41
23.	The primary advanta transmission, there so a2 b1				0
	ANS: C	PTS:	1	REF:	41
24.	The Manchester encountries they have a a. equal to b. twice	_		he bps.	
	ANS: B	PTS:	1	REF:	42
25.	A device that modula back to digital data is a. repeater b. switch	_			g signal and then demodulates the analog signal hub modem
	ANS: D	PTS:	1	REF:	43
26.				requenc c.	encoding digital data and transmitting it over by shift keying, and shift keying. strength phase
	ANS: D	PTS:	1	REF:	43
27.	The simplest modula a. amplitude b. phase	tion tec	hnique is	c.	eying. frequency noise
	ANS: A	PTS:	1	REF:	43
28.	Frequency shift keyi a. baud noise b. bps distortion	ng is su	bject to		intermodulation distortion noise spikes
	ANS: C	PTS:	1	REF:	44
29.	a. Amplitudeb. Phase		·	c. d.	changes in the phase of a waveform. Frequency Noise
	ANS: B	PTS:	1	REF:	44

30. ____ shift keying incorporates four different phase angles, each of which represents 2 bits.

	a. Quadrature amplb. Quadrature frequ			Quadrature noise Quadrature phase
	ANS: D	PTS: 1	REF:	45
31.	modulation, wherepresent 4 bits.	nich is commonly emp	ployed in	contemporary modems, uses each signal change to
	a. Quadrature ampl			Quadrature noise
	b. Quadrature frequ	iency	d.	Quadrature phase
	ANS: A	PTS: 1	REF:	45
32.	One encoding technia. NRZ-L b. Manchester	que that converts anal	c.	to a digital signal is pulse code modulation (PCM) NRZ-I
	ANS: C	PTS: 1	REF:	46
33.	Tracking an analog v below) a threshold is a. pulse amplitude b. codec	s termed	c.	pulses that represent the wave's height above (or quantization quantization levels
	ANS: A	PTS: 1	REF:	46
34.	When converting and the rate. a. baud b. sampling	alog data to digital sig	c.	frequency at which the snapshots are taken is called bps byte
	ANS: B	PTS: 1	REF:	48
35.	With, a codec t a. differential Mand b. Bipolar-AMI		c.	a by assessing up or down "steps." NRZI delta modulation
	ANS: D	PTS: 1	REF:	49
36.	Three important data a. NRZ-L b. 4B/5B	a codes are EBCDIC,	c.	d Unicode. ASCII NRZI
	ANS: C	PTS: 1	REF:	51
37.	is an 8-bit code a. EBCDIC b. Unicode	e allowing 256 possibl	c.	nations of textual symbols. NRZI UTF-9
	ANS: A	PTS: 1	REF:	51
38.	a. UTF-8b. EBCDIC	nment standard in the ard Code for Informat		
	ANS: C	PTS: 1	REF:	52

39.		SCII character ole combination			n few different fo	orms, includi	ng a	_ version	that allows	for 128
	a. 3- b. 5-	bit	is of ten	ituur 5	c.	6-bit 7-bit				
	ANS:	D	PTS:	1	REF:	52				
40.	The U	nicode charact	er set us	ses	bit charact	ers.				
	a. 4b. 8					16 32				
		C	PTS:	1	REF:					
COM	PLETI	ION								
			ata to di	gital s	ignals is general	lly called				
	ANS:	digitization								
	PTS:	1	REF:	29						
2.			are	the e	lectric or electro	magnetic im	pulses us	sed to enco	ode and trai	nsmit data
	ANS:	Signals								
	PTS:	1	REF:	30						
3.			is u	unwan	ted electrical or	electromagn	etic ener	gy that de	grades the	quality of
		s and data.								
	ANS:	Noise								
	PTS:	1	REF:	31						
4.	Thepoint.			_ of a	signal is the hei	ght of the wa	ive above	e (or belov	w) a given 1	reference
	ANS:	amplitude								
	PTS:	1	REF:	33						
5.	The _			_, or t	ime interval, of	one cycle is	called its	period.		
	ANS:	length								
	PTS:	1	REF:	33						
6.	The ra	ange of frequen	cies tha	ıt a sig	nal spans from i	minimum to	maximur	n is called	I the	
	ANS:	spectrum								
	PTS:	1	REF:	34						

7.		_ of a signal is the absolute value of the difference between the lowest and
	highest frequencies.	
	ANS: bandwidth	
	PTS: 1 REF:	34
8.		egrades original signals, an electronic device usually has a(n) at is less than its bandwidth.
	ANS: effective bandwidth	
	PTS: 1 REF:	34
9.	The time, or relative to time zero	of a signal is the position of the waveform relative to a given moment of o.
	ANS: phase	
	PTS: 1 REF:	34
10.	is logarithmic loss or gain of a	a relative measure of signal loss or gain and is used to measure the a signal.
	ANS: Decibel (dB) Decibel dB	
	PTS: 1 REF:	35
11.	is	the opposite of attenuation.
	ANS: Amplification	
	PTS: 1 REF:	35
12.	Thevoltages.	digital encoding scheme transmits 1s as zero voltages and 0s as positive
	ANS: nonreturn to zero-level (NR nonreturn to zero-level NRZ-L	Z-L)
	PTS: 1 REF:	39
13.		encoding scheme, to transmit a 1, the signal changes from low to erval; to transmit a 0, the signal changes from high to low in the <i>middle</i> of
	ANS: Manchester	

	PTS: 1 REF: 40	
14.	The encoding scheme takes 4 bits of data, converts the 4 bits into a unique 5-bit sequence, and encodes the 5 bits using NRZI.	;
	ANS: 4B/5B	
	PTS: 1 REF: 42	
15.	is a simpler form of modulation in which binary 1s and 0s are represented uniquely different values of amplitude, frequency, or phase.	by
	ANS: Shift keying	
	PTS: 1 REF: 43	
16.	shift keying uses two different frequency ranges to represent data values o and 1.	f 0
	ANS: Frequency	
	PTS: 1 REF: 44	
17.	is a phenomenon that occurs when the frequencies of two or more signals mix together and create new frequencies.	
	ANS: Intermodulation distortion	
	PTS: 1 REF: 44	
18.	A(n) converts the analog data to a digital signal by tracking the analog waveform and taking "snapshots" of the analog data at fixed intervals.	
	ANS: codec	
	PTS: 1 REF: 46	
19.	Quantization error, or, causes the regenerated analog data to differ from thoriginal analog data.	e
	ANS: quantization noise	
	PTS: 1 REF: 48	
20.	A problem inherent with delta modulation is that if the analog waveform rises or drops too quickly, codec may not be able to keep up with the change, and results.	the
	ANS: slope overload noise	
	PTS: 1 REF: 49	
21.	The set of all textual characters or symbols and their corresponding binary patterns is called a(n)	

	ANS:	data code		
	PTS:	1	REF:	49
22.		ntrol character output device.		(LF) provides control between a processor and an
	ANS:	linefeed		
	PTS:	1	REF:	51
23.		ntrol character output device.		(CR) provides control between a processor and an
	ANS:	carriage return	l	
	PTS:	1	REF:	51
24.				an encoding technique that provides a unique coding value for every no matter what the platform.
	ANS:	Unicode		
	PTS:	1	REF:	53
25.	Curren	•		supports more than 110 different code charts (languages and
	ANS:	Unicode		
	PTS:	1	REF:	53
ESSA	Y			
1.	What a	are the four pos	sible da	ata-to-signal conversion combinations?
	unders compu one thi gives u * Anal * Digit * Digit	tand that the ter ter network to to ng data and sig as four possible og data-to-anal tal data-to-digit tal data-to-discr	rms "da transmi mals ha data-to og signa al signa rete ana	he basic building blocks of any computer network. It is important to ata" and "signal" do not mean the same thing, and that in order for a it data, the data must first be converted into the appropriate signals. The ave in common is that both can be in either analog or digital form, which osignal conversion combinations: nal, which involves amplitude and frequency modulation techniques al, which involves encoding techniques alog signal, which involves modulation techniques al, which involves digitization techniques
	PTS:	1	REF:	28
2.	What a	are common exa	amples	of data?
	ANS:			

Common examples of data include:

Data Communications and Computer Networks A Business Users Approach 8th Edition White Test Bank

Full Download: http://testbanklive.com/download/data-communications-and-computer-networks-a-business-users-approach-8th-ed

- * A computer file of names and addresses stored on a hard disk drive
- * The bits or individual elements of a movie stored on a DVD
- * The binary 1s and 0s of music stored on a compact disc or inside an iPod
- * The dots (pixels) of a photograph that has been digitized by a digital camera and stored on a memory stick
- * The digits 0 through 9, which might represent some kind of sales figures for a business

PTS: 1 REF: 29-30

3. What are common examples of signals?

ANS:

Common examples of signals include:

- * A transmission of a telephone conversation over a telephone line
- * A live television news interview from Europe transmitted over a satellite system
- * A transmission of a term paper over the printer cable between a computer and a printer
- * The downloading of a Web page as it transfers over the telephone line between your Internet service provider and your home computer

PTS: 1 REF: 30

4. What happens when you introduce noise into digital data and digital signals?

ANS:

Noise has the properties of an analog waveform and thus can occupy an infinite range of values; digital waveforms occupy only a finite range of values. When you combine analog noise with digital waveform, it is fairly easy to separate the original digital waveform from the noise.

If the amount of noise remains low enough that the original digital waveform can still be interpreted, then the noise can be filtered out, thereby leaving the original waveform. If, however, the noise becomes so great that it is no longer possible to distinguish a high from a low, then the noise has taken over the signal and you can no longer understand this portion of the waveform.

PTS: 1 REF: 31

5. What is the purpose of using digital encoding schemes?

ANS:

To transmit digital data using digital signals, the 1s and 0s of the digital data must be converted to the proper physical form that can be transmitted over a wire or airwave. Thus, if you wish to transmit a data value of 1, you could do this by transmitting a positive voltage on the medium. If you wish to transmit a data value of 0, you could transmit a zero voltage. You could also use the opposite scheme: a data value of 0 is positive voltage, and a data value of 1 is a zero voltage. Digital encoding schemes like this are used to convert the 0s and 1s of digital data into the appropriate transmission form. There are six digital encoding schemes that are representative of most digital encoding schemes: NRZ-L, NRZI, Manchester, differential Manchester, bipolar-AMI, and 4B/5B.

PTS: 1 REF: 38-39