Computer Security Principles and Practice 3rd Edition Stallings Test Bank

Full Download: http://testbanklive.com/download/computer-security-principles-and-practice-3rd-edition-stallings-test-bank/

Computer Security: Principles and Practice, 3rd Edition

Chapter 2 – Cryptographic Tools

Chapter 2

TRUE/FALSE QUESTIONS:

T	F	1. Symmetric encryption is used primarily to provide confidentiality.
T	F	2. Two of the most important applications of public-key encryption are digital signatures and key management.
T	F	3. Cryptanalytic attacks try every possible key on a piece of ciphertext until an intelligible translation into plaintext is obtained.
T	F	4. The secret key is input to the encryption algorithm.
T	F	5. Triple DES takes a plaintext block of 64 bits and a key of 56 bits to produce a ciphertext block of 64 bits.
T	F	6. Modes of operation are the alternative techniques that have been developed to increase the security of symmetric block encryption for large sequences of data.
T	F	7. The advantage of a stream cipher is that you can reuse keys.
T	F	8. A message authentication code is a small block of data generated by a secret key and appended to a message.
T	F	9. Like the MAC, a hash function also takes a secret key as input.
T	F	10. The strength of a hash function against brute-force attacks depends solely on the length of the hash code produced by the algorithm.
T	F	11. Public-key cryptography is asymmetric.
T	F	12. Public-key algorithms are based on simple operations on bit patterns.
T	F	13. The purpose of the DSS algorithm is to enable two users to securely reach agreement about a shared secret that can be used as a secret key for subsequent symmetric encryption of messages.
T	F	14. An important element in many computer security services and applications is the use of cryptographic algorithms.
T	F	15. Some form of protocol is needed for public-key distribution.

MULTIPLE CHOICE QUESTIONS:

1.	. The original message or data that is fed into the algorithm is						
	A	. encryption algorithm	B. secret key				
	C	. decryption algorithm	D. plaintext				
2.	The	rithm run in reverse.					
	A	. decryption algorithm	B. plaintext				
	C	. ciphertext	D. encryption algorithm				
3 is the scrambled message produced as output.							
	A	. Plaintext	B. Ciphertext				
	C	. Secret key	D. Cryptanalysis				
4.	success with	of all possible a brute-force attack. one-fourth two-thirds	keys must be tried in order to achieve B. half D. three-fourths				
 5. The most important symmetric algorithms, all of which are block ciphers DES, triple DES, and the A. SHA B. RSA 							
6.	If the only for force, then the		D. DSS made on an encryption algorithm is brute- ks would be to B. use shorter keys				
		. use more keys	D. use less keys				
	C	. ass more noys	2. 550 1050 Nojo				

7 is a procedure that allows communicating parties to verify the or stored messages are authentic.					ting parties to verify that received		
	A.	Cryptanalysis		B.	Decryption		
	C.	Message authentication		D.	Collision resistance		
8.	The purpose of other block of		oduce	a "fing	erprint" of a file, message, or		
	A.	secret key	В.	digital	signature		
	C.	keystream	D.	hash fi	unction		
9.		s a block cipher in which n-1 for some n.	h the	plaintex	t and ciphertext are integers		
	A.	DSS	B.	RSA			
	C.	SHA	D.	AES			
10		is created by using a and then encrypting the			unction to generate a hash value th a private key.		
	A.	digital signature		B.	keystream		
	C.	one way hash function		D.	secret key		
11. Transmitted data stored locally are referred to as							
	A.	ciphertext	B.	DES			
	C.	data at rest	D.	ECC			
12		atures and key managem encryption.	ent ar	e the tw	o most important applications of		
	A.	private-key		B.	public-key		
	C.	preimage resistant		D.	advanced		

5. A _____ processes the plaintext input in fixed-size blocks and produces a

6. A _____ processes the input elements continuously, producing output one

7. Public-key encryption was first publicly proposed by ______ in 1976.

block of ciphertext of equal size for each plaintext block.

element at a time.

8.	The two criteria used to validate that a sequence of numbers is random are independence and
9.	A is a hardware device that sits between servers and storage systems and encrypts all data going from the server to the storage system and decrypts data going in the opposite direction.
10	In July 1998 the announced that it had broken a DES encryption using a special purpose "DES cracker" machine.
11.	The simplest approach to multiple block encryption is known as mode, in which plaintext is handled <i>b</i> bits at a time and each block of plaintext is encrypted using the same key.
12.	. A stream is one that is unpredictable without knowledge of the input key and which has an apparently random character.
13.	The is a pair of keys that have been selected so that if one is used for encryption, the other is used for decryption.
14.	is provided by means of a co-processor board embedded in the tape drive and tape library hardware.
15	The purpose of the algorithm is to enable two users to securely reach agreement about a shared secret that can be used as a secret key for subsequent symmetric encryption of messages.

Chapter 2 – Cryptographic Tools

Answer Key

TRUE/FALSE QUESTIONS:

- 1. T
- 2. T
- 3. F
- 4. T
- 5. F
- 6. T
- 7. F
- 8. T
- 9. F
- 10. T
- 11. T
- 12. F
- 12. F
- 14. T
- 15. T

MULTIPLE CHOICE QUESTIONS:

- 1. D
- 2. A
- 3. B
- 4. B
- 5. C
- 6. A
- 7. C
- 8. D
- 9. B
- 10. A
- 11. C
- 12. B
- 13. D
- 14. A
- 15. B

Computer Security Principles and Practice 3rd Edition Stallings Test Bank

Full Download: http://testbanklive.com/download/computer-security-principles-and-practice-3rd-edition-stallings-test-bank/

Chapter 2

Computer Security: Principles and Practice, 3rd Edition

SHORT ANSWER QUESTIONS:

- 1. symmetric encryption
- 2. brute-force
- 3. decryption
- 4. cryptanalytic
- 5. block cipher
- 6. stream cipher
- 7. Diffie and Hellman
- 8. uniform distribution
- 9. back-end appliance
- 10. Electronic Frontier Foundation (EFF)
- 11. electronic codebook (ECB)
- 12. pseudorandom
- 13. public and private key
- 14. library-based tape encryption
- 15. Diffie-Hellman Key Agreement