Chapter 2—Chemical Formulas and Composition Stoichiometry

MULTIPLE CHOICE

- 1. There are two different common crystalline forms of carbon—diamond and graphite. A less common form called fullerene, C₆₀, also exists. Different forms of the same element in the same physical state are called:
 - a. isotopes.
 - b. isomers.
 - c. alloforms.
 - d. allotropes.
 - e. structural formulas.
 - ANS: D
 - OBJ: Define allotrope. TOP: Chemical Formulas
- 2. How many atoms are in a sulfuric acid molecule?
 - a. 1
 - b. 7
 - c. 5
 - d. 6
 - e. 8
 - ANS: B
 - OBJ: Know the chemical formulae of common acids.
 - TOP: Chemical Formulas
- 3. If a sample of butane, C_4H_{10} , contains a total of 8.0×10^3 atoms of carbon, how many molecules of butane are in the sample?
 - a. 6.0×10^3
 - b. 3.0×10^3
 - c. 8.0×10^3
 - d. 1.1×10^4
 - e. 2.0×10^3
 - ANS: E

OBJ: Understand the relationship between molecular formula and the number of atoms of a specific type contained in a single compound. | Convert the number of atoms in a substance to the number of molecules in a substance.

TOP: Chemical Formulas

- 4. Name the molecular compound, HNO₃.
 - a. ammonia
 - b. nitric acid
 - c. nitrous acid
 - d. nitric oxide
 - e. methane
 - ANS: B
 - OBJ: Know the names and chemical formulae of common acids.
 - TOP: Chemical Formulas

- 5. Name the molecular compound, SO₃.
 - a. sulfur oxide
 - b. sulfurous acid
 - c. sulfur trioxide
 - d. sulfuric acid
 - e. none of these

OBJ: Translate the chemical formula of a binary molecule into a name.

TOP: Chemical Formulas

- 6. Which formula / name pair does not match?
 - a. HNO₃ / nitric acid, used to produce explosives
 - b. CH₃OH / methyl alcohol, wood alcohol
 - c. CH₃CH₂OH / ethyl alcohol, alcohol in wine
 - d. CHCl₃ / acetic acid, found in vinegar
 - e. CH₃CH₂OCH₂CH₃ / diethyl ether, an anesthetic

ANS: D

OBJ: Know the names and chemical formulae of common acids. | Recognize the names and chemical formulae of common organic compounds.

TOP: Chemical Formulas

- 7. Name the molecular compound, CH₃COCH₃.
 - a. acetone
 - b. ethanol
 - c. diethyl ether
 - d. propane
 - e. ethyl alcohol

ANS: A

OBJ: Know the names and chemical formulae of common organic compounds.

TOP: Chemical Formulas

- 8. What is the molecular formula for ethanol?
 - a. CH₃COOH
 - b. CH₃COCH₃
 - c. CH₃CH₂OCH₂CH₃
 - d. CH₃CH₂CO₂H
 - e. CH₃CH₂OH

ANS: E

OBJ: Know the names and chemical formulae of common organic compounds.

TOP: Chemical Formulas

- 9. Butane, a highly combustible hydrocarbon found in disposable lighters, has the chemical formula:
 - a. CO₂
 - b. C_4H_8
 - c. C_4H_{10}
 - d. C_3H_8
 - e. CH₃OCH₃

OBJ: Know the names and chemical formulae of common organic compounds. | Translate the chemical formula of a binary molecule into a name.

TOP: Chemical Formulas

- 10. What is the molecular formula for hydrogen chloride?
 - a. HCl
 - b. HClO
 - c. HClO₂
 - d. HClO₃
 - e. HClO₄
 - ANS: A
 - OBJ: Know the names and chemical formulae of common acids.
 - TOP: Chemical Formulas
- 11. A compound contains only calcium and fluorine. A sample of the compound is determined to contain 2.00 g of calcium and 1.90 g of fluorine. According to the Law of Definite Proportions, how much calcium should another sample of this compound contain if it contains 2.85 g of fluorine?
 - a. 2.71 g
 - b. 4.00 g
 - c. 3.00 g
 - d. 4.50 g
 - e. 6.00 g
 - ANS: C
 - OBJ: Apply the Law of Definite Proportions.
 - TOP: Chemical Formulas
- 12. A compound contains only magnesium and oxygen. A sample of the compound is determined to contain 3.50 g of magnesium and 2.30 g of oxygen. According to the Law of Definite Proportions, how much magnesium should another sample of this compound contain if it contains 6.91 g of oxygen?
 - a. 1.16 g
 - b. 10.5 g
 - c. 4.54 g
 - d. 55.5 g
 - e. 0.858 g
 - ANS: B
 - OBJ: Apply the Law of Definite Proportions.
 - TOP: Chemical Formulas
- 13. Which of the following is **not** the name of a cation?
 - a. sodium
 - b. iron (III)
 - c. magnesium
 - d. sulfide
 - e. ammonium
 - ANS: D

OBJ: Understand how to name monatomic anions and cations. | Know the names and charges of polyatomic ions.

TOP: Ions and Ionic Compounds

- 14. Which of the following statements is **incorrect**?
 - a. Potassium chloride forms molecules that consist of one K⁺ ion and one Cl⁻ ion.
 - b. Ions that possess a positive charge are called cations.
 - c. Polyatomic ions are groups of atoms that have an electric charge.
 - d. It is acceptable to use formula unit to refer to either an ionic compound or a molecular compound.
 - e. Ions that possess a negative charge are called anions.

ANS: A

OBJ: Distinguish between properties that define a substance as ionic or molecular.

TOP: Ions and Ionic Compounds

- 15. What is the correct classification for OCl⁻?
 - a. polyatomic molecule
 - b. monatomic cation
 - c. polyatomic cation
 - d. polyatomic anion
 - e. monatomic anion

ANS: D

OBJ: Classify a species as a monatomic ion, polyatomic ion, or molecule.

TOP: Ions and Ionic Compounds

- 16. What is the correct formula for the carbonate ion?
 - a. CH₃COO⁻
 - b. C1⁻
 - c. CO₂²⁻
 - d. CO₃²⁻
 - e. (COO⁻)₂

ANS: D

OBJ: Know the names, chemical formulae, and charges of common polyatomic ions.

TOP: Ions and Ionic Compounds

- 17. Each response below lists an ion by name and by chemical symbol or formula. Also each ion is classified as monatomic or polyatomic and as a cation or anion. Which response contains an **error**?
 - a. hydroxide / OH- / monatomic / anion
 - b. carbonate / CO₃²⁻ / polyatomic / anion
 - c. ammonium / NH₄⁺ / polyatomic / cation
 - d. magnesium / Mg²⁺ / monatomic / cation
 - e. sulfite / SO_3^{2-} / polyatomic / anion

ANS: A

OBJ: Know the names, chemical formulae, and charges of monatomic ions and common polyatomic ions.

TOP: Ions and Ionic Compounds

- 18. Each response below lists an ion by name and by chemical symbol or formula. Also each ion is classified as monatomic or polyatomic and as a cation or anion. Which response contains an **error**?
 - a. phosphate / PO₄³⁻ / polyatomic / anion
 - b. sulfite / SO₃²⁻ / polyatomic / anion
 - c. nitrite / NO³⁻ / polyatomic / anion
 - d. iron(II) / Fe²⁺ / monatomic / cation
 - e. bromide / Br⁻ / monatomic / anion

OBJ: Know the names, chemical formulae, and charges of monatomic ions and common polyatomic

ions.

TOP: Ions and Ionic Compounds

- 19. What is the formula for ammonium fluoride?
 - a. AlF
 - b. Al_2F_3
 - c. NH₃F
 - d. NH₄F₂
 - e. NH₄F

ANS: E

OBJ: Translate the name of an ionic compound into a chemical formula.

TOP: Names and Formulas of Some Ionic Compounds

- 20. What is the formula for manganese(III) oxide?
 - a. MgO
 - b. MnO
 - c. MnO₄
 - $d. \quad Mg_2O_3$
 - e. Mn₂O₃

ANS: E

OBJ: Translate the name of an ionic compound into a chemical formula.

TOP: Names and Formulas of Some Ionic Compounds

- 21. What is the formula for aluminum oxide?
 - a. Al_2O_3
 - b. Ag₂O₃
 - c. AlO_3
 - d. AlO
 - e. AlO₂

ANS: A

OBJ: Translate the name of an ionic compound into a chemical formula.

TOP: Names and Formulas of Some Ionic Compounds

- 22. What is the name of $Fe(OH)_3$?
 - a. iron hydroxide
 - b. iron trihydroxide
 - c. iron (III) hydroxide
 - d. iron (II) hydroxide
 - e. none of these

ANS: C

OBJ: Translate the name of an ionic compound into a chemical formula.

TOP: Names and Formulas of Some Ionic Compounds

- 23. What is the formula for copper(II) sulfate?
 - a. CuSO₄
 - b. Cu_2SO_3
 - c. CuSO₂
 - d. Cu₂SO₄
 - e. $Cu(SO_4)_2$

ANS: A

OBJ: Translate the name of an ionic compound into a chemical formula.

TOP: Names and Formulas of Some Ionic Compounds

- 24. Choose the name / formula pair that does not correctly match.
 - a. aluminum phosphate / AlPO₄
 - b. calcium acetate / CaCH₃COO
 - c. ammonium sulfide / (NH₄)₂S
 - d. magnesium hydroxide / Mg(OH)₂
 - e. zinc carbonate / ZnCO₃

ANS: B

OBJ: Translate the chemical formula of an ionic compound into a name. | Translate the name of an ionic compound into a chemical formula.

TOP: Names and Formulas of Some Ionic Compounds

- 25. From the following ionic compounds, choose the name / formula pair that is not correctly matched.
 - a. sodium sulfide / Na₂S
 - b. ammonium nitrate / NH₄NO₃
 - c. zinc hydroxide / Zn(OH)₂
 - d. sodium sulfate / Na₂SO₃
 - e. calcium oxide / CaO

ANS: D

OBJ: Translate the chemical formula of an ionic compound into a name. | Translate the name of an ionic compound into a chemical formula.

TOP: Names and Formulas of Some Ionic Compounds

- 26. From the following compounds choose the name / formula pair that is incorrectly matched.
 - a. sodium sulfite / Na₂SO₃
 - b. ammonium fluoride / NH₄F
 - c. copper(II) carbonate / CuCO₃
 - d. ferric chloride / FeCl₃
 - e. cuprous sulfide / Co₂S

ANS: E

OBJ: Translate the chemical formula of an ionic compound into a name. | Translate the name of an ionic compound into a chemical formula.

TOP: Names and Formulas of Some Ionic Compounds

- 27. Which element has a mass that is 7.30 times that of carbon-12?
 - a. Mg
 - b. Sr
 - c. Ca
 - d. Br
 - e. Rb

ANS: B

OBJ: Apply the modern definition of relative atomic mass.

TOP: Atomic Weights

- 28. Which element has a mass approximately 4 times that of an H atom?
 - a. Be
 - b. He
 - c. Li
 - d. Ti
 - e. K
 - ANS: B
 - OBJ: Apply the concept of relative atomic mass.
 - TOP: Atomic Weights
- 29. The molecular formula for a compound is CX₄. If 2.819 g of this compound contains 0.102 g of carbon, what is the atomic weight of X?
 - a. 320
 - b. 160
 - c. 35.5
 - d. 79.9
 - e. 39.9
 - ANS: D
 - DIF: Harder Question
 - OBJ: Calculate the atomic weight of an unknown element based on the chemical formula and mass of each component in a sample.
 - TOP: Atomic Weights
- 30. How many atoms of hydrogen are in 1.00 mole of water?
 - a. 6.02×10^{23}
 - b. 1.20×10^{24}
 - c. 1.81×10^{24}
 - d. 2.41×10^{24}
 - e. 3.01×10^{23}
 - ANS: B
 - OBJ: Translate the name of a binary molecule into a chemical formula. | Use Avogadro's number and the molecular formula to convert moles of a substance to number of atoms.
 - TOP: The Mole
- 31. Calculate the number of moles of oxygen atoms in 35.2 grams of oxygen.
 - a. 2.20 moles
 - b. 4.42 moles
 - c. 0.54 moles
 - d. 2.57 moles
 - e. 1.13 moles
 - ANS: A
 - OBJ: Translate the name of a diatomic element into a chemical formula. | Use the formula weight or molecular weight of a substance to convert grams of a substance to moles.
 - TOP: The Mole
- 32. How many grams are contained in 0.644 mol oxygen?
 - a. 10.3 g
 - b. 20.6 g
 - c. 0.0201 g
 - d. 0.0403 g
 - e. 0.644 g

ANS: B

OBJ: Translate the name of a diatomic element into a chemical formula. | Use the formula weight or molecular weight of a substance to convert moles of a substance to grams.

TOP: The Mole

- 33. Calculate the mass of one bromine atom.
 - a. 2.654×10^{-22} g
 - b. 6.022×10^{23} g
 - c. 1.661×10^{-24} g
 - d. 4.812×10^{25} g
 - e. 1.327×10^{-22} g

ANS: E

OBJ: Use Avogadro's number and atomic weight to convert the number of atoms to grams.

TOP: The Mole

- 34. Determine the number of sulfur atoms in 27.1 g of molecular sulfur (S_8) .
 - a. 0.845
 - b. 5.27×10^{23}
 - c. 5.09×10^{23}
 - d. 2.07×10^{23}
 - e. 0.106

ANS: C

OBJ: Determine the molecular weight of a substance using atomic weights and the chemical formula. | Use Avogadro's number, molecular formula, and molecular weight to convert grams to number of atoms.

TOP: The Mole

- 35. Calculate the formula weight of NaHSO₄.
 - a. 193 amu
 - b. 104 amu
 - c. 120 amu
 - d. 215 amu
 - e. 185 amu

ANS: C

OBJ: Determine the formula weight of a substance using atomic weights and the chemical formula.

TOP: Formula Weights, Molecular Weights, and Moles

- 36. Determine the formula weight of Ca₃(PO₄)₂.
 - a. 230 amu
 - b. 279 amu
 - c. 215 amu
 - d. 310 amu
 - e. 135 amu

ANS: D

OBJ: Determine the formula weight of a substance using atomic weights and the chemical formula.

- 37. What is the mass of 2.2×10^9 CO₂ molecules?
 - a. 9.7×10^{10} g
 - b. 1.0×10^{-12} g
 - c. 1.2×10^6 g
 - d. 4.4×10^{-14} g
 - e. 1.6×10^{-13} g

ANS: E

OBJ: Determine the molecular weight of a substance using atomic weights and the chemical formula. | Use Avogadro's number and molecular weight to convert molecules to grams.

TOP: Formula Weights, Molecular Weights, and Moles

- 38. What is the mass of 0.432 moles of $C_8H_9O_4$?
 - a. 86.9 g
 - b. 391 g
 - c. 169 g
 - d. 113.8 g
 - e. 73.0 g

ANS: E

OBJ: Determine the molecular weight of a substance using atomic weights and the chemical formula. Use the formula weight or molecular weight of a substance to convert moles to grams.

TOP: Formula Weights, Molecular Weights, and Moles

- 39. How many grams of CaCl₂ equal 4.26 moles of CaCl₂?
 - a. 26.1 g
 - b. 170 g
 - c. 302 g
 - d. 473 g
 - e. 322 g

ANS: D

OBJ: Determine the formula weight of a substance using atomic weights and the chemical formula. | Use the formula weight or molecular weight of a substance to convert moles to grams.

TOP: Formula Weights, Molecular Weights, and Moles

- 40. How many moles of POCl₃ are there in 10.0 grams of POCl₃?
 - a. $6.51 \times 10^{-2} \text{ mol}$
 - b. $3.68 \times 10^{-1} \text{ mol}$
 - c. $4.09 \times 10^{-2} \text{ mol}$
 - d. $1.21 \times 10^{-1} \text{ mol}$
 - e. $1.17 \times 10^{-3} \text{ mol}$

ANS: A

OBJ: Determine the molecular weight of a substance using atomic weights and the chemical formula. | Use the formula weight or molecular weight of a substance to convert grams to moles.

- 41. How many moles of CCl₄ are present in 118. g of carbon tetrachloride?
 - a. 0.839
 - b. 1.19
 - c. 0.538
 - d. 1.30
 - e. 0.767

ANS: E

OBJ: Determine the molecular weight of a substance using atomic weights and the chemical formula. Use the formula weight or molecular weight of a substance to convert grams to moles.

TOP: Formula Weights, Molecular Weights, and Moles

- 42. How many molecules are contained in 5.00 grams of NH₃?
 - a. 5.42×10^{22}
 - b. 3.00×10^{24}
 - c. 3.40×10^{22}
 - d. 1.77×10^{23}
 - e. 9.45×10^{22}

ANS: D

OBJ: Determine the molecular weight of a substance using atomic weights and the chemical formula. Use Avogadro's number and molecular weight or formula weight to convert grams to molecules.

TOP: Formula Weights, Molecular Weights, and Moles

- 43. A 12.0-gram sample of Cr₂(SO₄)₃ contains how many sulfur atoms?
 - a. 1.84×10^{22}
 - b. 1.53×10^{21}
 - c. 4.82×10^{21}
 - d. 6.67×10^{22}
 - e. 5.52×10^{22}

ANS: E

OBJ: Determine the formula weight of a substance using atomic weights and the chemical formula. | Use Avogadro's number, molecular formula, and formula weight to convert grams to atoms.

TOP: Formula Weights, Molecular Weights, and Moles

- 44. How many atoms of carbon are present in 34.5 g of caffeine, C₈H₁₀N₄O₂?
 - a. 8.57×10^{23}
 - b. 2.68×10^{25}
 - c. 1.08×10^{24}
 - d. 2.09×10^{23}
 - e. 4.83×10^{23}

ANS: A

OBJ: Determine the molecular weight of a substance using atomic weights and the chemical formula. Use Avogadro's number, molecular formula, and molecular weight to convert grams to atoms.

TOP: Formula Weights, Molecular Weights, and Moles

- 45. What is the mass in grams of 5.00×10^{12} water molecules?
 - a. 1.50×10^{-10} g
 - b. 1.67×10^{35} g
 - c. 2.17×10^{12} g
 - d. 6.69×10^9 g
 - e. 4.61×10^{-13} g

ANS: A

OBJ: Translate the name of a binary molecule into a formula. | Determine the molecular weight of a substance using atomic weights and the chemical formula. | Use Avogadro's number and molecular weight to convert molecules to grams.

- 46. Which of the following is **not** a correct description of 16.0 grams of methane, CH₄?
 - a. It is one mole of methane.
 - b. It is the amount of methane that contains 12.0 g of carbon.
 - c. It is $16.0 \times 6.02 \times 10^{23}$ molecules of methane.
 - d. It is the amount of methane that contains 4.0 grams of hydrogen.
 - e. It is the amount of methane that contains $4 \times 6.02 \times 10^{23}$ hydrogen atoms.

OBJ: Determine the molecular weight of a substance using atomic weights and the chemical formula. Convert grams of a substance to moles, grams of a component, molecules, or atoms.

TOP: Formula Weights, Molecular Weights, and Moles

- 47. A sample of ethane, C_2H_6 , contains a total of 16N atoms, where $N = 6.02 \times 10^{23}$. How much C_2H_6 is in the sample?
 - a. 2.0 g
 - b. 30 g
 - c. 60 g
 - d. 16 mol
 - e. 4 mol

ANS: C DIF: Harder Question

OBJ: Determine the molecular weight of a substance using atomic weights and the formula of the substance. Use Avogadro's number, molecular formula, and molecular weight to convert total atoms in a sample to grams or moles.

TOP: Formula Weights, Molecular Weights, and Moles

- 48. Suppose you have a 100-gram sample of each of the following compounds. Which sample contains the smallest number of moles of compound?
 - a. NH₃
 - b. MgCl₂
 - c. H₃PO₄
 - d. CrCl₃
 - e. NaCl

ANS: D

OBJ: Understand and apply the relationship between mass, molar mass, and moles of a sample.

TOP: Formula Weights, Molecular Weights, and Moles

- 49. A mole of a compound composed of nitrogen and oxygen (N_xO_y) has a molecular weight of 92.0 g/mol. What is its formula?
 - a. NO
 - b. N_2O_4
 - c. NO₃
 - d. N₂O
 - e. NO₂

ANS: B

OBJ: Translate molecular weight into a molecular formula.

- 50. What is the percent by mass of sulfur in Al₂(SO₄)₃?
 a. 9.38%
 b. 18.8%
 c. 24.6%
 d. 28.1%
 - ANS: D

e. 35.4%

- OBJ: Calculate percent mass of a component given the chemical formula of the substance.
- TOP: Percent Composition and Formulas of Compounds
- 51. Calculate the percent by mass of nitrogen in ammonium carbonate, NH₄NO₃.
 - a. 17.5%
 - b. 27.8%
 - c. 29.2%
 - d. 35.0%
 - e. 2.86%
 - ANS: D
 - OBJ: Calculate percent mass of a component given the chemical formula of the substance.
 - TOP: Percent Composition and Formulas of Compounds
- 52. Calculate the percent composition of K₂CO₃.
 - a. % K = 58.2% % C = 17.9% % O = 23.9%
 - b. % K = 28.2% % C = 8.8% % O = 35.9%
 - c. % K = 56.6% % C = 8.7% % O = 34.7%
 - d. % K = 39.4% % C = 12.0% % O = 48.4%
 - e. % K = 35.1% % C = 21.6% % O = 43.2%
 - ANS: C
 - OBJ: Calculate percent mass of a component given the chemical formula of the substance.
 - TOP: Percent Composition and Formulas of Compounds
- 53. What is the percentage of carbon in potassium hydrogen phthalate, KC₆H₄(COO)(COOH)?
 - a. 35.2%
 - b. 58.2%
 - c. 47.1%
 - d. 70.6%
 - e. 19.2%
 - ANS: C
 - OBJ: Calculate percent mass of a component given the chemical formula of the substance.
 - TOP: Percent Composition and Formulas of Compounds
- 54. Analysis of a sample of a covalent compound showed that it contained 14.4% hydrogen and 85.6% carbon by mass. What is the empirical formula for this compound?
 - a. CH
 - b. CH₂
 - c. CH₃
 - d. C₂H₄
 - e. C₂H₅
 - ANS: B
 - OBJ: Convert percent mass to the simplest formula (empirical formula).
 - TOP: Derivation of Formulas from Elemental Composition

- 55. What is the empirical formula for a compound containing 68.3% lead, 10.6% sulfur and the remainder oxygen?
 - a. PbSO₂
 - b. PbSO₃
 - c. PbS₂O₃
 - d. PbSO₄
 - e. Pb₂SO₄

ANS: D

OBJ: Calculate the percent mass of a third component from the data provided. | Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 56. A compound contains sulfur, oxygen, and chlorine. Analysis shows that it contains by mass 26.95% sulfur and 59.61% chlorine. What is the simplest formula for this compound?
 - a. SOC1
 - b. SOCl₂
 - c. SO₂Cl₂
 - d. SO₂Cl
 - e. S₂OCl₂

ANS: B

OBJ: Calculate the percent mass of a third component from the data provided. | Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 57. A compound contains carbon, oxygen, and hydrogen. Analysis of a sample showed that it contained by mass 68.9% carbon and 4.92% hydrogen. What is the simplest formula for this compound?
 - a. $C_6H_6O_2$
 - b. $C_7H_6O_2$
 - c. $C_8H_6O_2$
 - d. $C_6H_4O_3$
 - e. C₇H₈O

ANS: B

OBJ: Calculate the percent mass of a third component from the data provided. | Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 58. A sample of a compound containing nitrogen, hydrogen, and oxygen is found to contain 22.2% nitrogen and 1.59% hydrogen. What is the simplest formula for this compound?
 - a. HNO
 - b. $H_2N_2O_3$
 - c. H₂NO₃
 - d. HNO₂
 - e. HNO₃

ANS: E

OBJ: Calculate the percent mass of a third component from the data provided. | Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 59. A 4.628-g sample of an oxide of iron was found to contain 3.348 g of iron and 1.280 g of oxygen. What is simplest formula for this compound?
 a. FeO
 b. Fe₂O₃
 - c. Fe₃O₄
 - d. FeO₂
 - e. Fe₃O₂

OBJ: Derive percent mass from experimental data. | Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 60. A 2.086-g sample of a compound contains 0.884 g of cobalt, 0.482 g of sulfur, and 0.720 g of oxygen. What is its simplest formula?
 - a. CoSO₃
 - b. CoSO₄
 - c. $Co(SO_3)_2$
 - d. $Co(SO_4)_2$
 - e. $Co_3(SO_4)_4$

ANS: A

OBJ: Derive percent mass from experimental data. | Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 61. What is the simplest formula for Chalcocite if a sample of this ore contains 8.274 g copper and 2.088 g sulfur?
 - a. CuS₃
 - b. CuS
 - c. CuS₂
 - d. Cu_2S_3
 - e. Cu₂S

ANS: E

OBJ: Derive percent mass from experimental data. | Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 62. Determine the simplest formula for a hydrocarbon if the complete combustion of a sample produces 5.28 g of CO₂ and 1.62 g of H₂O.
 - a. C_2H_3
 - b. CH₂
 - c. CH₃
 - d. CH
 - e. C_2H_5

ANS: A

OBJ: Understand the term hydrocarbon.| Derive percent mass from experimental data. | Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 63. Determine the simplest formula for a hydrocarbon if the complete combustion of a sample produces 3.96 g of CO₂ and 2.16 g of H₂O.
 - a. C_2H_3
 - b. C₃H₈
 - c. CH₃
 - d. CH
 - e. C₂H₅

ANS: B

OBJ: Understand the term hydrocarbon. Derive percent mass from experimental data. Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 64. A compound is known to contain only carbon, hydrogen, and oxygen. If the complete combustion of a 0.150-g sample of this compound produces 0.225 g of CO₂ and 0.0614 g of H₂O, what is the empirical formula of this compound?
 - a. C_3H_4
 - b. CH₄O
 - c. C₃HO₃
 - d. C₃H₄O₃
 - e. $C_5H_7O_5$

ANS: D

OBJ: Calculate the mass of oxygen in the sample from the data provided. | Derive percent mass from experimental data. | Convert percent mass to the simplest formula (empirical formula).

TOP: Derivation of Formulas from Elemental Composition

- 65. Glucose has a molecular weight of 180.2 g and an empirical formula CH₂O. What is its molecular formula?
 - a. $C_8H_4O_5$
 - b. $C_6H_{12}O_6$
 - c. $C_{12}H_{22}O_{11}$
 - d. $C_{10}H_{12}O_3$
 - e. CH₂O

ANS: B

OBJ: Determine the molecular formula from the molecular weight and simplest formula (empirical formula).

TOP: Determination of Molecular Formulas

- 66. A compound contains, by mass, 87.5% nitrogen and 12.5% hydrogen. Its molecular weight is found to be 32 g/mol. What is its molecular formula?
 - a. N_2H_6
 - b. N₂H₄
 - c. N₂H₅
 - d. NH₃
 - e. NH₂

ANS: B

OBJ: Convert percent mass to the simplest formula (empirical formula). | Determine the molecular formula from the molecular weight and simplest formula (empirical formula).

TOP: Determination of Molecular Formulas

- 67. A compound contains only carbon, hydrogen, and oxygen. Analysis of a sample showed that it contained 54.53% C and 9.15% H. Its molecular weight was determined to be approximately 88 g/mol. What is its molecular formula?
 - a. C₂H₄O
 - b. C₄H₈O
 - c. C_4H_8
 - d. $C_4H_8O_2$
 - e. $C_4H_{12}O_2$

ANS: D

OBJ: Calculate the percent mass of a third component from the data provided. | Convert percent mass to the simplest formula (empirical formula). | Determine the molecular formula from the molecular weight and simplest formula (empirical formula).

TOP: Determination of Molecular Formulas

- 68. Butyric acid, found in rancid butter, has a molar mass of 88 g/mol. If butyric acid is 54.5% C, 9.09% H and 36.4% O, what is the molecular formula?
 - a. $C_4H_8O_2$
 - b. $C_8H_{12}O_4$
 - c. C₂H₄O
 - d. C₁₂H₆O
 - e. CHO₂

ANS: A

OBJ: Convert percent mass to the simplest formula (empirical formula). | Determine the molecular formula from the molecular weight and simplest formula (empirical formula).

TOP: Determination of Molecular Formulas

- 69. A compound contains, by mass, 26.7% carbon, 71.1% oxygen and the remainder hydrogen. A 0.23 mole sample of this compound weighs 20.7 g. What is the molecular formula of this compound?
 - a. $C_3H_6O_2$
 - b. $C_2H_2O_4$
 - c. C₂H₄O
 - d. CHO₂
 - e. C₃OH

ANS: B

OBJ: Calculate the percent mass of a third component from the data provided. | Convert percent mass to the simplest formula (empirical formula).| Calculate the molecular weight of the compound from mass and moles. | Determine the molecular formula from the molecular weight and simplest formula (empirical formula).

TOP: Determination of Molecular Formulas

- 70. What is the maximum amount of carbon dioxide that can be produced by the combustion of 0.450g of C₂H₅OH?
 - a. 0.861g
 - b. 0.430g
 - c. 1.62g
 - d. 44.0g
 - e. cannot be determined

ANS: A

OBJ: Translate the name of a binary molecule into a formula. | Determine the molecular weight of a substance using atomic weights and the formula of the substance. | Using molecular weights and molecular formulas, convert grams of organic compound to grams of carbon dioxide

TOP: Determination of Molecular Formulas

- 71. Which of the following sets illustrates the Law of Multiple Proportions?
 - a. Li₂O, Na₂O, K₂O
 - b. KCl, CaCl₂, ScCl₃
 - c. ¹₁H, ²₁H, ³₁H
 - d. O, O₂, O₃
 - e. BrF, BrF₃, BrF₅

ANS: E

OBJ: Identify an example of the Law of Multiple Proportions.

TOP: Determination of Molecular Formulas

- 72. What is the ratio of the masses of oxygen that combine with 1.00 gram of lead in the compounds PbO, PbO₂, and Pb₂O₃?
 - a. 1:2:2
 - b. 1:2:1
 - c. 2:4:4
 - d. 6:12:8
 - e. 2:4:3
 - ANS: E DIF: Harder Question
 - OBJ: Apply the Law of Multiple Proportions.
 - TOP: Determination of Molecular Formulas
- 73. What mass of iron is contained in 86.6 grams of chalcopyrite, CuFeS₂?
 - a. 26.3 g
 - b. 30.4 g
 - c. 55.8 g
 - d. 28.5 g
 - e. 11.8 g

ANS: A

OBJ: Determine the mass of a component in a sample from the sample mass and chemical formula.

TOP: Some Other Interpretations of Chemical Formulas

- 74. What mass of tungsten is present in 10.0 lbs of wolframite, FeWO₄?
 - a. 2.21 kg
 - b. 2.75 kg
 - c. 5.06 lb
 - d. 0.716 kg
 - e. 5.85 lb

ANS: B

OBJ: Convert pounds to grams. | Determine the mass of a component in a sample from the sample mass and chemical formula.

TOP: Some Other Interpretations of Chemical Formulas

- 75. What mass of cerussite, PbCO₃, would contain 25.0 grams of lead?
 - a. 19.4 g
 - b. 32.2 g
 - c. 29.3 g
 - d. 25.4 g
 - e. 36.9 g
 - ANS: E
 - OBJ: Determine the mass of a compound from the chemical formula and the mass of a component.
 - TOP: Some Other Interpretations of Chemical Formulas
- 76. What mass of hematite, Fe₂O₃, would contain 24.0 kg of iron?
 - a. 34.3 kg
 - b. 68.3 kg
 - c. 44.7 kg
 - d. 30.5 kg
 - e. 41.4 kg
 - ANS: A

OBJ: Convert between grams and kilograms. | Determine the mass of a compound from the chemical formula and the mass of a component.

TOP: Some Other Interpretations of Chemical Formulas

- 77. What mass of fluoristan, SnF₂, would contain the same mass of tin as 306 grams of cassiterite, SnO₂?
 - a. 295 g
 - b. 318 g
 - c. 278 g
 - d. 367 g
 - e. 335 g
 - ANS: B DIF: Harder Question

OBJ: Determine the mass of a component in a sample from the sample mass and chemical formula. | Determine the mass of a compound from the chemical formula and the mass of a component.

TOP: Some Other Interpretations of Chemical Formulas

- 78. What mass of FeCl₃ would contain the same **total** number of ions as 16.8 g of Al₂(SO₄)₃?
 - a. 7.96 g
 - b. 9.95 g
 - c. 10.8 g
 - d. 13.3 g
 - e. 8.01 g

ANS: B

DIF: Harder Question

OBJ: Recognize the ions in an ionic chemical formula. | Determine the total number of ions in a sample from the mass and chemical formula. | Determine the mass of a sample from the total ions and chemical formula.

TOP: Some Other Interpretations of Chemical Formulas

	a. 5 b. 4 c. 3 d. 2 e. 1
	ANS: E DIF: Harder Question OBJ: Determine the simplest formula of the partially (de)hydrated product from the experimental data. TOP: Some Other Interpretations of Chemical Formulas
80.	An ore of lead is 45.0% pure lead sulfide, PbS, and 55.0% impurities in which no other lead compounds are present. What mass of lead is contained in 150.0 grams of this ore? a. 71.4 g b. 67.5 g c. 58.5 g d. 9.05 g e. 18.0 g
	ANS: C OBJ: Determine the mass of a component in a sample from the sample mass, chemical formula, and percent composition. TOP: Purity of Samples
81.	A chemical bottle containing BaSO ₄ is 98.7% pure. What mass of Ba is present in 162 g of this chemical? a. 47.1 g b. 96.6 g c. 94.1 g d. 98.7 g e. 95.3 g
	ANS: C OBJ: Determine the mass of a component in a sample from the sample mass, chemical formula, and percent composition. TOP: Purity of Samples
82.	What mass of calcium metal could be obtained from one kg of limestone that is 50.0% pure CaCO ₃ ? (No other calcium-containing compounds are present.) a. 0.05 kg b. 0.2 kg c. 0.4 kg d. 0.5 kg e. 0.1 kg
	ANS: B OBJ: Determine the mass of a component in a sample from the sample mass, chemical formula, and percent composition.

79. Heating MgSO₄•7H₂O at 150°C produces MgSO₄•xH₂O. If heating 24.4 g of pure MgSO₄•7H₂O at

150°C were to give 13.7 g of pure MgSO₄•xH₂O, calculate the value for x.

TOP: Purity of Samples

- 83. A dolomite ore contains 40.0% pure MgCO₃•CaCO₃. No other compounds of magnesium or calcium are present in the ore. What mass of magnesium and what mass of calcium are contained in 100.0 grams of this ore?
 - a. 18.3 g Mg / 21.7 g Ca
 - b. 7.91 g Mg / 13.0 g Ca
 - c. 8.70 g Mg / 31.3 g Ca
 - d. 5.27 g Mg / 8.69 g Ca
 - e. 34.5 g Mg / 5.30 g Ca

ANS: D

OBJ: Determine the mass of a component in a sample from the sample mass, chemical formula, and percent composition.

TOP: Purity of Samples

- 84. A sample of lead ore has a density of 8.80 g/mL. It is composed of two lead compounds: lead oxide, PbO (density 9.10 g/mL) and lead selenide, PbSe (density 8.10 g/mL). What percent of the ore is lead oxide?
 - a. 96.7 %
 - b. 89.0 %
 - c. 70.0 %
 - d. 92.0 %
 - e. 86.3 %

ANS: C

DIF: Harder Question

OBJ: Determine percent composition from the density of each component and the density of the sample.

TOP: Purity of Samples

- 85. A 1.4-g sample of washing soda, $Na_2CO_3 \cdot 10H_2O$, has 2.9×10^{21} carbon atoms. How many oxygen atoms are present in 1.4 g of washing soda?
 - a. 2.9×10^{22}
 - b. 2.9×10^{21}
 - c. 4.1×10^{21}
 - d. 3.8×10^{22}
 - e. 8.8×10^{21}

ANS: D

DIF: easy

OBJ: Convert between number of atoms given the formula.

- 86. Manganese(III) monohydrogen phosphate is an ionic compound formed from Mn³⁺ and HPO₄²⁻. What is the correct way to represent the formula?
 - a. MnHPO₄⁺
 - b. $Mn(HPO_4)_2$
 - c. $Mn^{3+}HPO_4^{2-}$
 - d. $Mn_2(HPO_4)_3$
 - e. Mn₆(HPO₄)₉

ANS: D DIF: easy

OBJ: Write an ionic formula, given the name of the compound.

TOP: Names and Formulas of Some Ionic Compounds

- 87. How many oxygen atoms are there in a formula unit of UO₂(C₂H₃O₂)₂ NH₄C₂H₃O₂ 5H₂O?
 - a. 4
 - b. 13
 - c. 23
 - d. 9
 - e. 11

ANS: B DIF: easy

OBJ: Determine the number of oxygen atoms in a formula unit.

TOP: Chemical Formulas

- 88. The correct name for Fe^{2+} is
 - a. monoiron ion.
 - b. iron(II) ion.
 - c. iron ion.
 - d. iron(I) ion.
 - e. iron.

ANS: B DIF: easy

OBJ: Name the monatomic ions. TOP: Ions and Ionic Compounds

- 89. The formula of magnesium sulfide is
 - a. MgS.
 - b. MgSO₂.
 - c. MgSO₄.
 - d. MgSO₃.
 - e. $Mg(SO_4)_2$.

ANS: A DIF: easy

OBJ: Write the formula of an ionic compound given its name.

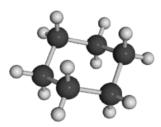
TOP: Names and Formulas of Some Ionic Compounds

- 90. What is the subscript of potassium in the formula for potassium sulfate?
 - a. 2
 - b. 5
 - c. 3
 - d. 4
 - e. 1

ANS: A DIF: easy

OBJ: Write the formula of an ionic compound given its name.

TOP: Names and Formulas of Some Ionic Compounds


- 91. The fully hydrated form of sodium sulfate is the decahydrate, Na₂SO₄·10H₂O. When heated the hydrated salt loses water. How many water molecules are found per formula unit in a partially dehydrated sample of sodium sulfate with a formula mass of 214.1 amu (i.e. find n for Na₂SO₄·nH₂O)?

 a. 4 waters.
 - b. 9 waters.
 - c. 1 waters.
 - d. 6 waters.
 - e. 5 waters.
 - ANS: A
 - DIF: moderate
 - OBJ: Calculate the moles of water per formula unit from dehydration data.
 - TOP: Some Other Interpretations of Chemical Formulas
- 92. What is the molecular mass of cyclooctane, C_8H_{16} ?
 - a. 13.02 amu
 - b. 1553.53 amu
 - c. 97.10 amu
 - d. 112.21 amu
 - e. 28.14 amu
 - ANS: D DIF: easy
 - OBJ: Calculate the formula mass given the formula. TOP: Formula Weights, Molecular Weights, and Moles
- 93. A 1.488 g sample of an element contains 8.708×10^{21} atoms. What is the element symbol?
 - a. Rh
 - b. Sn
 - c. Cd
 - d. Ag
 - e. Te
 - ANS: A
 - DIF: moderate
 - OBJ: Convert a mass and number of atoms to a formula weight.
 - TOP: Formula Weights, Molecular Weights, and Moles
- 94. What is the empirical formula of an oxide of nitrogen that contains 36.84 % nitrogen by mass?
 - a. NO
 - b. N_2O_5
 - c. NO_2
 - d. N_2O
 - e. N_2O_3
 - ANS: E
 - DIF: moderate
 - OBJ: Determine the empirical formula from the percentage composition.
 - TOP: Percent Composition and Formulas of Compounds

- 95. Which of the following samples contains the greatest number of atoms?
 - a. 7.25g Li
- b. 73.21g Zn
- c. 90.00g Br
- d. 140.87g Sb e. 152.11g Cs

- ANS: D
- OBJ: Identify the sample with the greatest number of atoms.
- TOP: Formula Weights, Molecular Weights, and Moles
- 96. How many atoms of chlorine are present in 2.42 grams of boron trichloride, BCl₃?
 - a. 1.24×10^{22} atoms
 - b. 3.73×10^{22} atoms
 - c. 4.15×10^{21} atoms
 - d. 5.69×10^{25} atoms
 - e. 5.14×10^{26} atoms
 - ANS: B
 - OBJ: Determine the number of atoms of one atom type in a compound.
 - TOP: Formula Weights, Molecular Weights, and Moles
- 97. How many moles of calcium are there in a sample of calcium that contains 1.48×10^{24} atoms?
 - a. 0.407 mol
- b. 2.46 mol
- c. 3.57 mol
- d. 16.3 mol
- e. 98.5 mol

- ANS: B
- OBJ: Determine the number of moles given number of atoms.
- TOP: Formula Weights, Molecular Weights, and Moles
- 98. How many ammonia (NH₃) molecules are there in a 115 g sample of ammonia?
 - a. 3.07×10^{20}
 - b. 5.24×10^{21}
 - c. 1.91×10^{22}
 - d. 4.06×10^{24}
 - e. 1.18×10^{27}
 - ANS: D
 - OBJ: Determine the number of molecules in a sample.
 - TOP: Formula Weights, Molecular Weights, and Moles
- 99. What are the empirical and molecular formulas for the following compound?

- (C = dark atoms, H = light atoms)
- a. C₆H₆ (molecular) CH (empirical)
- c. CH (molecular) C₆H₆ (empirical)
- b. C₆H₁₂ (molecular) CH₂ (empirical)
- d. CH₂ (molecular) C₆H₁₂ (empirical)

ANS: B

OBJ: Determine the empirical and molecular formula given the ball and stick model.

TOP: Chemical Formulas

- 100. When the element magnesium reacts, it forms the ion:
 - a. Mg^{2+}
 - b. Mg⁺
 - c. Mn^{2+}
 - d. Mn⁺
 - e. Cannot tell it has a variable charge

ANS: A

OBJ: Determine the charge of a group 2A metal in its compounds.

TOP: Names and Formulas of Some Ionic Compounds

- 101. What is the correct systematic name for Na₂SO₃?
 - a. Sodium sulfate
 - b. Sodium sulfite
 - c. Sodium(III) sulfate
 - d. Disodium trisulfide
 - e. Disodium monosulfate

ANS: B

OBJ: Name the ionic compound of a polyatomic ion.

TOP: Names and Formulas of Some Ionic Compounds

- 102. What is the formula for the compound which forms between the ammonium ion and bromide ion?
 - a. NH₃Br
 - b. NH₄Br
 - c. NH_3Br_2
 - d. NH₄Br₂
 - e. $(NH_4)_2Br$

ANS: B

OBJ: Name the ionic compound of a polyatomic ion.

TOP: Names and Formulas of Some Ionic Compounds

- 103. Which of the following pairs is *incorrect*?
 - a. CaCl₂, calcium chloride
 - b. Fe(OH)₃, iron(III) hydroxide
 - c. KMnO₄, potassium permanganate
 - d. LiCr₂O₇, lithium dichromate
 - e. CCl₄, carbon tetrachloride

ANS: D

OBJ: Identify the incorrect ionic compound formula and name.

TOP: Names and Formulas of Some Ionic Compounds

Chemistry 10th Edition Whitten Test Bank

Full Download: http://testbanklive.com/download/chemistry-10th-edition-whitten-test-bank/

104. What is the chemical formula for nitric acid?

a. HNO₂ b.

b. HNO₃

c. HNO₄

d. H_2NO_3

e. H₂NO₂

ANS: B

OBJ: Identify the formula given the acid name.

TOP: Names and Formulas of Some Molecular Compounds

CONCEPTUAL

1. Discuss the accuracy of this statement: All matter in the universe in made of only three particles.

OBJ: Define matter.

TOP: Structure of the Atom

2. Why isn't it correct to refer to a molecule of aluminum chloride?

OBJ: Distinguish between properties that define a substance as ionic or molecular.

TOP: Chemical Formulas | Ions and Ionic Compounds

3. Would atomic weights of elements be different if another standard was chosen to represent the atomic mass unit (amu)? Would their relative masses change?

OBJ: Define atomic mass unit. Define relative atomic mass. Discuss the effect using a standard other than C-12 to define atomic mass units.

4. Explain how it is possible for many different compounds to have the same empirical formula.

OBJ: Compare and contrast the terms simplest formula (empirical formula) and molecular formula.

TOP: Chemical Formulas

5. Why is the purity of a chemical listed on the label? Are there any situations where purity is not very important?

OBJ: Discuss the importance of purity in chemistry and chemistry related applications.

TOP: Purity of Samples

6. You are in charge of making a backup oxygen generator for the space shuttle. The chemical compounds that will decompose to give oxygen in your system are LiClO₃ or KClO₃. Which compound would you choose and why?

 $OBJ: \quad Understand \ and \ apply \ the \ relationship \ between \ mass, \ molar \ mass, \ and \ moles \ of \ a \ sample. \\ |$

Compare the quantities of dioxygen produced from identical amounts of chlorate salts.