Full Download: http://testbanklive.com/download/chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-

Chapter 02 - Protecting the Ozone Layer (Testbank)

Student: ____

^{1.} How many protons, neutrons, and electrons are there in a neutral atom of 19 ?

	# protons	# neutrons	# electrons
A.	10	9	10
В.	9	9	9
C.	10	9	9
D.	9	10	9

A. A

B. B

- C. C
- D. D
- 2. Which color in the rainbow has the shortest wavelength?
 - A. orange
 - B. red
 - C. yellow
 - D. blue
- 3. The wavelength of light in the visible range is
 - A. about the size of an atom of carbon.
 - B. intermediate between the size of an animal cell and a virus.
 - C. about the diameter of a CD.
 - D. intermediate between the size of an animal cell and the diameter of a CD.
- 4. Which is correct?
 - A. Ozone forms by combining an oxygen atom with an oxygen molecule.
 - B. There is a dynamic steady state of ozone in the stratosphere.
 - C. UV radiation will dissociate ozone into an oxygen atom and an oxygen molecule.
 - D. All of these choices are correct.

5. Which statement is correct?

- A. UV-A is the most energetic of the three forms of UV light.
- B. UV-B is the most energetic of the three forms of UV light.
- C. UV-C is the most energetic of the three forms of UV light.
- D. UV-A, UV-B, and UV-C are equally energetic.
- 6. During the Antarctic spring, ozone is destroyed at a greater rate than it is formed
 - A. on the surface of atmospheric ice crystals.
 - B. in a process that is catalytic.
 - C. in polar stratospheric clouds.
 - D. All of these choices are correct.
- 7. The goal of the Montreal Protocol in 1987 was to
 - A. reduce the amount of new production of chlorofluorocarbons in developed countries.
 - B. recycle existing chlorofluorocarbons rather than release them into the air.
 - C. encourage research into substitutes for chlorofluorocarbons.
 - D. All of these choices are correct.
- 8. HFCs may be used to replace CFCs. Which compound is a HFC?
 - A. CH₂CI—CCI₂F
 - B. CH₂FCI
 - C. CF₃CH₂F
 - D. CHCIF₂
- 9. The speed of light in air
 - A. depends only on the frequency of the light.
 - B. depends only on the wavelength of light.
 - C. is independent of the wavelength and frequency of light.
 - D. depends on both the wavelength and the frequency of light.
- 10. DNA, the genetic material of living organisms, is damaged by light in the
 - A. visible region of the spectrum.
 - B. ultraviolet region, especially below a wavelength of 320 nm.
 - C. ultraviolet region, especially above a wavelength of 340 nm.
 - D. infrared region of the spectrum.

- 11. The ozone hole is most prominent on the Earth over
 - A. North America.
 - B. Europe.
 - C. Africa.
 - D. Antarctica.
- 12. Which contributes to the ozone hole?
 - A. automobile exhaust
 - B. chlorofluorocarbons (CFCs)
 - C. loss of Northern forests
 - D. All of these choices are correct.
- 13. Ozone in our atmosphere is important because it
 - A. absorbs some UV radiation.
 - B. helps trees grow.
 - C. reacts with excess CO₂.
 - D. reflects IR radiation.
- 14. Wavelength is the
 - A. number of waves passing a fixed point in one second.
 - B. height of the wave.
 - C. distance between successive peaks in a wave.
 - D. distance between a peak of one wave and the next trough.
- 15. The structure of ozone most closely resembles a
 - A. linear molecule with different lengths of chemical bonds, for example,
 - B. linear molecule with the same length of chemical bonds, for example,
 - C.

bent molecule with different lengths of chemical bonds, for example,

D.

bent molecule with the same length of chemical bonds, for example,

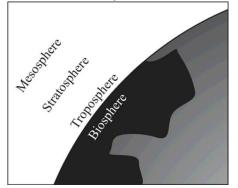
16. The correct Lewis structure for HCl is:

A. H:CI:

B. H:CI

С. н::сі:

D. H:CI:


17. As the ozone hole gets more pronounced, with time, one expects the incidence of skin cancer to

- A. decrease worldwide.
- B. increase worldwide.
- C. increase in the northern hemisphere and decrease in the southern hemisphere.
- D. decrease in the northern hemisphere and decrease in the northern hemisphere.
- 18. The Montreal protocol is a
 - A. treaty to protect against global warming.
 - B. treaty to reduce the amount of CFCs produced in the world.
 - C. list of substitutes for CFCs.
 - D. way to destroy CFCs in the stratosphere.

19. What is the relationship between stratospheric levels of atomic chlorine and ozone?

- A. As chlorine increases, ozone increases.
- B. As chlorine increases, ozone decreases.
- C. As chlorine changes, the effect on the ozone level is unpredictable.
- D. As chlorine changes, there is no effect of the ozone level.
- 20. In the periodic table, which elements typically have similar properties?
 - A. those in the same rows
 - B. those related diagonally
 - C. those in the same columns
 - D. those on opposite sides

21. In Earth's atmosphere, where is the ozone layer?

- A. troposphere
- B. biosphere
- C. mesosphere
- D. stratosphere
- 22. The nucleus of an atom contains
 - A. electrons and protons only.
 - B. protons only.
 - C. electrons, protons, and neutrons.
 - D. protons and neutrons only.
- 23. What distinguishes the atoms of one element from another?
 - A. the number of neutrons
 - B. the number of protons plus neutrons
 - C. the number of protons
 - D. the number of neutrons plus electrons
- 24. When it reaches its largest size, the ozone hole over the Antarctic is
 - A. about as large as North America.
 - B. about the same size as France.
 - C. smaller than Iceland.
 - D. about the same size as Canada.

- 25. Elements in the same column of the periodic table in the Groups labeled A tend to have similar chemical and physical properties because they have the same number of
 - A. outer (valence) electrons.
 - B. protons.
 - C. protons plus electrons.
 - D. protons plus neutrons.

26. Isotopes of an element have the same number of _____, but different numbers of _____.

- A. electrons; protons
- B. protons; neutrons
- C. neutrons; protons
- D. protons; electrons
- 27. When only one pair of shared electrons is involved in a covalent bond, the linkage is called a _____ bond.
 - A. triple
 - B. single
 - C. double
 - D. resonant
- 28. The atomic number is the
 - A. same as the mass number of an atom.
 - B. number of protons in a nucleus.
 - C. number of protons and neutrons in a nucleus.
 - D. number of neutrons in a nucleus.
- ^{29.} How many protons, neutrons, and electrons are there in the neutral atom of ${}^{13}_{6}$?

	# protons	# neutrons	# electrons
A.	7	6	7
B.	7	13	6
C.	6	7	6
D.	6	7	13

- A. A
- В. В
- C. C
- D. D

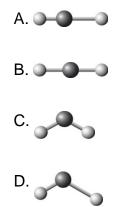
30. Increasing wavelength of light goes in this order:

- A. ultraviolet > visible > infrared.
- B. visible > infrared > ultraviolet.
- C. infrared > visible > ultraviolet.
- D. ultraviolet > infrared > visible.

31. The wavelength of light in the X-ray region of the electromagnetic spectrum is

- A. smaller than a virus.
- B. intermediate between the size of a bacterial cell and a virus.
- C. about the size of a bacterial cell.
- D. larger than either a bacterial cell or a virus.
- 32. Which is one of the Lewis structures for ozone?

A.:0:0:0:


- D. 0::0:0:
- 33. Stratospheric ozone is destroyed and formed at the same rate
 - A. above the equator.
 - B. above the Antarctic in its early spring.
 - C. above the Antarctic in its early fall.
 - D. above the equator and above the Antarctic in its early fall.
- 34. The mass number of an isotope of an element is the
 - A. sum of the number of its protons and electrons.
 - B. number of its protons.
 - C. sum of the number of its protons and neutrons.
 - D. sum of the number of its protons, neutrons, and electrons.

- 35. It is the _____ electrons that account for many of the chemical and physical properties of elements.
 - A. innermost
 - B. intermediate
 - C. outermost
 - D. transitional
- 36. Single bonds, double bonds, and triple bonds
 - A. have 1, 2, and 3 shared electrons, respectively.
 - B. have 2, 4, and 6 shared electrons, respectively.
 - C. have 3, 6, and 9 shared electrons, respectively.
 - D. are only possible between carbon atoms.

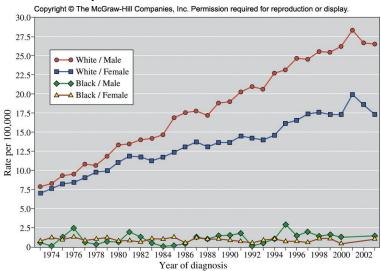
37. Light behaves like

- A. a particle.
- B. a wave.
- C. both a particle and a wave.
- D. neither a particle nor a wave.
- 38. The "ozone layer" is found
 - A. only around the equator.
 - B. in the troposphere.
 - C. in the stratosphere.
 - D. in the mesosphere.
- 39. In reference to waves, frequency is the
 - A. number of waves passing a fixed point in one second.
 - B. height of the wave.
 - C. distance between successive peaks in a wave.
 - D. distance between a peak in a wave to the next trough.

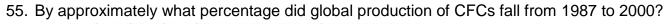
40. The two chemical bonds and geometry of water are best represented by:

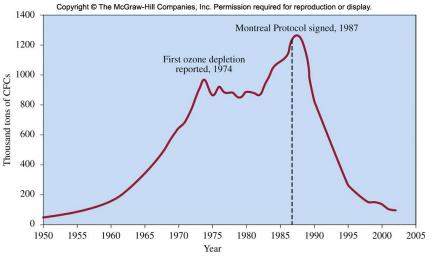
- 41. Which is/are part of the Chapman cycle in the stratosphere?
 - I. Ozone is removed by its reaction with water vapor.
 - II. Ozone is removed by an interaction with UV radiation.
 - III. Ozone reacts with oxygen atoms to form oxygen molecules.
 - A. I only
 - B. II only
 - C. I, II and III
 - D. II and III only
- 42. Free radicals are
 - A. highly reactive chemical species.
 - B. species with unpaired electrons.
 - C. species such as H• and •OH.
 - D. All of these correctly describe free radicals.
- 43. Chlorofluorocarbons rise to the stratosphere and
 - A. react directly with stratospheric ozone to destroy it.
 - B. interact with UV energy to produce free radicals that destroy ozone.
 - C. interact with UV energy to produce free radicals that react with oxygen to create ozone.
 - D. react with free radicals to remove carbon dioxide.

44. Decreased stratospheric ozone concentrations may lead to

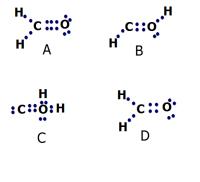

- A. increased incidences of melanomas.
- B. harm to young marine life.
- C. an increased occurrence of cataracts.
- D. All of these choices are correct.

45. Two isotopes of a particular element differ from one another by the number of


- A. neutrons.
- B. protons.
- C. protons, neutrons, and electrons.
- D. protons plus electrons.
- 46. The chemical properties of the elements are chiefly due to the number
 - A. of protons.
 - B. and distribution of the outer electrons.
 - C. and distribution of the inner electrons.
 - D. and distribution of the neutrons.
- 47. Results of the Montreal protocol include
 - A. greatly reduced production of CFCs.
 - B. increased production of alternatives to CFCs.
 - C. recycling of CFCs.
 - D. All of these choices are correct.
- 48. Halons differ from CFCs in that the atoms of _____ replace some _____ atoms.
 - A. iodine; chlorine
 - B. hydrogen; chlorine
 - C. bromine; chlorine
 - D. silicon; carbon
- 49. Yellow light has a wavelength of 580 nm. What is the frequency of this light?
 - A. $2.39 \times 10^{-19} \text{ s}^{-1}$ B. $1.80 \times 10^{-7} \text{ s}^{-1}$ C. $5.17 \times 10^5 \text{ s}^{-1}$ D. $5.17 \times 10^{14} \text{ s}^{-1}$


- 50. WUKF FM transmits at 93.5 MHz. What is the wavelength of the electromagnetic radiation that carries the station's signal?
 - A. 6.42×10^{-9} m
 - B. 3.21 m
 - C. 3.21 × 10⁶ m
 - D. 3.12 × 10¹⁵ m
- 51. UV-B radiation has a frequency of approximately 10¹⁷ s⁻¹. What is the energy of a photon of this light?
 - A. 1.99×10^{-42} J B. 6.63×10^{-17} J C. 4.19×10^{8} J D. 1.51×10^{50} J
- 52. Which region of the ultraviolet spectrum is absorbed least by the atmosphere?
 - A. UV-A
 - B. UV-B
 - C. UV-C
 - D. They are all absorbed approximately equally.

53. From 1974 to 2002, the chance that a white male would be diagnosed with melanoma skin cancer rose by


- A. 18%.
- B. 31%.
- C. 100%.
- D. 225%.
- 54. In the Chapman cycle, ozone formation depends upon a sufficient concentration of oxygen atoms. Which step in the Chapman cycle produces oxygen atoms?
 - A. absorption of light ($\lambda \le 320$ nm) by ozone molecules
 - B. absorption of light ($\lambda \leq 320$ nm) by oxygen molecules
 - C. absorption of light ($\lambda \le 242 \text{ nm}$) by ozone molecules
 - D. absorption of light ($\lambda \le 242 \text{ nm}$) by oxygen molecules

- A. 13%
- B. 44%
- C. 88%
- D. 1100%
- 56. Which product of the ultraviolet decomposition of CFCs acts as the catalyst for ozone decomposition?
 - A. oxygen atoms
 - B. chlorine atoms
 - C. fluorine atoms
 - D. hydrogen atoms
- 57. HCFCs have been developed to replace CFCs as refrigerants. Which property of these new compounds makes them environmentally superior to CFCs?
 - A. Greater reactivity leads to decomposition at elevations below the stratospheric ozone concentration maximum.
 - B. Lower reactivity makes them stable even in the intense ultraviolet light in the stratosphere.
 - C. Their higher molecular weight prevents them from reaching the stratosphere.
 - D. They do not contain chlorine.

- 58. HCFCs are a temporary solution to the problem of ozone depletion and will be replaced over the next 20 years by which class of compounds?
 - A. HFCs
 - B. CFCs
 - C. halons
 - D. HFBCs
- 59. Which Lewis structure for formaldehyde (CH₂O) is correct?

- A. A
- В. В
- C. C
- D. D
- 60. Why are HFCs environmentally superior to the currently used HCFCs?
 - A. HFCs are not flammable.
 - B. HFCs do not contain chlorine.
 - C. HFCs are lighter and may be transported more easily.
 - D. HFCs are less reactive than HCFCs.
- 61. CFCs were originally developed to replace which refrigerant compound(s)?
 - A. ice
 - B. HCFCs
 - C. ammonia and sulfur dioxide
 - D. propane

^{62.} How many protons, neutrons, and electrons are in a neutral atom of 64 Cu (atomic number = 29)?

- A. Protons = 64, neutrons = 29, electrons = 29
- B. Protons = 35, neutrons = 29, electrons = 35
- C. Protons = 29, neutrons = 64, electrons = 35
- D. Protons = 29, neutrons = 35, electrons = 29
- 63. The O₂ molecule breaks apart at lower wavelengths than the O₃ molecule. What is the main reason for this? (Hint: Draw the Lewis structures)
 - A. O2 is more reactive than O3
 - B. O_3 is more reactive than O_2
 - C. The average bond in O_3 is shorter and stronger than that of O_2
 - D. The average bond in O_2 is shorter and stronger than that of O_3
- 64. Which of the following compounds is useful for putting out fires and does not deplete stratospheric ozone concentrations?
 - A. Halon-1211
 - B. CFC-113
 - C. HFCs
 - D. Methyl Bromide
- 65. Why are HFCs inappropriate for long-term replacement of CFCs?
 - A. They are flammable.
 - B. They are very toxic.
 - C. They absorb infrared radiation.
 - D. They are an appropriate replacement.
- 66. In what year will all production and importation of HCFCs end in the United States?
 - A. 2012
 - B. 2020
 - C. 2030
 - D. 2015

- 67. What is the role of polar stratospheric clouds (PSCs) on the destruction of ozone?
 - A. The cold clouds react with ozone to make oxygen molecules and oxygen atoms.
 - B. Chemical reactions occur on the clouds that convert molecules that do no damage to those that deplete ozone.
 - C. They play no role.
 - D. The clouds are made of chlorine atoms from CFCs.
- 68. What is special about the South Pole versus the North Pole that leads to ozone depletion only at the south Pole?
 - A. Ozone molecules are broken up by magnetic forces at the South Pole.
 - B. The atmosphere is colder at the North Pole than at the South Pole.
 - C. Polar stratospheric clouds form almost exclusively at the South Pole.
 - D. There is more land mass at the South Pole than at the North Pole.
- 69. Arrange these types of radiation in order of increasing energy per photon: gamma rays, infrared radiation, radio waves, visible light, UV (ultra violet)
 - A. radio waves<visible light<UV <infrared radiation<gamma rays
 - B. radio waves< infrared radiation<visible light< UV<gamma rays
 - C. infrared radiation<radio waves<visible light < UV<gamma rays
 - D. gamma rays< infrared radiation<UV<radio waves< visible light
- 70. Which of the following is most biologically damaging type of radiation?
 - A. UV-A
 - B. UV-B
 - C. UV-C
 - D. Infrared
- 71. The morning newspaper reports a UV Index Forecast of 6.5. What precautions, if any should a fair skinned person take?
 - A. None.
 - B. Only sunglasses and maybe a hat is enough.
 - C. Reduce exposure between 10 a.m. and 4 p.m. in addition to SPF 15+ sunscreen.
 - D. All precautions must be taken; this is an extreme UV day.

Chapter 02 - Protecting the Ozone Layer (Testbank) Key

1. D			
2. D			
3. B			
4. D			
5. C			
6. D			
7. D			
8. C			
9. C			
10. B			
11. D			
12. B			
13. A			
14. C			
15. D			
16. D			
17. B			
18. B			
19. B			
20. C			
21. D			
22. D			
23. C			
24. A			
25. A			
26. B			
27. B			
28. B			
29. C			

30. A			
31. A			
32. D			
33. D			
34. C			
35. C			
36. B			
37. C			
38. C			
39. A			
40. C			
41. D			
42. D			
43. B			
44. D			
45. A			
46. B			
47. D			
48. C			
49. D			
50. B			
51. B			
52. A			
53. D			
54. D			
55. C			
56. B			
57. A			
58. A			
59. D			
60. B			
61. C			

62	П
ΰZ.	D

- 63. D
- 64. A
- 65. C
- 66. D
- 67. B
- 68. C
- 69. B
- 70. C
- 71. C

Chemistry in Context Applying Chemistry to Society 8th Edition American Chemical Society Test Bank

Full Download: http://testbanklive.com/download/chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-in-context-applying-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-to-society-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-american-chemistry-8th-edition-8th-edit

Chapter 02 - Protecting the Ozone Layer (Testbank) Summary

<u>Category</u>	<u># of Questions</u>
American - Chapter 02	71
Blooms Level: 1. Remember	16
Blooms Level: 2. Understand	42
Blooms Level: 3. Apply	12
Section: 02.01	6
Section: 02.02	12
Section: 02.03	8
Section: 02.04	14
Section: 02.05	3
Section: 02.06	9
Section: 02.07	1
Section: 02.08	7
Section: 02.09	4
Section: 02.10	7
Section: 02.11	7
Section: 02.12	2
Subtopic: Atmospheric Chemistry	29
Subtopic: Atomic Mass	5
Subtopic: Atomic Number	3
Subtopic: Atomic Structure	1
Subtopic: Atomic Symbol	4
Subtopic: Chemical Formulas	7
Subtopic: Covalent Bonding	5
Subtopic: Elements	3
Subtopic: Isotopes	4
Subtopic: Lewis Dot Symbols	3
Subtopic: Mass Number	2
Subtopic: Molecules	2
Subtopic: Nomenclature	1
Subtopic: Quanta	3
Subtopic: The Periodic Table	4
Subtopic: Types of EM Radiation	6
Subtopic: Valence Electrons	2
Subtopic: Wavelength, Frequency	9
Topic: Chemical Bonding	8
Topic: Chemical Reactions	7
Topic: Components of Matter	8
Topic: Electromagnetic Radiation	23
Topic: Environmental Chemistry	34
Topic: Study of Chemistry	11