Chemistry The Central Science 12th Edition Brown Test Bank

Full Download: https://testbanklive.com/download/chemistry-the-central-science-12th-edition-brown-test-bank/

Chemistry: The Central Science, 12e (Brown et al.) Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

3.1 Multiple-Choice Questions

1) When the following equation is balanced, the coefficients are _____.

$$C_8H_{18} + O_2 \rightarrow CO_2 + H_2O$$

- A) 2, 3, 4, 4
- B) 1, 4, 8, 9
- C) 2, 12, 8, 9
- D) 4, 4, 32, 36
- E) 2, 25, 16, 18

Answer: E

Diff: 2 Page Ref: Sec. 3.1

- 2) Of the reactions below, which one is <u>not</u> a combination reaction?
- A) C + $O_2 \rightarrow CO_2$
- B) $2Mg + O_2 \rightarrow 2MgO$
- C) $2N_2 + 3H_2 \rightarrow 2NH_3$
- D) CaO + H₂O \rightarrow Ca(OH)₂
- E) $2CH_4 + 4O_2 \rightarrow 2CO_2 + 4H_2O$

Answer: E

Diff: 2 Page Ref: Sec. 3.2

- 3) When a hydrocarbon burns in air, what component of air reacts?
- A) oxygen
- B) nitrogen
- C) carbon dioxide
- D) water
- E) argon

Answer: A

Diff: 2 Page Ref: Sec. 3.2

- 4) When a hydrocarbon burns in air, a component produced is?
- A) oxygen
- B) nitrogen
- C) carbon
- D) water
- E) argon

Answer: D

- 5) Of the reactions below, which one is a decomposition reaction?
- A) $NH_4C1 \rightarrow NH_3 + HC1$
- B) $2Mg + O_2 \rightarrow 2MgO$
- C) $2N_2 + 3H_2 \rightarrow 2NH_3$
- D) $2CH_4 + 4O_2 \rightarrow 2CO_2 + 4H_2O$
- E) $Cd(NO_3)O_2 + Na_2S \rightarrow CdS + 2NaNO_3$

Answer: A

Diff: 3 Page Ref: Sec. 3.2

6) Which one of the following substances is the product of this combination reaction?

$$Al(s) + I_2(s) \rightarrow$$

- A) AlI₂
- B) AlI
- C) AlI₃
- D) Al₂I₃
- E) Al₃I₂

Answer: C

Diff: 2 Page Ref: Sec. 3.2

- 7) Which one of the following is <u>not</u> true concerning automotive air bags?
- A) They are inflated as a result of a decomposition reaction
- B) They are loaded with sodium azide initially
- C) The gas used for inflating them is oxygen
- D) The two products of the decomposition reaction are sodium and nitrogen
- E) A gas is produced when the air bag activates.

Answer: C

Diff: 2 Page Ref: Sec. 3.2

- 8) The reaction used to inflate automobile airbags ______.
- A) produces sodium gas
- B) is a combustion reaction
- C) is a combination reaction
- D) violates the law of conservation of mass
- E) is a decomposition reaction

Answer: E

- 9) Which of the following are combination reactions?
- 1) $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$
- 2) $CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$
- 3) $Mg(s) + O_2(g) \rightarrow MgO(s)$
- 4) $PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$
- A) 1, 2, and 3
- B) 2 and 3
- C) 1, 2, 3, and 4
- D) 4 only
- E) 2, 3, and 4

Answer: B

Diff: 3 Page Ref: Sec. 3.2

- 10) Which of the following are combustion reactions?
- 1) $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$
- 2) $CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$
- 3) $PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$
- 4) $CH_3OH(l) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$
- A) 1 and 4
- B) 1, 2, 3, and 4
- C) 1, 3, and 4
- D) 2, 3, and 4
- E) 3 and 4

Answer: A

Diff: 2 Page Ref: Sec. 3.2

- 11) Which of the following are decomposition reactions?
- $1) \ \mathrm{CH_4}\left(\mathrm{g}\right) \ + \ \mathrm{O_2}\left(\mathrm{g}\right) \ \rightarrow \ \mathrm{CO_2}\left(\mathrm{g}\right) \ + \ \mathrm{H_2O}\left(\mathrm{l}\right)$
- 2) $CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$
- 3) Mg (s) + O₂ (g) \rightarrow MgO (s)
- 4) $PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$
- A) 1, 2, and 3
- B) 4 only
- C) 1, 2, 3, and 4
- D) 2 and 3
- E) 2, 3, and 4

Answer: B

12) The formula of nitrobenzene is C_6H_5N O_2 . The molecular weight of this compound is
amu. A) 107.11 B) 43.03 C) 109.10 D) 123.11 E) 3.06 Answer: D Diff: 2 Page Ref: Sec. 3.3
13) The formula weight of potassium dichromate (K ₂ Cr ₂ O ₇) is amu. A) 107.09 B) 255.08 C) 242.18 D) 294.18 E) 333.08 Answer: D Diff: 2 Page Ref: Sec. 3.3
14) The formula weight of lead (II) carbonate (PbCO ₃) is amu. A) 207.2 B) 219.2 C) 235.2 D) 267.2 E) 273.2 Answer: D Diff: 2 Page Ref: Sec. 3.3
15) The formula weight of potassium phosphate (K ₃ PO ₄) is amu. A) 173.17 B) 251.37 C) 212.27 D) 196.27 E) 86.07 Answer: C Diff: 2 Page Ref: Sec. 3.3
16) The formula weight of aluminum sulfate (Al ₂ (SO ₄) ₃) is amu. A) 342.15 B) 123.04 C) 59.04 D) 150.14 E) 273.06 Answer: A Diff: 2 Page Ref: Sec. 3.3

The formula weight of silver chromate (Ag ₂ CrO ₄) is amu.	
159.87	
223.87	
331.73	
339.86	
175.87	
nswer: C	
ff: 2 Page Ref: Sec. 3.3	
) The formula weight of ammonium sulfate ((NH ₄)O ₂ SO ₄), rounded to the nearest intege	r. is
	-,
amu.	
100	
118	
116	
132	
264	
nswer: D	
ff: 2 Page Ref: Sec. 3.3	
The molecular weight of the acetic acid (CH ₃ CO ₂ H), rounded to the nearest integer, is _	
nu.	
60	
48	
44	
32	
nswer: A	
ff: 1 Page Ref: Sec. 3.3	
The molecular weight of the ethanol (C ₂ H ₅ OH), rounded to the nearest integer, is	amu
34	
41	
30	
46	
92	
nswer: D	
ff: 1 Page Ref: Sec. 3.3	
The medicinal weight of almost (Collision) mounded to the magnet integer is	04411
The molecular weight of glucose (C ₆ H ₁₂ O ₆), rounded to the nearest integer, is	amu.
24	
96	
136	
180	
224	
nswer: D	
ff: 1 Page Ref: Sec. 3.3	

22) What is the mass % of carbon in dimethylsulfoxide (C_2H_6SO) rounded to three significant figure
A) 60.0
B) 20.6
C) 30.7
D) 7.74
E) 79.8
Answer: C
Diff: 3 Page Ref: Sec. 3.3
23) The mass % of H in methane (CH ₄) is
A) 25.13
B) 4.032
C) 74.87
D) 92.26
E) 7.743
Answer: A
Diff: 2 Page Ref: Sec. 3.3
24) The mass % of Al in aluminum sulfate (Al ₂ (SO ₄) ₃) is
A) 7.886
B) 15.77
C) 21.93
D) 45.70
E) 35.94
Answer: B
Diff: 3 Page Ref: Sec. 3.3
25) The formula weight of a substance is
A) identical to the molar mass
B) the same as the percent by mass weight
C) determined by combustion analysis
D) the sum of the atomic weights of each atom in its chemical formula
E) the weight of a sample of the substance
Answer: D
Diff: 1 Page Ref: Sec. 3.3
26) The formula weight of calcium nitrate (Ca(NO ₃) ₂), rounded to one decimal place, is
amu.
A) 102.1
B) 164.0
C) 204.2
D) 150.1
E) 116.1
Answer: B
Diff: 2 Page Ref: Sec. 3.3

27) The formula weight of magnesium fluoride (MgF ₂), rounded to one decimal place, is
amu. A) 86.6 B) 43.3 C) 62.3 D) 67.6 E) 92.9 Answer: C Diff: 2 Page Ref: Sec. 3.3
28) The formula weight of lead nitrate (Pb(NO ₃) ₂) is amu. A) 269.2 B) 285.2 C) 317.2 D) 331.2 E) 538.4 Answer: D Diff: 2 Page Ref: Sec. 3.3
29) The mass % of C in methane (CH ₄) is A) 25.13 B) 133.6 C) 74.87 D) 92.26 E) 7.743 Answer: C Diff: 2 Page Ref: Sec. 3.4
30) The mass % of F in the binary compound KrF ₂ is A) 18.48 B) 45.38 C) 68.80 D) 81.52 E) 31.20 Answer: E Diff: 2 Page Ref: Sec. 3.4
31) Calculate the percentage by mass of nitrogen in PtCl ₂ (NH ₃) ₂ . A) 4.67 B) 9.34 C) 9.90 D) 4.95 E) 12.67 Answer: B Diff: 2 Page Ref: Sec. 3.4

```
32) Calculate the percentage by mass of lead in Pb(NO<sub>3</sub>)<sub>2</sub>.
A) 38.6
B) 44.5
C) 62.6
D) 65.3
E) 71.2
Answer: C
Diff: 2
            Page Ref: Sec. 3.4
33) Calculate the percentage by mass of nitrogen in Pb(NO<sub>3</sub>)<sub>2</sub>.
A) 4.2
B) 5.2
C) 8.5
D) 10.4
E) 12.6
Answer: C
Diff: 2
            Page Ref: Sec. 3.4
34) Calculate the percentage by mass of lead in PbCO3.
A) 17.96
B) 22.46
C) 73.05
D) 77.54
E) 89.22
Answer: D
Diff: 2
            Page Ref: Sec. 3.4
35) Calculate the percentage by mass of oxygen in Pb(NO<sub>3</sub>)<sub>2</sub>.
A) 9.7
B) 14.5
C) 19.3
D) 29.0
E) 33.4
Answer: D
Diff: 2
            Page Ref: Sec 3.4
36) Calculate the percentage by mass of chlorine in PtCl<sub>2</sub>(NH<sub>3</sub>)<sub>2</sub>.
A) 23.63
B) 11.82
C) 25.05
D) 12.53
E) 18.09
Answer: A
Diff: 3
            Page Ref: Sec. 3.4
```

37) Calculate the percentage by mass of hydrogen in PtCl ₂ (N H ₃) ₂
A) 1.558 B) 1.008 C) 0.672 D) 0.034 E) 2.016 Answer: E Diff: 3 Page Ref: Sec. 3.4
38) One mole of contains the largest number of atoms.
A) S ₈
B) $C_{10}H_8$
C) $Al_2(SO_4)_3$
D) Na ₃ PO ₄
E) Cl ₂
Answer: B
Diff: 2 Page Ref: Sec. 3.4
39) One mole of contains the smallest number of atoms.
A) S ₈
B) $C_{10}H_8$
C) $Al_2(SO_4)_3$
D) Na ₃ PO ₄
E) NaCl
Answer: E Diff: 1 Page Ref: Sec. 3.4
Diff. 1 age Ref. Sec. 3.4
40) One million argon atoms is mol (rounded to two significant figures) of argon atom A) 3.0
B) 1.7×10^{-18}
C) 6.0×10^{23}
D) 1.0×10^{-6}
E) $1.0 \times 10^{+6}$
Answer: B
Diff: 2 Page Ref: Sec. 3.4
41) There are atoms of oxygen are in 300 molecules of CH ₃ CO ₂ H.
A) 300 B) 600
C) 3.01×10^{24}
D) 3.61×10^{26}
E) 1.80×10^{26}
Answer: B
Diff: 2 Page Ref: Sec. 3.4

42) How many molecules of CH ₄ are in 48.2 g of this compound? A) 5.00×10^{24} B) 3.00 C) 2.90×10^{25} D) 1.81×10^{24} E) 4.00 Answer: D Diff: 3 Page Ref: Sec. 3.4	
43) A 30.5 gram sample of glucose (C ₆ H ₁₂ O ₆) contains A) 0.424 B) 0.169 C) 5.90 D) 2.36 E) 0.136 Answer: B Diff: 2 Page Ref: Sec. 3.4	mol of glucose.
44) A 30.5 gram sample of glucose (C ₆ H ₁₂ O ₆) contains A) 1.02 x 10 ²³ B) 6.12 x 10 ²³ C) 6.02 x 10 ²³ D) 2.04 x 10 ²³ E) 1.22 x 10 ²⁴ Answer: B Diff: 3 Page Ref: Sec 3.4	atoms of carbon.
45) A sample of CH ₂ F ₂ with a mass of 19 g contains A) 2.2 × 10 ²³ B) 38 C) 3.3 × 10 ²⁴ D) 4.4 × 10 ²³ E) 9.5 Answer: D Diff: 3 Page Ref: Sec. 3.4	atoms of F.
46) A sample of CH ₄ O with a mass of 32.0 g contains A) 5.32 × 10 ⁻²³ B) 1.00 C) 1.88 × 10 ²² D) 6.02 × 10 ²³ E) 32.0 Answer: D Diff: 2 Page Ref: Sec. 3.4	_ molecules of CH4O.

47) How many atoms of nitrogen are in 10 g of NH4NO3? A) 3.5 B) 1.5×10^{23} C) 3.0×10^{23} D) 1.8 E) 2 Answer: B Diff: 3 Page Ref: Sec. 3.4 48) Gaseous argon has a density of 1.40 g/L at standard conditions. How many argon atoms are in 1.00 L of argon gas at standard conditions? A) 4.76×10^{22} B) 3.43×10^{26} C) 2.11×10^{22} D) 1.59×10^{25} E) 6.02×10^{23} Answer: C Diff: 4 Page Ref: Sec. 3.4 49) What is the mass in grams of 9.76×10^{12} atoms of naturally occurring sodium? A) 22.99 B) 1.62×10^{-11} C) 3.73×10^{-10} D) 7.05×10^{-13} E) 2.24×10^{14} Answer: C Diff: 3 Page Ref: Sec. 3.4 50) How many moles of pyridine (C5H5N) are contained in 3.13 g of pyridine? A) 0.0396 B) 25.3 C) 0.319 D) 0.00404 E) 4.04×10^3 Answer: A Diff: 3 Page Ref: Sec. 3.4 51) How many oxygen atoms are contained in 2.74 g of Al₂(SO₄)₃? A) 12 B) 6.02×10^{23} C) 7.22×10^{24} D) 5.79×10^{22} E) 8.01×10^{-3} Answer: D

Diff: 3

Page Ref: Sec. 3.4

52) The total number of atoms in 0.111 mol of Fe(CO)3(PH3)2 is .

- A) 15.0
- B) 1.00×10^{24}
- C) 4.46×10^{21}
- D) 1.67
- E) 2.76×10^{-24}

Answer: B

Diff: 3 Page Ref: Sec. 3.4

53) How many sulfur dioxide molecules are there in 1.80 mol of sulfur dioxide?

- A) 1.08×10^{23}
- B) 6.02×10^{24}
- C) 1.80×10^{24}
- D) 1.08×10^{24}
- E) 6.02×10^{23}

Answer: D

Diff: 2 Page Ref: Sec. 3.4

54) How many sulfur dioxide molecules are there in 0.180 mol of sulfur dioxide?

- A) 1.80×10^{23}
- B) 6.02×10^{24}
- C) 6.02×10^{23}
- D) 1.08×10^{24}
- E) 1.08×10^{23}

Answer: E

Diff: 2 Page Ref: Sec. 3.4

55) How many carbon atoms are there in 52.06 g of carbon dioxide?

- A) 5.206×10^{24}
- B) 3.134×10^{25}
- C) 7.122×10^{23}
- D) 8.648×10^{-23}
- E) 1.424×10^{24}

Answer: C

56) How many oxygen atoms are there in 52.06 g of carbon dioxide?
A) 1.424×10^{24}
B) 6.022×10^{23}
C) 1.204×10^{24}
D) 5.088×10^{23}
E) 1.018×10^{24}
Answer: A
Diff: 3 Page Ref: Sec. 3.4
57) How many moles of sodium carbonate contain 1.773×10^{17} carbon atoms?
A) 5.890×10^{-7}
B) 2.945×10^{-7}
C) 1.473×10^{-7}
D) 8.836×10^{-7}
E) 9.817×10^{-8}
Answer: B
Diff: 2 Page Ref: Sec. 3.4
58) How many grams of sodium carbonate contain 1.773×10^{17} carbon atoms?
A) 3.121×10^{-5}
B) 1.011×10^{-5}
C) 1.517×10^{-5}
D) 9.100×10^{-5}
E) 6.066×10^{-5}
Answer: A
Diff: 2 Page Ref: Sec. 3.4
59) The compound responsible for the characteristic smell of garlic is allicin, C ₆ H ₁₀ OS ₂ . The mass of
1.00 mol of allicin, rounded to the nearest integer, is g.
A) 34
B) 162
C) 86 D) 61
E) 19
Answer: B
Diff: 1 Page Ref: Sec. 3.4

60) The molecular formula of aspartame, the generic name of N	utraSweet $^{(\mathbb{R})}$, is C ₁₄ H ₁₈ N ₂ O ₅ . The
molar mass of aspartame, rounded to the nearest integer, isA) 24 B) 156	g.
C) 294	
D) 43	
E) 39 Answer: C	
Diff: 1 Page Ref: Sec. 3.4	
61) There are average atoms in 20 malacular of Carl	[40\$202
61) There are oxygen atoms in 30 molecules of C ₂₀ H A) 6.0 x 10 ²³	4 <u>7</u> 530 <u>7</u> .
B) 1.8 x 1025	
C) 3.6 x 1025	
D) 1.2 x 1024	
E) 60	
Answer: E Diff: 2 Page Ref: Sec. 3.4	
62) A nitrogen oxide is 63.65% by mass nitrogen. The molecula	ar formula could be .
A) NO	
B) NO ₂	
C) N ₂ O D) N ₂ O ₄	
E) either NO ₂ or N ₂ O ₄	
Answer: C	
Diff: 3 Page Ref: Sec. 3.5	
63) A sulfur oxide is 50.0% by mass sulfur. This molecular form	nula could be
A) SO B) SO ₂	
C) S ₂ O	
D) S ₂ O ₄	
E) either SO ₂ or S ₂ O ₄	
Answer: E	
Diff: 3 Page Ref: Sec. 3.5	
64) Which hydrocarbon pair below have identical mass percenta	ge of C?
A) C ₃ H ₄ and C ₃ H ₆	
B) C ₂ H ₄ and C ₃ H ₄ C) C ₂ H ₄ and C ₄ H ₂	
D) C2H4 and C3H6	
E) none of the above	
Answer: D	
Diff: 3 Page Ref: Sec. 3.5	

65) Sulfur and oxygen react to produce sulfur trioxide. In a particular experiment, 7.9 grams of SO₃ are produced by the reaction of 5.0 grams of O₂ with 6.0 grams of S. What is the % yield of SO₃ in this experiment?

$$S(s) + O_2(g) \rightarrow SO_3(g)$$
 (not balanced)

- A) 32
- B) 63
- C) 75
- D) 95
- E) 99

Answer: D

Diff: 4 Page Ref: Sec. 3.7

66) Propane (C₃H₈) reacts with oxygen in the air to produce carbon dioxide and water. In a particular experiment, 38.0 grams of carbon dioxide are produced from the reaction of 22.05 grams of propane with excess oxygen. What is the % yield in this reaction?

- A) 38.0
- B) 57.6
- C) 66.0
- D) 86.4
- E) 94.5

Answer: B

Diff: 5 Page Ref: Sec 3.7

- 3.2 Bimodal Questions
- 1) When the following equation is balanced, the coefficients are _____.

$$NH_3(g) + O_2(g) \rightarrow NO_2(g) + H_2O(g)$$

- A) 1, 1, 1, 1
- B) 4, 7, 4, 6
- C) 2, 3, 2, 3
- D) 1, 3, 1, 2
- E) 4, 3, 4, 3

Answer: B

2) When the following equation is balanced, the coefficients are . .

$$Al(NO_3)_3 + Na_2S \rightarrow Al_2S_3 + NaNO_3$$

- A) 2, 3, 1, 6
- B) 2, 1, 3, 2
- C) 1, 1, 1, 1
- D) 4, 6, 3, 2
- E) 2, 3, 2, 3

Answer: A

Diff: 1 Page Ref: Sec. 3.1

3) When the following equation is balanced, the coefficient of H₂ is .

$$K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$$

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

Answer: A

Diff: 1 Page Ref: Sec. 3.1

4) When the following equation is balanced, the coefficient of Al is ______.

$$Al(s) + H2O(l) \rightarrow Al(OH)3(s) + H2(g)$$

- A) 1
- B) 2
- C) 3
- D) 5
- E) 4

Answer: B

Diff: 1 Page Ref: Sec. 3.1

5) When the following equation is balanced, the coefficient of H₂O is ______.

$$Ca(s) + H_2O(l) \rightarrow Ca(OH)_2(aq) + H_2(g)$$

- A) 1
- B) 2
- C) 3
- D) 5
- E) 4

Answer: B

6) When the following equation is balanced, the coefficient of Al₂O₃ is .

$$Al_2O_3(s) + C(s) + Cl_2(g) \rightarrow AlCl_3(s) + CO(g)$$

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

Answer: A

Diff: 1 Page Ref: Sec. 3.1

7) When the following equation is balanced, the coefficient of H₂S is .

$$FeCl3 (aq) + H2S (g) \rightarrow Fe2S3 (s) + HCl (aq)$$

- A) 1
- B) 2
- C) 3
- D) 5
- E) 4

Answer: C

Diff: 1 Page Ref: Sec. 3.1

8) When the following equation is balanced, the coefficient of HCl is . .

$$CaCO_3$$
 (s) + HCl (aq) \rightarrow $CaCl_2$ (aq) + CO_2 (g) + H_2O (l)

- A) 1
- B) 2
- C) 3
- D) 4
- E) 0

Answer: B

Diff: 1 Page Ref: Sec. 3.1

9) When the following equation is balanced, the coefficient of HNO3 is . .

$$HNO_3$$
 (aq) + $CaCO_3$ (s) \rightarrow $Ca(NO_3)_2$ (aq) + CO_2 (g) + H_2O (l)

- A) 1
- B) 2
- C) 3
- D) 5
- E) 4

Answer: B

10) When the following equation is balanced, the coefficient of H3PO4 is
H_3PO_4 (aq) + NaOH (aq) \rightarrow Na ₃ PO ₄ (aq) + H ₂ O (l)
A) 1 B) 2 C) 3 D) 4 E) 0 Answer: A Diff: 1 Page Ref: Sec. 3.1
11) When the following equation is balanced, the coefficient of C3H8O3 is
$C_3H_8O_3(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
A) 1 B) 2 C) 3 D) 7 E) 5 Answer: B Diff: 1 Page Ref: Sec. 3.1
12) When the following equation is balanced, the coefficient of O ₂ is
$C_2H_4O(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$ A) 2 B) 3 C) 4 D) 5 E) 1 Answer: D Diff: 1 Page Ref: Sec. 3.1
13) When the following equation is balanced, the coefficient of H ₂ is
$CO(g) + H_2(g) \rightarrow H_2O(g) + CH_4(g)$
A) 1 B) 2 C) 3 D) 4 E) 0 Answer: C Diff: 1 Page Ref: Sec. 3.1
14) When the following equation is balanced, the coefficient of H ₂ SO ₄ is

 H_2SO_4 (aq) + NaOH (aq) \rightarrow Na₂SO₄ (aq) + H₂O (l)

- A) 1
- B) 2
- C) 3
- D) 4
- E) 0.5

Answer: A

Diff: 1 Page Ref: Sec. 3.1

15) When the following equation is balanced, the coefficient of water is ______.

$$K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$$

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

Answer: B

Diff: 1 Page Ref: Sec. 3.1

16) When the following equation is balanced, the coefficient of hydrogen is ______.

$$K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$$

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

Answer: A

Diff: 1 Page Ref: Sec. 3.1

17) When the following equation is balanced, the coefficient of oxygen is ______.

$$PbS(s) + O2(g) \rightarrow PbO(s) + SO2(g)$$

- A) 1
- B) 3
- C) 2
- D) 4
- E) 5

Answer: B

18) When the following equation is balanced, the coefficient of sulfur dioxide is ______.

$$PbS(s) + O_2(g) \rightarrow PbO(s) + SO_2(g)$$

- A) 5
- B) 1
- C) 3
- D) 2
- E) 4

Answer: D

Diff: 1 Page Ref: Sec. 3.1

19) When the following equation is balanced, the coefficient of dinitrogen pentoxide is ______.

$$N_2O_5(g) + H_2O(1) \rightarrow HNO_3(aq)$$

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

Answer: A

Diff: 1 Page Ref: Sec. 3.1

20) When the following equation is balanced, the coefficient of water is .

$$N_2O_5(g) + H_2O(1) \rightarrow HNO_3(aq)$$

- A) 5
- B) 2
- C) 3
- D) 4
- E) 1

Answer: E

Diff: 1 Page Ref: Sec. 3.1

21) When the following equation is balanced, the coefficient of nitric acid is ______.

$$N_2O_5(g) + H_2O(l) \rightarrow HNO_3(aq)$$

- A) 5
- B) 2
- C) 3
- D) 4
- E) 1

Answer: B

22) Write the balanced equation for the reaction that occurs when methanol, CH3OH (l), is burned in air. What is the coefficient of methanol in the balanced equation?

- A) 1
- B) 2
- C) 3
- D) 4
- E) 3/2

Answer: B

Diff: 2 Page Ref: Sec. 3.2

23) Write the balanced equation for the reaction that occurs when methanol, CH₃OH (l), is burned in air. What is the coefficient of oxygen in the balanced equation?

- A) 1
- B) 2
- C) 3
- D) 4
- E) 3/2

Answer: C

Diff: 2 Page Ref: Sec. 3.2

24) What is the coefficient of O₂ when the following equation is completed and balanced?

$$C_4H_8O_2 + O_2 \rightarrow$$

- A) 2
- B) 3
- C) 5
- D) 6
- E) 1

Answer: C

Diff: 3 Page Ref: Sec. 3.2

25) Predict the product in the combination reaction below.

$$Al(s) + N_2(g) \rightarrow$$

- A) AlN
- B) Al₃N
- C) Al N₂
- D) Al₃N₂
- E) AlN₃

Answer: A

26) The balanced equation for the decomposition of sodium azide is . . A) $2NaN_3$ (s) $\rightarrow 2Na$ (s) $+ 3N_2$ (g) B) $2NaN_3$ (s) $\rightarrow Na_2$ (s) + $3N_2$ (g) C) NaN₃ (s) \rightarrow Na (s) + N₂ (g) D) NaN₃ (s) \rightarrow Na (s) + N₂ (g) + N (g) E) $2NaN_3$ (s) $\rightarrow 2Na$ (s) $+ 2N_2$ (g) Answer: A Diff: 2 Page Ref: Sec. 3.2 27) There are _____ mol of carbon atoms in 4 mol C₄H₈O₂. A) 4 B) 8 C) 16 D) 20 E) 32 Answer: C Diff: 1 Page Ref: Sec. 3.4 28) There are sulfur atoms in 25 molecules of C₄H₄S₂. A) 1.5×10^{25} B) 4.8×10^{25} C) 3.0×10^{25} D) 50 E) 6.02×10^{23} Answer: D Diff: 2 Page Ref: Sec. 3.4 29) There are hydrogen atoms in 25 molecules of C₄H₄S₂. A) 25 B) 3.8×10^{24} C) 6.0×10^{25} D) 100 E) 1.5×10^{25} Answer: D Diff: 2 Page Ref: Sec. 3.4 30) A sample of C₃H₈O that contains 200 molecules contains carbon atoms. A) 600 B) 200 C) 3.61×10^{26} D) 1.20×10^{26} E) 4.01×10^{25} Answer: A Diff: 2 Page Ref: Sec. 3.4

31) How many moles of carbon monoxide are there in 30.33 g of carbon monoxide?
A) 0.8452
B) 1.305
C) 0.9291
D) 2.589
E) 3.046
Answer: B Diff: 2 Page Ref: Sec. 3.4
32) How many moles of carbon dioxide are there in 52.06 g of carbon dioxide?
A) 0.8452
B) 1.183
C) 6.022×10^{23}
D) 8.648×10^{23}
E) 3.134×10^{25}
Answer: B
Diff: 2 Page Ref: Sec. 3.4
33) There are molecules of methane in 0.123 mol of methane (CH ₄). A) 5
B) 2.46×10^{-2}
C) 2.04×10^{-25}
D) 7.40×10^{22}
E) 0.615
Answer: D
Diff: 2 Page Ref: Sec. 3.4
34) What is the empirical formula of a compound that contains 27.0% S, 13.4% O, and 59.6% Cl by
mass?
A) SOC1
B) SOCl ₂
C) S ₂ OC1
D) SO ₂ Cl
E) CISO ₄
Answer: B
Diff: 3 Page Ref: Sec. 3.5
35) What is the empirical formula of a compound that contains 29% Na, 41% S, and 30% O by mass
A) Na ₂ S ₂ O ₃
B) NaSO ₂
C) NaSO
D) NaSO3 ₄
E) Na ₂ S ₂ O ₆
Answer: A
Diff: 3 Page Ref: Sec. 3.5

36) What is the empirical formula of a compound that contains 49.4% K, 20.3% S, and 30.3% O by mass? A) KSO ₂ B) KSO ₃ C) K ₂ SO ₄ D) K ₂ O ₃ E) KSO ₄ Answer: D Diff: 3 Page Ref: Sec. 3.5
37) A compound contains 40.0% C, 6.71% H, and 53.29% O by mass. The molecular weight of the compound is 60.05 amu. The molecular formula of this compound is A) $C_2H_4O_2$ B) C H_2O
C) C ₂ H ₃ O ₄ D) C ₂ H ₂ O ₄
E) CHO ₂ Answer: A Diff: 3 Page Ref: Sec. 3.5
38) A compound that is composed of carbon, hydrogen, and oxygen contains 70.6% C, 5.9% H, and 23.5% O by mass. The molecular weight of the compound is 136 amu. What is the molecular formula? A) $C_8H_8O_2$ B) C_8H_4O C) C_4H_4O D) $C_9H_{12}O$ E) $C_5H_6O_2$ Answer: A Diff: 3 Page Ref: Sec. 3.5
39) A compound that is composed of only carbon and hydrogen contains 85.7% C and 14.3% H by mass. What is the empirical formula of the compound? A) CH ₂ B) C ₂ H ₄ C) C H ₄ 2 D) C ₄ H ₈ E) C ₈ 6H ₁ 4 Answer: A
Diff: 3 Page Ref: Sec. 3.5

40) A compound that is composed of only carbon and hydrogen contains 80.0% C and 20.0% H by mass. What is the empirical formula of the compound?
A) C ₂₀ H ₆₀
B) C ₇ H ₂₀
C) C H ₃
D) C_2H_6
E) CH ₄
Answer: C
Diff: 3 Page Ref: Sec. 3.5
41) A compound contains 38.7% K, 13.9% N, and 47.4% O by mass. What is the empirical formula of the compound? A) KNO ₃
B) K ₂ N ₂ O ₃
C) KNO ₂
D) K ₂ NO ₃
E) K ₄ NO ₅
Answer: A
Diff: 3 Page Ref: Sec. 3.5
42) A compound is composed of only C, H, and O. The combustion of a 0.519-g sample of the compound yields 1.24 g of CO ₂ and 0.255 g of H ₂ O. What is the empirical formula of the compound?
A) C ₆ H ₆ O
B) C ₃ H ₃ O
C) CH ₃ O
D) C ₂ H ₆ O ₅
E) $C_2H_6O_2$
Answer: B
Diff: 4 Page Ref: Sec. 3.5
43) Combustion of a 1.031-g sample of a compound containing only carbon, hydrogen, and oxygen
produced 2.265 g of CO ₂ and 1.236 g of H ₂ O. What is the empirical formula of the compound?
A) C ₃ H ₈ O
B) C ₃ H ₅ O
C) C ₆ H ₁₆ O ₂
D) C ₃ H ₉ O ₃
E) C ₃ H ₆ O ₃
Answer: A
Diff: 4 Page Ref: Sec. 3.5

44) Combustion of a 0.9835-g sample of a compound containing only carbon, hydrogen, and oxygen produced 1.900 g of CO₂ and 1.070 g of H₂O. What is the empirical formula of the compound?

- A) C₂ H₅O
- B) $C_4 H_{10}O_2$
- $C) C_4 H_{11}O_2$
- D) $C_4 H_{10}O$
- E) C₂ H₅O₂

Answer: C

Diff: 4 Page Ref: Sec. 3.5

45) The combustion of ammonia in the presence of excess oxygen yields NO₂ and H₂O:

$$4 \text{ NH}_3 (g) + 7 \text{ O}_2 (g) \rightarrow 4 \text{ NO}_2 (g) + 6 \text{ H}_2 \text{O} (g)$$

The combustion of 43.9 g of ammonia produces _____ g of NO₂.

- A) 2.58
- B) 178
- C) 119
- D) 0.954
- E) 43.9

Answer: C

Diff: 3 Page Ref: Sec. 3.6

46) The combustion of propane (C₃H₈) in the presence of excess oxygen yields CO₂ and H₂O:

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3CO_2(g) + 4 H_2O(g)$$

When 2.5 mol of O₂ are consumed in their reaction, _____ mol of CO₂ are produced.

- A) 1.5
- B) 3.0
- C) 5.0
- D) 6.0
- E) 2.5

Answer: A

47) Calcium carbide (CaC₂) reacts with water to produce acetylene (C₂H₂):

$$CaC_{2}(s) + 2 H_{2}O(g) \rightarrow Ca(OH)_{2}(s) + C_{2}H_{2}(g)$$

Production of 13 g of C₂H₂ requires consumption of _____ g of H₂O.

- A) 4.5
- B) 9.0
- C) 18
- D) 4.8×10^2
- E) 4.8×10^{-2}
- Answer: C
- Diff: 3 Page Ref: Sec. 3.6

48) Calcium carbide (CaC₂) reacts with water to produce acetylene (C₂H₂):

$$CaC_2(s) + 2 H_2O(g) \rightarrow Ca(OH)_2(s) + C_2H_2(g)$$

The complete reaction of 57.4 g of CaC₂ requires consumption of _____ g of H₂O.

- A) 0.895
- B) 64.1
- C) 32.3
- D) 1.79
- E) 18.0
- Answer: C

Diff: 4 Page Ref: Sec. 3.6

49) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

A 7.1-g sample of N_2 requires _____ g of H_2 for complete reaction.

- A) 0.51
- B) 0.76
- C) 1.2
- D) 1.5
- E) 17.2

Answer: D

50) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

A _____ g sample of N₂ requires 3.0 g of H₂ for complete reaction.

- A) 0.51
- B) 0.76
- C) 1.2
- D) 14.0
- E) 17.2

Answer: D

Diff: 3 Page Ref: Sec. 3.6

51) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

$$PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$$

How many grams of lead (II) oxide will be produced by the decomposition of 2.50 g of lead (II) carbonate?

- A) 0.41
- B) 2.50
- C) 0.00936
- D) 2.09
- E) 2.61

Answer: D

Diff: 3 Page Ref: Sec. 3.6

52) The combustion of propane (C₃H₈) produces CO₂ and H₂O:

$$\mathrm{C_3H_8}\,(\mathrm{g}) \,+\, 5\,\mathrm{O_2}\,(\mathrm{g}) \,\rightarrow\, 3\mathrm{CO_2}\,(\mathrm{g}) \,+\, 4\,\mathrm{H_2O}\,(\mathrm{g})$$

The reaction of 2.5 mol of O₂ with 4.6 mol of C₃H₈ will produce _____ mol of H₂O.

- A) 4.0
- B) 3.0
- C) 2.5
- D) 2.0
- E) 1.0

Answer: D

53) GeF₃H is formed from GeH₄ and GeF₄ in the combination reaction:

$$GeH_4 + 3GeF_4 \rightarrow 4GeF_3H$$

If the reaction yield is 92.6%, how many moles of GeF₄ are needed to produce 8.00 mol of GeF₃H?

- A) 3.24
- B) 5.56
- C) 6.48
- D) 2.78
- E) 2.16

Answer: C

Diff: 4 Page Ref: Sec. 3.7

54) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

If the reaction yield is 87.5%, how many moles of N₂ are needed to produce 3.00 mol of NH₃?.

- A) 0.166
- B) 1.00
- C) 1.5
- D) 1.71
- E) 2.32

Answer: D

Diff: 4 Page Ref: Sec. 3.7

55) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

$$PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$$

If the reaction yield is 95.7%, how many grams of lead (II) oxide will be produced by the decomposition of 2.50 g of lead (II) carbonate?

- A) 1.04
- B) 1.55
- C) 2.09
- D) 4.00

E) 5.55

Answer: C

56) The combustion of ammonia in the presence of oxygen yields NO₂ and H₂O:

$$4 \text{ NH}_3 (g) + 7 \text{ O}_2 (g) \rightarrow 4 \text{ NO}_2 (g) + 6 \text{ H}_2 \text{O} (g)$$

The combustion of 43.9 g of ammonia with 258 g of oxygen produces g of NO₂.

- A) 212
- B) 178
- C) 119
- D) 0.954
- E) 43.9

Answer: C

Diff: 4 Page Ref: Sec. 3.7

57) What mass in grams of hydrogen is produced by the reaction of 4.73 g of magnesium with 1.83 g of water?

$$Mg(s) + 2 H_2O(l) \rightarrow Mg(OH)_2(s) + H_2(g)$$

- A) 0.102
- B) 0.0162
- C) 0.0485
- D) 0.219
- E) 0.204

Answer: A

Diff: 4 Page Ref: Sec. 3.7

58) If the reaction yield is 94.4%, what mass in grams of hydrogen is produced by the reaction of 4.73 g of magnesium with 1.83 g of water?

$$Mg\left(s\right) \ + 2 \ H_2O\left(l\right) \ \rightarrow \ Mg(OH)_2\left(s\right) \ + \ H_2\left(g\right)$$

- A) 0.0962
- B) 0.0162
- C) 0.0485
- D) 0.219
- E) 0.204

Answer: A

59) Silver nitrate and aluminum chloride react with each other by exchanging anions:

$$3AgNO_3 (aq) + AlCl_3 (aq) \rightarrow Al(NO_3)_3 (aq) + 3AgCl (s)$$

What mass in grams of AgCl is produced when 4.22 g of AgNO₃ react with 7.73 g of AlCl₃?

- A) 17.6
- B) 4.22
- C) 24.9
- D) 3.56
- E) 11.9

Answer: D

Diff: 4 Page Ref: Sec. 3.7

60) How many moles of magnesium oxide are produced by the reaction of 3.82 g of magnesium nitride with 7.73 g of water?

$$Mg_3N_2 + 3 H_2O \rightarrow 2NH_3 + 3MgO$$

- A) 0.114
- B) 0.0378
- C) 0.429
- D) 0.0756
- E) 4.57

Answer: A

Diff: 4 Page Ref: Sec. 3.7

61) A 3.82-g sample of magnesium nitride is reacted with 7.73 g of water.

$$Mg_3N_2 + 3 H_2O \rightarrow 2NH_3 + 3MgO$$

The yield of MgO is 3.60 g. What is the percent yield in the reaction?

- A) 94.5
- B) 78.4
- C) 46.6
- D) 49.4
- E) 99.9

Answer: B

62) Pentacarbonyliron (Fe(CO)₅) reacts with phosphorous trifluoride (PF₃) and hydrogen, releasing carbon monoxide:

$$Fe(CO)_5 + PF_3 + H_2 \rightarrow Fe(CO)_2(PF_3)_2(H)_2 + CO \text{ (not balanced)}$$

The reaction of 5.0 mol of Fe(CO)₅, 8.0 mol of PF₃and 6.0 mol of H₂ will release _____ mol of CO.

- A) 15
- B) 5.0
- C) 24
- D) 6.0
- E) 12

Answer: E

Diff: 3 Page Ref: Sec. 3.7

63) What is the maximum mass in grams of NH3 that can be produced by the reaction of 1.0 g of N_2 with 3.0 g of H_2 via the equation below?

$$N_2(g) + H_2(g) \rightarrow NH_3(g)$$
 (not balanced)

- A) 2.0
- B) 1.2
- C) 0.61
- D) 17
- E) 4.0

Answer: B

Diff: 3 Page Ref: Sec. 3.7

64) What is the maximum amount in grams of SO₃ that can be produced by the reaction of 1.0 g of S with 1.0 g of O₂ via the equation below?

$$\mathrm{S}\left(s\right) \,+\, \mathrm{O}_{2}\left(g\right) \,\rightarrow\, \mathrm{SO}_{3}\left(g\right) \,\left(\text{not balanced}\right)$$

- A) 0.27
- B) 1.7
- C) 2.5
- D) 3.8
- E) 2.0

Answer: B

65) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

The maximum amount of Al₂O₃ that can be produced from 2.5 g of Al and 2.5 g of O₂ is _____

g.

- A) 9.4
- B) 7.4
- C) 4.7
- D) 5.3
- E) 5.0

Answer: C

Diff: 3 Page Ref: Sec. 3.7

66) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

$$S(s) + 3F_3(g) \rightarrow SF_6(g)$$

The maximum amount of ${\rm SF}_6$ that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of

fluorine is _____ g.

- A) 12
- B) 3.2
- C) 5.8
- D) 16
- E) 8.0

Answer: C

Diff: 3 Page Ref: Sec. 3.7

67) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O₂ produced 3.5 g of Al₂O₃. The % yield of the reaction is _____.

- A) 74
- B) 37
- C) 47
- D) 66
- E) 26

Answer: A

68) Sulfur and oxygen react in a combination reaction to produce sulfur trioxide, an environmental pollutant:

$$2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$$

In a particular experiment, the reaction of 1.0 g S with 1.0 g O₂ produced 0.80 g of SO₃. The % yield in this experiment is ______.

- A) 30
- B) 29
- C) 21
- D) 88
- E) 48

Answer: E

Diff: 4 Page Ref: Sec. 3.7

69) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

$$S(s) + 3F_2(g) \rightarrow SF_6(g)$$

In a particular experiment, the percent yield is 79.0%. This means that in this experiment, a 7.90-g sample of fluorine yields _____ g of SF₆.

- A) 30.3
- B) 10.1
- C) 7.99
- D) 24.0
- E) 0.110

Answer: C

Diff: 4 Page Ref: Sec. 3.7

3.3 Algorithmic Questions

- 1) The molecular weight of acetic acid (HC₂H₃O₂), the acid in vinegar, is _____ amu (rounded to one decimal place).
- A) 59.0
- B) 29.0
- (C) 60.1
- D) 8.0
- E) 32.0

Answer: C

Diff: 1 Page Ref: Sec. 3.3

2) Determine the mass percent (to the hundredths place) of Na in sodium bicarbonate (NaHCO3).

Answer: 27.36

3) There	are mol of carbon atoms in 3 mol of dimethylsulfoxide (C_2H_6SO).
A) 2	
B) 4	
C) 6	
D) 8	
E) 10	
Answer:	C
Diff: 1	Page Ref: Sec. 3.4
4) How n	nany grams of hydrogen are in 23 g of CH ₄ O?
A) 2.9	
B) 4.6	
C) 2.3	
D) 4.0	
E) 5.8	
Answer:	Α
Diff: 3	Page Ref: Sec. 3.4
5) How n	nany grams of oxygen are in 45 g of C ₂ H ₂ O ₂ ?
A) 8.3	
B) 9.3	
C) 17	
D) 25	
E) 31	
Answer:	D
Diff: 3	Page Ref: Sec. 3.4
6) A 3.92	-g sample of magnesium nitrate, Mg(NO ₃) ₂ , contains mol of this compound
A) 2.32	
B) 1.65	
C) 0.111	
D) 0.0529	9
E) 0.0264	
Answer:	
Diff: 2	Page Ref: Sec. 3.4
7) A 17.6	-g sample of ammonium carbonate contains mol of ammonium ions.
A) 0.366	
B) 0.183	
C) 0.176	
D) 2.14	
E) 3.47	
Answer:	A
Diff: 4	Page Ref: Sec. 3.4

8) What is the empirical formula of a compound that is 52.1% C, 13.1% H, and 34.7% O by mass?

- A) C₂HO
- B) C₂HO₃
- $C) C_4 H_{12} O_2$
- D) $C_4H_{13}O_2$
- E) C₂H₆O

Answer: E

Diff: 4 Page Ref: Sec. 3.5

9) A certain alcohol contains only three elements, carbon, hydrogen, and oxygen. Combustion of a 30.00 gram sample of the alcohol produced 57.30 grams of CO₂ and 35.22 grams of H₂O. What is the empirical formula of the alcohol?

Answer: C2H6O

Diff: 4 Page Ref: Sec. 3.5

10) Lithium and nitrogen react to produce lithium nitride:

$$6\text{Li}(s) + \text{N}_2(g) \rightarrow 2\text{Li}_3\text{N}(s)$$

How many moles of N₂ are needed to react with 0.710 mol of lithium?

- A) 4.26
- B) 0.710
- C) 0.237
- D) 2.13
- E) 0.118

Answer: E

Diff: 2 Page Ref: Sec. 3.6

11) The combustion of propane (C₃H₈) produces CO₂ and H₂O:

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3CO_2(g) + 4 H_2O(g)$$

The reaction of 5.5 mol of O₂ will produce _____ mol of H₂O.

- A) 5.5
- B) 5.0
- C) 2.0
- D) 4.4
- E) 1.0

Answer: D

12) Magnesium and nitrogen react in a combination reaction to produce magnesium nitride:

$$3 \text{ Mg} + \text{N}_2 \rightarrow \text{Mg}_3\text{N}_2$$

In a particular experiment, a 10.1-g sample of N2 reacts completely. The mass of Mg consumed is

A) 8.76

- A) 0.70
- B) 26.3
- C) 35.1
- D) 0.92
- E) 13.9

Answer: B

Diff: 3 Page Ref: Sec. 3.6

13) The combustion of ammonia in the presence of excess oxygen yields NO_2 and H_2O :

$$4 \text{ NH}_3 (g) + 7 \text{ O}_2 (g) \rightarrow 4 \text{ NO}_2 (g) + 6 \text{ H}_2 \text{O} (g)$$

The combustion of 57.6 g of ammonia consumes _____ g of oxygen.

- A) 27.0
- B) 28.8
- C) 54.1
- D) 189
- E) 94.6

Answer: D

Diff: 3 Page Ref: Sec. 3.6

14) Lithium and nitrogen react to produce lithium nitride:

$$6\text{Li}(s) + \text{N}_2(g) \rightarrow 2\text{Li}_3\text{N}(s)$$

How many moles of lithium nitride are produced when 0.400 mol of lithium react in this fashion?

- A) 0.133
- B) 0.800
- C) 0.0667
- D) 1.20
- E) 0.200

Answer: A

15) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

$$6\text{Li}(s) + \text{N}_2(g) \rightarrow 2\text{Li}_3\text{N}(s)$$

How many moles of lithium are needed to produce 0.20 mol of Li₃N when the reaction is carried out in the presence of excess nitrogen?

- A) 0.10
- B) 0.60
- C) 0.067
- D) 0.13
- E) 1.2

Answer: B

Diff: 2 Page Ref: Sec. 3.6

16) Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

$$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$$

How many moles of H₂ are produced by the decomposition of 3.55 mol of sodium azide?

- A) 2.37
- B) 10.7
- C) 5.33
- D) 1.18
- E) 1.78

Answer: C

Diff: 2 Page Ref: Sec. 3.6

17) Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

$$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$$

How many grams of sodium azide are required to produce 30.5 g of nitrogen?

- A) 1.63
- B) 0.726
- C) 70.8
- D) 47.2
- E) 106.2

Answer: D

18) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide:

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

How many moles of O₂ are consumed when 4.11 mol of magnesium burns?

- A) 0.169
- B) 0.487
- C) 4.11
- D) 8.22
- E) 2.06

Answer: E

Diff: 2 Page Ref: Sec. 3.6

19) Calcium carbide (CaC₂) reacts with water to produce acetylene (C₂H₂):

$$CaC_2(s) + 2 H_2O(g) \rightarrow Ca(OH)_2(s) + C_2H_2(g)$$

Production of 3.3 g of C₂H₂ requires consumption of _____ g of H₂O.

- A) 1.2
- B) 2.3
- C) 4.6
- D) 480
- E) 0.048

Answer: C

Diff: 3 Page Ref: Sec. 3.6

20) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

$$PbCO_{3}\left(s\right) \,\rightarrow\, PbO\left(s\right) \,+\, CO_{2}\left(g\right)$$

grams of lead (II) oxide will be produced by the decomposition of 7.50 g of lead (II) carbonate?

- A) 0.41
- B) 2.50
- C) 0.00936
- D) 6.26
- E) 7.83

Answer: D

21) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

$$6\text{Li}(s) + \text{N}_2(g) \rightarrow 2\text{Li}_3\text{N}(s)$$

In a particular experiment, 5.50-g samples of each reagent are reacted. The theoretical yield of lithium nitride is _____ g.

- A) 5.53
- B) 4.60
- C) 27.6
- D) 9.20
- E) 13.7
- Answer: D
- Diff: 3

Page Ref: Sec. 3.7

22) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide:

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

When 2.00 g of magnesium burns, the theoretical yield of magnesium oxide is g.

- A) 2.00
- B) 3.32
- C) 0.0823
- D) 1.66
- E) 6.63

Answer: B

Diff: 3 Page Ref: Sec. 3.7

23) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

$$\mathrm{CaO}\left(\mathrm{s}\right) + \mathrm{H}_{2}\mathrm{O}\left(\mathrm{l}\right) \ \rightarrow \ \mathrm{Ca}(\mathrm{OH})_{2}\left(\mathrm{s}\right)$$

A 4.00-g sample of CaO is reacted with 3.86 g of H₂O. How many grams of water remains after completion of reaction?

- A) 0.00
- B) 0.00793
- C) 2.57
- D) 1.04
- E) 0.143

Answer: C

24) If 2352 grams of FeS2 is allowed to react with 1408 grams of O2 according to the following equation, how many grams of Fe2O3 are produced?

$$FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$$

Answer: 1280

Diff: 4 Page Ref: Sec. 3.7

25) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

$$CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$$

In a particular experiment, a 1.50-g sample of CaO is reacted with excess water and 1.48 g of Ca(OH)₂ is recovered. What is the percent yield in this experiment?

A) 99

B) 0.99

C) 2.16

D) 74.8

E) 101.2

Answer: D

Diff: 4 Page Ref: Sec. 3.7

3.4 Short Answer Questions

1) Complete and balance the following reaction, given that elemental rubidium reacts with elemental sulfur to form Rb₂S (s).

$$Na(s) + S(s) \rightarrow$$

Answer: \rightarrow Na₂S (s)

Diff: 3 Page Ref: Sec. 3.2

2) A compound was found to contain 90.6% lead (Pb) and 9.4% oxygen. The empirical formula for this compound is ______.

Answer: Pb₃O₄

Diff: 3 Page Ref: Sec. 3.5

3) The combustion of propane (C₃H₈) in the presence of excess oxygen yields CO₂ and H₂O:

$$C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$$

When 7.3 g of C_3H_8 burns in the presence of excess O_2 , _____ g of CO_2 is produced.

Answer: 22

Chemistry The Central Science 12th Edition Brown Test Bank

Full Download: https://testbanklive.com/download/chemistry-the-central-science-12th-edition-brown-test-bank/

4) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

A 9.3-g sample of hydrogen requires _____ g of N₂ for a complete reaction.

Answer: 43

Diff: 3 Page Ref: Sec. 3.6

5) Water can be formed from the stoichiometric reaction of hydrogen with oxygen:

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$$

A complete reaction of 5.0 g of O₂ with excess hydrogen produces _____ g of H₂O.

Answer: 5.6

Diff: 3 Page Ref: Sec. 3.6

6) The combustion of carbon disulfide in the presence of excess oxygen yields carbon dioxide and sulfur dioxide:

$$CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$$

The combustion of 15 g of CS₂ in the presence of excess oxygen yields _____ g of SO₂.

Answer: 2

Diff: 3 Page Ref: Sec. 3.6

3.5 True/False Questions

1) The mass of a single atom of an element (in amu) is numerically EQUAL to the mass in grams of 1 mole of that element.

Answer: TRUE

Diff: 2 Page Ref: Sec. 3.4

2) The molecular weight is ALWAYS a whole-number multiple of the empirical formula weight.

Answer: TRUE

Diff: 1 Page Ref: Sec. 3.5

3) A great deal of the carbon dioxide produced by the combustion of fossil fuels is absorbed into the oceans.

Answer: TRUE

Diff: 2 Page Ref: Sec. 3.6

4) The quantity of product that is calculated to form when all of the limiting reagent reacts is called the actual yield.

Answer: FALSE