

-9-

CHAPTER 2 CRYPTOGRAPHIC TOOLS

ANSWERS TO QUESTIONS
2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption

algorithm.

2.2 One secret key.

2.3 (1) a strong encryption algorithm; (2) Sender and receiver must have

obtained copies of the secret key in a secure fashion and must keep the
key secure.

2.4 Message encryption, message authentication code, hash function.

2.5 An authenticator that is a cryptographic function of both the data to be

authenticated and a secret key.

2.6 (a) A hash code is computed from the source message, encrypted using

symmetric encryption and a secret key, and appended to the message.
At the receiver, the same hash code is computed. The incoming code is
decrypted using the same key and compared with the computed hash
code. (b) This is the same procedure as in (a) except that public-key
encryption is used; the sender encrypts the hash code with the sender's
private key, and the receiver decrypts the hash code with the sender's
public key. (c) A secret value is appended to a message and then a
hash code is calculated using the message plus secret value as input.
Then the message (without the secret value) and the hash code are
transmitted. The receiver appends the same secret value to the
message and computes the hash value over the message plus secret
value. This is then compared to the received hash code.

2.7 1. H can be applied to a block of data of any size.
 2. H produces a fixed-length output.
 3. H(x) is relatively easy to compute for any given x, making both

hardware and software implementations practical.
 4. For any given value h, it is computationally infeasible to find x such

that H(x) = h.
 5. For any given block x, it is computationally infeasible to find y ≠ x

with H(y) = H(x).

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Computer Security Principles and Practice 3rd Edition Stallings Solutions Manual
Full Download: http://testbanklive.com/download/computer-security-principles-and-practice-3rd-edition-stallings-solutions-manual/

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

http://testbanklive.com/download/computer-security-principles-and-practice-3rd-edition-stallings-solutions-manual/

-10-

 6. It is computationally infeasible to find any pair (x, y) such that H(x)

= H(y).

2.8 Plaintext: This is the readable message or data that is fed into the

algorithm as input. Encryption algorithm: The encryption algorithm
performs various transformations on the plaintext. Public and private
keys: This is a pair of keys that have been selected so that if one is
used for encryption, the other is used for decryption. The exact
transformations performed by the encryption algorithm depend on the
public or private key that is provided as input. Ciphertext: This is the
scrambled message produced as output. It depends on the plaintext and
the key. For a given message, two different keys will produce two
different ciphertexts. Decryption algorithm: This algorithm accepts
the ciphertext and the matching key and produces the original plaintext.

2.9 Encryption/decryption: The sender encrypts a message with the

recipient's public key. Digital signature: The sender "signs" a message
with its private key. Signing is achieved by a cryptographic algorithm
applied to the message or to a small block of data that is a function of
the message. Key exchange: Two sides cooperate to exchange a
session key. Several different approaches are possible, involving the
private key(s) of one or both parties.

2.10 The key used in conventional encryption is typically referred to as a

secret key. The two keys used for public-key encryption are referred
to as the public key and the private key.

2.11 A digital signature is an authentication mechanism that enables the

creator of a message to attach a code that acts as a signature. The
signature is formed by taking the hash of the message and encrypting
the message with the creator's private key. The signature guarantees
the source and integrity of the message.

2.12 A pubic-key certificate consists of a public key plus a User ID of the

key owner, with the whole block signed by a trusted third party.
Typically, the third party is a certificate authority (CA) that is trusted
by the user community, such as a government agency or a financial
institution.

2.13 Several different approaches are possible, involving the private key(s)

of one or both parties. One approach is Diffie-Hellman key exchange.
Another approach is for the sender to encrypt a secret key with the
recipient's public key.

ANSWERS TO PROBLEMS

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-11-

2.1 Yes. The eavesdropper is left with two strings, one sent in each

direction, and their XOR is the secret key.

2.2 a.

2 8 10 7 9 6 3 1 4 5
C R Y P T O G A H I
B E A T T H E T H I
R D P I L L A R F R
O M T H E L E F T O
U T S I D E T H E L
Y C E U M T H E A T
R E T O N I G H T A
T S E V E N I F Y O
U A R E D I S T R U
S T F U L B R I N G
T W O F R I E N D S

4 2 8 10 5 6 3 7 1 9
N E T W O R K S C U
T R F H E H F T I N
B R O U Y R T U S T
E A E T H G I S R E
H F T E A T Y R N D
I R O L T A O U G S
H L L E T I N I B I
T I H I U O V E U F
E D M T C E S A T W
T L E D M N E D L R
A P T S E T E R F O

 ISRNG BUTLF RRAFR LIDLP FTIYO NVSEE TBEHI HTETA
 EYHAT TUCME HRGTA IOENT TUSRU IEADR FOETO LHMET
 NTEDS IFWRO HUTEL EITDS

 b. The two matrices are used in reverse order. First, the ciphertext is

laid out in columns in the second matrix, taking into account the
order dictated by the second memory word. Then, the contents of
the second matrix are read left to right, top to bottom and laid out in
columns in the first matrix, taking into account the order dictated by
the first memory word. The plaintext is then read left to right, top to
bottom.

 c. Although this is a weak method, it may have use with time-sensitive
information and an adversary without immediate access to good
cryptanalysis t(e.g., tactical use). Plus it doesn't require anything
more than paper and pencil, and can be easily remembered.

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-12-

2.3 a. Let -X be the additive inverse of X. That is -X

�

+ X = 0. Then:
P = (C

�

+ –K1) ⊕ K0
 b. First, calculate –C'. Then –C' = (P' ⊕ K0)

�

+ (– K1). We then have:
 C

�

+ –C' = (P ⊕ K0)

�

+ (P' ⊕ K0)
 However, the operations

�

+ and ⊕ are not associative or distributive
with one another, so it is not possible to solve this equation for K0.

2.4 a. The constants ensure that encryption/decryption in each round is

different.

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-13-

 b. First two rounds:

Delta1

K0

L0

L1

L2 R2

R0

R1

K1

< < 4

> > 5

Delta2

K2

K3

< < 4

> > 5

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-14-

 c. First, let's define the encryption process:
 L2 = L0

�

+ [(R0 << 4)

�

+ K0] ⊕ [R0

�

+ δ1] ⊕ [(R0 >> 5)

�

+ K1]
 R2 = R0

�

+ [(L2 << 4)

�

+ K2] ⊕ [L2

�

+ δ2] ⊕ [(L2 >> 5)

�

+ K3]

 Now the decryption process. The input is the ciphertext (L2, R2), and

the output is the plaintext (L0, R0). Decryption is essentially the same
as encryption, with the subkeys and delta values applied in reverse
order. Also note that it is not necessary to use subtraction because
there is an even number of additions in each equation.

 R0 = R2

�

+ [(L2 << 4)

�

+ K2] ⊕ [L2

�

+ δ2] ⊕ [(L2 >> 5)

�

+ K3]

 L0 = L2

�

+ [(R0 << 4)

�

+ K0] ⊕ [R0

�

+ δ1] ⊕ [(R0 >> 5)

�

+ K1]

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-15-

 d.

Delta1

K0

L0

L1

L2 R2

R0

R1

K1

< < 4

> > 5

Delta2

K2

K3

< < 4

> > 5

2.5 a. Will be detected with both (i) DS and (ii) MAC.
 b. Won’t be detected by either (Remark: use timestamps).
 c. (i) DS: Bob simply has to verify the message with the public key

from both. Obviously, only Alice’s public key results in a successful
verification.

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-16-

 (ii) MAC: Bob has to challenge both, Oscar and Bob, to reveal their

secret key to him (which he knows anyway). Only Bob can do that.
 d. (i) DS: Alice has to force Bob to prove his claim by sending her a

copy of the message in question with the signature. Then Alice can
show that message and signature can be verified with Bob’s public
key) Bob must have generated the message.

 (ii) MAC: No, Bob can claim that Alice generated this message.

2.6 The statement is false. Such a function cannot be one-to-one because

the number of inputs to the function is of arbitrary, but the number of
unique outputs is 2n. Thus, there are multiple inputs that map into the
same output.

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-17-

2.7 a. Overall structure:

N × 16 letters

M1 M2 MN

FIV =
0000

H1
F

• • •

• • •

Message

H2

16

HN =
hash
code

16

F

16

16 letters 16 letters 16 letters

Padding

4

 Compression function F:

Hi–1Mi

Column-wise mod 26 addition

Column-wise mod 26 addition

row-wise
rotations

Hi
 b. BFQG
 c. Simple algebra is all you need to generate a result:
 AYHGDAAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAAA

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-18-

2.8

 a. M3=

5 2 1 4 5
1 4 3 2 2
3 1 2 5 3
4 3 4 1 4
2 5 5 3 1

 b. Assume a plaintext message p is to be encrypted by Alice and sent to
Bob. Bob makes use of M1 and M3, and Alice makes use of M2. Bob
chooses a random number, k, as his private key, and maps k by M1
to get x, which he sends as his public key to Alice. Alice uses x to
encrypt p with M2 to get z, the ciphertext, which she sends to Bob.
Bob uses k to decrypt z by means of M3, yielding the plaintext
message p.

 c. If the numbers are large enough, and M1 and M2 are sufficiently
random to make it impractical to work backwards, p cannot be found
without knowing k.

2.9 We show the creation of a digital envelope:

Random
symmetric
key

Receiver's
public
key

Sender's
private
key

Encrypted
symmetric
key

Encrypted
message

Hash code Digital
signature

Digital
envelope

E

E

Message

EH

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-6-

PART 2 PRACTICAL SECURITY

ASSESSMENTS

Examining the current infrastructure and practices of an existing

organization is one of the best ways of developing skills in assessing its

security posture. Students, working either individually or in small groups,

select a suitable small- to medium-sized organization. They then interview

some key personnel in that organization in order to conduct a suitable

selection of security risk assessment and review tasks as it relates to the

organization’s IT infrastructure and practices. As a result, they can then

recommend suitable changes, which can improve the organization’s IT

security. These activities help students develop an appreciation of current

security practices, and the skills needed to review these and recommend

changes.

 The document PracticalAssessments included at the IRC provides

detailed guidance.

* Copyright © 2002 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

155

A PROFESSIONAL PRACTICE COMPONENT IN WRITING:

A SIMPLE WAY TO ENHANCE AN EXISTING COURSE*

Karen Anewalt
Department of Computer Science

Mary Washington College
Fredericksburg, VA 22401

anewalt@mwc.edu

ABSTRACT

The annual survey conducted in 2001 by the National Association of Colleges and
Employers showed that employers rank good communication skills (both written and
oral) as the most desirable quality in applicants seeking employment [7]. The recently
published 2001 ACM/IEEE Computing Curriculum guidelines respond to industry
demands by stressing the importance of incorporating “professional practice”
components, including coursework focusing on written communication skills, in the
undergraduate curriculum [1]. Despite evidence that communication skills are highly
valued and professional recommendations to include writing in the computer science
curriculum, many computer science faculty members are reluctant to add written
components to their courses. This paper describes simple, practical ways of
incorporating writing into existing computer science courses. Examples of writing
assignments used in a sophomore-level data structures course are provided.

INTRODUCTION

The importance of developing good communication skills as part of the undergraduate
curriculum has received recent attention in the ACM/IEEE Computing Curriculum 2001
guidelines [1]. The guidelines stress the importance of developing professional skills, including
effective written communication skills, as part of the undergraduate curriculum. Motivation to
enhance student communications skills also comes from the corporate world. In the annual

JCSC 18, 3 (February 2003)

156

survey conducted in 2001 by the National Association of Colleges and Employers, employers
ranked good communication skills (both written and oral) as the most desirable quality in
applicants seeking employment [7]. It is not surprising that employers and professional
organizations stress the importance of good communication skills. Regardless of post-graduate
choices, students will undoubtedly use their written communication skills in their future lives.

In spite of the obvious need for students to develop writing skills, many faculty members
are reluctant to add writing assignments to their existing computer science courses. A common
attitude is that instruction in writing is better left to humanities and social science instructors.
This opinion is not a wise one. In [8], Pensente states that “isolated attempts to teach writing
hinder the transfer of learning to other courses and, eventually, to the work place”. The
Computing Curriculum states that educators have a responsibility to provide exposure to
professional practice and ease the transition from academia to the business world [1]. In
addition to providing exposure to professional practice, teaching writing in a computer science
context can have many benefits that would not be realized if students were only to receive
writing practice in non-computer science courses.

! When writing is taught in a computer science setting, the assignments and
feedback can be relevant to the computer science discipline.

Writing experiences in computer science courses can provide students with valuable
practice communicating with assorted audiences in various formats that will be required
in the corporate or postgraduate world. Computer scientists do not operate in a vacuum.
In the modern world, computer scientists and software engineers need to be able to
effectively communicate, both orally and on paper. In industry, programmers are
expected to communicate with groups of other programmers in order to design and
complete software projects. Programmers may also be required to communicate with
non-technical individuals about project goals and requirements. Thus it is important to
teach computer science students how to communicate with a range of audiences.
Because computer scientists are much more familiar than non-computer scientists with the
types of documents typically required of computer scientists, it is appropriate that
instruction in creating such written works come from computer scientists.

! Parallels can be drawn between the software design process and the writing
process.

The similarity between the writing process and the software design process is something
that few traditional English literature courses recognize, but can make computer science
students feel more connected to the writing process. The software design process is
iterative. Most programmers do not receive a project assignment and immediately sit
down to write all of the code perfectly. The software design process should involve
thought and planning prior to the implementation phase. Following the implementation
phase, software design involves a cycle of testing and modifying the code. Finally,

CCSC: Eastern Conference

157

software enters the maintenance phase where it is modified to meet changing needs and
goals. The writing process follows a very similar sequence of phases [9]. When a written
assignment is given, the writer should think about the goals of the final document and
organize his or her thoughts about the assignment. After a clear plan is constructed, the
process of selecting language to communicate the ideas begins and the document is
created. There is a stage of reading and modifying the document to ensure that the final
product has the desired qualities. Finally, many computer science-related documents, like
user’s manuals, enter a maintenance stage in which they are modified as the software that
they refer to is modified. Even beginning computer science students are familiar with the
software design process and can see the parallels. By presenting this type of analogy to
students, the relationship between the writing process and the software design process is
made clear, and computer science students will feel more familiar with the writing process.

! Writing promotes active learning and can increase student understanding of
course material.

In my experience, students often believe that they understand complex concepts presented
in lecture without any additional exposure or hands-on practice with the concepts.
However, when these students are asked to write a detailed explanation of the concept,
they realize that their understanding is far from complete. Written assignments are one
way of encouraging students to interact with course content on a personal level, which can
in turn increase student understanding [2]. As faculty, we continually engage in active
learning; we read textbooks, compare ideas from different sources, prepare lecture notes
and create assignments. Students are often deprived of this type of active learning
experience [5]. Using targeted written assignments as part of a course encourages
students to participate in the same type of rich learning experience that we engage in as
professionals. Writing activities can teach students to pose questions, develop
hypotheses, collect and analyze data, and organize arguments. These critical thinking skills
are important to develop in order to be successful in the computer science field.

INCORPORATING WRITING INTO AN EXISTING COURSE

Committing to including writing assignments in a course does not necessarily imply that the
course format must be restructured. Assignments that could easily be modified to include a
written component are already used in most computer science courses. Typical computer
science courses do use programming projects and/or homework problem sets to reinforce
lecture topics. Written components can be easily added to programming projects by requiring
a short summary of the software’s purpose, a design summary describing design decisions made
by the student, or a document describing the efficiency of an algorithm being used in the
software. This type of assignment can be particularly useful because it provides practice in
written communication and does so in a professional context.

JCSC 18, 3 (February 2003)

158

Another method of incorporating additional writing into an existing course is by replacing
traditional problem sets with writing assignments that achieve the same learning goals.
Alternately, a traditional homework assignment can be used along with a question to be
answered in paragraph form. The focus of the assignment remains the same, but by adding the
additional writing component to the assignment, students receive additional practice and
exposure to writing. Writing can also be used to reinforce topics covered in lecture or reading
assignments. For example, when reading is assigned, the instructor can provide a question to
which students should write a short one-page response. The question will focus students on the
key points of the reading, engage the students in actively thinking about issues discussed in the
reading, and forces the students to be accountable for the reading by creating a tangible
deliverable. This type of writing assignment can actually reduce the amount of time that is spent
covering the basics of a concept during lecture, because the students will have already absorbed
the basics by completing the reading and writing assignment.

The key to enhancing a course through the use of writing assignments is to evaluate the
learning objectives of the course and the existing assignments. Assignments can then be added
or modified to increase the amount of writing required while maintaining the original learning
goal. In this way, writing assignments can be designed to enhance course content rather than
detract from course content.

WRITING ASSIGNMENT SUGGESTIONS

I was first exposed to teaching writing within a computer science context after being asked
to teach a data structures course designated to fulfill part of the writing-across-the-curriculum
requirement at my institution. The primary computer science goals of the course are to teach
data structures and to introduce students to Java as a second programming language. The
course is the third semester programming course for computer science majors and covers
heaps, trees, and graphs while emphasizing efficiency analysis and software reusability. In the
course, students learn to use Java as their second programming language, having already
acquired skills in C++. Like most computer science courses, there are many opportunities to
introduce writing assignments into this type of course without sacrificing course content.

I designed the writing component of the course with two main goals. The first goal is to
provide students with significant practice in writing and communicating ideas. The second goal
is to expose students to a variety of types of technical writing appropriate to the computer
science discipline. These goals were achieved using a variety of writing assignments. I have
found that using a variety of types of writing assignments benefits the students. The variety
increases the chance that a student will be successful in at least one paper. Some students are
better at writing for peers; others excel in creating documents for non-technical audiences.
Some students enjoy creative papers; others feel more confident when the assignment is very
structured. When a broad spectrum of writing styles is explored, students are likely to find
something with which they feel comfortable. In addition, the students benefit by familiarizing
themselves with the goals and challenges of a larger variety of document styles.

CCSC: Eastern Conference

159

My course uses three or four formal writing assignments (3-5 page papers) during the
semester. Examples of some writing assignments that I have used in this course are included
in the Appendix. Other types of formal writing assignments that I’ve successfully used in the
course include software design documents, descriptive essays about course topics and short
research papers.

As discussed earlier, adding writing to a course does not necessarily mean that formal
papers must be assigned. Shorter written assignments can be equally effective in providing
additional practice in writing and focusing students’ attention on key concepts discussed in a
course. In addition to the formal papers described above, I assign short, informal writing
assignments to encourage active learning. I typically assign an informal writing assignment once
a week and grade the papers on a credit/no credit basis. Examples of informal writing
assignments that I have used include assignments to summarize the reading assignment in a few
paragraphs (depending on the length of the reading), answer a focus question (provided at the
time the assignment is given) related to the reading, to find Web resources that contradict one
another about a definition or concept described in class and argue that one definition is correct,
to make connections between lecture topics discussed at different times in the course, and to
compare and contrast two data structures. These informal writing assignments are designed to
stimulate independent thought about course topics and to promote active learning. I have found
that the informal assignments were very useful to me as an instructor because the student
responses occasionally indicated weaknesses in student understanding and could be used to
generate discussion in future class meetings.

STUDENT RESPONSE TO WRITING IN COMPUTER SCIENCE

Each semester that I have offered the data structures course with a strong writing
component, several students have approached me at the end of the semester and mentioned that
the writing assignments were very beneficial and helped them to draw connections about course
material that they would have otherwise missed. They have said that by writing about computer
science topics, they began to recognize their own weaknesses in understanding and were better
able to formulate questions about the course topics. After having completed a writing
assignment, they felt that they had a more complete understanding of the related course material.

In the most recent offering of the data structures course, I requested that students
complete a short questionnaire about the writing portion of the course. I prepared a list of
statements and the students were allowed to anonymously respond that they agreed or
disagreed with each statement. Because the enrollment in the course was small, statistical
analysis of the data is not meaningful, however I felt the information collected would be useful
to get a feel for the student reactions to the effectiveness of the writing assignments used in the
course. The responses show that most of the students felt that the writing assignments were
beneficial both because they exposed them to the types of writing that might be required of them
after graduation and because they felt that the emphasis on writing enhanced their written
communication skills.

JCSC 18, 3 (February 2003)

160

The responses collected from the students enrolled in the course along with the questions
asked are indicated below:

 Agree Disagree
1) In general, I feel that my writing has improved during. 5 2

the semester.
2) After completing a computer science course with writing 6 1

assignments, I feel that I have a clearer picture of how
writing is used in the computer science field.

3) I feel that the documents assigned as formal writing 6 1
assignments in class were representative of the types of
documents that I may be required to write as a
professional in the computer science field.

4) I think that I will benefit from being exposed to these types 7 0
of documents even if I will not be required to write any
documents in my future career.

5) In general, I felt that the writing in the course helped me 7 0
 to develop understanding of course material.

6) I felt that I would have learned as much in the course 2 5
if it had not included writing assignments.

CONCLUSION

The ACM/IEEE Computing Curriculum guidelines emphasize the importance of good
communication skills and encouraged institutions to include communication skill development
in their curriculum. Including writing assignments in a computer science context exposes
students to the types of writing that will be expected of them in the future and can also
encourage students to be more personally involved in learning course material. I have found that
including writing assignments in a computer science course can improve student communication
skills, understanding of the professional practice and can enhance student understanding of
course topics.

REFERENCES

[1] Computing Curricula 2001: Report of the ACM/IEEE-CS joint curriculum tast force,
A s s o c i a t i o n f o r C o m p u t i n g M a c h i n e r y , D e c 2 0 0 1 ,
http://www.acm.org/sigs/sigcse/cc2001

[2] Bean, John C. Engaging Ideas. Jossey-Bass, 1996.

[3] Gersting, J. and Young, F. Shall We Write? SIGCSE Bulletin, vol. 33, no 2, June 2001,
pp. 18-19.

CCSC: Eastern Conference

161

[4] Kay, David G. Computer Scientists Can Teach Writing: An Upper Division Course for
Computer Science. In Proceedings of the 29th SIGCSE Technical Symposium, 1998,
pp. 52-54.

[5] McConnell, J. Active learning and its use in Computer Science. In Proceedings of the
Conference on Integrating Technology into Computer Science, 1996, pp. 52-54.

[6] Michael, M. Fostering and Assessing Communication Skills in the Computer Science
Context. In Proceedings of the 31st SIGCSE Technical Symposium, 2000, pp. 119-123.

[7] National Association of Colleges and Employers. Job outlook '01 (online version).
http://www.jobweb.com/joboutlook/

[8] Pesante, Linda H. Integrating Writing Into Computer Science Courses. In Proceedings
of the 22nd SIGCSE Technical Symposium, 1991, pp. 205-209.

[9] Zaidman, M. Integrating Writing Into the Computer Science Curriculum, In Proceedings
of the 5th Annual Easetern Small College Computing Conference, 1989, pp. 113-116.

APPENDIX

SAMPLE 1:
This assignment is given on the first day of class, immediately after discussing the writing

goals and guidelines for the course. The assignment is designed with both course content goals
and writing skill goals in mind.

Course Goals:
! One purpose of the course is to introduce Java as the students’ second programming

language. This assignment motivates students to begin to make the transition immediately.

! The IDE referenced in the paper is most of the students’ first exposure to an IDE. All of
their prior course work is done in a UNIX environment. The paper encourages students
to explore various aspects of the IDE and become familiar with this alternate tool for
program development.

Writing Goals:
! Students are introduced to the concept of “audience” for the paper. In this assignment

students develop skills in communicating technical ideas to a non-technical audience.
! In class, students discuss how the format for this type of paper may differ from traditional

papers that they have written in high school or in earlier courses. Methods of
appropriately differentiating commands and code from standard text within sentences is
emphasized.

JCSC 18, 3 (February 2003)

162

Because this is the first writing assignment that the students have in the course, I provide them
with many leading questions that they should consider while writing their paper. In future
papers, the students do not require as much guidance.

CPSC 321: Data Structures -- Writing Assignment 1
Assignment Goals:
! Learn to verbalize technical concepts for a less-technical audience
! Familiarize yourself with Forte for Java and the Java program lifecycle

Part I
Task: In order to familiarize yourself with the Forte for Java Integrated Development
Environment (IDE), create two programs that display a simple message (such as “Hello,
world!”). You will create an applet as well as an application program with this functionality.
(The message printed by the applet should be displayed in the applet viewer; the application
should print the message to standard output.) Very basic instructions on how to create,
compile, and run Java programs within the Forte IDE are provided at the end of this document.

Deliverables: Turn in printouts of your source files (staple to the end of your paper for Part
II).

Part II

Task: You are a member of the programming team responsible for developing Forte for Java
at Sun Microsystems. Your team has recently completed the development and testing of the
Forte software package. At the weekly team meeting, your supervisor assigns you the task of
writing a user's guide for the IDE. She tells you that the guide must explain how to create a Java
source file, compile it, and execute it using Forte for Java. This guide will be distributed along
with the software when it is sold commercially. She also tells you that your guide should focus
on writing one type of program. In other words, your guide should either explain to the reader
the steps necessary to create an applet OR to create an application (BUT NOT BOTH).
Someone else on the team will be responsible for the instructions for developing the other type
of program.

Because the user’s guide will be included in the commercial release package, the guide should
be understandable to a novice computer scientist (think of someone taking computer science
for the first time) who has never used Forte, but who is familiar with the concept of
programming (in C++ or Ada), windows, menus, point and click, etc. As you write your user’s
guide, anticipate questions and problems that the reader might have as they use the IDE and
provide the reader with guidance and explanations in your text.

CCSC: Eastern Conference

163

The paper should contain a separate section for each of the following:

! An introduction section introducing the Forte application. (What is the purpose of this
guide? What is Forte used for? Why will Forte make it easy/easier for the reader to
develop Java code?)

! Directions on how to launch the Forte application. Assume that the reader already has
the Forte program installed on their computer. (What does the environment look like
when it comes up? What should the reader expect?)

! Separate sections instructing the user in each of the following tasks: opening a new
project, creating a source (.java) file, saving a project, building a project, finding and
correcting syntax errors, and executing a program. Use an example program (like the
“Hello, world!” program that you wrote in Part I) to walk the user through the steps
required to complete these tasks. Including an example within the text of a user’s guide
makes the guide more interesting and understandable to the reader.

! Because the guide should enlighten the reader about the nature of syntax errors and how
a programmer identifies and corrects such errors, you should include at least one
intentional syntax error in your example code. Explain to the user the nature of this error
and how to correct the error. (Where do the compilation errors appear in the
development environment? What does the error message given to the user mean? Is
there a debugger that might help the user to correct errors? How is the debugger used?)

! The guide should explain how to identify correct output for the program. (Where is the
output displayed? How should it appear?)

! A conclusion summarizing the guide and providing other appropriate information (such as
where the reader can find more information about the topics covered).

The guide should serve several purposes for the reader. It should familiarize the reader with the
product, be useful as a hands-on exercise that illustrates the Java program development cycle
from file creation to execution, and it should serve as a reference for the preparation of future
programs.

Deliverables: The paper should be 3-4 typed double-spaced pages. Standard margins (1
inch at the top, 1 inch at the bottom, 1 ¼ inches on either side) and 12-point Times Roman font
should be used. Any example Java code provided with in the text of the guide should be
obviously delimited from the rest of the text and spaced appropriately (as it would appear in the
editor, not necessarily double spaced).

SAMPLE 2:
As this second example assignment is given, students have just “reviewed” object-oriented

concepts. Because the department is in a transitional period, many of the students in the course
had not had significant exposure to object-oriented design principles. In a previous homework
assignment, I had asked the students to do some research on the Web to find definitions for
various object-oriented terms including “encapsulation” and “information hiding”. Several

JCSC 18, 3 (February 2003)

164

students found resources that claimed that these terms have identical meanings. After reviewing
the informal writing assignment, I corrected the misconception during lecture and created this
formal writing assignment to reinforce the concepts.

Course Goals:
! This assignment encourages students to review object-oriented terminology.
! This assignment emphasizes that information hiding and encapsulation are in fact distinct

concepts.

Writing Goals:
! The assignment emphasizes that all information found on the Web (or even in a textbook)

is not factually correct and demonstrates the need to verify sources.
! The importance of appropriate documentation is discussed in class and students are

expected to use documentation in the paper.
! In this assignment, fewer guidelines were given (no leading questions) and the students

wrote to an audience of peer computer scientists.

CS 321 – Data Structures -- Writing Assignment #2
Project Goals:
! To explore some ideas of importance in object-oriented design and how the ideas relate

to one another
! To apply object-oriented design to a real-world object
! To practice verbalizing technical topics to peer computer scientists

Paper Description:
Object-oriented programming (OOP) differs from procedural programming. The principles of
encapsulation and information hiding are cornerstones of object-oriented program design.
Many people incorrectly believe that the terms “encapsulation” and “information hiding” refer
to the same concept. Read at least three references on the topic of OOP. At least one of your
references must be a source other than those given in the “Possible References” list. After you
have consulted your sources, write an essay in which you:
! Describe the concepts of a class, an object, encapsulation and information hiding
! Discuss the importance of encapsulation and information hiding to OOP
! Describe the difference between the concept of information hiding and the concept of

encapsulation

To demonstrate the usefulness of the object-oriented design philosophy, apply the
concepts of a class, an object, information hiding, and encapsulation to an example item. You
may choose a radio, microwave oven, or television and describe that real-world object using
object-oriented design. Include a discussion of the public interface, data members, and

CCSC: Eastern Conference

165

methods of each object. You should NOT write any Java code that would be associated with
implementing your chosen object.

Example:
Suppose that we are describing a watch using object-oriented design.
A watch could be an object of the class Clock.
The public interface of the watch could include:

the nob to set the correct time
a button that controls the alarm
a knob to set the alarm time

The data members of the watch object might include:
hours, minutes, seconds (for the current time)
hours, minutes and seconds (for the alarm time)
a flag that indicates whether the alarm is set or not set

Some methods could include:
changeAlarmStatus(), changeTime(), changeAlarmTime()

There is no correct or incorrect design for each item. Your design will depend on the radios,
microwaves or TVs that you are familiar with. Unlike the example above, your paper should
contain a narrative response and NOT a list of information.

Possible References:
http://www.javaworld.com/javaworld/jw-05-2001/jw-0518-encapsulation.html
http://www.toa.com/pub/abstraction.txt
Data Structures and Algorithms in Java by Goodrich and Tamassia
C++ Plus Data Structures by Dale and Teague

Specifications:
! This paper should be 3-4 typed, double-spaced pages.
! Audience: Other computer science students who are studying the concepts of object-

oriented programming (for example someone who has taken computer science 2 or data
structures).

! Your paper must have a title, introduction and conclusion!
! Your paper should include a list of references that you consulted and contain appropriate

citations.

Cryptographic Tools

Symmetric Encryption

• The universal technique for providing confidentiality

for transmitted or stored data

• Also referred to as conventional encryption or

single-key encryption

• Two requirements for secure use:

• Need a strong encryption algorithm

• Sender and receiver must have obtained copies

of the secret key in a secure fashion and must

keep the key secure

Plaintext
input

Y = E[K, X] X = D[K, Y]

X

K K

Transmitted
ciphertext

Plaintext
output

Secret key shared by
sender and recipient

Secret key shared by
sender and recipient

Encryption algorithm
(e.g., DES)

Decryption algorithm
(reverse of encryption

algorithm)

Figure 2.1 Simplified Model of Symmetric Encryption

Attacking Symmetric
Encryption

Cryptanalytic Attacks Brute-Force Attack

 Rely on:

 Nature of the algorithm

 Some knowledge of the

general characteristics of the

plaintext

 Some sample plaintext-

ciphertext pairs

 Exploits the characteristics of

the algorithm to attempt to

deduce a specific plaintext or

the key being used

 If successful all future and past

messages encrypted with that

key are compromised

 Try all possible keys on some
ciphertext until an intelligible
translation into plaintext is
obtained
 On average half of all possible

keys must be tried to achieve
success

Table 2.1

Comparison of Three Popular Symmetric
Encryption Algorithms

DES Triple DES AES

Plaintext block size (bits) 64 64 128

Ciphertext block size (bits) 64 64 128

Key size (bits) 56 112 or 168 128, 192, or 256

DES = Data Encryption Standard
AES = Advanced Encryption Standard

Data Encryption Standard
(DES)

• The most widely used encryption
scheme

• FIPS PUB 46

• Referred to as the Data Encryption
Algorithm (DEA)

• Uses 64 bit plaintext block and 56 bit key to
produce a 64 bit ciphertext block

Strength concerns:

• Concerns about algorithm

•DES is the most studied encryption algorithm in
existence

• Use of 56-bit key

• Electronic Frontier Foundation (EFF) announced
in July 1998 that it had broken a DES encryption

Table 2.2

Average Time Required for Exhaustive Key Search

Key size
(bits) Cipher

Number of
Alternative

Keys
Time Required at 109

decryptions/s

Time Required
at 1013

decryptions/s

56 DES 256 ≈ 7.2 ´ 1016 255 ns = 1.125 years 1 hour

128
AES

2128 ≈ 3.4 ´ 1038 2127 ns = 5.3 ´ 1021

years 5.3 ´ 1017 years

168
Triple DES

2168 ≈ 3.7 ´ 1050 2167 ns = 5.8 ´ 1033

years 5.8 ´ 1029 years

192 AES 2192 ≈ 6.3 ´ 1057 2191 ns = 9.8 ´ 1040

years
9.8 ´ 1036 years

256 AES 2256 ≈ 1.2 ´ 1077 2255 ns = 1.8 ´ 1060

years
1.8 ´ 1056 years

Triple DES (3DES)
 Repeats basic DES algorithm three times using either

two or three unique keys

 First standardized for use in financial applications in

ANSI standard X9.17 in 1985

 Attractions:

 168-bit key length overcomes the vulnerability to brute-force

attack of DES

 Underlying encryption algorithm is the same as in DES

 Drawbacks:
 Algorithm is sluggish in software

 Uses a 64-bit block size

Advanced Encryption
Standard (AES)

Needed a
replacement for

3DES

Needed a
replacement for

3DES

3DES was not
reasonable for
long term use

3DES was not
reasonable for
long term use

NIST called for
proposals for a

new AES in
1997

NIST called for
proposals for a

new AES in
1997

Should have a security
strength equal to or

better than 3DES

Should have a security
strength equal to or

better than 3DES

Significantly improved
efficiency

Significantly improved
efficiency

Symmetric block
cipher

Symmetric block
cipher

128 bit data and
128/192/256 bit keys

128 bit data and
128/192/256 bit keys

Selected
Rijndael in

November 2001

Selected
Rijndael in

November 2001

Published as

FIPS 197

Published as

FIPS 197

 Typically symmetric encryption is applied to a unit of
data larger than a single 64-bit or 128-bit block

 Electronic codebook (ECB) mode is the simplest
approach to multiple-block encryption

 Each block of plaintext is encrypted using the same key

 Cryptanalysts may be able to exploit regularities in the
plaintext

 Modes of operation
 Alternative techniques developed to increase the security

of symmetric block encryption for large sequences

 Overcomes the weaknesses of ECB

Encrypt

E
n

cr
y

p
ti

o
n

K

Figure 2.2 Types of Symmetric Encryption

b

b

b

b

P1

C1

P2

C2

b

b

Pn

Cn

EncryptK EncryptK

Decrypt

D
ec

ry
p

ti
o

n

K

b

b

b

b

C1

P1

C2

P2

b

b

Cn

Pn

Decrypt

(a) Block cipher encryption (electronic codebook mode)

(b) Stream encryption

K DecryptK

Pseudorandom byte
generator

(key stream generator)

Plaintext
byte stream

M

Key
K

Key
K

k k
Plaintext

byte stream
M

Ciphertext
byte stream

CENCRYPTION

Pseudorandom byte
generator

(key stream generator)

DECRYPTION

k

Block & Stream Ciphers

• Processes the input one block of elements at a time

• Produces an output block for each input block

• Can reuse keys

• More common

Block Cipher

• Processes the input elements continuously

• Produces output one element at a time

• Primary advantage is that they are almost always faster
and use far less code

• Encrypts plaintext one byte at a time

• Pseudorandom stream is one that is unpredictable without
knowledge of the input key

Stream Cipher

Message Authentication

Protects against
active attacks

Verifies received
message is
authentic

Can use
conventional

encryption

• Contents have not been
altered

• From authentic source

• Timely and in correct
sequence

• Only sender & receiver
share a key

Message

MAC

K

K

Transmit

MAC
algorithm

MAC
algorithm

Compare

Figure 2.3 Message Authentication Using a Message
Authentication Code (MAC).

M
es

sa
g

e

M
es

sa
g

e

M
es

sa
g

e

K

E

K

(a) Using symmetric encryption

Compare

D

H

H

H

H

H

M
es

sa
g

e

M
es

sa
g

e

M
es

sa
g

e

PRa

E

PUa

(b) Using public-key encryption

Compare

D

M
es

sa
g

e

M
es

sa
g

e

M
es

sa
g

e

(c) Using secret value

Compare

K

K

K

K

Source A Destination B

Figure 2.5 Message Authentication Using a One-Way Hash Function.

H

Hash Function Requirements

Can be applied to a block of data of any sizeCan be applied to a block of data of any size

Produces a fixed-length outputProduces a fixed-length output

H(x) is relatively easy to compute for any given xH(x) is relatively easy to compute for any given x

One-way or pre-image resistant

• Computationally infeasible to find x such that H(x) = h

One-way or pre-image resistant

• Computationally infeasible to find x such that H(x) = h

Computationally infeasible to find y ≠ x such that H(y) = H(x)Computationally infeasible to find y ≠ x such that H(y) = H(x)

Collision resistant or strong collision resistance

• Computationally infeasible to find any pair (x,y) such that H(x) = H(y)

Collision resistant or strong collision resistance

• Computationally infeasible to find any pair (x,y) such that H(x) = H(y)

Security of Hash Functions

There are two
approaches to

attacking a secure
hash function:

There are two
approaches to

attacking a secure
hash function:

Cryptanalysis

•Exploit logical
weaknesses in the
algorithm

Brute-force attack

•Strength of hash function
depends solely on the
length of the hash code
produced by the
algorithm

SHA most widely
used hash algorithm

SHA most widely
used hash algorithm

Additional secure
hash function
applications:

Additional secure
hash function
applications:

Passwords

•Hash of a password is
stored by an operating
system

Intrusion detection

•Store H(F) for each file
on a system and secure
the hash values

Publicly
proposed by
Diffie and
Hellman in

1976

Based on
mathematical

functions

Asymmetric

• Uses two
separate keys

• Public key
and private
key

• Public key is
made public
for others to
use

Some form of
protocol is
needed for

distribution

 Plaintext
 Readable message or data that is fed into the algorithm as input

 Encryption algorithm
 Performs transformations on the plaintext

 Public and private key
 Pair of keys, one for encryption, one for decryption

 Ciphertext
 Scrambled message produced as output

 Decryption key
 Produces the original plaintext

 User encrypts data using his or her own
private key

 Anyone who knows the corresponding
public key will be able to decrypt the
message

Mike Bob

Plaintext
input

Transmitted
ciphertext

Plaintext
output

Encryption algorithm
(e.g., RSA)

Decryption algorithm

Bob's private
key

Bob's public
key

Alice's
public key

ring

Joy
Ted

(b) Encryption with private key

X

PUbPRb

Y = E[PRb, X]

X =
D[PUb, Y]

Figure 2.6 Public-Key Cryptography

Bob Alice

Algorithm Digital Signature Symmetric Key
Distribution

Encryption of
Secret Keys

RSA Yes Yes Yes

Diffie-Hellman No Yes No

DSS Yes No No

Elliptic Curve Yes Yes Yes

Table 2.3

Applications for Public-Key Cryptosystems

Computationally
easy to create key

pairs

Computationally
easy for sender

knowing public key
to encrypt
messages

Computationally
easy for receiver
knowing private
key to decrypt

ciphertext

Computationally
infeasible for
opponent to

determine private
key from public key

Computationally
infeasible for
opponent to

otherwise recover
original message

Useful if either key
can be used for

each role

RSA (Rivest,
Shamir,

Adleman)

RSA (Rivest,
Shamir,

Adleman)

Developed in 1977
Most widely accepted and
implemented approach to

public-key encryption

Block cipher in which the
plaintext and ciphertext

are integers between 0 and
n-1 for some n.

Diffie-
Hellman key

exchange
algorithm

Diffie-
Hellman key

exchange
algorithm

Enables two users to
securely reach agreement
about a shared secret that
can be used as a secret

key for subsequent
symmetric encryption of

messages

Limited to the exchange of
the keys

Digital
Signature
Standard

(DSS)

Digital
Signature
Standard

(DSS)

Provides only a digital
signature function with

SHA-1

Cannot be used for
encryption or key

exchange

Elliptic curve
cryptography

(ECC)

Elliptic curve
cryptography

(ECC)

Security like RSA, but with
much smaller keys

Digital Signatures

 Used for authenticating both source and data
integrity

 Created by encrypting hash code with private key

 Does not provide confidentiality

 Even in the case of complete encryption

 Message is safe from alteration but not eavesdropping

Unsigned certificate:
contains user ID,
user's public key,
as well as information
concerning the CA

Signed certificate

Recipient can verify
signature by comparing
hash code values

Figure 2.7 Public-Key Certificate Use

Generate hash
code of unsigned
certificate

Encrypt hash code
with CA's private key
to form signature

H

H

Bob's ID
information

CA
information

Bob's public key

E D

Decrypt signature
with CA's public key
to recover hash code

Use certificate to
verify Bob's public key

Create signed
digital certificate

 Protects a message
without needing to
first arrange for sender
and receiver to have
the same secret key

 Equates to the same
thing as a sealed
envelope containing
an unsigned letter

Random
symmetric
key

Receiver's
public
key

Encrypted
symmetric
key

Encrypted
message

Encrypted
message

Digital
envelope

Figure 2.8 Digital Envelopes

(a) Creation of a digital envelope

E

E

Message

Random
symmetric
key

Receiver's
private
key

Encrypted
symmetric
key

(b) Opening a digital envelope

D

D
Digital
envelope

Message

Random
Numbers

 Keys for public-key

algorithms

 Stream key for symmetric

stream cipher

 Symmetric key for use as

a temporary session key

or in creating a digital

envelope

 Handshaking to prevent

replay attacks

 Session key

Uses include
generation of:

Random Number
Requirements

Randomness Unpredictability

 Criteria:
 Uniform distribution

 Frequency of occurrence
of each of the numbers
should be approximately
the same

 Independence

 No one value in the
sequence can be inferred
from the others

 Each number is
statistically independent
of other numbers in the
sequence

 Opponent should not be
able to predict future
elements of the
sequence on the basis of
earlier elements

Random versus
Pseudorandom

Cryptographic applications typically make use of
algorithmic techniques for random number generation

•Algorithms are deterministic and therefore produce sequences of
numbers that are not statistically random

Cryptographic applications typically make use of
algorithmic techniques for random number generation

•Algorithms are deterministic and therefore produce sequences of
numbers that are not statistically random

Pseudorandom numbers are:

•Sequences produced that satisfy statistical randomness tests

•Likely to be predictable

Pseudorandom numbers are:

•Sequences produced that satisfy statistical randomness tests

•Likely to be predictable

True random number generator (TRNG):

•Uses a nondeterministic source to produce randomness

•Most operate by measuring unpredictable natural processes

•e.g. radiation, gas discharge, leaky capacitors

•Increasingly provided on modern processors

True random number generator (TRNG):

•Uses a nondeterministic source to produce randomness

•Most operate by measuring unpredictable natural processes

•e.g. radiation, gas discharge, leaky capacitors

•Increasingly provided on modern processors

Practical Application:
Encryption of Stored Data

Common to encrypt transmitted data

Much less common for stored data

There is often little protection
beyond domain

authentication and operating
system access controls

Data are archived for
indefinite periods

Even though erased, until disk
sectors are reused data are

recoverable

Approaches to encrypt stored data:

Use a commercially
available encryption

package
Back-end appliance

Library based tape
encryption

Background laptop/PC
data encryption

Summary

• Public-key
encryption
 Structure

 Applications for public-
key cryptosystems

 Requirements for public-
key cryptography

 Asymmetric encryption
algorithms

• Digital signatures
and key
management
 Digital signature

 Public-key certificates

 Symmetric key exchange
using public-key
encryption

 Digital envelopes

• Confidentiality with
symmetric encryption
 Symmetric encryption

 Symmetric block encryption
algorithms

 Stream ciphers

• Message
authentication and
hash functions
 Authentication using

symmetric encryption

 Message authentication
without message encryption

 Secure hash functions

 Other applications of hash
functions

• Random and
pseudorandom
numbers
 The use of random numbers

 Random versus
pseudorandom

Computer Security Principles and Practice 3rd Edition Stallings Solutions Manual
Full Download: http://testbanklive.com/download/computer-security-principles-and-practice-3rd-edition-stallings-solutions-manual/

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

http://testbanklive.com/download/computer-security-principles-and-practice-3rd-edition-stallings-solutions-manual/

