Computer Organization and Architecture 10th Edition Stallings Solutions M anual
Full Download: http://testbanklive.com/downl oad/computer-organization-and-architecture-10th-edition-stallings-sol utions-manual.

CHAPTER 2 PERFORMANCE ISSUES

2.1

2.2

2.3

2.4

2.5

ANSWERS TO QUESTIONS

m Pipelining: The execution of an instruction involves multiple stages of
operation, including fetching the instruction, decoding the opcode,
fetching operands, performing a calculation, and so on.

m Branch prediction: The processor looks ahead in the instruction code
fetched from memory and predicts which branches, or groups of
instructions, are likely to be processed next.

m Superscalar execution: This is the ability to issue more than one
instruction in every processor clock cycle.

m Data flow analysis: The processor analyzes which instructions are
dependent on each other’s results, or data, to create an optimized
schedule of instructions.

m Speculative execution: Using branch prediction and data flow analysis,
some processors speculatively execute instructions ahead of their actual
appearance in the program execution, holding the results in temporary
locations.

Performance balance is the adjustment/tuning of the organization and
architecture to compensate for the mismatch among the capabilities of
the various components.

Multicore: the use of multiple processing units, called cores, on a single
chip.

Many integrated core (MIC): a chip containing a large number (50 or
more) cores.

General-purpose computing on GPUs (GPGPU): A GPU desighed to
support a broad range of applications.

Amdahl's law deals with the potential speedup of a program using
multiple processors compared to a single processor. The law indicates
the amount of speedup as a function of the fraction of code that can be
executed in parallel.

Little's law applies to queuing systems. It defines the relationship
between arrival rate, average time spent in system, and the average
number of items in the system.

-10-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Full download all chaptersinstantly please go to Solutions Manual, Test Bank site: testbanklive.com

http://testbanklive.com/download/computer-organization-and-architecture-10th-edition-stallings-solutions-manual/

2.6 MIPS = millions of instruction executions per second. FLOPS = floating-
point operations per second.

2.7 Arithmetic mean: sum of a set of values divided by the number of
values.
Geometric mean: the nth root of the product of a set of n values.
Harmonic mean: for n values, n divided by the product of the reciprocal
of the n values.

2.8 1. It is written in a high-level language, making it portable across
different machines.
2. It is representative of a particular kind of programming domain or
paradigm, such as systems programming, numerical programming, or
commercial programming.
3. It can be measured easily.
4. It has wide distribution.

2.9 This is a collection of benchmark suites is defined and maintained by the
Standard Performance Evaluation Corporation (SPEC).

2.10 mBase metric: These are required for all reported results and have
strict guidelines for compilation. In essence, the standard compiler
with more or less default settings should be used on each system
under test to achieve comparable results.
mPeak metric: This enables users to attempt to optimize system
performance by optimizing the compiler output.
mSpeed metric: This is simply a measurement of the time it takes to
execute a compiled benchmark.
mRate metric: This is a measurement of how many tasks a computer
can accomplish in a certain amount of time; this is called a
throughput, capacity or rate measure.

ANSWERS TO PROBLEMS

2.1 CPI = 1.55; MIPS rate = 25.8; Execution time = 3.87 ms.

-11-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

2.2 a.
DCPLXI, (8x1+4X3+2x4+4x3)x10°

CPI. = =222
4] (8+4+2+4)x10°
6
mips, =L 200x10° _
CPI, x10° 222x10
6
CPUA:I"XCPIA _18x10 x%.zzo.zs
f 200% 10
DCPIXI, (10x1+8X2+2%4+4%3)x10°
CPI, = - - ~1.92
. (10+8+2+4)x10
6
Mips, = _200x10° _
CPI, x10° 1.92x10
6
CPU, = I . xCPI, _ 24 x10° x1.92 —003 g

f 200 10°

b. Although machine B has a higher MIPS than machine A, it requires a
longer CPU time to execute the same set of benchmark programs.

2.3 a. We can express the MIPs rate as: [(MIPS rate)/10°] = I /T. So that:
I_ = T x [(MIPS rate)/10°]. The ratio of the instruction count of the

RS/6000 to the VAX is [x x 18]/[12x x 1] = 1.5.
b. For the Vax, CPI = (5 MHz)/(1 MIPS) = 5.
For the RS/6000, CPI = 25/18 = 1.39.

2.4 From Equation (2.3), MIPS = I_/(T x 10%) = 100/T. The MIPS values

are:
Computer A | Computer B | Computer C
Program 1 100 10 5
Program 2 0.1 1 5
Program 3 0.2 0.1 2
Program 4 1 0.125 1
Arithmetic Rank Harmonic Rank
mean mean
Computer A 25.325 1 0.25
Computer B 2.8 3 0.21
Computer C 3.25 2 2.1
12

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

2.5 a. Normalized to R:

Benchmark Processor
R M y4
E 1.00 1.71 3.11
F 1.00 1.19 1.19
H 1.00 0.43 0.49
I 1.00 1.11 0.60
K 1.00 2.10 2.09
Arithmetic mean 1.00 1.31 1.50
b. Normalized to M:
Benchmark Processor
R M y4
E 0.59 1.00 1.82
F 0.84 1.00 1.00
H 2.32 1.00 1.13
I 0.90 1.00 0.54
K 0.48 1.00 1.00
Arithmetic mean 1.01 1.00 1.10

c. Recall that the larger the ratio, the higher the speed. Based on (a)
R is the slowest machine, by a significant amount. Based on (b), M
is the slowest machine, by a modest amount.

d. Normalized to R:

Benchmark Processor
R M y4
E 1.00 1.71 3.11
F 1.00 1.19 1.19
H 1.00 0.43 0.49
I 1.00 1.11 0.60
K 1.00 2.10 2.09
Geometric mean 1.00 1.15 1.18

-13-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Normalized to M:

Benchmark Processor
R M y4
E 0.59 1.00 1.82
F 0.84 1.00 1.00
H 2.32 1.00 1.13
I 0.90 1.00 0.54
K 0.48 1.00 1.00
Geometric mean 0.87 1.00 1.02

Using the geometric mean, R is the slowest no matter which machine
is used for normalization.

2.6 a. Normalized to X:

Processor
Benchmark
X Y y 4
1 1 2.0 0.5
2 1 0.5 2.0
Arithmetic mean 1 1.25 1.25
Geometric mean 1 1 1
Normalized to Y:
Processor
Benchmark
X Y y 4
1 0.5 1 0.25
2 2.0 1 4.0
Arithmetic mean 1.25 1 2.125
Geometric mean 1 1 1

Machine Y is twice as fast as machine X for benchmark 1, but half as
fast for benchmark 2. Similarly machine Z is half as fast as X for
benchmark 1, but twice as fast for benchmark 2. Intuitively, these
three machines have equivalent performance. However, if we

-14-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

normalize to X and compute the arithmetic mean of the speed
metric, we find that Y and Z are 25% faster than X. Now, if we
normalize to Y and compute the arithmetic mean of the speed metric,
we find that X is 25% faster than Y and Z is more than twice as fast
as Y. Clearly, the arithmetic mean is worthless in this context.

b. When the geometric mean is used, the three machines are shown to
have equal performance when normalized to X, and also equal
performance when normalized to Y. These results are much more in
line with our intuition.

2.7 a. Assuming the same instruction mix means that the additional
instructions for each task should be allocated proportionally among
the instruction types. So we have the following table:

Instruction Type CP1 Instruction Mix
Arithmetic and logic 1 60%
Load/store with cache hit 2 18%
Branch 4 12%
Memory reference with cache miss 12 10%

CPI =0.6 + (2x0.18) + (4x0.12) + (12 x 0.1) = 2.64. The CPI has
increased due to the increased time for memory access.

b. MIPS = 400/2.64 = 152. There is a corresponding drop in the MIPS
rate.

c. The speedup factor is the ratio of the execution times. Using
Equation 2.2, we calculate the execution time as T = I /(MIPS x 10°).

For the single-processor case, T; = (2 x 10°)/(178 x 10°) = 11 ms.

With 8 processors, each processor executes 1/8 of the 2 million
instructions plus the 25,000 overhead instructions. For this case, the
execution time for each of the 8 processors is

6
2x107 0 025%10°

T, = 8 - =1.8 ms
152x10

Therefore we have
time to execute program on a single processor 11 6.11

Speedup = —
time to execute program on N parallel processors 1.8

d. The answer to this question depends on how we interpret Amdahl's'
law. There are two inefficiencies in the parallel system. First, there
are additional instructions added to coordinate between threads.
Second, there is contention for memory access. The way that the
problem is stated implies that none of the code is inherently serial.
All of it is parallelizable, but with scheduling overhead. One could
argue that the memory access conflict means that to some extent

-15-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

memory reference instructions are not parallelizable. But based on
the information given, it is not clear how to quantify this effect in
Amdahl's equation. If we assume that the fraction of code that is
parallelizable is f = 1, then Amdahl's law reduces to Speedup = N =8
for this case. Thus the actual speedup is only about 75% of the
theoretical speedup.

2.8 a. Speedup = (time to access in main memory)/(time to access in
cache) = T,/T,.

b. The average access time can be computedas T=Hx T, + (1 - H) x
T,
Using Equation (2.8):

Execution time before enhancement 7, T, 1

Speedup = E 1 i after enhancement ? B HXT +(1-H)T, T
xecution time 1 () 2 (1 _ H) +HL

2

C. T=HxT,+(1-H)x(T{+T,)=T, + (1 -H)xT,)
This is Equation (4.2) in Chapter 4. Now,

Execution time before enhancement 7, T, 1

Speedup = =2=
PP = Eecution time after enhancement T T, +(1-H)T, (1-H)+ T

2
In this case, the denominator is larger, so that the speedup is less.

297, =w/A=38/18 = 0.44 hours

2.10 a. A = CW
b. A=LT
c. CW = LT =L = W(C/T)
but A = C/T

2.11 a. Number the rectangles from bottom to top:

Rectangle Width Height Area

1 2 1 2
2 2 1 2
3 2 1 2
4 1 1 1
5 3 1 3
6 1 1 1

Total 11

b. Number the rectangles from left to right:

-16-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Rectangle Width Height Area
1 1 1 1
2 .5 2 1
3 .5 3 1.5
4 1 2 2
5 0.25 1 0.25
6 0.25 2 0.5
7 0.75 1 0.75
8 2.5 1 2.5
9 0.5 2 1
10 0.5 1 .5

Total 11

2.12 a. We have FLOPSref = I/Tref, FLOPSsut = I/Tsut

So Tref = I/FLOPSref, Tsut = I/FLOPSsut. Therefore:

. Tref, I,/FLOPSref, FLOPSsut,
" Tsut, I,/FLOPSsut, FLOPSref

FLOPSref, — FLOPSsut, Tref, —Tsut,
FLOPSsut, Tsut,
2.13
Machine Execution time Speedup Relative
Change
A 480 1 0
B 360 1.33 +0.33
C 540 0.89 -0.11
D 210 2.29 +1.29

Looking at column 2, it is easy to see that system D is the fastest
system, followed by B, A, and C. Column 3 gives a more precise
indication of exactly how much fast one system is than the others.

Column 4 provides the same level of precision and clarity as column 3.

2.14
Machine Execution time Speedup Relative
Change
D 210 1 0
A 480 0.44 -0.56
B 360 0.58 -0.42
C 540 0.39 -0.61

No change to the relative rankings.
17

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

2.15

Computer
A time
(secs)

Computer B
time (secs)

Computer
C time
(secs)

Computer A
rate
(MFLOPS)

Computer B
rate
(MFLOPS)

Computer C
rate
(MFLOPS)

Program 1
(108 FP
ops)

20

10

0.2

50

100

500

Program 2
(108 FP
ops)

20

4.0

250

50

25

Total
execution
time

24

30

42

Arithmetic
mean of
times

1.2

1.5

2.1

Inverse of
total
execution
time
(1/sec)

042

0.33

0.24

Arithmetic
mean of
rates

150

75.00

262.5

Harmonic
mean of
rates

83.33

66.67

47.6

Again, the arithmetic mean of rates does not reflect the speed ranks,
whereas the harmonic mean does.

2.16 a. We use two identities: eXe¥ = eX+Y) and In(XP) = p In x

-18-

H eln((x")l/n) — ﬁ

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

(¢))-{11)

b. The intermediate values in the calculation are not as large.

Getting Started with the SimpleScalar Tool Set Version 2.0

Introduction

This document contains everything that you need to know to work the SimpleScalar problems in
the textbook. Section 1 is a summary that will familiarize you with SimpleScalar and the use of
simulation tools in computer architecture research. Section 2 tells you how to get the tool set
from the Web and set up the part that is needed for the textbook problems. Section 3 describes
each of the simulators, including the information supplied by each of them. Section 4 describes
the SPEC95 benchmark binaries that can be used with the simulators. Section 5 consists of a
complete example of the use of one of the simulators. Section 6 briefly describes the complete
tool set for people interested in going beyond the problems in the textbook.

1 SimpleScalar and Simulation in Computer Architecture

When computer architecture researchers work to improve the performance of a computer system,
they often use an existing system to simulate a proposed system. Although the intent is not
always to measure raw performance (estimating power consumption is one alternative),
performance estimation is one of the most important results obtained by simulation. The
SimpleScalar tool set is designed to measure the performance of several parts of a superscalar
processor and its memory hierarchy. This document describes the SimpleScalar simulators.
Other simulation systems may be similar or very different.

Overview of SimpleScalar Simulation

The SimpleScalar tool set includes a compiler that creates binaries for a non-existent processor.
The binaries can be executed on one of several simulators that are included in the tool set. This
section describes the goals of processor simulation.

The execution of a processor can be modeled as a series of known states and the time (or other
costs, i.e., power) required to make the transition between each pair of states. The state
information may include all or a subset of:

* The values stored in all memory locations.

e The values stored in and the status of all cache memories.

e The values stored in and the status of the translation-lookaside buffer (TLB).

e The values stored in and the status of the branch prediction table(s) or branch target buffer
(BTB).

e All processor state (i.e., the pipeline, execution units (integer ALU, load/store unit, etc.),
register file, register update unit (RUU), etc.)

A good way to evaluate the performance of a program on a proposed processor architecture is to
simulate the state of the architecture during the execution of the program. By simulating the
states through which the processor will pass during the execution of a program and estimating
the time (or other measurement) necessary for each state transition, the amount of time that the
simulated processor will need to execute the program can be estimated.

The more state that is simulated, the longer a simulation will take. Complex simulations can
execute 100s of times slower than a real processor. Therefore, simulating the execution of a
program that would take an hour of CPU time on an existing processor can take a week on a
complex simulator. For this reason, it is important to evaluate what measurements are desired
and limit the simulation to only the state that is necessary to properly estimate those
measurements. This is the reason for the inclusion of several different simulators in the
SimpleScalar tool set.

Profiling

In addition to estimating the execution time of a program on the simulated processor, profile
information may be of use to computer architects. Profile information is a count of the number or
frequency of events that occur during the execution of a program. One common example of
profile data is a count of how often each type of instruction (i.e., branch, load, store, ALU
operation, etc.) is executed during the running of a program.

Profile information can be used to gauge the relative importance of each part of a processor's
implementation in determining its performance when executing the profiled program.

The SimpleScalar Base Processor

The SimpleScalar tool set is based on the MIPS R2000 processor's instruction set architecture
(ISA). The processor is described in MIPS RISC Architecture by Gerry Kane, published by
Prentice Hall, 1988. The ISA describes the instructions that the processor is capable of
executing—and therefore the instructions that a compiler can generate—but it does not describe
how the instructions are implemented. The implementation is what computer architects change in
order to improve the performance of a processor.

An existing processor can be chosen as a base processor for several reasons. These may
include:

* The architecture of the processor is well known and documented.

e The architecture of the processor is state-of-the-art and therefore it is likely to be useful as a
base for the study of future processors.

* The architecture of the processor has been implemented as a real processor, allowing
simulations to be compared to executions on a real, physical processor.

An important consideration in the choice of the MIPS architecture for the SimpleScalar tool set
was the fact that the GNU GCC compiler was available in source-code form, and could compile to
the MIPS architecture. This allowed the use of this public-domain software as part of the
SimpleScalar tool set.

2 Setting-Up the Simulators

The SimpleScalar simulators are part of the complete SimpleScalar tool set that is described in
Section 6. The simulators are the easiest part of the tool set to set up, and they can be used to
simulate existing SimpleScalar binaries without the need for any of the other parts of the tool set.
The simulators are available in a file that is available on the SimpleScalar Tools Home Page at

http://www.cs.wisc.edu/~mscalar/simplescalar.html

on the Web. The file is called simplesim.tar. You can get it directly from the Web page or via
ftp (the ftp file is named simplesim.tar.gz) as described on the Web page. At the time that this
document was written, the current release of SimpleScalar was version 2.0.

Using standard Unix commands, you can unpack the archive. All that remains is to build the
simulators by moving to the directory containing them (probably simplesim-2.0) and building
them by typing make. Note that the default optimization is 0. The simulators will run much faster
(i.e., 10 times) if you modify the make file (Makefile) section “Choose your optimization level
here” so that the “for optimization” flags are used as the OFLAGS. If you have built the simulators
and want to rebuild them with different optimizations, type make clean and then make.

Note: Building the most complex simulator, sim-outorder, may require 64MB of memory when it
is compiled with all optimizations. If the building process is stalled for several minutes on the line

that compiles sim-outorder, you may want to try changing the optimizations. You may also want
to simply wait for the build to finish, as the simulator will run much faster with the optimizations
included.

After you have built the simulators, either move the executables to a directory in your execution
path or add the directory in which you built the executables to your execution path. The simulator
executable files include:

* sim-bpred
* sim-cache
. sim-cheetah
sim-fast
sim-outorder
sim-profile
sim-safe

Each of these is described in the next section.

3 Description of the Simulators

Each of the simulators appears here in a separate section. Each section includes the name of
the simulator and the output that is generated when you ask for the simulator’s help screen by
executing it with no input file or parameters.

These help screens—written by the SimpleScalar authors—include a short description of the
function of the simulator, a short description of why you would want to use the particular
simulator, and a description of the input parameters for the simulator.

CodeBlue Wars

Introduction

In the late 1960’s, Robert Morris, the future National Security Agency (NSA) Chief Scientist,
along with Dennis Ritchie and Victor Vyssotsky, created a simple computer game called Darwin.
Later, Darwin, evolved and became Core War, a game in which two or more opponents write
computer programs in a simple assembly language that execute in memory and try to “Kkill” their
opponents by forcing them to execute an illegal instruction. The programs replicate themselves
to move around memory, and try to disrupt the memory space of the other programs. The last
program left alive is the winner. If after a set number of iterations, multiple programs remain, it
is a tie. We will be writing programs in a simplified version of the language and competing
against each other in a visual simulation of memory.

Environment

The “playing field” consists of a linear array of memory locations that can be considered circular.
That is, the first memory location follows the last. Each memory location is either a data value
or a single instruction. A program consists of a sequence of instructions and data values that
reside somewhere in the memory. Multiple programs exist simultaneously in memory. Each
competing program has an associated Program Counter (PC) that keeps track of the next
instruction to execute for that program.

The game is played by loading at least two of the competing programs into memory at random
starting locations such that they do not initially overlap. The game loops by executing one
instruction from each program at each instruction cycle, always in the same order. If a program
tries to execute an illegal instruction (such as a DATA value), it terminates and is out of the
game.

The Language

The original Core War used an assembly language called Redcode which consisted of eleven
simple instructions. We have created an even simpler version, called CodeBlue, that only has
eight instructions and a modified format to make for easier coding. The basic format of a
CodeBlue instruction is:

<label>: <instruction> <parameterl>, <parameter2> ; <comment>
where:

a) <label>: and ;<comment> are optional

b) the number of parameters (one or two) depends on the instruction

c) the parts of the instruction are separated with one or more spaces or tabs
d) comments are ignored

e) everything is case-insensitive

f) execution of an illegal instruction (such as a DATA location) halts execution

SIMPLIFIED CORE WAR FOR INTRODUCING LOW-LEVEL
CONCEPTS®

Dino Schweitzer, David Gibson, Leemon Baird
Department of Computer Science
US Air Force Academy, CO 80840
dino.schweitzer@usafa.edu

ABSTRACT

Assembly language programming is often used to teach students low-level
hardware components and computer architecture basics. To introduce some
of the basic concepts of program execution in memory, we have developed a
very simple language based on Core War, a programming game developed in
the 1980°s pitting competing programs against each other in a simulated
memory. We have built a visual development environment that allows
students to create a program, see its representation in memory, step through the
program’s execution, and simulate a battle of competing programs in a visual
memory environment. This paper will describe the language, the environment,
the competition simulator, and our experience.

INTRODUCTION

Computer architecture and organization is one of the recognized Body of
Knowledge elements in the 2001 ACM Curriculum for undergraduate Computer Science
[3]. Core topics within architecture include machine level representation, assembly level
machine organization, and memory system organization and architecture. Most
undergraduate CS programs teach at least one course in architecture, many of which use
assembly language as a tool to introduce low-level concepts.

Teaching assembly language can be a challenge and different approaches have been
used to make it easier for students to understand. For example, over the past decade,
simulators have been widely used for teaching assembly language concepts in computer
architecture [9]. The use of simulators provides many benefits over teaching assembly
language programming using real processors as the target machines [8]. An example of
a simplified simulator is Silverman, Ackerman, and Chesley’s SC123 which has a lean
20-instruction architecture [6]. One of the most widely-used simulators in computer
architecture courses is James Larus’ SPIM. SPIM implements most of the MIPS32
assembler-extended instruction set [5]. While simulators such as SPIM make it easier to
teach concepts of computer architecture concepts, the assembly language programming

“ This paper is authored by an employee(s) of the United States Government and is in the public
domain.

167

1 Introduction

This paper presents a senior study project in the Department of Electrical Engineering at the
University of Washington. This project is the work of three senior undergraduate students
in the department. The goals of the project were twofold. First, it allowed the students to
exercise their knowledge in computer architecture and hardware design. Second, it provided
them with practical work experience involving team work and project management. One of
the two main objectives of this paper is to present the findings of how well these concepts
work in the group project environment. The second objective of this paper is to present the

modern design approach that was used in the project.

The scope of the project was to design and simulate a realistic and modern Central
Processing Unit (CPU) including both simple and complex instructions for a microcomputer
system in a ten-week quarter time frame. This setting provides several challenges. First, a
ten-week period is a very short time to design and simulate a complete processor. Therefore
decisions had to be made to simplify the design to keep the task achievable. Second, attempts
to provide realistic and modern architecture add extra burdens to the heavy work-load of
the project. Third, division of work among team members and following an agreed-upon

aggressive time table was a real struggle as well.

After consulting with the project advisor, Dr. Arun K. Somani, the design team decided
that the only way to complete the project successfully was to follow a modern design ap-
proach. After defining the architectural goals, the team developed a very aggressive and
tight project schedule (see Appendix A). In addition, coding and documentation standards
were introduced to facilitate communication among team members. Moreover, many design
and work concepts taken from previous projects and/or work experience were applied in this

project. Some of these concepts worked well in this environment and some of them did not.

As the project progressed, the team encountered many additional problems. For example,
one team member had to leave for a job in the middle of the quarter. The team had to
be restructured and the project schedule had to be redefined. The restructured schedule
turned out to be even more aggressive. Fortunately, the flexible nature of the modern design
approach helped the team recover from the drawbacks and enabled the team to finish the

project successfully on time.

Our goal as the authors of this paper is to summarize our experiences in applying many
modern design and work concepts as well as to discuss the steps we took to resolve problems

in a team work environment.

We used several modern design and work concepts while doing this project. The main

design and work concepts used included the following.

CHAPTER 4: CACHE SIMULATOR

1) Consider the input sequence of length 120 given below.

22066 131 3594 172126 217 73 176 250 84 114 187 201 116 4 102 84 22 44 87 114 82 144 28
2111312519212 134 176 157 197 211 223 67 199 203 30 154 51 123 140 172 218 249 2791 5
51 202 59 196 240 238 71 100 217 49 231 226 12 118 233 204 222 220 31 220 66 173 5 6 94 62
126 124 250 21 81 74 116 233 9 167 62 20 4 161 35 152 102 79 73 86 84 182 22 92 44 66 159
187 240 167 100 169 201 174 114 232 82 187 87 175 131 156 301

2- way 4 — way 8-wa
LRU | FIFO | RAND | LRU | FIFO | RAND | LRU | FIFO | RAND
8 blocks
16 blocks
32 blocks
64 blocks

(a) Analyze the effectiveness of different block replacement techniques by listing down
the miss rate in each case.

(b) What other block replacement technique can be used and is proved to be the ideal?
Explain.

2) In a N-way set-associative cache, blocks are mapped to different sets when N
changes. Also, for a particular sequence, the number of compulsory and conflict misses
change with the cache type. Consider the following sequence 4097811752112 68.

(a) List the compulsory and conflict misses for different replacement techniques for the
caches below.

MISSES LRU . FIFO . RANDOM.
Comp | Conflict | Comp | Conflict | Comp | Conflict
4blocks 2sets
8blocks 2sets
16blocks 2sets

(b) Define compulsory, capacity and conflict misses. Explain the difference between
them.
(c) What is the best way to reduce conflict misses? Can it be used?

4-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

(d) List which set in the given cache will the following blocks be mapped

BLOCK | CACHE | #SET

0
9
11
4
2
9
10

8block,2sets

8blocks,4sets

16blocks,2sets

12

-5-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

CHAPTER 4: CACHE TIME ANALYSIS

1) Consider a 4-way set associative cache of size 4KB and block size of 64bytes.
Consider 25% writes, miss penalty of 40 cycles, hit time of 1 cycle and mem write time
of 6 cycles. How can the following happen under the condition that the memory miss
penalty, % write and hit time remain the same for both the cases? Reason your findings in
a few sentences.

(a) Avg. Memory access for Write Back cache > Write through cache - No write allocate
(b) Avg. Memory access for Write Back cache > Write through cache - Write allocate

2) Assume that the % of dirty blocks in the cache is 99%, if the total number of blocks in
the cache is very high, the write back based cache should have a high memory access
time. Is this case true for both small and large cache sizes from this animation program?
Fill the given table and explain the situation for the 4 caches. The rest of the simulation
term values are listed in the table.

Simulation terms Value
Cache type 4-way set associative
% writes 25 %

Miss Penalty 40 cycle

Hit Time 1 cycle

Memory Write time 6 cycles

Cache size | Block size | Hit rate | Memory access time

256bytes
1KB 16bytes
256bytes
4KB 16bytes
256bytes
32KB 16bytes
256bytes
256KB 16bytes

-6-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

CHAPTER 4: MuLTICACHE CACHE
DEMONSTRATOR

Note:

1) The trick to use the same set of memory references is to click on the "GENERATE
MEMORY REFERENCES" only for the first time while setup. Do not click on this button
until your simulation-based comparison is done.

2) Always choose to run the complete simulation

1) When multiple tasks are scheduled in a system, the number of cycles that one task is
allowed to run before the CPU switches to another task is very important.
Assume the following setup for the animation.

Specification Value
Replacement Policy LRU
Scheduling Mechanism Round Robin
Use Random Access Sequence NO

Number of Tasks 4

Number of memory references for | 25 each

Task A,B,C,D

Consider the following sequences for the 4 tasks A, B, C and D

_7-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

25

9

24

39

#24

9

28

10

23

9

8

10

63 Cache Size, # Sets

CPU Time Slice

Reload Transients

22

57

46

46

#21

29

35

26

20

15

28

63

g 16, 2

#19

57

29

2

18

57

56

13

#17

48

56

24

%16

60

22

32

15

57

46

2

16,8

%14

48

52

6

#13

49

29

17

#12

49

22

10

#11

60

0

13

8 32,2

10

24

0

62

#9

60

46

32

¥ 8

15

52

10

RO\ W[| RO\ = W| | 00| U1 x| W| -

¥7

49

8

10

¥6

40

29

28

5

49

29

2

¥4

49

52

34

3

49

52

40

2

9

39

10

¥1

27

21

39

Task

A

B

C

(a) Find the reload transient for the following caches with different CPU slice times.
(b) What is the CPU time slice number (in cycles) that reduces the number of reload
transients in each of the following caches?

(c) In a few sentences, explain Reload Transient and Task Footprint. How are they
related?
(d) Explain why it is important to find the ideal time for a CPU slice for a particular

cache.

2) Use the following settings as simulation input

Specification Value
Replacement Policy LRU

Use Random Access Sequence NO
Number of Tasks 5

Number of memory references for | 5 each
Task A,B,C,D,E

CPU Time slice 1

Priority A,B,C,D,E 3,1,0,24

Memory references of each task

-8-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

#5 | 5 93 113 28 9

#4 1 99 93 113 28 9

#3 1 19 93 104 | 125 9

#2 | o3 19 104 89 31

#1 1 19 76 113 | 125 9

Task | A B C D E

(a) Does the task scheduling technique affect the hit rate of the overall system? Explain.

(b) Find the hit rate in each of the following caches after 12 simulation cycles.

Cache Hit Rate % . Priority Based
Cache Size, # Sets FIFO | Round Robin 3—1—0-2—Z priority
16,4
16,8
32,2

(c) When does the round robin technique behave like the FIFO technique?
(d) When can the priority-based technique behave like the round robin technique?

9-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

CHAPTER 4: CACHE SIMULATOR

1) Consider the input sequence of length 120 given below.

22066 131 3594 172126 217 73 176 250 84 114 187 201 116 4 102 84 22 44 87 114 82 144 28
2111312519212 134 176 157 197 211 223 67 199 203 30 154 51 123 140 172 218 249 2791 5
51 202 59 196 240 238 71 100 217 49 231 226 12 118 233 204 222 220 31 220 66 173 5 6 94 62
126 124 250 21 81 74 116 233 9 167 62 20 4 161 35 152 102 79 73 86 84 182 22 92 44 66 159
187 240 167 100 169 201 174 114 232 82 187 87 175 131 156 301

2- way 4-wa 8-wa

LRU | FIFO | RAND | LRU | FIFO | RAND | LRU | FIFO | RAND

8 blocks | 98.33 | 98.33 | 95.83 | 975 | 975 | 95.83 | 975 | 97.5 97.5

16 blocks | 91.67 | 91.67 | 94.17 |94.17 | 94.17 | 925 93.3 | 93.3 95

32 blocks | 89.17 | 89.17 | 87.5 |89.17 | 89.17 85 88.33 | 88.33 | 85.83

64 blocks | 85 80.3 | 7417 | 825 | 7917 | 725 |84.17| 83.3 80

(a) Analyze the effectiveness of different block replacement techniques by listing down
the miss rate in each case.

FIFO technique has fewer misses than the LRU approach. The random technique seems
to work better than LRU and FIFO for this sequence. But it cannot be relied upon for
efficient block replacement.

(b) What other block replacement technique can be used and is proved to be the ideal?
Explain.

Another block replacement technique that can be used is the optimal technique. The
optimal technique predicts the frequency of different blocks based on the history of the
block’s usage. It is the ideal technique, but cannot be implemented easily due to its
complexity.

2) In a N-way set-associative cache, blocks are mapped to different sets when N
changes. Also, for a particular sequence, the number of compulsory and conflict misses
change with the cache type. Consider the following sequence 4097811752112 68.

(a) List the compulsory and conflict misses for different replacement techniques for the
caches below.

MISSES LRU . FIFO . RANDOM.
Comp | Conflict | Comp | Conflict | Comp | Conflict
4blocks 2sets & 8 & 8 & 9
8blocks 2sets 8 3 8 3 8 &
16blocks 2sets | 11 0 11 0 11 0

(b) Define compulsory, capacity and conflict misses. Explain the difference between
them.

4-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Compulsory Misses: The very first references to a block in the cache cannot be a hit, so
the block has to be bought to the cache from a lower level memory. These are called
compulsory or cold misses.

Capacity Misses: If the cache cannot contain all the blocks needed to execute a task, this
leads to some blocks being replaced and have to be retrieved later. Such misses are
called capacity misses. Such misses are common for smaller caches and also for tasks
that require a large amount memory to execute.

Conflict misses: When the cache is a direct mapped or a set associative, conflict misses
occur when blocks have to be replaced as many blocks can map to the same set.

(c) What is the best way to reduce conflict misses? Can it be used?

The best way to eliminate conflict misses is to use a fully associative cache. To
accommodate all the blocks without any conflict for a task that requires large memory,
the fully associative cache is the best. But this type of cache cannot is not generally used
in practice as it is very expensive to have one.

-5-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

(d) List which set in the given cache will the following blocks be mapped

BLOCK | CACHE | #SET
0 0
9 1
11 8block,2sets 1
4 0
2 2
9 1

10 8blocks,4sets)
4 3
7 1
1 1
12 16blocks,2sets 0
3 1

-6-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

CHAPTER 4: CACHE TIME ANALYSIS

1) Consider a 4-way set associative cache of size 4KB and block size of 64bytes.
Consider 25% writes, miss penalty of 40 cycles, hit time of 1 cycle and mem write time
of 6 cycles. How can the following happen under the condition that the memory miss
penalty, % write and hit time remain the same for both the cases? Reason your findings in
a few sentences.

For both the cases below, when dirty data goes above a certain %, the WB cache has
more memory access time than the WT cache.

(a) Avg. Memory access for Write Back cache > Write through cache - No write allocate

% dirty data WB cache WT cache
0 3.59 4.20
32 4.22 4.20
(b) Avg. Memory access for Write Back cache > Write through cache - Write allocate
% dirty data WB cache WT cache
0 3.62 4.86
50 4.91 4.86
Reason:

(i) WT cache writes all blocks in both the cache and the lower memory. WB cache writes
only dirty blocks to the lower memory. Hence if the number of dirty blocks is very high,
the WB cache on an average has more access time than the WT cache.

(ii) The dirty % to satisfy the condition is less for part (a) than (b) as the write misses do
not constitute a write to the lower memory even if there are dirty blocks.

_7-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

2) Assume that the % of dirty blocks in the cache is 99%, if the total number of blocks in
the cache is very high, the write back based cache should have a high memory access
time. Is this case true for both small and large cache sizes from this animation program?
Fill the given table and explain the situation for the 4 caches. The rest of the simulation
term values are listed in the table.

Simulation terms Value
Cache type 4-way set associative
% writes 25 %

Miss Penalty 40 cycle

Hit Time 1 cycle

Memory Write time 6 cycles

Cache size | Block size | Hit rate | Memory access time

1KB 256bytes | 0.8428 11.91
16bytes | 0.8925 8.46
AKB 256bytes | 0.9357 5.465
16bytes 0.942 5.028
256bytes | 0.9858 1.986
32KB ™ gbytes | 0.9805 3354
256bytes | 0.9972 1.194
256KB - ghvtes | 0.9938 1430

The memory access time not only depends on the % dirty data, but also on the miss
rate. If the miss rate remains constant for increase in cache size and number of blocks,
the WB cache will have more access time for 100% dirty data.

From the simulation we can see that the miss rate decreases for increase in number of
blocks(decreasing block size) for smaller caches, this compensates for the increase in %
dirty data. Hence the above case of WB cache having more access time is not seen for
99% dirty data.

In the case of larger caches (16KB and 256KB), the hit rate decreases for decrease in
block size. Hence the access times are more for caches with smaller block size (more
number of blocks).

-8-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

PART 2 RESEARCH PROJECTS

A suggested project assignment form is the document ProjectForm,
included in the folder ResearchProjects. The form includes guidelines for a
final report and a set of slides. If the deliverable is slides, class time should
be set aside for each team to present its results.

If projects are assigned to teams rather than individuals, problems can
arise. A paper on this subject, in the document Team.pdf included in the
folder ResearchProjects, might be useful to the instructor.

An interesting example of an implementation project is reported in:

Lee, V. et al, "Superscalar and Superpipelined Microprocessor Design and
Simulation: A Senior Project." IEEE Transactions on Education, February
1997.

The ideas in this paper can be adapted for your own student projects.
A copy of the paper is included in the folder ResearchProjects.

The research project will typically involve a web/library search and
analysis. It could also involve some implementation or measurement. Typical

questions that could be addressed with reference to technology X:

e What is X?

e What Standard governs X?

e How is X implemented?

e What is the cost of implementation?

e What companies are currently involved in this line of business?

Here are some ideas for research project topics:

-5-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

e web PC, web TV

¢ Image Retrieval Systems

¢ SPEC benchmark

e cache coherence protocols
e network media technologies
e RAM bus

e flat panel displays

e active matrix LCD displays
e register allocation

¢ N-version programming/recovery blocks
e MPEG-2

e graph theory

e encryption hardware

e design for test

e adaptive control

¢ imaging systems

e image recognition

e quantum well transistors

e computing in space

e Linux

e SunOS

e Spring

e Windows NT/ Windows ‘95
¢ OSF/1

e Mach kernel

e taligent

e alpha

e ultraSPARC

e MIPS R10000

o Intel's IA-64 architecture

e PowerPC family

e AMD K35, other P5 clones

-6-

© 2016 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Getting Started with SMPCache 2.0

8. Configuration Panelcccooiiiiiiiiiiiiieiecee e e 23
O SHATUS BT .o 24
1O. SMPCACKE USE OVEIVIEW ... e e e e eee e e e e e e e eeneeeneeeeeeenennnes 24

1. Introduction

SMPCache is a trace-driven simulator for cache memory systems on symmetric
multiprocessors (SMPs) which use bus-based shared memory. This simulator operates on PC
systems with Windows, and it offers a Windows typical graphic interface.

Some of the parameters you can study with the simulator are: program locality;
influence of the number of processors, cache coherence protocols, schemes for bus arbitration,
mapping, replacement policies, cache size (blocks in cache), number of cache sets (for set
associative caches), number of words by block (block size), ...

Because of its easy and user-friendly interface, the simulator is recommended for
teaching purposes; since it allows to observe, in a clear and graphic way, how the

multiprocessor evolves as the execution of the programs goes forward (the memory traces are
read).

1.1. Prerequisites

To make sense of the rest of Getting Started with SMPCache, you should be familiar
with some theoretical considerations concerning cache memory systems, and particularly
regarding their use in multiprocessor environments. These concepts are widely discussed in
many computer architecture texts (like the William Stallings” Computer Organization and
Architecture), and we will not mention them here. All operations and algorithms we use are
similar to those found in these computer architecture texts. As a consequence, the results
obtained with the simulator are very close to the real world.

1.2. Suggestions?

If you have comments about this guide to SMPCache or about the simulator, please
contact Miguel A. Vega at mavega@unex.es (Fax: +34-927-257202) or at the following
address:

Miguel A. Vega-Rodriguez
Dept. de Informatica, Univ. de Extremadura, Escuela Politécnica

Campus Universitario s/n. 10071. Caceres. Espafia (Spain)

2. Installation

In order to begin the installation you must execute the Setup.exe program included in
your copy of SMPCache. Then, follow the directions below and on the screen during the
installation process:

1. Exit all Windows applications prior to continuing with the installation.

2. When the “Welcome” screen appears, read it. Click Next to continue.

2/24

Getting Started with SMPCache 2.0

. Enter your name and company. Click Next to continue.

Select the location in which you want to install SMPCache. Choose the default
folder or click Browse to select a different location or to enter your own folder
name. Click Next to continue.

Click the type of setup you prefer, then click Next to continue.

a) Typical — installs all program files to the location you selected in step 4.
Recommended for most users.

b) Compact — reduces the disk space required for the installation because it does
not install the sample files.

¢) Custom — provides you with options on installing the sample files or help
files.

If you select the Custom setup, then you must choose the exact components you
want to install. Click Next to continue.

Select the program folder for SMPCache. Choose the default program folder or
type a new folder name. You can also select one from the Existing Folders list.
Click Next to continue.

Before starting copying files, the installation process shows you the current
settings. If you want to change any settings click Back, otherwise click Next to
begin copying files.

SMPCache will now finish being installed. Click Finish to complete the
installation.

Once installation is complete, a SMPCache group, which includes the application icon,
is created. You can then create a shortcut to SMPCache on your desktop.

&~ Remember: If for any reason you wish to stop the installation, click Cancel and the

installation of SMPCache will be terminated.

2.1. Uninstalling SMPCache

To uninstall the simulator:

1.
2.
3.

Click the Windows Start button.
Click Settings and Control Panel.

Click Add/Remove Programs. The Add/Remove Programs Properties screen
appears.

From the Install/Uninstall list, select SMPCache and select Add/Remove. After
your confirmation, SMPCache will be removed from your computer.

3. Configuration Files

The simulator allows you to select the different choices for configuring a given
architecture (see Table 1). The different choices selected may be stored on an ASCII data file

3/24

Student Projects using SMPCache 2.0

Student Projects using SMPCache 2.0

L. INEFOAUCTION .ttt et sttt et b et et sae e eaees 1
2. UNIPTOCESSOT TTACEScuvieeeiiieiieeeiieeeiee et e et e etee e et e e sreeesaeeeaseessaeessaeessseeesnseeennns 1
2.1. Project 1: Locality of Different Programs............cccceccvevieeiiieniieniienieeiieeeeveenenn 2
2.2. Project 2: Influence of the Cache Sizeccceeveviiivciiiiciiieceeceeee e, 3
2.3. Project 3: Influence of the Block Size.........cccooviieiiieniieiiiiiieieceeeee, 4
2.4. Project 4: Influence of the Block Size for Different Cache Sizes.......................... 4
2.5. Project 5: Influence of the Mapping for Different Cache Sizes..........ccoeevvennennnee. 5
2.6. Project 6: Influence of the Replacement Policyc.ccccevveviiiiciiiiiiieeieeeeeee 6
3. MUItIPIOCESSOT TTACES ...cuveeiiieiieeiieeiieeiie et e site et ertteeteebeeseaeebeesaeeesbeensaeesseenseessneensaens 6
3.1. Project 7: Influence of the Cache Size on the Miss Ratecccccveeveiieiciiennnenns 7
3.2. Project 8: Influence of the Cache Size on the Bus Traffic.........cccccoevvininnennnns 8
3.3. Project 9: Influence of the Cache Coherence Protocol on the Miss Rate 9
3.4. Project 10: Influence of the Cache Coherence Protocol on the Bus Traffic.......... 9
3.5. Project 11: Influence of the Number of Processors on the Miss Rate 10
3.6. Project 12: Influence of the Number of Processors on the Bus Traffic 11

1. Introduction

This document contains some ideas for student projects using SMPCache. These idea
descriptions are intended as starting point from which other many project assignments could
be designed. Students should be familiar with the simulator to carry out any of the projects.
We have developed the “Getting Started with SMPCache” manual with this aim.

If you have comments about this document or the simulator, please contact Miguel A.
Vega at mavega@unex.es (Fax: +34-927-257202) or at the following address:

Miguel A. Vega-Rodriguez
Dept. de Informatica, Univ. de Extremadura, Escuela Politécnica

Campus Universitario s/n. 10071. Caceres. Espafia (Spain)

2. Uniprocessor Traces

We will first study the basic algorithms and concepts that are present in every cache
memory system, uniprocessor or multiprocessor. We will consequently configure the
SMPCache simulator with a single processor, and we will use uniprocessor traces. For this
first set of projects we will consider traces of some SPEC’92 benchmarks (Hydro, Nasa?7,
Cexp, Mdljd, Ear, Comp, Wave, Swm and UComp), according to real tests performed on a

1/12

Student Projects using SMPCache 2.0

MIPS R2000 system. The traces used represent a wide variety of “real” application programs.
These traces come from the Parallel Architecture Research Laboratory (PARL), New Mexico
State University (NMSU), and they are available by anonymous ftp to tracebase.nmsu.edu.
The traces had different formats, like Dinero or PDATS, and they have been changed to the
SMPCache trace format (see Getting Started with SMPCache 2.0, section 4). These traces,
with the correct format for SMPCache, are included in your copy of the simulator. A
summary of the traces is given in Table 1.

Name Classification Language Comments
Hydro Floating point --- Astrophysics: Hydrodynamic Naiver Stokes equations
A collection of 7 kernels. For each kernel, the program
Nasa7 Floating point Fortran generates its own input data, performs the kernel and
compares the result against an expected result
Portion of a Gnu C compiler that exhibits strong random
Cexp Integer C .
behaviour
Solves the equations of motion for a model of 500 atoms
. . . interactin through the idealized Lennard-Jones
Mdlid Floating point Fortran potential.glt is a nl%merical program that exhibits mixed
looping and random behaviour
Ear Floating point . Thig trace, the same as the rest, was provided by Nadeem
Malik of IBM
Uses Lempel-Ziv coding for data compression.
Comp Integer C Compresses an 1 MB file 20 times
Wave Floating point Fortran Solve.s Maxwell’.s equations and electromagnetic particle
equations of motion
. . Solves a system of shallow water equations using finite
Swm Floating point Fortran difference }allpproximations on a 256*%56 grid ¢
UComp Integer C The uncompress version of Comp

Table 1: Uniprocessor traces.

&~ Remember: All these uniprocessor projects can be performed in a similar way with

multiprocessor traces.

2.1. Project 1: Locality of Different Programs

Purpose

Show that the programs have different locality, and there are programs with “good” or
“bad” locality.

Development
Configure a system with the following architectural characteristics:

Processors in SMP = 1.

Cache coherence protocol = MESI.

Scheme for bus arbitration = Random.

Word wide (bits) = 16.

Words by block = 16 (block size = 32 bytes).

Blocks in main memory = 8192 (main memory size = 256 KB).
Blocks in cache = 128 (cache size = 4 KB).

2/12

Student Projects using SMPCache 2.0

e Mapping = Fully-Associative.
e Replacement policy = LRU.

Obtain the miss rate using the memory traces: Hydro, Nasa7, Cexp, Mdljd, Ear, Comp,
Wave, Swm and UComp (trace files with the same name and extension “.prg”).

Do all the programs have the same locality grade? Which is the program with the best
locality? And which does it have the worst? Do you think that the design of memory systems
that exploit the locality of certain kind of programs (which will be the most common in a
system) can increase the system performance? Why?

During the development of the experiments, you can observe graphically how, in
general, the miss rate decreases as the execution of the program goes forward. Why? Which is
the reason?

2.2. Project 2: Influence of the Cache Size

Purpose

Show the influence of the cache size on the miss rate.

Development

Configure a system with the following architectural characteristics:

Processors in SMP = 1.

Cache coherence protocol = MESI.

Scheme for bus arbitration = Random.

Word wide (bits) = 16.

Words by block = 16 (block size = 32 bytes).

Blocks in main memory = 8192 (main memory size = 256 KB).
Mapping = Fully-Associative.

Replacement policy = LRU.

Configure the blocks in cache using the following configurations: 1 (cache size = 0,03
KB), 2, 4, 8, 16, 32, 64, 128, 256, and 512 (cache size = 16 KB). For each of the
configurations, obtain the miss rate using the trace files (extension “.prg”): Hydro, Nasa7,
Cexp, Mdljd, Ear, Comp, Wave, Swm and UComp.

Does the miss rate increase or decrease as the cache size increases? Why? Does this
increment or decrement happen for all the benchmarks or does it depend on the different
locality grades? What does it happen with the capacity and conflict (collision) misses when
you enlarge the cache? Are there conflict misses in these experiments? Why?

In these experiments, it may be observed that for great cache sizes, the miss rate is
stabilized. Why? We can also see great differences of miss rate for a concrete increment of
cache size. What do these great differences indicate? Do these great differences of miss rate
appear at the same point for all the programs? Why?

In conclusion, does the increase of cache size improve the system performance?

3/12

Student Projects using SMPCache 2.0

2.3. Project 3: Influence of the Block Size

Purpose
Study the influence of the block size on the miss rate.

Development

Configure a system with the following architectural characteristics:

Processors in SMP = 1.

Cache coherence protocol = MESI.

Scheme for bus arbitration = Random.

Word wide (bits) = 16.

Main memory size = 256 KB (the number of blocks in main memory will vary).
Cache size = 4 KB (the number of blocks in cache will vary).

Mapping = Fully-Associative.

Replacement policy = LRU.

Configure the words by block using the following configurations: 4 (block size = 8
bytes), 8, 16, 32, 64, 128, 256, 512, and 1024 (block size = 2048 bytes). For each of the
configurations, obtain the miss rate using the trace files: Hydro, Nasa7, Cexp, Mdljd, Ear,
Comp, Wave, Swm and UComp.

Does the miss rate increase or decrease as the block size increases? Why? Does this
increment or decrement happen for all the benchmarks or does it depend on the different
locality grades? What does it happen with the compulsory misses when you enlarge the block
size? What is the pollution point? Does it appear in these experiments?

In conclusion, does the increase of block size improve the system performance?

2.4. Project 4: Influence of the Block Size for Different Cache Sizes

Purpose

Show the influence of the block size on the miss rate, but in this case, for several cache
sizes.

Development

Configure a system with the following architectural characteristics:

Processors in SMP = 1.

Cache coherence protocol = MESI.

Scheme for bus arbitration = Random.

Word wide (bits) = 32.

Main memory size = 1024 KB (the number of blocks in main memory will vary).
Mapping = Fully-Associative.

Replacement policy = LRU.

4/12

Student Projects using SMPCache 2.0

Configure the words by block using the following configurations: 8 (block size = 32
bytes), 16, 32, 64, 128, 256, 512, and 1024 (block size = 4096 bytes). For each of the
configurations of words by block, configure the number of blocks in cache in order to get the
following cache sizes: 4 KB, 8 KB, 16 KB, and 32 KB. For each configuration obtain the
miss rate using the memory trace: Ear.

We are first going to ask you the same questions as in the previous project: Does the
miss rate increase or decrease as the block size increases? Why? What does it happen with the
compulsory misses when you enlarge the block size? Does the pollution point appear in these
experiments?

Does the influence of the pollution point increase or decrease as the cache size
increases? Why?

2.5. Project 5: Influence of the Mapping for Different Cache Sizes

Purpose
Analyse the influence of the mapping on the miss rate for several cache sizes.

Development
Configure a system with the following architectural characteristics:

Processors in SMP = 1.

Cache coherence protocol = MESI.

Scheme for bus arbitration = Random.

Word wide (bits) = 32.

Words by block = 64 (block size = 256 bytes).

Blocks in main memory = 4096 (main memory size = 1024 KB).
Replacement policy = LRU.

Configure the mapping using the following configurations: Direct, two-way set
associative, four-way set associative, eight-way set associative, and fully-associative
(remember: Number of ways = Number of blocks in cache / Number of cache sets). For
each of the configurations of mapping, configure the number of blocks in cache in order to get
the following cache sizes: 4 KB (16 blocks in cache), 8 KB, 16 KB, and 32 KB (128 blocks in
cache). For each configuration obtain the miss rate using the memory trace: Ear.

Does the miss rate increase or decrease as the associativity increases? Why? What does
it happen with the conflict misses when you enlarge the associativity grade?

Does the influence of the associativity grade increase or decrease as the cache size
increases? Why?

In conclusion, does the increase of associativity improve the system performance? If the
answer is yes, in general, which is the step with more benefits: from direct to 2-way, from 2-
way to 4-way, from 4-way to 8-way, or from 8-way to fully-associative?

5/12

Student Projects using SMPCache 2.0

2.6. Project 6: Influence of the Replacement Policy

Purpose
Show the influence of the replacement policy on the miss rate.

Development
Configure a system with the following architectural characteristics:

Processors in SMP = 1.

Cache coherence protocol = MESI.

Scheme for bus arbitration = Random.

Word wide (bits) = 16.

Words by block = 16 (block size = 32 bytes).

Blocks in main memory = 8192 (main memory size = 256 KB).
Blocks in cache = 128 (cache size = 4 KB).

Mapping = 8-way set-associative (cache sets = 16).

Configure the replacement policy using the following configurations: Random, LRU,
LFU, and FIFO. For each of the configurations, obtain the miss rate using the trace files
(extension “.prg”): Hydro, Nasa7, Cexp, Mdljd, Ear, Comp, Wave, Swm and UComp.

In general, which is the replacement policy with the best miss rate? And which does it
have the worst? Do the benefits of LFU and FIFO policies happen for all the benchmarks or
do they depend on the different locality grades?

For a direct-mapped cache, would you expect the results for the different replacement
policies to be different? Why or why not?

In conclusion, does the use of a concrete replacement policy improve the system
performance? If the answer is yes, in general, which is the step with more benefits: from
Random to LRU, from Random to LFU, or from Random to FIFO? Why (consider the

cost/performance aspect)?

3. Multiprocessor Traces

After analysing the basic algorithms and concepts that are present in every cache
memory system (uniprocessor or multiprocessor), we study some theoretical issues related
with multiprocessor systems. In these projects, we will consequently configure the SMPCache
simulator with more than one processor, and we will use multiprocessor traces with tens of
millions of memory accesses (references) for four benchmarks (FFT, Simple, Speech and
Weather). These traces were provided by David Chaiken (then of MIT) for NMSU PARL,
and they are available by anonymous ftp to tracebase.nmsu.edu. The traces represent several
real parallel applications (FFT, Simple and Weather traces were generated using the post-
mortem scheme implemented by Mathews Cherian with Kimming So at IBM). The traces had
different formats, like the canonical format for multiprocessor traces developed by Anant
Agarwal, and they have been changed to the SMPCache trace format (see Getting Started with
SMPCache 2.0, section 4). These traces, with the correct format for SMPCache, can be
obtained at the address http://atc.unex.es/mavega/SMPCache/SMPCacheEnglish.htm or
http://atc.unex.es/smpcache. A summary of the traces is shown in Table 2.

6/12

A PROFESSIONAL PRACTICE COMPONENT IN WRITING:

A SIMPLE WAY TO ENHANCE AN EXISTING COURSE’

Karen Anewalt
Department of Computer Science
Mary Washington College
Fredericksburg, VA 22401
anewalt@mwc.edu

ABSTRACT

The annud survey conducted in 2001 by the National Association of Colleges and
Employers showed that employers rank good communication skills (both written and
ord) as the most desirable qudity in gpplicants seeking employment [7]. The recently
published 2001 ACM/IEEE Computing Curriculum guiddines respond to industry
demands by dressng the importance of incorporating “professona practice’
components, induding coursework focusing on written communication skills, in the
undergraduate curriculum [1]. Despite evidence that communication ills are highly
vaued and professond recommendations to include writing in the computer science
curriculum, many computer science faculty members are rductant to add written
components to their courses. This paper describes smple, practica ways of
incorporating writing into exising computer science courses. Examples of writing
assgnments used in a sophomore-level data structures course are provided.

INTRODUCTION

The importance of developing good communication kills as part of the undergraduate
curriculum has received recent attention in the ACM/IEEE Computing Curriculum 2001
guiddines[1]. The guiddines gtressthe importance of developing professond skills, including
effective written communication skills, as part of the undergraduate curriculum. Motivation to
enhance student communications skills dso comes from the corporate world. In the annud

" Copyright © 2002 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee al or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and noticeis given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

155

JCSC 18, 3 (February 2003)

survey conducted in 2001 by the National Association of Collegesand Employers, employers
ranked good communication kills (both written and ord) as the most desirable qudity in
goplicants seeking employment [7]. It is not surprisng that employers and professiond
organizations stressthe importance of good communicationskills. Regardless of post-graduate
choices, sudents will undoubtedly use their written communication skillsin ther future lives.

In spite of the obvious need for studentsto devel op writing skills, many faculty members
arerductant to add writing assgnmentsto thair existing computer science courses. A common
attitude is that ingtruction in writing is better left to humanities and socid science ingtructors.
Thisopinionisnot awise one. In[8], Pensente states that “isolated attempts to teach writing
hinder the transfer of learning to other courses and, eventudly, to the work place’”. The
Computing Curriculum states that educators have a responsibility to provide exposure to
professond practice and ease the transition from academia to the business world [1]. In
addition to providing exposure to professond practice, teaching writingin a computer science
context can have many benefits that would not be redized if students were only to receive
writing practice in non-computer science Courses.

When writing is taught in a computer science setting, the assgnments and
feedback can bereevant to the computer science discipline.

Writing experiences in computer science courses can provide students with vauable
practice communicating with assorted audiences in various formats that will be required
inthe corporate or postgraduate world. Computer scientists do not operatein avacuum.
In the modern world, computer scientists and software engineers need to be able to
effectivdly communicate, both orally and on paper. In industry, programmers are
expected to communicate with groups of other programmers in order to design and
complete software projects. Programmers may aso be required to communicate with
non-technica individuds about project goals and requirements. Thus it is important to
teach computer science students how to communicate with a range of audiences.
Because computer scientistsare muchmorefamiliar than non-computer scientistiswiththe
types of documents typicaly required of computer scientists, it is appropriate that
indruction in creating such written works come from computer scientists.

Parallels can be drawvn between the software design process and the writing
pr ocess.

The smilarity between the writing process and the software design processis something
that few traditiona English literature courses recognize, but can make computer science
students fedl more connected to the writing process. The software design process is
iterative. Most programmers do not receive a project assgnment and immediately St
down to write dl of the code perfectly. The software design process should involve
thought and planning prior to the implementation phase. Following the implementation
phase, software design involves a cycle of testing and modifying the code. Findly,

156

CCSC: Eagtern Conference

software enters the maintenance phase where it is modified to meet changing needs and
gods. The writing processfollowsavery smilar sequence of phases[9]. When awritten
assgnment is given, the writer should think about the gods of the find document and
organize his or her thoughts about the assgnment. After aclear plan is constructed, the
process of sdecting language to communicate the ideas begins and the document is
crested. Thereisastage of reading and modifying the document to ensure that the find
product hasthe desired qudities. Findly, many computer science-related documents, like
user’s manuds, enter amaintenance sage inwhichthey are modified asthe software that
they refer to ismodified. Even beginning computer science studentsare familiar with the
software design process and can see the pardlds. By presenting this type of andogy to
students, the relationship betweenthe writing process and the software design processis
meade clear, and computer science studentswill feel more familiarwiththewriting process.

Writing promotes active learning and can increase student understanding of
course material.

Inmy experience, sudentsoftenbeieve that they understand complexconceptspresented
in lecture without any additional exposure or hands-on practice with the concepts.
However, when these students are asked to write adetailed explanation of the concept,
they redize that thar understanding is far from complete. Written assgnments are one
way of encouraging studentsto interact with course content ona personal levd, whichcan
in turn increase sudent underganding [2]. As faculty, we continualy engage in active
learning; we read textbooks, compareideasfromdifferent sources, prepare lecture notes
and create assgnments. Students are often deprived of this type of active learning
experience [5]. Using targeted written assgnments as part of a course encourages
sudents to participate in the same type of rich learning experience that we engage in as
professonas. Writing activities can teach students to pose questions, develop
hypotheses, collect and andyze data, and organize arguments. Thesecritica thinkingskills
are important to develop in order to be successful in the computer science field.

INCORPORATING WRITING INTO AN EXISTING COURSE

Committing to induding writing ass gnmentsin a coursedoesnot necessarily imply that the

course format mugt be restructured. Assgnments that could easily be modified to include a
written component are aready used in most computer science courses. Typical computer
science courses do use programming projects and/or homework problem sets to reinforce
lecturetopics. Written components can be easily added to programming projects by requiring
ashort summary of the software spurpose, adesign summeary describing design decisions made
by the student, or a document describing the efficiency of an agorithm being used in the
software. This type of assgnment can be particularly useful because it provides practice in
written communication and does so in a professond context.

157

JCSC 18, 3 (February 2003)

Another method of incorporating additiond writing into an existing courseis by replacing
traditional problem sets with writing assgnments that achieve the same learning gods.
Alternatdy, a traditional homework assignment can be used aong with a question to be
answered in paragraph form. The focus of the assgnment remains the same, but by adding the
additional writing component to the assgnment, students recelve additiona practice and
exposuretowriting. Writing can aso be used to reinforce topics covered in lecture or reading
assgnments. For example, when reading is assigned, the ingtructor can provide a question to
which students should write a short one-page response. The question will focusstudentsonthe
key points of the reading, engage the studentsin actively thinking about issues discussed in the
reading, and forces the students to be accountable for the reading by creating a tangible
deliverable. Thistype of writing assgnment can actualy reduce the amount of time that is spent
covering the basi cs of aconcept during lecture, becausethe studentswill have al ready absorbed
the basics by completing the reading and writing assgnmen.

The key to enhancing a course through the use of writing assgnments isto evaduate the
learning objectives of the course and the existing assgnments. Assignments can then be added
or modified to increase the amount of writing required while maintaining the origind leaming
god. Inthisway, writing assgnments can be designed to enhance course content rather than
detract from course content.

WRITING ASSIGNMENT SUGGESTIONS

| wasfirg exposed to teechingwritingwithinacomputer science context after being asked
to teach a data Structures course designated to fulfill part of the writing-across-the-curriculum
requirement at my indtitution. The primary computer science gods of the course are to teach
data structures and to introduce students to Java as a second programming language. The
course is the third semester programming course for computer science majors and covers
hegps, trees, and graphs while emphasizing efficiency andyss and software reusability. Inthe
course, studerts learn to use Java as their second programming language, having adready
acquired skillsin C++. Likemaost computer science courses, there are many opportunities to
introduce writing assgnments into this type of course without sacrificing course content.

| designed the writing component of the course with two main gods. Thefirst god isto
provide studentswith sgnificant practice inwriting and communicating idess. The second god
is to expose students to a variety of types of technica writing appropriate to the computer
science discipline. These gods were achieved usng avariety of writing assgnments. | have
found that using a variety of types of writing assgnments benefits the sudents. The variety
increases the chance that a student will be successful in & least one paper. Some studentsare
better at writing for peers; others excd in creating documents for non-technical audiences.
Some students enjoy creetive papers, others fee more confident when the assgnment is very
structured. When a broad spectrum of writing styles is explored, students are likdly to find
something with which they fed comfortable. In addition, the students benefit by familiarizing
themselves with the gods and challenges of alarger variety of document styles.

158

CCSC: Eagtern Conference

My course uses three or four forma writing assgnments (3-5 page papers) during the
semester. Examples of some writing assgnments that | have used in this course are included
in the Appendix. Other types of forma writing assgnments that I’ ve successfully used in the
course include software design documents, descriptive essays about course topics and short
research papers.

As discussed earlier, adding writing to a course does not necessarily mean that forma
papers mug be assgned. Shorter written assgnments can be equaly effective in providing
additiond practice in writing and focusing students' attention on key concepts discussed in a
course. In addition to the forma papers described above, | assign short, informa writing
assgnmentsto encourage active leaning. | typicaly assgn aninforma writing assgnment once
a week and grade the papers on a credit/no credit bass. Examples of informa writing
assgnmentsthat | have used include assgnmentsto summearize the reading assgnment in afew
paragraphs (depending on the length of the reading), answer afocus question (provided at the
time the assgnment is given) related to the reading, to find Web resources that contradict one
another about a definitionor concept described in class and argue that one definitionis correct,
to make connections between lecture topics discussed at different timesin the course, and to
compare and contrast two datastructures. Theseinforma writing assgnmentsaredesigned to
simulateindependent thought about coursetopicsand to promoteactive learning. | havefound
that the informd assgnments were very ussful to me as an ingructor because the student
responses occasondly indicated weaknesses in sudent understanding and could be used to
generate discusson in future class mesetings.

STUDENT RESPONSE TO WRITING IN COMPUTER SCIENCE

Each semedter that | have offered the data structures course with a strong writing
component, severa studentshave approached meat the end of the semester and mentioned that
the writing assgnmentswere very beneficid and hel ped themto draw connections about course
materia that they would have otherwise missed. They have said that by writing about computer
sciencetopics, they beganto recognize their own weaknessesin understanding and were better
able to formulate questions about the course topics. After having completed a writing
assgnment, they fdt that they had amore compl ete understanding of the related course materid.

In the most recent offering of the data structures course, | requested that students
complete a short questionnaire about the writing portion of the course. | prepared alist of
gatements and the students were allowed to anonymoudy respond that they agreed or
disagreed with each statement. Because the enrollment in the course was smdll, Satistical
andyds of the dataiis not meaningful, however | felt the information collected would be useful
to get afed for the student reactions to the effectiveness of the writing assgnments usedinthe
course. The responses show that most of the students felt that the writing assgnments were
beneficid bothbecause they exposed themto the types of writing that might be required of them
after graduation and because they fdt that the emphasis on writing enhanced ther written
communication skills

159

JCSC 18, 3 (February 2003)

The responses collected fromthe students enrolled inthe course dong with the questions
asked are indicated below:

Agree Disagree
1) Ingenad, | fed that my writing hasimproved during. 5 2
the semester.
2) After completing acomputer science course with writing 6 1

assignments, | fed that | have a clearer picture of how
writing is used in the computer science fidd.
3) | fed tha the documents assgned as forma writing 6 1
assignments in class were representative of the types of
documents that | may be required to writeasa
professond in the computer science fied.
4) |think that | will benefit from being exposed to these types 7 0
of documents even if | will not be required to write any
documents in my future career.

5) Ingenerd, | fdt that the writing in the course heped me 7 0
to develop understanding of course materid.
6) | fdtthat | would have learned as much in the course 2 5

if it had not induded writing assignments

CONCLUSION

The ACM/IEEE Computing Curriculum guidelines emphasize the importance of good
communication skills and encouraged inditutions to indude communication skill development
in ther curriculum. Including writing assgnments in a computer science context exposes
students to the types of writing that will be expected of them in the future and can also
encourage studentsto bemore persondly involved inlearning course materid. | havefound that
induding writing assgnmentsina computer science course canimprove student communication
kills, understanding of the professiona practice and can enhance student understanding of
course topics.

REFERENCES

[1] Computing Curricula 2001: Report of the ACM/IEEE-CS joint curriculum tast force,
Association for Computing Machinery, Dec 2001,
http:/Aww.acm.org/s gg/'sigese/cc2001

[2] Bean, John C. Engaging Ideas. Jossey-Bass, 1996.

[3] Geding, J. and Young, F. Shal WeWrite? SIGCSE Bulletin, val. 33, no 2, June 2001,
pp. 18-19.

160

[4]

[3]

[6]

[7]

[8]

[9]

CCSC: Eagtern Conference

Kay, David G. Computer Scientists Can Teach Writing: An Upper Divison Course for
Computer Science. In Proceedings of the 29th SIGCSE Technica Symposium, 1998,
pp. 52-54.

McConndl, J. Active learning and its use in Computer Science. In Proceedings of the
Conference on Integrating Technology into Computer Science, 1996, pp. 52-54.

Michad, M. Fogtering and Assessing Communication Skills in the Computer Science
Context. InProceedingsof the 31st SIGCSE Technica Symposium, 2000, pp. 119-123.

National Association of Colleges and Employers. Job outlook '01 (online version).
http://Awww.jobweb.com/joboutl ook/

Pesante, LindaH. Integrating Writing Into Computer Science Courses. In Proceedings
of the 22nd SIGCSE Technica Symposium, 1991, pp. 205-209.

Zadman, M. Integrating Writing Into the Computer Science Curriculum, InProceedings
of the 5th Annual Easetern Small College Computing Conference, 1989, pp. 113-116.

APPENDI X

SAMPLE 1:

Thisassgnment is given on thefirgt day of dass immediately after discussing the writing

gods and guiddinesfor the course. The assgnment is designed with both course content goas
and writing skill godsin mind.

Course Godls,

One purpose of the course is to introduce Java as the students second programming
language. Thisassgnment motivates sudentsto begin to makethetrangtionimmediately.

The IDE referenced in the paper is most of the students' first exposureto an IDE. All of
their prior coursework isdonein a UNIX environment. The paper encourages students
to explore various aspects of the IDE and become familiar with this aternate tool for
program devel opment.

Writing Godls:

Students are introduced to the concept of “audience” for the paper. In this assgnment
sudents develop skillsin communicating technical ideas to a non-technica audience.
Inclass, students discuss how the format for this type of paper may differ fromtraditiona
papers that they have written in high school or in earlier courses. Methods of
gppropriately differentiating commands and code from standard text within sentencesis
emphasized.

161

JCSC 18, 3 (February 2003)

Because thisisthe first writing assgnment that the Sudentshave in the course, | provide them
with many leading questions that they should consider while writing their paper. In future
papers, the students do not require as much guidance.

CPSC 321: Data Structures-- Writing Assgnment 1
Assignment Goals:
1 Leanto verbdize technical conceptsfor alesstechnica audience
I Familiarize yoursdf with Forte for Java and the Java program lifecycle

Part |

Task: In order to familiarize yoursdf with the Forte for Java Integrated Development
Environment (IDE), create two programs that display a smple message (such as “Hdllo,
world!™). You will creste an gpplet as wdl as an gpplication program with this functiondity.
(The message printed by the applet should be displayed in the applet viewer; the application
should print the message to standard output.) Very basic instructions on how to cresate,
compile, and run Java programs withinthe Forte | DE are provided at the end of this documen.

Deliverables: Turnin printouts of your source files (dgple to the end of your paper for Part
.

Part 11

Task: You are amember of the programming team responsible for developing Forte for Java
a Sun Microsystems. Y our team has recently completed the devel opment and testing of the
Forte software package. At the weekly team meeting, your supervisor assigns youthe task of
writingauser'sguidefor the IDE. Shetdlsyou that the guide must explain how to crestea Java
source file, compileit, and executeit usng Forte for Java. This guide will be digtributed ong
withthe softwarewhenit is sold commercidly. She dso tdls you that your guide should focus
on writing one type of program. In other words, your guide should either explain to the reader
the steps necessary to create an gpplet OR to create an application (BUT NOT BOTH).
Someone ese on the team will be responsgible for the ingructions for devel oping the other type
of program.

Because the user’ s guide will be included in the commercid release package, the guide should
be understandable to a novice computer scientist (think of someone taking computer science
for the first time) who has never used Forte, but who is familiar with the concept of
programming (in C++ or Ada), windows, menus, point and click, etc. Asyouwriteyour user’s
guide, anticipate questions and problems that the reader might have as they use the IDE and
provide the reader with guidance and explanations in your text.

162

CCSC: Eagtern Conference

The paper should contain a separ ate section for each of the following:

I Anintroduction section introducing the Forte application. (What is the purpose of this
guide? What is Forte used for? Why will Forte make it easy/easier for the reader to
develop Java code?)

I Directions on how to launch the Forte gpplication. Assume that the reader dready has
the Forte program inddled on their computer. (What does the environment look like
when it comes up? What should the reader expect?)

1 Separate sections indructing the user in each of the following tasks. opening a new
project, creating a source (java) file, saving a project, building a project, finding and
correcting syntax errors, and executing a program. Use an example program (like the
“Hédlo, world!” program that you wrote in Part 1) to wak the user through the steps
required to complete these tasks. Including an example within the text of a user’s guide
makes the guide more interesting and understandable to the reader.

1 Becausethe guide should enlighten the reader about the nature of syntax errorsand how
a programmer identifies and corrects such errors, you should include at least one
intentiond syntax error in your example code. Explainto the user the nature of thiserror
and how to correct the error. (Where do the compilation errors appear in the
development environment? What does the error message given to the user mean? Is
there a debugger that might help the user to correct errors? How isthe debugger used?)

I Theguide should explain how to identify correct output for the program. (Whereisthe
output displayed? How should it appear?)

1 A conclusonsummaizing the guideand providing other appropriate information(suchas
where the reader can find more information about the topics covered).

The guide should serve severa purposesfor the reader. 1t should familiarize the reeder with the
product, be useful as a hands-on exercise that illustrates the Java program development cycle
from file crestion to execution, and it should serve as areference for the preparation of future
programs.

Deliverables: The paper should be 3-4 typed double-spaced pages. Standard margins (1
inchat thetop, 1 inchat the bottom, 1 %2 inches on either side) and 12-point Times Roman font
should be used. Any example Java code provided with in the text of the guide should be
obvioudy delimited fromthe rest of the text and spaced appropriately (asit would appear inthe
editor, not necessarily double spaced).

SAMPLE 2

Asthissecond example assgnment isgiven, sudents have just “ reviewed” object-oriented
concepts. Becausethe department isinatrangtiona period, many of the studentsinthe course
had not had sgnificant exposure to object-oriented design principles. In aprevious homework
assgnment, | had asked the students to do some research on the Web to find definitions for
various object-oriented terms induding “encapsulaion” and “information hiding”. Several

163

JCSC 18, 3 (February 2003)

students found resourcesthat daimed that these terms have identical meanings. After reviewing
the informal writing assgnment, | corrected the misconception during lecture and created this
forma writing assgnment to reinforce the concepts.

Course Godls:

I Thisassgnment encourages students to review object-oriented terminology.

I Thisassgnment emphasizes that information hiding and encapsulation are in fact distinct
concepts.

Writing Gods:

I Theassgnment emphaszesthat dl informationfound onthe Web (or even in atextbook)
isnot factualy correct and demonstrates the need to verify sources.

I The importance of appropriate documentation is discussed in class and students are
expected to use documentation in the paper.

I Inthis assgnment, fewer guiddines were given (no leading questions) and the students
wrote to an audience of peer computer scientigts.

CS 321 —Data Structures -- Writing Assignment #2

Project Goals:
I Toexploresomeideas of importance in object-oriented design and how the ideasrelate
to one another

I Toapply object-oriented design to areal-world object
1 Topractice verbdizing technical topicsto peer computer scientists

Paper Description:

Object-oriented programming (OOP) differsfrom procedura programming. The principlesof
encgpsulation and information hiding are cornerstones of object-oriented program design.
Many people incorrectly believe that the terms “encapsulation” and “information hiding” refer
tothe same concept. Read at least threereferences onthe topic of OOP. At least one of your
references must be asource other thanthose givenin the “ Possible References’ ligt. After you
have consulted your sources, write an essay in which you:

I Describe the concepts of aclass, an object, encapsulation and information hiding

1 Discuss the importance of encgpsulation and information hiding to OOP

1 Describe the difference between the concept of information hiding and the concept of

encapsulation

To demonstrate the usefulness of the object-oriented design philosophy, apply the
concepts of a class, anobject, informationhiding, and encagpsulation to an example item. You
may choose a radio, microwave oven, or televison and describe that red-world object usng
object-oriented design. Include a discussion of the public interface, data members, and

164

Computer Organization and Ar chitecture 10th Edition Stallings SolutionsM anual
Full Download: http://testbanklive.com/downl oad/computer-organi zation-and-architecture-10th-edition-stal lings-sol utions-manual/

CCSC: Eagtern Conference

methods of each object. Y ou should NOT write any Java code that would be associated with
implementing your chosen object.

Example:
Suppose that we are describing a watch using object-oriented design.
A watch could be an object of the class Clock.
The public interface of the watch could include:

the nob to set the correct time

abutton that controls the dlarm

aknob to set thedarm time
The data members of the watch object might include:

hours, minutes, seconds (for the current time)

hours, minutes and seconds (for the darm time)

aflag that indicates whether the darm is set or not set
Some methods could include:

changeAlarmStatuy(), changeTime(), changeAlarmTime()

Thereis no correct or incorrect design for each item. Your design will depend on the radios,
microwaves or TVsthat you are familiar with. Unlike the example above, your paper should
contain a narrative response and NOT alist of information.

Possible Refer ences:
http://www.javaworld.com/javaworl d/jw-05-2001/jw-0518-encapsul ation.html
http://www.toa.com/pub/abstraction.txt
Data Structures and Algorithms in Java by Goodrich and Tamassa
C++ Plus Data Structures by Dae and Teague

Specifications:

I Thispaper should be 3-4 typed, double-spaced pages.

I Audience Other computer science students who are sudying the concepts of object-
oriented programming (for example someone who has takencomputer science 2 or data
sructures).

Y our paper must have atitle, introduction and conclusion!

Y our paper should indudealig of referencesthat you consulted and contain appropriate
citations.

165

Full download all chapter sinstantly please go to SolutionsManual, Test Bank ste: testbanklive.com

http://testbanklive.com/download/computer-organization-and-architecture-10th-edition-stallings-solutions-manual/

