Full Download: https://testbanklive.com/download/chemical-principles-the-quest-for-insight-7th-edition-atkins-test-bank/

Focus 2: Molecules

1. Use the expression for the Coulomb potential energy to calculate the energy for formation of 1 mole of sodium chloride ion-pairs, that is, the energy change for the following reaction:

$$Na^{+}(g) + Cl^{-}(g) \rightarrow Na^{+}Cl^{-}(g)$$

Use $r_{12} = 283$ pm.
Ans: $-491 \text{ kJ} \cdot \text{mol}^{-1}$

If 491 kJ·mol⁻¹ is released in the reaction Na⁺(g) + Cl⁻(g) → Na⁺Cl⁻(g), what is the energy change for the reaction Na(g) + Cl(g) → Na⁺Cl⁻(g)? (Hint: See the discussion in the text and apply Hess's Law.)
 Ans: -346 kJ·mol⁻¹

3. If 346 kJ·mol⁻¹ is released in the reaction Na(g) + Cl(g) → Na⁺Cl⁻(g), is the energy change for the reaction Na⁺Cl⁻(g) → NaCl(s) endothermic or exothermic? Ans: Exothermic

4. The Madelung constant is different for all crystals. True or false? Ans: True

5. Use the expression for the Coulomb potential energy to calculate the energy for formation of 1 mole of rubidium chloride ion-pairs, that is, the energy change for the following reaction:

$$Rb^+(g) + Cl^-(g) \rightarrow Rb^+Cl^-(g)$$
 Use $r_{12} = 330$ pm.
Ans: $-421 \text{ kJ} \cdot \text{mol}^{-1}$

6. Which of the following has the lowest lattice energy?

A) KCl B) LiCl C) KBr D) NaCl E) KI

Ans: E

7. Which of the following has the highest lattice energy?
A) NaCl B) KI C) MgO D) BaO E) CaO

Ans: C

8. Which of the following has the highest melting point?

A) KF B) KI C) RbF D) KBr E) KCl Ans: A

9.	Metals rarely lose electrons in chemical reactions because
	 A) their electron affinities are too high. B) their ionic radii become too small. C) their ionization energies are too small. E) their ionization energies are too high. c) small.
	Ans: E
10.	An element, E, has the electronic configuration [Ne] $3s^23p^1$. Write the formula of its compound with sulfate. Ans: $E_2(SO_4)_3$
11.	Predict the electronic configuration in the oxide ion in CaO. A) [He] $2s^22p^6$ or [Ne] D) [Ne] $3s^13p^3$ B) [He] $2s^22p^5$ E) [Ne] $3s^23p^3$ C) [He] $2s^22p^63s^2$ Ans: A
12.	Write the formula of magnesium phosphide. Ans. Mg_3P_2
13.	Which of the following metal ions has the ground-state electron configuration [Ar]3d ⁶ ? A) Ni^{3+} B) Fe^{2+} C) Mn^{2+} D) Cu^{+} E) Ca^{2+} Ans: B
14.	For the ground-state ion Pb ²⁺ , what type of orbital do the electrons with highest energy reside in?
	A) 6p B) 5p C) 4f D) 6s E) 5d Ans: D
15.	For the ground-state ion Sn ⁴⁺ , what type of orbital do the electrons with highest energy reside in?
	A) 4p B) 5p C) 4f D) 4d E) 5s Ans: D
16.	For the ground-state ion Bi ³⁺ , what type of orbital do the electrons with highest energy reside in?
	A) 5d B) 6s C) 4f D) 5p E) 6p Ans: B
17.	For the ground-state ion I ⁻ , what type of orbital do the electrons with highest energy reside in?
	A) 4d B) 6s C) 5p D) 5d E) 5s Ans: C

18.	Because of the octer Ans: False	t rule, the gaseo	us O ^{2–} ion is	stable. True	or false?	
19.	All the following elepressure except A) H. B) Ar. Ans: B			es at room te	mperature and	atmospheric
20.	How many lone pair compound ICl ₃ ? A) 10 B) 4 C; Ans: A			he Lewis stru	cture of the in	terhalogen
21.	How many lone pair A) 2 B) 3 C) Ans: D			he Lewis stru	cture of urea, ((NH ₂) ₂ CO?
22.	How many lone pair H ₂ NNH ₂ ? A) 8 B) 4 C) Ans: E			he Lewis stru	cture of hydra	zine,
23.	Draw the Lewis struelectrons around the Ans: Three		difluoride an	nd give the nu	mber of lone p	airs
24.	Draw the Lewis strupossible. Ans: Two resonance			l indicate whe	ther resonance	e forms are
25.	Draw the "best" Let $N_1N_2N_3^-$. The substant bond lengths to the hydrogen azide azide ion Ans: hydrogen azide N_3 , 116 pm	scripts are used to correct N–N both N–N bond N ₁ –N ₂ N ₂ –N ₃ N ₁ –N ₂ N ₂ –N ₃	for identificand. The bond length 113 116 124	ntion. For each I lengths can h, pm	h, match the fo be used more t	llowing han once.
26.	Which of the follow A) CH ₃ CONH ⁻ B Ans: C	•			resonance stru	ictures.

27.	For dinitrogen monoxide, the arrangement of the atoms is N-N-O. In the Lewis structure
	with a double bond between NN and NO, the formal charges on N, N, and O,
	respectively, are
	A) 0 1 +1 B) 1 +1 0 C) 0 +1 1 D) 0 0 0 E) 2 +1 +1

A) 0, -1, +1. B) -1, +1, 0. C) 0, +1, -1. D) 0, 0, 0. E) -2, +1, +1. Ans: B

28. For dinitrogen monoxide, the arrangement of the atoms is N-N-O. In the Lewis structure with a single bond between NN and a triple bond between NO, the formal charges on N, N, and O, respectively, are

A) -1, +1, 0. B) 0, 0, 0. C) 0, +1, -1. D) 0, -1, +1. E) -2, +1, +1. Ans: E

29. In the "best" Lewis structure of XeO₄, there are two double bonds and the formal charge on Xe is zero. True or false?

Ans: False

- 30. Write three Lewis structures for the cyanate ion, NCO⁻, where the arrangement of atoms is N-C-O. In the most plausible structure,
 - A) there is a triple bond between N and C.
 - B) there are two double bonds.
 - C) there is a triple bond between C and O.
 - D) the formal charge on O is +1.
 - E) the formal charge on N is -1.

Ans: A

31. Predict the N-O bond lengths in NO₂⁻, given the N-O and N=O bond lengths of 140 and 120 pm, respectively.

Ans: Both ~ 130 pm

32. Why are the N-O bond lengths in NO₃⁻ the same?

Ans: The explanation is resonance.

33. Which of the following species are radicals?

A) CO_2 B) HNO_3 C) NO_2 D) NO_3^- E) HNO_3 Ans: C only.

34. Which of the following species are radicals?

A) CH₂O B) HCN C) HclO D) ClONO₂ E) ClO Ans: E only.

35.	 In the most plausible Lewis structure of XeOF₂, there are A) 2 single bonds, 1 double bond, and 1 lone pair of electrons around Xe. B) 3 single bonds and 1 lone pair of electrons around Xe. C) 2 single bonds, 1 double bond, and 3 lone pairs of electrons around Xe. D) 2 single bonds, 1 double bond, and 2 lone pairs of electrons around Xe. E) 3 single bonds and 2 lone pairs of electrons around Xe. Ans: D
36.	How many electrons are in the expanded valence in XeOF ₂ ? A) 14 B) 12 C) 8 D) 10 E) 6 Ans: B
37.	How many electrons are in the expanded valence in I_3^- ? A) 12 B) 6 C) 10 D) 14 E) 8 Ans: C
38.	How many electrons are in the expanded valence in H ₂ SO ₄ ? A) 12 B) 14 C) 8 D) 6 E) 10 Ans: A
39.	How many electrons are in the expanded valence in XeO ₄ ? Ans: 16
40.	Consider the following equilibrium: $S_2O_4{}^{2-}(aq) \leftrightarrow 2SO_2{}^{-}(aq) \qquad K \sim 10^{-9}$ Write a Lewis structure for each species. Ans: The arrangement of atoms in $S_2O_4{}^{2-}$ is O_2S — SO_2 . The latter has a Lewis structure that obeys the octet rule, but $SO_2{}^{-}$ is a radical.
41.	Which of the following species has bonds with the most ionic character? A) SiO_2 B) PCl_3 C) P_4O_{10} D) CO_2 E) NO_2 Ans: A
42.	Write all possible Lewis structures of sulfur dioxide. Which structure is most feasible? Ans: The structure with the expanded valence is favored.
43.	Which of the following species has bonds with the most ionic character? A) CO_2 B) NO_2 C) SnO_2 D) P_4O_{10} E) PCl_3 Ans: C

	. 1 .	41	C 11	• ,		•	4 0
44. Wr	iich ot	tne	TOHOW	ing sta	atements	1S	true?

- A) Atoms with high ionization energies and high electron affinities are highly electronegative.
- B) Atoms with high ionization energies and high electron affinities have low electronegativities.
- C) The electronegativity of an atom depends only on the value of the ionization energy of the atom.
- D) Atoms with low ionization energies and low electron affinities have high electronegativities.
- E) The electronegativity of an atom is defined as half the electron affinity of the atom.

Ans: A

- 45. Which of the following statements is true?
 - A) The electronegativity of an atom is defined as electron affinity of the atom.
 - B) The electronegativity of an atom depends only on the value of the ionization energy of the atom.
 - C) Atoms with high ionization energies and high electron affinities have low electronegativities.
 - D) Atoms with low ionization energies and low electron affinities have low electronegativities.
 - E) Atoms with low ionization energies and low electron affinities have high electronegativities.

Ans: D

46.	Which of	the compou	nds below l	has bonds w	ith the least co	valent character?
	A) AgI	B) AgCl	C) AgF	D) AlCl ₃	E) BeCl ₂	
	Ans: C					

47. Which of the compounds below has bonds with the most covalent character?

A) NaCl B) LiCl C) CaCl₂ D) BeCl₂ E) MgCl₂

Ans: D

48. Which of the compounds below has bonds with the most covalent character?

A) CaO B) Li₂O C) MgO D) MgS E) CaS

Ans: D

49. Use the bond enthalpies given to estimate the heat released when 1-bromobutene, CH₃CH₂CH=CH₂, reacts with bromine to give CH₃CH₂CHBrCH₂Br. Bond enthalpies (kJ⋅mol⁻¹): C-H, 412; C-C, 348; C=C, 612; C-Br, 276; Br-Br, 193.

A) 181 kJ·mol⁻¹ D) 95 kJ·mol⁻¹
B) 317 kJ·mol⁻¹ E) 507 kJ·mol⁻¹

C) 288 kJ·mol⁻¹

Ans: D

50.	Use the bond enthalpies given to estimate the reacts with HBr to give CH ₃ CH ₂ Br. Bond e		
	C=C, 612; C-Br, 276; Br-Br, 193; H-Br, 36 A) 1036 kJ·mol ⁻¹ B) 200 kJ·mol ⁻¹ C) 470 kJ·mol ⁻¹ Ans: E	-	424 kJ·mol ⁻¹ 58 kJ·mol ⁻¹
51.	Use the bond enthalpies given to estimate the (CH ₃) ₂ C=CH ₂ , reacts with HBr to give (CH C-H, 412; C-C, 348; C=C, 612; C-Br, 276; A) 58 kJ·mol ⁻¹ B) 507 kJ·mol ⁻¹ C) 317 kJ·mol ⁻¹ Ans: A	(3) ₂ CB	rCH ₃ . Bond enthalpies (kJ·mol ⁻¹): 366. 288 kJ·mol ⁻¹
52.	Use the bond enthalpies given to estimate the reacts with hydrogen to give CH ₃ CH ₃ . Bond C=C, 612; C-Br, 276; H-H, 436.		
	A) 124 kJ·mol ⁻¹ B) 342 kJ·mol ⁻¹ C) 288 kJ·mol ⁻¹ Ans: A	D) E)	148 kJ·mol ⁻¹ 560 kJ·mol ⁻¹
53.	Which of the following compounds contain A) CH ₄ B) H ₂ O C) SiH ₄ D) HF Ans: C	s the w E) H	•
54.	Which of the following compounds contain A) SiH ₄ B) CH ₄ C) HF D) H ₂ S Ans: C	s the s E) H ₂	
55.	Which of the following compounds is the lead (A) CH ₄ B) SnH ₄ C) SiH ₄ D) GeH ₄ Ans: E		
56.	Estimate the CO bond length in acetone, CF C-, 77; C=, 67; O-, 74; O=, 60; H, 37. A) 75.5 pm B) 127 pm C) 63.5 pm Ans: B		- '
57.	Estimate the CN bond length in urea, NH ₂ C C=, 67; N-, 75; N=, 60; O-, 74; O=, 60; H, A) 71 pm B) 127 pm C) 76 pm D) Ans: D	37.	

 58. If the following all crystallize in the same type of structure, which has the highest lattice energy? A) LiCl B) KF C) KBr D) KCl E) LiF Ans: E
 59. If the following all crystallize in the same type of structure, which has the highest lattice energy? A) NaCl B) NaF C) KF D) NaBr E) NaI Ans: B
 60. If the following all crystallize in the same type of structure, which has the lowest lattice energy? A) CaO B) BaS C) SrO D) SrS E) BaO Ans: B
61. If the following all crystallize in the same type of structure, which has the lowest lattice energy?A) LiCl B) NaI C) NaCl D) KCl E) KIAns: E
 62. White phosphorus is composed of tetrahedral molecules of P₄ in which every P atom is connected to three other P atoms. In the Lewis structure of P₄, there are A) 3 bonding pairs and 4 lone pairs of electrons. B) 6 bonding pairs and 2 lone pairs of electrons. C) 5 bonding pairs and 4 lone pairs of electrons. D) 6 bonding pairs and no lone pairs of electrons. E) 6 bonding pairs and 4 lone pairs of electrons. Ans: E
63. Which of the following is a radical? A) BrO B) CH ₃ ⁺ C) CH ₃ ⁻ D) BF ₄ ⁻ Ans: A
64. If dinitrogen oxide has a dipole moment, what is the arrangement of atoms? Ans: N-N-O
65. The electronegativity of an element can be expressed as $\frac{1}{2}(I + E_a)$ where I is the ionization energy and E_a is the electron affinity. True or false? Ans: True
66. The best Lewis structures of SO ₂ and O ₃ include expanded valence structures such as O=S=O and O=O=O. True or false? Ans: False

67.	Which of the following has resonance structures? A) XeOF ₂ B) N ₂ H ₄ C) CH ₃ CONH ⁻ D) H ₂ CO Ans: C
68.	How many resonance structures can be drawn for N_2O ? A) 0 B) 3 C) 2 D) 1 Ans: B
69.	What is the formal charge on the Xe atom in XeF ₄ ? A) 0 B) -4 C) +2 D) +4 Ans: A
70.	There are three resonance structures of the sulfate ion. A resonance structure can be written where the formal charge on sulfur is 0. True or false? Ans: True
71.	How many double bonds are present in the "best" resonance structure of the phosphate ion? A) 2 B) 3 C) 1 D) 0 Ans: C
72.	How many lone pairs of electrons are there in the Lewis structure of Al ₂ Cl ₆ ? A) 24 B) 12 C) 4 D) 16 Ans: D
73.	Match each of the following compounds with its lattice energy. KI, LiF, MgF ₂ , LiI 2961, 1046, 759, 645 kJ/mol Ans: MgF ₂ (2961), LiF (1046), LiI (759), KI (645 kJ/mol)
74.	White phosphorus is composed of tetrahedral molecules of P_4 in which each P atom is bonded to three others. In this molecule the formal charge on each P atom is Ans: 0
75.	Of the following molecules, which has the strongest bonds? A) H ₂ O B) H ₂ Se C) H ₂ Te D) H ₂ S Ans: A
76.	An element E has the electronic configuration $1s^22s^22p^4$. What is the formula of its compound with lithium? A) LiE ₂ B) LiE C) Li ₂ E D) Li ₄ E Ans: C
77.	How many valence electrons are present in W ⁴⁺ ? Ans: 2

78. What is wrong with the following Lewis structure?

 $O - C \equiv O$

- A) The valence electron count
- B) The positioning of the carbon atom
- C) The distribution of valence electrons
- D) The charge on the carbon atom
- E) The dipole of the molecule

Ans: C

79. Sulfur is more electronegative than oxygen. True or false?

Ans: False

- 80. What is the electronic configuration of Ag? Ans: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^1 4d^{10}$
- 81. What is the formal charge of S in the molecule H₂SO₄?

Ans: 0

- 82. Why is the bond dissociation energy of C—C greater than that of C—H?
 - A) Because of enhanced sigma bond overlap
 - B) Because the bond is electrostatically stronger
 - C) Because multiple bonds are always stronger than single bonds
 - D) Because of the decreased bond dipole
 - E) It isn't, the dissociation energy is greater for C—H

Ans: E

83. List the chalcogens in order of increasing electronegativity.

Ans: tellurium < selenium < sulfur < oxygen.

84. Which has the greater ionic character: H_2S or H_2O ?

Ans: H₂O

85. Name all the angles in a trigonal bipyramidal geometry.

Ans: 90°, 120°, and 180°

86. Name all the angles in a trigonal planar geometry.

Ans: 120°

87. Predict the HNH bond angle in NH₂⁻.

Ans: ~109°

88. Predict the electron arrangement in NO₂⁻.

Ans: trigonal planar

89.		lectron arrangement and shape in IF_4^+ , trigonal bipyramidal; seesaw.	respec	ctively, are
90.		ct the electron arrangement in ClF ₃ . Trigonal bipyramidal		
91.		ct the electron arrangement in IF ₅ . Octahedral		
92.	A) B)	is the shape of AlH ₄ ⁻ ? Tetrahedral Trigonal bipyramidal Seesaw A	D) E)	T-shaped Square planar
93.	A) B)	is the shape of BrO ₄ ⁻ ? Tetrahedral Trigonal bipyramidal Seesaw A	D) E)	T-shaped Square planar
94.	A) B)	is the shape of AsF ₃ ? T-shaped Trigonal planar Trigonal pyramidal C	D) E)	Tetrahedral Seesaw
95.	A) B)	is the shape of SO ₃ ²⁻ ? T-shaped Trigonal pyramidal Seesaw B	D) E)	Tetrahedral Trigonal planar
96.	A) B)	is the shape of CS ₃ ²⁻ ? Trigonal pyramidal Trigonal planar T-shaped B	D) E)	Tetrahedral Seesaw
97.	What A) B) C) Ans:	is the shape of COCl ₂ ? T-shaped Trigonal planar Trigonal pyramidal B	D) E)	Tetrahedral Seesaw

98.	 What is the shape of XeF₄? A) Square planar B) Tetrahedral C) Trigonal bipyramidal Ans: A 	D) E)	
99.	What is the shape of ICl ₄ -? A) T-shaped B) Trigonal bipyramidal C) Seesaw Ans: E	D) E)	Tetrahedral Square planar
100.	What is the shape of IF ₄ ⁺ ? A) Tetrahedral B) Seesaw C) Trigonal bipyramidal Ans: B	D) E)	Square planar T-shaped
101.	What is the shape of ClF ₃ ? A) Tetrahedral B) Seesaw C) Trigonal bipyramidal Ans: D	D) E)	T-shaped Square planar
102.	All the following have a linear shape except A) BeCl ₂ . B) O ₃ . C) I_3^- . D) XeF ₂ . Ans: B		$ ext{CS}_2$.
103.	All the following have an angular shape except A) HOCl. B) S_3^{2-} . C) I_3^{-} . D) ClO_2^{-1} Ans: C	-) NH ₂ ⁻ .
104.	All the following have a linear shape except A) IF_2^- . B) CS_2 . C) XeF_2 . D) I_3^- . Ans: E		3 ⁺ .
105.	All the following have an angular shape exce A) N_3^- . B) ClO_2^- . C) S_3^{2-} . D) HOO Ans: A		E) NH ₂ ⁻ .
106.	Which of the following has bond angles slig A) NH ₄ ⁺ B) ClO ₄ ⁻ C) BrO ₃ ⁻ D) PC Ans: C	-	

107.	Which of the following has bond angles of 180°? A) I ₃ ⁻ B) ClO ₂ ⁻ C) O ₃ D) NH ₂ ⁻ E) HO ₂ ⁻ Ans: A
108.	Which of the following has bond angles of 180°? A) N ₂ O B) ClO ₂ ⁻ C) O ₃ D) HO ₂ ⁻ E) NH ₂ ⁻ Ans: A
109.	Which of the following has bond angles slightly less than 120°? A) SO ₃ B) SF ₂ C) I ₃ ⁻ D) NO ₃ ⁻ E) O ₃ Ans: E
110.	Which of the following has bond angles slightly less than 109°? A) NO_2^- B) I_3^- C) HOCl D) O_3 E) CH_2^- Ans: C
111.	Which of the following has bond angles slightly less than 109°? A) CS_3^{2-} B) AsF_3 C) SO_2 D) $COCl_2$ E) COS Ans: B
112.	Which of the following has bond angles slightly less than 120°? A) NO_3^- B) HO_2^- C) NO_2^- D) CS_3^{2-} E) I_3^+ Ans: C
113.	Which of the following has bond angles of 120°? A) HO ₂ ⁻ B) CS ₃ ²⁻ C) S ₃ ²⁻ D) O ₃ E) NO ₂ ⁻ Ans: B
114.	Which of the following has bond angles of 90°, 120°, and 180°? A) PF_6^- B) IF_5 C) XeF_4 D) ICl_4^- E) SF_4 Ans: E
115.	Which of the following only has bond angles of 90° ? A) IF ₅ B) IF ₄ ⁺ C) XeF ₂ D) SF ₄ E) IO ₂ F ₃ Ans: A
116.	Which of the following only has bond angles of 90° and 180°? A) IF ₅ B) BrF ₃ C) BCl ₃ D) NO ₃ ⁻ E) ICl ₄ ⁺ Ans: B
117.	Which of the following is polar? A) CO_3^{2-} B) O_3 C) XeF_2 D) I_3^- E) NON Ans: B

118.	Which of the following is polar? A) NON B) XeF ₂ C) XeO ₂ D) ICl ₄ ⁻ E) I ₃ ⁻ Ans: C
119.	Which of the following is polar? A) XeF ₄ B) PCl ₅ C) ICl ₄ ⁻ D) SF ₆ E) IF ₅ Ans: E
120.	All the following are polar except A) S_3^{2-} . B) NH_2^- . C) I_3^- . D) O_3 . E) I_3^+ . Ans: C
121.	All of the following are polar except A) SF ₄ . B) ClO ₂ ⁻ . C) IF ₄ ⁺ . D) XeF ₄ . E) ClF ₃ . Ans: D
122.	Which of the following is polar? A) SF ₆ B) ICl ₄ ⁻ C) SF ₄ D) AsF ₆ ⁻ E) XeF ₄ Ans: C
123.	All the following are polar except A) ClF ₃ . B) COCl ₂ . C) BO ₃ ³⁻ . D) BrO ₃ ⁻ . E) O ₃ . Ans: C
124.	All the following are polar except A) O ₃ . B) ClF ₃ . C) COCl ₂ . D) BrO ₃ ⁻ . E) CS ₃ ²⁻ . Ans: E
125.	All the following are polar except A) XeO ₂ . B) ClF ₃ . C) XeF ₄ . D) SOCl ₂ . E) XeO ₃ . Ans: C
126.	The molecule <i>cis</i> -dichloroethene is nonpolar. True or false? Ans: False
127.	How many σ - and π -bonds, respectively, are there in acrolein, CH ₂ =CHCHO? A) 4 and 2 B) 7 and 2 C) 5 and 2 D) 5 and 4 E) 7 and 1 Ans: B
128.	How many σ - and π -bonds, respectively, are there in peroxyacetylnitrate, CH ₃ C(O)O-ONO ₂ ? A) 9 and 2 B) 10 and 2 C) 10 and 1 D) 8 and 4 E) 8 and 2 Ans: B

129.	How many σ - and π -bonds are present in diazomethane, CH ₂ NN? Ans: 4 σ -bonds and 2 π -bonds
130.	Draw the Lewis structure of formamide, NH ₂ CHO, and give the number of lone pairs of electrons, and the number of σ - and π -bonds. Ans: 3 lone pairs, 5 σ -bonds, and 1 π -bond
131.	Draw the Lewis structure of the cyanamide ion, NCNH ⁻ , and give the number of lone pairs of electrons and the number of σ - and π -bonds. Ans: 3 lone pairs, 3 σ -bonds, and 2 π -bonds
132.	Identify the hybrid orbitals used by the underlined atom in acetone, $CH_3\underline{C}OCH_3$. A) sp^3d B) sp^2 C) None; pure p_z -orbitals are used in bonding. D) sp^3 E) sp Ans: B
133.	The hybrid orbitals used by the underlined atoms in $CH_3\underline{C}HC\underline{H}\underline{C}N$, from left to right, respectively, are A) sp^3 and sp . B) sp^2 and sp . C) sp^2 and sp^3 . E) sp and sp^3 . Ans: B
134.	The hybrid orbitals used by the underlined atoms in $CH_3\underline{C}H_2\underline{O}CH_2CH_3$, from left to right, respectively, are A) sp and sp . B) sp^3 and sp . C) sp^3 and sp^3 . D) sp and sp^3 . E) sp^2 and sp^3 . Ans: C
135.	The hybrid orbitals used by the underlined atoms in $\underline{CH_2CHC_HO}$, from left to right, respectively, are A) sp^3 and sp^2 . B) sp^2 and sp^2 . C) sp^2 and sp . D) sp and sp . E) sp^3 and sp . Ans: B
136.	For the Lewis structure of the cyanamide ion that contains two double bonds, $\underline{N}=C=NH^-$, the hybrid orbitals used by the underlined nitrogen atom and the carbon atom, respectively, are A) sp^2 and sp^3 . B) sp and sp . C) sp^2 and sp^2 . D) sp and sp^3 . E) sp^2 and sp . Ans: E
137.	The NCO bond angle in formamide, H_2 NCHO, is Ans: $\sim 120^\circ$ (120° is an acceptable answer)
138.	All the following are paramagnetic except A) O_2^+ . B) O_2^- . C) N_2^{2+} . D) N_2^{2-} . E) O_2 . Ans: C

139.	Which of the following is diamagnetic? A) O_2^{2-} B) S_2 C) O_2^{-} D) O_2^{+} Ans: A
140.	What is the ground-state electron configuration of O_2^- ? Ans: $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p}^*)^2(\pi_{2p}^*)^1$
141.	Which of the following is paramagnetic? A) N_2 B) B_2 C) O_2^{2-} D) C_2^{2-} E) B_2^{2-} Ans: B
142.	Which of the following would have the longest bond? A) B_2 B) C_2 C) N_2 D) C_2^{2-} E) N_2^{2-} Ans: A (bond order = 1)
143.	The bond order of N_2^{2+} is A) 2.5. B) 1. C) 2. D) 1.5. E) 3. Ans: C
144.	The bond order of O_2^{2+} is A) 1. B) 2. C) 3. D) 2.5. E) 1.5. Ans: D
145.	Which of the following has the longest bond? A) N_2 B) NO^- C) N_2^{2+} D) N_2^{2-} E) O_2^{2-} Ans: E
146.	Which of the following is paramagnetic? A) N_2 B) N_2^{2+} C) O_2^{2-} D) N_2^{2-} E) NO^+ Ans: D
147.	Which of the following species has the shortest bond length? A) NO^{2-} B) NO^{2+} C) NO^{-} D) NO E) NO^{+} Ans: E
148.	Which of the following species has two unpaired electrons? A) OF ⁺ B) NO ⁺ C) CO ⁺ D) NF ⁺ E) CF ⁺ Ans: A

149.	Which of the following is a p-type semiconductor? A) Selenium doped with indium B) Silicon doped with arsenic C) GaAs with arsenic in excess of gallium D) Germanium doped with arsenic E) Silicon doped with phosphorus Ans: A
150.	Which of the following is an n-type semiconductor? A) Silicon doped with phosphorus B) Silicon doped with boron C) GaAs with gallium in excess of arsenic D) Selenium doped with indium E) Germanium doped with indium Ans: A
151.	Germanium is a semiconductor. Which of the following should be added in small amounts to produce a p-type semiconductor? A) Bi B) As C) P D) Sb E) B Ans: E
152.	Gallium is a semiconductor. Which of the following should be added in small amoun to produce a p-type semiconductor? A) Si B) Sb C) B D) P E) As Ans: C
153.	How many lone pairs of electrons are there in the Lewis structure of azidocarbonamic H ₂ NC(O)NNC(O)NH ₂ ? A) 8 B) 12 C) 10 D) 16 E) 6 Ans: A
154.	What is the approximate NNC bond angle in azidocarbonamide, H ₂ NC(O) NNC (O)NH ₂ ? A) 118° B) 180° C) 90° D) 107° E) 109° Ans: A
155.	What is the hybridization of the bolded atoms NNC , from left to right, in azidocarbonamide, $H_2NC(O)NNC(O)NH_2$? A) sp^3 , sp , sp^2 B) sp^2 , sp , sp^3 C) sp^2 , sp , sp^2 Ans: E

156.	How many σ - and π -bonds, respectively, are there in the Lewis structure of azidocarbonamide, H ₂ NC(O)NNC(O)NH ₂ ?
	A) 14 and 3 B) 15 and 3 C) 14 and 2 D) 8 and 3 E) 11 and 3 Ans: E
157.	Two Lewis structures can be written for diazomethane, where the arrangement of atoms is H_2 C-N-N. The hybrid orbitals used by the bold atoms in these Lewis structures are A) sp^3 or sp^2 , and sp . B) sp^2 and sp . C) sp^3 and sp . D) sp^3 or sp^2 , and sp^2 . Ans: A
158.	The fact that B_2 has two unpaired electrons means the $2p_\pi$ molecular orbitals have higher energy than the $2p_\sigma$ molecular orbitals. True or false? Ans: False
159.	How many peaks would you predict for the photoelectron spectrum of water using 1) the molecular orbital model and 2) the VSEPR model? Ans: molecular orbital, 4; VSEPR, 2; the experimental result is 4 peaks
160.	The OSO bond angle in the sulfite ion is (greater than/equal to/less than) 109.5°. Ans: less than
161.	An AX_3E_2 molecule has a trigonal planar shape. True or false? Ans: False
162.	Which of the following molecules is (are) polar? (a) $AsCl_4^+$ (b) I_3^+ (c) I_3^- (d) N_3^- (e) S_3^{2-} A) (b) and (e) B) (b) and (c) C) (c) and (e) D) only (e) Ans: A
163.	What is the bond order in the OH radical? Ans: 0.5
164.	When two atoms are brought together along the <i>x</i> -axis, what is the number of σ bonds that can be formed by overlap of <i>p</i> -orbitals on each atom? A) 0 B) 1 C) 2 D) 3 Ans: B
165.	What hybrid orbitals are used by the N atoms in urea, H ₂ NCONH ₂ ? A) sp B) sp^2 C) sp^3 D) dsp^3 Ans: C
166.	In the NO molecule, which atom makes the larger contribution to the lowest energy molecular orbital? Ans: O

- 167. For A₂, the LCAO-MO, $\psi = c_A \psi_A + c_B \psi_B$, has $c_A = c_B$. True or false? Ans: True
- 168. For HF, the LCAO-MO, $\psi = c_H \psi_H + c_F \psi_F$, has $c_H = c_F$. True or false? Ans: False
- 169. For peroxyacetylnitrate, CH₃C(O)**O**—ONO₂, what hybrid orbitals are used by the oxygen atom in bold?
 - A) dsp B) sp C) sp^2 D) sp^3

Ans: D

- 170. The molecules OF_2 and O_3 both have bent shapes. What are the approximate bond angles in OF_2 and O_3 , respectively?
 - A) 109° and 120°
 - B) Both 109°
 - C) Both 120°
 - D) Both 180°
 - E) 109° and 180°

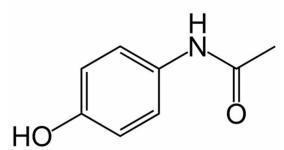
Ans: A

- 171. What are the electron arrangements around the central atom and the shape, respectively, of SF_4 ?
 - A) Trigonal bipyramidal and seesaw
 - B) Both tetrahedral
 - C) Octahedral and square pyramidal
 - D) Both square pyramidal
 - E) Seesaw

Ans: A

- 172. What is the shape of the molecule AX_4E_2 ?
 - A) Octahedral
 - B) Tetrahedral
 - C) Seesaw
 - D) Square planar
 - E) Square pyramidal

Ans: D


- 173. The molecules OF_2 and O_3 both have bent shapes. What is the hybridization of the central atom in OF_2 and O_3 , respectively?
 - A) sp^3 and sp^2
 - B) both sp^3
 - C) both sp^2
 - D) sp^3 and sp
 - E) both sp

Ans: A

174. Dinitrogen monoxide has a dipole moment. Draw the arrangement of atoms and indicate the shape of dinitrogen monoxide.

Ans: N-N-O; linear

175. The structure of Tylenol is given below:

Estimate the C-N-H bond angle.

- A) ~ 109°
- B) ~ 120°
- C) $> 109^{\circ}$
- D) $> 120^{\circ}$
- E) ~ 90°

Ans: A

176. The structure of Tylenol is given below:

What hybrid orbitals are used on the N atom and the carbonyl carbon, respectively?

- A) sp^3 and sp^2
- B) sp^2 and sp^2
- C) sp^3 and sp^3
- D) sp^2 and sp
- E) sp^3 and sp

Ans: A

177. All of the following are polar except

A) NO_2^- . B) SO_3^{2-} . C) NO_2Cl . D) NO_3^- . E) N_2O (N is the central atom). Ans: D

178. In NO, the unpaired electron occupies what type of molecular orbital?

- A) 3σ
- B) $4\sigma^*$
- C) $2\pi^*$
- D) 1π
- E) The oxygen 2p orbital.

Ans: C

179. Both C_2 and C_2^{2-} are diamagnetic. True or false?

Ans: True

180. What are the electron arrangements and the shape around the central atom of SeCl₄?

- A) Octahedral and square pyramidal
- B) Both tetrahedral
- C) Trigonal bipyramidal and seesaw
- D) Both square pyramidal
- E) Seesaw

Ans: C

181. Why does the best Lewis structure for sulfuric acid (H₂SO₄) have the sulfur atom formally possessing five bonds?

A) This configuration gives all atoms in the molecule a formal charge of 0.

Chemical Principles The Quest for Insight 7th Edition Atkins Test Bank

Full Download: https://testbanklive.com/download/chemical-principles-the-quest-for-insight-7th-edition-atkins-test-bank/ Chapter 3: Chemical Bonds

- B) It is the best expanded octet structure for the molecule.
- C) It doesn't; it should possess four bonds.
- D) It doesn't; it should possess six bonds.

Ans.: D