

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Instructor’s Solutions Manual

to

Concepts of Programming Languages

Tenth Edition

R.W. Sebesta

Preface

Concepts of Programming Languages 10th Edition Sebesta Solutions Manual
Full Download: http://testbanklive.com/download/concepts-of-programming-languages-10th-edition-sebesta-solutions-manual/

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

http://testbanklive.com/download/concepts-of-programming-languages-10th-edition-sebesta-solutions-manual/

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Changes for the Tenth Edition

he goals, overall structure, and approach of this tenth edition of

Concepts of Programming Languages remain the same as those of

the nine earlier editions. The principal goals are to introduce the

main constructs of contemporary programming languages and to

provide the reader with the tools necessary for the critical evaluation of

existing and future programming languages. A secondary goal is to

prepare the reader for the study of compiler design, by providing an in-

depth discussion of programming language structures, presenting a

formal method of describing syntax and introducing approaches to lexical

and syntatic analysis.

The tenth edition evolved from the ninth through several different

kinds of changes. To maintain the currency of the material, some of the

discussion of older programming languages has been removed. For

example, the description of COBOL’s record operations was removed

from Chapter 6 and that of Fortran’s Do statement was removed from

Chapter 8. Likewise, the description of Ada’s generic subprograms was

removed from Chapter 9 and the discussion of Ada’s asynchronous

message passing was removed from Chapter 13.

On the other hand, a section on closures, a section on calling

subprograms indirectly, and a section on generic functions in F# were

added to Chapter 9; sections on Objective-C were added to Chapters 11

and 12; a section on concurrency in functional programming languages

was added to Chapter 13; a section on C# event handling was added to

Chapter 14;. a section on F# and a section on support for functional

programming in primarily imperative languages were added to Chapter

15.

In some cases, material has been moved. For example, several

different discussions of constructs in functional programming languages

were moved from Chapter 15 to earlier chapters. Among these were the

descriptions of the control statements in functional programming

languages to Chapter 8 and the lists and list operations of Scheme and

ML to Chapter 6. These moves indicate a significant shift in the

philosophy of the book—in a sense, the mainstreaming of some of the

constructs of functional programming languages. In previous editions, all

discussions of functional programming language constructs were

segregated in Chapter 15.

Chapters 11, 12, and 15 were substantially revised, with five figures

being added to Chapter 12.

Finally, numerous minor changes were made to a large number of

sections of the book, primarily to improve clarity.

The Vision

T

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

This book describes the fundamental concepts of programming languages

by discussing the design issues of the various language constructs,

examining the design choices for these constructs in some of the most

common languages, and critically comparing design alternatives.

Any serious study of programming languages requires an

examination of some related topics, among which are formal methods of

describing the syntax and semantics of programming languages, which

are covered in Chapter 3. Also, implementation techniques for various

language constructs must be considered: Lexical and syntax analysis are

discussed in Chapter 4, and implementation of subprogram linkage is

covered in Chapter 10. Implementation of some other language constructs

is discussed in various other parts of the book.

The following paragraphs outline the contents of the ninth edition.

Chapter Outlines

Chapter 1 begins with a rationale for studying programming languages. It

then discusses the criteria used for evaluating programming languages

and language constructs. The primary influences on language design,

common design trade-offs, and the basic approaches to implementation

are also examined.

Chapter 2 outlines the evolution of most of the important languages

discussed in this book. Although no language is described completely, the

origins, purposes, and contributions of each are discussed. This historical

overview is valuable, because it provides the background necessary to

understanding the practical and theoretical basis for contemporary

language design. It also motivates further study of language design and

evaluation. In addition, because none of the remainder of the book

depends on Chapter 2, it can be read on its own, independent of the other

chapters.

Chapter 3 describes the primary formal method for describing the

syntax of programming language—BNF. This is followed by a

description of attribute grammars, which describe both the syntax and

static semantics of languages. The difficult task of semantic description is

then explored, including brief introductions to the three most common

methods: operational, denotational, and axiomatic semantics.

Chapter 4 introduces lexical and syntax analysis. This chapter is

targeted to those colleges that no longer require a compiler design course

in their curricula. Like Chapter 2, this chapter stands alone and can be

read independently of the rest of the book.

Chapters 5 through 14 describe in detail the design issues for the

primary constructs of programming languages. In each case, the design

choices for several example languages are presented and evaluated.

Specifically, Chapter 5 covers the many characteristics of variables,

Chapter 6 covers data types, and Chapter 7 explains expressions and

assignment statements. Chapter 8 describes control statements, and

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Chapters 9 and 10 discuss subprograms and their implementation.

Chapter 11 examines data abstraction facilities. Chapter 12 provides an

in-depth discussion of language features that support object-oriented

programming (inheritance and dynamic method binding), Chapter 13

discusses concurrent program units, and Chapter 14 is about exception

handling, along with a brief discussion of event handling.

The last two chapters (15 and 16) describe two of the most important

alternative programming paradigms: functional programming and logic

programming. However, some of the data structures and control

constructs of functional programming languages are discussed in

Chapters 6 and 8. Chapter 15 presents an introduction to Scheme,

including descriptions of some of its primitive functions, special forms,

and functional forms, as well as some examples of simple functions

written in Scheme. Brief introductions to ML, Haskell, and F# are given

to illustrate some different directions in functional language design.

Chapter 16 introduces logic programming and the logic programming

language, Prolog.

To the Instructor

In the junior-level programming language course at the University of

Colorado at Colorado Springs, the book is used as follows: We typically

cover Chapters 1 and 3 in detail, and though students find it interesting

and beneficial reading, Chapter 2 receives little lecture time due to its

lack of hard technical content. Because no material in subsequent

chapters depends on Chapter 2, as noted earlier, it can be skipped

entirely, and because we require a course in compiler design, Chapter 4 is

not covered.

Chapters 5 through 9 should be relatively easy for students with

extensive programming experience in C++, Java, or C#. Chapters 10

through 14 are more challenging and require more detailed lectures.

Chapters 15 and 16 are entirely new to most students at the junior

level. Ideally, language processors for Scheme and Prolog should be

available for students required to learn the material in these chapters.

Sufficient material is included to allow students to dabble with some

simple programs.

Undergraduate courses will probably not be able to cover all of the

material in the last two chapters. Graduate courses, however, should be

able to completely discuss the material in those chapters by skipping over

parts of the early chapters on imperative languages.

Supplemental Materials

The following supplements are available to all readers of this book at

www.aw.com/cssupport.

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

• A set of lecture note slides. PowerPoint slides are available for each

chapter in the book.

• PowerPoint slides containing all the figures in the book.

To reinforce learning in the classroom, to assist with the hands-on lab

component of this course, and/or to facilitate students in a distance-

learning situation, access the companion Web site at

www.aw.com/sebesta. This site contains mini-manuals (approximately

100-page tutorials) on a handful of languages. These proceed on the

assumption that the student knows how to program in some other

language, giving the student enough information to complete the chapter

materials in each language. Currently the site includes manuals for C++,

C, Java, and Smalltalk.

Solutions to many of the problem sets are available to qualified

instructors in our Instructor Resource Center at www.aw-bc.com/irc.

Please contact your school’s Pearson Education representative or send an

email to computing@aw.com for more information.

Language Processor Availability

Processors for and information about some of the programming

languages discussed in this book can be found at the following Web sites:

C, C++, Fortran, and Ada gcc.gnu.org

C# and F# microsoft.com

Java java.sun.com

Haskell haskell.org

Lua www.lua.org

Scheme www.plt-

 scheme.org/software/drscheme

Perl www.perl.com

Python www.python.org

Ruby www.ruby-lang.org

JavaScript is included in virtually all browsers; PHP is included in

virtually all Web servers.

All this information is also included on the companion Web site.

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Acknowledgments

The suggestions from outstanding reviewers contributed greatly to this

book’s present form. In alphabetical order, they are:

I-ping Chu DePaul University

Amer Diwan University of Colorado

Stephen Edwards Virginia Tech

Nigel Gwee Southern University–Baton Rouge

K. N. King Georgia State University

Donald Kraft Louisiana State University

Simon H. Lin California State University–

 Northridge

Mark Llewellyn University of Central Florida

Bruce R. Maxim University of Michigan–Dearborn

Gloria Melara California State University–

 Northridge

Frank J. Mitropoulos Nova Southeastern University

Euripides Montagne University of Central Florida

Bob Neufeld Wichita State University

Amar Raheja California State Polytechnic

 University–Pomona

Hossein Saiedian University of Kansas

Neelam Soundarajan Ohio State University

Paul Tymann Rochester Institute of Technology

Cristian Videira Lopes University of California–Irvine

Salih Yurttas Texas A&M University

Numerous other people provided input for the previous editions of

Concepts of Programming Languages at various stages of its

development. All of their comments were useful and greatly appreciated.

In alphabetical order, they are: Vicki Allan, Henry Bauer, Carter Bays,

Manuel E. Bermudez, Peter Brouwer, Margaret Burnett, Paosheng

Chang, Liang Cheng, John Crenshaw, Charles Dana, Barbara Ann Griem,

Mary Lou Haag, John V. Harrison, Eileen Head, Ralph C. Hilzer, Eric

Joanis, Leon Jololian, Hikyoo Koh, Jiang B. Liu, Meiliu Lu, Jon Mauney,

Robert McCoard, Dennis L. Mumaugh, Michael G. Murphy, Andrew

Oldroyd, Young Park, Rebecca Parsons, Steve J. Phelps, Jeffery Popyack,

Raghvinder Sangwan, Steven Rapkin, Hamilton Richard, Tom Sager,

Joseph Schell, Sibylle Schupp, Mary Louise Soffa, Neelam Soundarajan,

Ryan Stansifer, Steve Stevenson, Virginia Teller, Yang Wang, John M.

Weiss, Franck Xia, and Salih Yurnas.

Matt Goldstein, editor; Chelsea Bell, editorial assistant; and Meredith

Gertz, senior production supervisor of Addison-Wesley, and Gillian Hall

of The Aardvark Group Publishing Services, all deserve my gratitude for

their efforts to produce the tenth edition both quickly and carefully.

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

About the Author

Robert Sebesta is an Associate Professor Emeritus in the Computer

Science Department at the University of Colorado–Colorado Springs.

Professor Sebesta received a BS in applied mathematics from the

University of Colorado in Boulder and MS and PhD degrees in computer

science from Pennsylvania State University. He has taught computer

science for more than 38 years. His professional interests are the design

and evaluation of programming languages.

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Contents

Chapter 1 Preliminaries

1.1 Reasons for Studying Concepts of Programming Languages

1.2 Programming Domains

1.3 Language Evaluation Criteria

1.4 Influences on Language Design

1.5 Language Categories

1.6 Language Design Trade-Offs

1.7 Implementation Methods

1.8 Programming Environments

Summary • Review Questions • Problem Set

Chapter 2 Evolution of the Major Programming Languages

2.1 Zuse’s Plankalkül

2.2 Minimal Hardware Programming: Pseudocodes

2.3 The IBM 704 and Fortran

2.4 Functional Programming: LISP

2.5 The First Step Toward Sophistication: ALGOL 60 ..

2.6 Computerizing Business Records: COBOL ...

2.7 The Beginnings of Timesharing: BASIC ..

Interview: Alan Cooper—User Design and
Language Design ...

2.8 Everything for Everybody: PL/I ..

2.9 Two Early Dynamic Languages: APL and SNOBOL ...

2.10 The Beginnings of Data Abstraction: SIMULA 67 ...

2.11 Orthogonal Design: ALGOL 68 ...

2.12 Some Early Descendants of the ALGOLs ...

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

2.13 Programming Based on Logic: Prolog ...

2.14 History’s Largest Design Effort: Ada ...

2.15 Object-Oriented Programming: Smalltalk ..

2.16 Combining Imperative and Object-Oriented Features: C++

2.17 An Imperative-Based Object-Oriented Language: Java

2.18 Scripting Languages

2.19 The Flagship .NET Language: C# ...

2.20 Markup/Programming Hybrid Languages ...

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises ...

Chapter 3 Describing Syntax and Semantics ...

3.1 Introduction ..

3.2 The General Problem of Describing Syntax ..

3.3 Formal Methods of Describing Syntax ..

3.4 Attribute Grammars ...

History Note

3.5 Describing the Meanings of Programs: Dynamic Semantics

History Note ..

Summary • Bibliographic Notes • Review Questions • Problem Set

Chapter 4 Lexical and Syntax Analysis ..

4.1 Introduction ..

4.2 Lexical Analysis ...

4.3 The Parsing Problem ...

4.4 Recursive-Descent Parsing ...

4.5 Bottom-Up Parsing ..

Summary • Review Questions • Problem Set •Programming Exercises

Chapter 5 Names, Bindings, and Scopes ...

5.1 Introduction ..

5.2 Names ...

History Note ..

History Note ..

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

5.3 Variables ...

History Note ..

5.4 The Concept of Binding ...

Interview: Rasmus Lerdorf—Scripting Languages and Other Examples of Slick
Solutions ...

5.5 Scope ...

History Note ..

5.6 Scope and Lifetime ..

5.7 Referencing Environments ..

5.8 Named Constants ...

Summary • Review Questions • Problem Set • Programming Exercises

Chapter 6 Data Types ...

6.1 Introduction ..

6.2 Primitive Data Types ...

6.3 Character String Types ...

History Note ..

6.4 User-Defined Ordinal Types ..

6.5 Array Types ...

History Note ..

History Note ..

6.6 Associative Arrays ...

Interview: ROBERTO IERUSALIMSCHY—Lua ..

6.7 Record Types ..

6.8 Tuple Types

6.9 List Types

6.10 Union Types ..

6.11 Pointer Types

History Note ..

6.12 Type Checking ..

6.13 Strong Typing ..

6.14 Type Equivalence ..

6.15 Theory and Data Types ...

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Summary • Bibliographic Notes • Review Questions •
Problem Set • Programming Exercises ..

Chapter 7 Expressions and Assignment Statements ..

7.1 Introduction ..

7.2 Arithmetic Expressions ..

7.3 Overloaded Operators ...

7.4 Type Conversions ...

History Note ..

7.5 Relational and Boolean Expressions ...

History Note ..

7.6 Short-Circuit Evaluation ...

7.7 Assignment Statements ..

History Note ..

7.8 Mixed-Mode Assignment ..

Summary • Review Questions • Problem Set • Programming Exercises....

Chapter 8 Statement-Level Control Structures ..

8.1 Introduction ..

8.2 Selection Statements ..

History Note ..

History Note ..

8.3 Iterative Statements ..

History Note ..

Interview: Larry Wall—Part 1: Linguistics and the Birth
of Perl ..

History Note ..

8.4 Unconditional Branching ...

8.5 Guarded Commands ...

8.6 Conclusions ...

Summary • Review Questions • Problem Set • Programming Exercises

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Chapter 9 Subprograms ...

9.1 Introduction ...

9.2 Fundamentals of Subprograms ...

9.3 Design Issues for Subprograms ..

9.4 Local Referencing Environments ..

9.5 Parameter-Passing Methods ..

Interview: Larry Wall—Part 2: Scripting Languages in General
and Perl in Particular ...

History Note ..

History Note ...

History Note ...

9.6 Parameters That Are Subprograms ..

History Note ...

9.7 Calling Subprograms Indirectly

9.8 Overloaded Subprograms ...

9.9 Generic Subprograms ...

9.10 Design Issues for Functions ..

9.11 User-Defined Overloaded Operators ..

9.12 Closures

9.13 Coroutines ...

History Note ...

Summary • Review Questions • Problem Set • Programming Exercises

Chapter 10 Implementing Subprograms ...

10.1 The General Semantics of Calls and Returns ...

10.2 Implementing “Simple” Subprograms ..

10.3 Implementing Subprograms with Stack-Dynamic
 Local Variables ...

10.4 Nested Subprograms ..

Interview: Niklaus Wirth—Keeping It Simple ..

10.5 Blocks ..

10.6 Implementing Dynamic Scoping ..

Summary • Review Questions • Problem Set • Programming Exercises

Chapter 11 Abstract Data Types and Encapsulation Constructs

11.1 The Concept of Abstraction ...

11.2 Introduction to Data Abstraction ..

11.3 Design Issues for Abstract Data Types ...

11.4 Language Examples ...

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Interview: Bjarne Stroustrup—C++: Its Birth, Its
Ubiquitousness, and Common Criticisms .. .

11.5 Parameterized Abstract Data Types ...

11.6 Encapsulation Constructs ...

11.7 Naming Encapsulations ..

Summary • Review Questions • Problem Set • Programming Exercises

Chapter 12 Support for Object-Oriented Programming ...

12.1 Introduction ...

12.2 Object-Oriented Programming ..

12.3 Design Issues for Object-Oriented Languages ...

12.4 Support for Object-Oriented Programming in Smalltalk

12.5 Support for Object-Oriented Programming in C++ ..

Interview: Bjarne Stroustrup—On Paradigms and
Better Programming ..

12.6 Support for Object-Oriented Programming in Objective-C

12.7 Support for Object-Oriented Programming in Java

12.8 Support for Object-Oriented Programming in C# ..

12.9 Support for Object-Oriented Programming in Ada 95

12.10 Support for Object-Oriented Programming in Ruby ...

12.11 Implementation of Object-Oriented Constructs ...

Summary • Review Questions • Problem Set • Programming Exercises

Chapter 13 Concurrency ...

13.1 Introduction ...

13.2 Introduction to Subprogram-Level Concurrency ...

History Note ...

13.3 Semaphores ..

13.4 Monitors ..

13.5 Message Passing ..

13.6 Ada Support for Concurrency ..

13.7 Java Threads ..

13.8 C# Threads ...

13.9 Concurrency in Functional Programming Languages

13.10 Statement-Level Concurrency ...

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises ...

Chapter 14 Exception Handling and Event Handling ...

14.1 Introduction to Exception Handling ...

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

History Note ...

14.2 Exception Handling in Ada ..

14.3 Exception Handling in C++ ..

14.4 Exception Handling in Java ...

Interview: James Gosling—The Birth of Java ..

14.5 Introduction to Event Handling ..

14.6 Event Handling with Java ..

14.7 Event Handling with C# ...

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises........

Chapter 15 Functional Programming Languages ..

15.1 Introduction ...

15.2 Mathematical Functions ..

15.3 Fundamentals of Functional Programming Languages

15.4 The First Functional Programming Language: LISP ...

15.5 An Introduction to Scheme ..

15.6 COMMON LISP ...

15.7 ML ...

15.8 Haskell ..

15.9 F# ..

15.10 Support for Functional Programming in Primarily Imperative Languages

15.11 A Comparison of Functional and Imperative Languages

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises ...

Chapter 16 Logic Programming Languages ...

16.1 Introduction ...

16.2 A Brief Introduction to Predicate Calculus ...

16.3 Predicate Calculus and Proving Theorems ...

16.4 An Overview of Logic Programming ..

16.5 The Origins of Prolog ..

16.6 The Basic Elements of Prolog ...

16.7 Deficiencies of Prolog ...

16.8 Applications of Logic Programming ..

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises

Bibliography

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Index

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Answers to Selected Problems

Chapter 1

Problem Set:

3. Some arguments for having a single language for all programming domains are: It would
dramatically cut the costs of programming training and compiler purchase and maintenance; it
would simplify programmer recruiting and justify the development of numerous language
dependent software development aids.

4. Some arguments against having a single language for all programming domains are: The
language would necessarily be huge and complex; compilers would be expensive and costly to
maintain; the language would probably not be very good for any programming domain, either in
compiler efficiency or in the efficiency of the code it generated. More importantly, it would not
be easy to use, because regardless of the application area, the language would include many
unnecessary and confusing features and constructs (those meant for other application areas).
Different users would learn different subsets, making maintenance difficult.

5. One possibility is wordiness. In some languages, a great deal of text is required for even
simple complete programs. For example, COBOL is a very wordy language. In Ada, programs
require a lot of duplication of declarations. Wordiness is usually considered a disadvantage,
because it slows program creation, takes more file space for the source programs, and can cause
programs to be more difficult to read.

7. The argument for using the right brace to close all compounds is simplicity—a right brace
always terminates a compound. The argument against it is that when you see a right brace in a
program, the location of its matching left brace is not always obvious, in part because all
multiple-statement control constructs end with a right brace.

8. The reasons why a language would distinguish between uppercase and lowercase in its
identifiers are: (1) So that variable identifiers may look different than identifiers that are names
for constants, such as the convention of using uppercase for constant names and using lowercase
for variable names in C, and (2) so that catenated words as names can have their first letter
distinguished, as in TotalWords. (Some think it is better to include a connector, such as
underscore.) The primary reason why a language would not distinguish between uppercase and
lowercase in identifiers is it makes programs less readable, because words that look very similar
are actually completely different, such as SUM and Sum.

10. One of the main arguments is that regardless of the cost of hardware, it is not free. Why
write a program that executes slower than is necessary. Furthermore, the difference between a
well-written efficient program and one that is poorly written can be a factor of two or three. In
many other fields of endeavor, the difference between a good job and a poor job may be 10 or 20
percent. In programming, the difference is much greater.

15. The use of type declaration statements for simple scalar variables may have very little effect
on the readability of programs. If a language has no type declarations at all, it may be an aid to
readability, because regardless of where a variable is seen in the program text, its type can be
determined without looking elsewhere. Unfortunately, most languages that allow implicitly
declared variables also include explicit declarations. In a program in such a language, the

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

declaration of a variable must be found before the reader can determine the type of that variable
when it is used in the program.

18. The main disadvantage of using paired delimiters for comments is that it results in
diminished reliability. It is easy to inadvertently leave off the final delimiter, which extends the
comment to the end of the next comment, effectively removing code from the program. The
advantage of paired delimiters is that you can comment out areas of a program. The disadvantage
of using only beginning delimiters is that they must be repeated on every line of a block of
comments. This can be tedious and therefore error-prone. The advantage is that you cannot make
the mistake of forgetting the closing delimiter.

Chapter 2

Problem Set:

6. Because of the simple syntax of LISP, few syntax errors occur in LISP programs. Unmatched
parentheses is the most common mistake.

7. The main reason why imperative features were put in LISP was to increase its execution
efficiency.

10. The main motivation for the development of PL/I was to provide a single tool for computer
centers that must support both scientific and commercial applications. IBM believed that the
needs of the two classes of applications were merging, at least to some degree. They felt that the
simplest solution for a provider of systems, both hardware and software, was to furnish a single
hardware system running a single programming language that served both scientific and
commercial applications.

11. IBM was, for the most part, incorrect in its view of the future of the uses of computers, at
least as far as languages are concerned. Commercial applications are nearly all done in
languages that are specifically designed for them. Likewise for scientific applications. On the
other hand, the IBM design of the 360 line of computers was a great success--it still dominates
the area of computers between supercomputers and minicomputers. Furthermore, 360 series
computers and their descendants have been widely used for both scientific and commercial
applications. These applications have been done, in large part, in Fortran and COBOL.

14. The argument for typeless languages is their great flexibility for the programmer. Literally
any storage location can be used to store any type value. This is useful for very low-level
languages used for systems programming. The drawback is that type checking is impossible, so
that it is entirely the programmer's responsibility to insure that expressions and assignments are
correct.

18. A good deal of restraint must be used in revising programming languages. The greatest
danger is that the revision process will continually add new features, so that the language grows
more and more complex. Compounding the problem is the reluctance, because of existing
software, to remove obsolete features.

22. One situation in which pure interpretation is acceptable for scripting languages is when the
amount of computation is small, for which the processing time will be negligible. Another
situation is when the amount of computation is relatively small and it is done in an interactive
environment, where the processor is often idle because of the slow speed of human interactions.

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

24. New scripting languages may appear more frequently than new compiled languages because
they are often smaller and simpler and focused on more narrow applications, which means their
libraries need not be nearly as large.

Concepts of Programming Languages 10th Edition Sebesta Solutions Manual
Full Download: http://testbanklive.com/download/concepts-of-programming-languages-10th-edition-sebesta-solutions-manual/

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

http://testbanklive.com/download/concepts-of-programming-languages-10th-edition-sebesta-solutions-manual/

