Calculus for Business Economics Life Sciences and Social Sciences 13th Edition Barnett Test Bank

Full Download: http://testbanklive.com/download/calculus-for-business-economics-life-sciences-and-social-sciences-13th-edition-MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Provide an appropriate response.

1) Given that
$$f(x) = \frac{x}{7 - x}$$
, find $f\left(-\frac{4}{5}\right)$. Express the answer as a simplified fraction.
A) $\frac{39}{4}$
B) $\frac{4}{39}$
C) $-\frac{4}{39}$
D) $-\frac{39}{4}$

Answer: C

The graph of a function f is given. Use the graph to answer the question.

2) Use the graph of f given below to find f(-10).

1

Use the graph to evaluate the indicated limit and function value or state that it does not exist.

Find the limit, if it exists.

5) Find:
$$\lim_{X \to -1} \frac{6x + 5}{5x - 6}$$

A) 1
B) $\frac{1}{11}$
C) -11
D) $-\frac{1}{11}$

Answer: B

6) Given $\lim_{x \to 4} f(x) = -2$ and $\lim_{x \to 4} g(x) = 5$, find $\lim_{x \to 4} \frac{[g(x) - f(x)]}{-4 f(x)}$. A) $-\frac{3}{8}$ B) $\frac{7}{8}$ C) $-\frac{7}{8}$ D) $\frac{3}{8}$ Answer: B 7) Find: $\lim_{x \to -4} \frac{x^2 - 16}{x + 4}$ A) 16 B) 8 C) -8 D) - 24 Answer: C 8) Find: $\lim_{x \to 5} \frac{x-5}{|x-5|}$ A) –1 B) 1 C) 0 D) Does not exist Answer: D 9) Find: $\lim_{x \to 3} \left(\frac{x^2 - 9}{x - 3} + \sqrt{x^2 + 7} \right)$ A) 10 B) 3 C) 2 D) Does not exist Answer: A 10) Find: $\lim_{x \to 3} \frac{x-3}{x^2 - 3x}$ A) $\frac{1}{3}$ B) $-\frac{1}{3}$ C) 0 D) Does not exist Answer: D

11) Given $\lim_{x \to 5} f(x) = 4$ and $\lim_{x \to 5} g(x) = -5$, find $\lim_{x \to 5} \frac{2f(x) + 3g(x)}{3f(x)}$. A) $-\frac{7}{12}$ B) $\frac{7}{12}$ C) $-\frac{7}{15}$ D) $\frac{7}{15}$

Answer: A

12) Evaluate the following limit

 $\lim_{x \to 2^{-}} \frac{1}{x-2}$ A) ∞ B) 2
C) $-\infty$ D) Does not exist

Answer: D

13) Let
$$f(x) = \frac{x^2 - 3x - 10}{x + 2}$$
. Find $\lim_{x \to -2} f(x)$.
A) -2
B) 5
C) -7
D) Does not exist

Answer: C

14) Let
$$f(x) = \begin{cases} \frac{x^2 - 16}{x + 4} & \text{if } x > 0\\ \frac{x^2 - 16}{x - 4} & \text{if } x < 0 \end{cases}$$

Find $\lim_{x \to 0^{-}} f(x)$. A) -4 B) ∞ C) 4 D) Does not exist

Answer: C

15) Let
$$f(x) = \begin{cases} \frac{x^2 - 16}{x + 4} & \text{if } x > 0\\ \frac{x^2 - 16}{x - 4} & \text{if } x < 0 \end{cases}$$

Find $\lim_{x \to 0^+} f(x)$
A) 0
B) -4
C) 4
D) Does not exist
Answer: B

16) Let
$$f(x) = \begin{cases} \frac{x^2 - 16}{x + 4} & \text{if } x > 0\\ \frac{x^2 - 16}{x - 4} & \text{if } x < 0 \end{cases}$$

Find $\lim_{x \to 0} f(x)$.
A) $-\infty$
B) -4

Ć) 0

D) Does not exist

Answer: D

17) Evaluate the following limit.

$$\lim_{x \to 2^{+}} \frac{1}{x-2}$$
A) 2
B) - ∞
C) ∞
D) Does not exist
Answer: D

Sketch a possible graph of a function that satisfies the given conditions.

Find the limit, if it exists.

20) Find: $\lim_{h \to 0} \frac{f(7 + h) - f(7)}{h}$ for f(x) = -x + 1. A) 1 B) -1 C) 0 D) Does not exist Answer: B

Solve the problem.

21) A company training program determines that, on average, a new employee can do P(x) pieces of work per day after s days of on-the-job training, where $P(x) = \frac{90 + 60x}{x + 5}$. Find $\lim_{x \to 5} P(x)$. A) 105

B) 30 C) 42 D) Does not exist

Answer: B

22) The cost of manufacturing a particular videotape is C(x) = 9000 + 9x, where x is the number of tapes produced. The average cost per tape, denoted by $\overline{C}(x)$, is found by dividing C(x) by x. Find lim $\overline{C}(x)$.

x→9000

A) 10 B) 14 C) 6 D) Does not exist Answer: A Use the given graph to find the indicated limit.

26)

Find the limit.

27) Determine the limit.

 $\lim_{x \to -10^{-}} f(x), \text{ where } f(x) = \frac{1}{x + 10}$ A) -\infty B) 0 C) -1 D) \infty Answer: A

28) Determine the limit.

$$\lim_{x \to 5^+} f(x), \text{ where } f(x) = \frac{x^2}{(x-5)^3}$$

A) -2
B) - ∞
C) 5
D) ∞
Answer: D

Provide an appropriate response.

29) If the limit at infinity exists, find the limit.

$$\lim_{x \to \infty} \frac{5x^2 + 7x - 9}{-6x^2 + 2}$$
A) $-\frac{5}{6}$
B) $-\frac{2}{9}$
C) ∞
D) 0
Answer: A

30) If the limit at infinity exists, find the limit. $2x^2 + 5x$

$$\lim_{x \to \infty} \frac{3x^3 + 5x}{4x^4 + 10x^3 + 2}$$
A) 0
B) $\frac{3}{4}$
C) ∞
D) 1
Answer: A

Use $-\infty$ or ∞ where appropriate to describe the behavior at each zero of the denominator and identify all vertical asymptotes.

31) $g(x) = \frac{x}{6 - x}$

- A) $\lim_{x \to 6^-} f(x) = -\infty$; $\lim_{x \to 6^+} f(x) = \infty$; x = 6 is a vertical asymptote
- B) $\lim_{x \to 6^{-}} f(x) = -\infty; \lim_{x \to 6^{+}} f(x) = -\infty; x = 6 \text{ is a vertical asymptote}$
- C) $\lim_{x \to 6^-} f(x) = \infty$; $\lim_{x \to 6^+} f(x) = -\infty$; x = 6 is a vertical asymptote
- D) $\lim_{x \to 6^-} f(x) = \infty$; $\lim_{x \to 6^+} f(x) = -\infty$; x = 0 is a vertical asymptote

Answer: C

32)
$$f(x) = \frac{x^2 - 16}{x^2 + 16}$$

- A) $\lim_{x \to 4^-} f(x) = \infty$; $\lim_{x \to 4^+} f(x) = -\infty$; x = 4 is a vertical asymptote
- B) No zeros of denominator; no vertical asymptotes
- C) $\lim_{x \to -4^-} f(x) = \infty$; $\lim_{x \to -4^+} f(x) = -\infty$; x = -4 is a vertical asymptote
- D) $\lim_{x \to 4^-} f(x) = \infty$; $\lim_{x \to 4^+} f(x) = \infty$; x = 0 is a vertical asymptote

Answer: B

33)

Describe the end behavior of the function.

$$f(x) = 5x^{4} + 5x + 11$$
A)
$$\lim_{x \to \infty} f(x) = -\infty; \quad \lim_{x \to -\infty} f(x) = \infty$$
B)
$$\lim_{x \to \infty} f(x) = -\infty; \quad \lim_{x \to -\infty} f(x) = -\infty$$
C)
$$\lim_{x \to \infty} f(x) = \infty; \quad \lim_{x \to -\infty} f(x) = -\infty$$
D)
$$\lim_{x \to \infty} f(x) = \infty; \quad \lim_{x \to -\infty} f(x) = \infty$$

Answer: D

Provide an appropriate response.

34) Find the vertical asymptote(s) of the graph of the given function.

$$f(x) = \frac{3x - 9}{5x + 30}$$

A) x = -6
B) y = -3
C) x = -8
D) y = 8
Answer: A

35) Find the vertical asymptote(s) of the graph of the given function.

$$f(x) = \frac{x^2 - 100}{(x - 9)(x + 3)}$$

A) x = 10, x = -10
B) x = 9, x = -3
C) y = 9, y = -3
D) x = -9
Answer: B

36) Find the horizontal asymptote, if any, of the given function.

$$f(x) = \frac{(x-3)(x+4)}{x^2-4}$$

A) y = 1
B) x = 2, x = -2
C) y = 3, y = -4
D) None
Answer: A

37) Find the horizontal asymptote, if any, of the given function.

$$f(x) = \frac{2x^3 - 3x - 9}{9x^3 - 5x + 3}$$

A) $y = \frac{3}{5}$
B) $y = \frac{2}{9}$
C) $y = 0$
D) None
Answer: B

Solve the problem.

38) Suppose that the value V of a certain product decreases, or depreciates, with time t, in months, where

 $V(t) = 37 - \frac{16t^2}{(t+2)^2}.$ Find $\lim_{t\to\infty} V(t).$ A) 16 B) 21 C) 37 D) 33 Answer: B 39) Suppose that the value V of a certain product decreases, or depreciates, with time t, in months, where

V(t) = 100 - $\frac{40t^2}{(t+2)^2}$. Find lim V(t). A) 80 B) 40 C) 100 D) 60 Answer: D

40) Suppose that the cost C of removing p% of the pollutants from a chemical dumping site is given by

 $C(p) = \frac{\$40,000}{100 - p}$

Can a company afford to remove 100% of the pollutants? Explain.

A) Yes, the cost of removing p% of the pollutants is \$40,000, which is certainly affordable.

B) No, the cost of removing p% of the pollutants is \$400, which is a prohibitive amount of money.

C) Yes, the cost of removing p% of the pollutants is \$400, which is certainly affordable.

D) No, the cost of removing p% of the pollutants increases without bound as p approaches 100.

Answer: D

Sketch a possible graph of a function that satisfies the given conditions.

Answer: A

The graph of y = f(x) is shown. Use the graph to answer the question. 43) Is f continuous at x = -1.5?

45) Is f continuous at x = 0?

Provide an appropriate response.

46) Determine where the function $H(x) = \frac{x^2 + 7}{x^2 + x - 6}$ is continuous.

A)
$$(-\infty, -3) \cup (-3, 2) \cup (2, \infty)$$

B) $(-3, 2) \cup (2, \infty)$
C) $(-\infty, -3)$
D) $(-\infty, -3) \cup (-3, 2)$
Answer: A

47) Determine where the function $f(x) = \frac{5x}{2x - 3}$ is continuous.

$$A) \left(\frac{3}{2}, \infty\right)$$

$$B) (-\infty, \infty)$$

$$C) \left(-\infty, \frac{3}{2}\right)$$

$$D) \left(-\infty, \frac{3}{2}\right) \cup \left(\frac{3}{2}, \infty\right)$$

Answer: D

48) Determine the points at which the function is discontinuous.

$$h(x) = \begin{cases} x^2 - 4 & \text{for } x < -1 \\ 0 & \text{for } -1 \le x \le 1 \\ x^2 + 4 & \text{for } x > 1 \end{cases}$$
A) 1
B) -1, 1
C) -1, 0, 1
D) None
Answer: B

49) Use a graphing utility to approximate the partition numbers of the function to four decimal places:

 $\begin{array}{l} f(x) = x^4 - 8x^2 - 4x + 1. \\ A) (-\infty, -2.4976) \\ B) (-\infty, -2.4976) \cup (0.1832, 3.0347) \\ C) (-\infty, -2.4976) \cup (-2.4976, -0.7203) \\ D) (-\infty, -2.4976) \cup (-2.4976, -0.7203) \cup (-0.7203, 0.1832) \cup (0.1832, 3.0347) \\ Answer: D \end{array}$

50) Use a graphing utility to find the discontinuities of the given rational function.

 $g(x) = \frac{x+1}{x^3 + 2x^2 + 10x - 13}$ A) 3 B) 1 C) -1 D) Continuous at all values of x Answer: B

51) Use a graphing utility to find the discontinuities of the given rational function.

 $g(x) = \frac{x+1}{x^3 + 2x^2 + 10x - 13}$ A) 3 B) -1 C) 1 D) Continuous at all values of x Answer: C 52) Use a graphing utility to find the discontinuities of the given rational function.

 $f(x) = \frac{x^2 + 2x + 1}{x^3 + 2x^2 + 5x - 8}$ A) 3 B) -1 C) 1 D) Continuous at all values of x Answer: C

53) Solve the inequality and express the answer in interval notation: $\frac{x^2 - 4x}{x + 5} > 0$.

A) (-5, 0)B) $(-5, 0) \cup (4, \infty)$ C) $(-5, \infty)$ D) $(4, \infty)$ Answer: B

54) Use a sign chart to solve the inequality. Express answers in interval notation.

 $\begin{array}{l} x^2 > 16 \\ A) \; (-4, \; 4 \;) \\ B) \; (-4, \; \infty) \\ C) \; (4, \; \infty) \\ D) \; (-\infty, \; -4) \; \cup \; (4, \; \infty) \\ Answer: \; D \end{array}$

55) Use a sign chart to solve the inequality. Express answers in interval notation.

 $x^{2} + 6 < 2x$ A) {2} B) \emptyset C) (2, ∞) D) (- ∞ , -2) Answer: B

56) Use a sign chart to solve the inequality. Express answers in interval notation.

$$\frac{-5}{-3x-4} > 0$$

$$A)\left(-\frac{4}{3},\infty\right)$$

$$B)(0,\infty)$$

$$C)\left(-\infty,-\frac{3}{4}\right)$$

$$D)\left(-\infty,\frac{4}{3}\right)$$

Answer: A

Solve the problem.

57) The cost of renting a snowblower is \$20 for the first hour (or any fraction thereof) and \$5 for each additional hour (or fraction thereof) up to a maximum rental time of 5 hours. Write a piecewise definition of the cost C(x) of renting a snowblower for x hours. Is C(x) continuous at x = 2.5?

A) C(x) =
$$\begin{cases} 20 \text{ if } 0 \le x \le 1\\ 25 \text{ if } 1 \le x \le 2\\ 30 \text{ if } 2 \le x \le 3; \text{ No}\\ 35 \text{ if } 3 \le x \le 4\\ 40 \text{ if } 4 \le x \le 5\\ 20 \text{ if } 0 < x \le 1\\ 25 \text{ if } 1 < x \le 2\\ 30 \text{ if } 2 < x \le 3; \text{ Yes}\\ 35 \text{ if } 3 < x \le 4\\ 40 \text{ if } 4 < x \le 5 \end{cases}$$

C) C(x) =
$$\begin{cases} 20 \text{ if } 0 < x \le 1\\ 25 \text{ if } 1 < x \le 2\\ 30 \text{ if } 2 < x \le 3; \text{ Yes}\\ 35 \text{ if } 3 < x \le 4\\ 40 \text{ if } 4 < x \le 5 \end{cases}$$

D) C(x) =
$$\begin{cases} 20 \text{ if } 0 < x \le 1\\ 25 \text{ if } 1 < x \le 2\\ 30 \text{ if } 2 < x \le 3; \text{ No}\\ 35 \text{ if } 3 < x \le 4\\ 40 \text{ if } 4 < x \le 5 \end{cases}$$

D) C(x) =
$$\begin{cases} 25 \text{ if } 0 < x \le 1\\ 30 \text{ if } 1 < x \le 2\\ 35 \text{ if } 2 < x \le 3; \text{ No}\\ 40 \text{ if } 3 < x \le 4\\ 45 \text{ if } 4 < x \le 5 \end{cases}$$

Answer: B

Find average rate of change for the function over the given interval.

58) $y = x^{2} + 6x$ between x = 5 and x = 9A) $\frac{135}{4}$ B) $\frac{80}{9}$ C) 15 D) 20 Answer: D 59) $y = 7x^{3} + 7x^{2} + 3$ between x = -6 and x = -1A) 252 B) $\frac{3}{5}$ C) - 3 D) - 1260

Answer: A

60) Find the average rate of change for $f(x) = \sqrt{2x}$ if x changes from 2 to 8.

A) 7 B) 2 C) $\frac{1}{3}$ D) $-\frac{3}{10}$

Answer: C

61) Find the average rate of change of y with respect to x if x changes from 3 to 5 in the function $y = x^2 + 3x$.

A) 9

B) 11

C) 4 D) 22

Answer: B

Find the instantaneous rate of change for the function at the value given.

62) Find the instantaneous rate of change for the function $x^2 + 4x$ at x = 6.

A) 16

B) 10

C) 12

D) 60

Answer: A

63) Find the instantaneous rate of change for the function $f(x) = 5x^2 + x$ at x = -4.

- A) –14
- B) -39
- C) -41
- D) 6

Answer: B

Provide an appropriate response.

64) Use the four step process to find f'(x) for the function $f(x) = 5x^2 - 3x$.

A) 10x - 3 B) 5h - 3 C) 5h² - 3h D) 10x + 5h - 3 Answer: D 65) Use the four step process to find f'(x) for the function $f(x) = \frac{2}{x^2}$.

A)
$$\frac{(h + 2x)}{x^2(x + h)^2}$$

B) $\frac{2(h + x)}{x^2(x + h)^2}$
C) $-\frac{2(h + 2x)}{x^2(x + h)^2}$
D) $-\frac{2(h + 2x + xh)}{x^2(x + h)^2}$

Answer: C

66) Use the four step process to find f'(x) for the function $f(x) = \frac{x}{6-x}$.

A)
$$\frac{6}{(x-6)(x+h-6)}$$

B) $-\frac{x}{(x-6)(x+h-6)}$
C) $\frac{1}{(x-6)(x+h-6)}$
D) $-\frac{6}{h(x-6)(x+h-6)}$

Answer: A

Use the definition $f'(x) = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}{h}$ to find the derivative at x. 67) f(x) = 9x - 16A) -9 B) 9 C) 9x D) -7 Answer: B 68) $f(x) = 10 - 14x^2$ A) $-28x^2$ B) -28xC) 10 - 28xD) 10 - 14x

Answer: B

69) $f(x) = 4x + 9x^3$ A) $4x + 27x^2$ B) $4x + 27x^3$ C) $4 + 27x^2$ D) $4 + 9x^2$ Answer: C Provide an appropriate response.

70) Find the slope of the secant line joining (2, f(2)) and (3, f(3)) for $f(x) = -3x^2 - 8$.

- A) –55
- B) 55
- C) 15 D) -15
- Answer: D

71) Find the slope of the graph $f(x) = -x^2 + 3x$ at the point (1, 2).

A) 1 B) -1 C) 2 D) -2

Answer: A

72) Find the slope of the line tangent to the graph of the function at the given value of x.

 $y = x^{4} + 2x^{3} + 2x + 2 \text{ at } x = -3$ A) -52 B) 65 C) 67 D) -50 Answer: A

73) Given f(x + h) - f(x) = 4xh + 4h + 2h², find the slope of the tangent line at x = 4.
A) 20
B) 22
C) 8
D) 16
Answer: A

Find the equation of the tangent line to the curve when x has the given value.

74) $f(x) = -4 - x^2$; x = 4A) y = -2xB) y = 8x - 12C) y = -8x + 12D) y = 4x + 12Answer: C

75) Find the equation of the tangent line to the graph of the function at the given value of x.

$$f(x) = x^{2} + 5x \text{ at } x = 4$$

A) y = 13x - 16
B) y = $-\frac{4}{25}x + \frac{8}{5}$
C) y = $\frac{1}{20}x + \frac{1}{5}$
D) y = $-39x - 80$
Answer: A

Solve the problem.

- 76) Suppose an object moves along the y-axis so that its location is $y = f(x) = x^2 + x$ at time x (y is in meters and x is in seconds). Find the average velocity (the average rate of change of y with respect to x) for x changing from 2 to 9 seconds.
 - A) 84 m/s
 - B) 15 m/s
 - C) 3 m/s
 - D) 12 m/s
 - Answer: D
- 77) Suppose an object moves along the y-axis so that its location is $y = f(x) = x^2 + x$ at time x (y is in meters and x is in seconds). Find the average velocity for x changing from 3 to 3 + h seconds.
 - A) 12 h m/s B) 12 + h m/s C) 7 - h m/s D) 7 + h m/s Answer: D

78) Suppose an object moves along the y-axis so that its location is $y = f(x) = x^2 + x$ at time x (y is in meters and x is in seconds). Find the instantaneous velocity at x = 4 seconds.

- A) 8 m/s B) 10 m/s C) 9 m/s
- D) 20 m/s
- Answer: C

List the x-values in the graph at which the function is not differentiable.

81)

Solve the problem.

- 82) If an object moves along a line so that it is at $y = f(x) = 2x^2 7x 6$ at time x (in seconds), find the instantaneous velocity function v = f'(x).
 - A) $2x^2 7$ B) $4x^2 - 7$
 - C) 4x 7
 - D) 2x 7

Answer: C

83) If an object moves along a line so that it is at $y = f(x) = 8x^2$ at time x (in seconds), find the velocity at x = 1 (y is measured in feet).

A) 8 ft / s
B) 160 ft/s
C) 6 ft/sec
D) 16 ft / s

Answer: D

- 84) The electric power p (in W) as a function of the current i (in A) in a certain circuit is given by $p(i) = 10i^2 + 63i$. Find the instantaneous rate of change of p with respect to i for i = 0.9 A.
 - A) 72 W/A B) 81 W/A C) 74.7 W/A D) 64.8 W/A Answer: B

Provide an appropriate response.

85) Find f'(x) if $f(x) = \pi$. A) $f'(x) = \pi$ B) f'(x) = 0C) f'(x) = 1D) $f'(x) = \pi^2$ Answer: B 86) Find y' if $y = \frac{5}{8}$. A) 1 B) $\frac{5}{8}x$ C) 0 D) $\frac{5}{8}$ Answer: C 87) Find y' if y = 6x. A) x² B) 6 C) 0 D) x Answer: B 88) Find f'(x) for $f(x) = 2x^5 + 6x^8$. A) $2x^4 + 6x^7$ B) $10x^6 + 48x^9$ C) $10x^4 + 48x^7$ D) $10x^3 + 48x^2$ Answer: C 89) Find the derivative of $y = \frac{3x^5 - 7x^2 - 4}{3x^5 - 7x^2 - 4}$

A)
$$y' = 9x^2 + 8x^{-3}$$

B) $y' = 18x^2 + 8x^{-3}$
C) $y' = 9x^{-2} + 8x^{-3}$
D) $y' = 9x^2 + 8x^3$
Answer: A

90) Let f and g be functions that satisfy f'(4) = 2 and g'(4) = -3. Find h'(4) for h(x) = 3f(x) - g(x) + 2. A) 9 B) 11 C) 5 D) 2 Answer: A 91) Find f'(x) if $f(x) = 3x^4 + 6x^7$. A) $12x^3 + 42x^6$ B) $4x^3 + 7x^6$ C) $7x^3 + 13x^6$ D) $3x^5 + 7x^8$ Answer: A 92) Find f'(x) if $f(x) = 6x^{-2} + 8x^3 + 11x$. A) $f(x) = -12x^{-1} + 24x^2$ B) $f'(x) = -12x^{-1} + 24x^2 + 11$ C) $f'(x) = -12x^{-3} + 24x^2$ D) $f'(x) = -12x^{-3} + 24x^2 + 11$ Answer: D 93) Find f'(x) if $f(x) = 9x^{7/5} - 5x^2 + 10000$. A) $f'(x) = \frac{63}{5} x^{2/5} - 10x$ B) $f'(x) = \frac{63}{5} x^{6/5} - 10x$ C) $f'(x) = \frac{63}{5}x^{6/5} - 10x + 4000$ D) f'(x) = $\frac{63}{5} x^{2/5} - 10x + 4000$ Answer: A 94) Find: $\frac{d}{dx}\left(\frac{4}{x^4} - 4\sqrt[5]{x}\right)$

(4) Find:
$$\frac{1}{dx} \left[\frac{1}{x^4} - 4\sqrt{x} \right]$$

(A) $-\frac{16}{x^3} - \frac{4}{5}\sqrt[4]{x}$
(B) $\frac{16}{x^3} - 20\sqrt[4]{x}$
(C) $-\frac{16}{x^5} - \frac{4}{5\sqrt[5]{x^4}}$
(D) $\frac{1}{x^3} - \frac{4}{5}\sqrt[4]{x}$

Answer: C

95) Find:
$$\frac{dy}{dt}$$
 if $y = 3t^{-4} - 5t^{-1}$
A) $-\frac{12}{t^5} - \frac{5}{t^2}$
B) $-12t^{-5} - 5t^2$
C) $-12t^5 - 5t^2$
D) $-12t^{-5} + 5t^{-2}$
Answer: D
96) Find: $\frac{d}{dx} \left(\frac{4}{x^4} - 5\sqrt[3]{x} \right)$
A) $\frac{1}{4x^3} - \frac{5}{3}x^{-2/3}$
B) $\frac{1}{4}x^{-5} - 15x^{2/3}$
C) $\frac{1}{x^3} + \frac{5}{3}x^{-4/3}$
D) $-16x^{-5} - \frac{5}{3}x^{-2/3}$

Answer: D

97) Find
$$\frac{d}{dv} (6v^{0.7} - v^{5.8})$$

A) $4.2v^{-0.3} - 5.8v^{4.8}$
B) $4.2v^{-0.3} - 5.8v^{4.7}$
C) $4.2v^{-0.3} - 5.8v^{-4.7}$
D) $4.2v^{-0.3} - 5.8v^{-4.8}$
Answer: A

98) Find
$$\frac{dy}{dx}$$
 for $y = \frac{1}{3x^3} + \frac{x^7}{10}$.
A) $-x^{-2} + \frac{7}{10}x^7$
B) $\frac{7x^6}{9x^2 + 10}$
C) $\frac{1}{9x^2} + \frac{7x^6}{10}$
D) $-x^{-4} + \frac{7}{10}x^6$

Answer: D

99) Find the equation of the tangent line at x = 7 for $f(x) = 6 - x^2$. Write the answer in the form y = mx + b.

A) y = -14x + 55B) y = -2xC) y = 7x + 55D) y = 14x - 55

Answer: A

100) Find the equation of the tangent line at x = -6 for $f(x) = \frac{x^3}{2}$. Write the answer in the form y = mx + b.

A) y = 216x + 18B) y = 54x + 216C) y = 18x + 216D) y = 216x + 54Answer: B

101) Find the values of x where the tangent line is horizontal for $f(x) = 3x^3 - 2x^2 - 9$.

A)
$$x = 0, x = -\frac{4}{9}$$

B) $x = 0, x = \frac{4}{9}$
C) $x = 0, x = -\frac{2}{3}$
D) $x = 0, x = \frac{2}{3}$

Answer: B

102) Find the equation of the tangent line at x = 2 for $f(x) = 4 + x - 2x^2 - 3x^3$. Write the answer in the form

y = mx + b.A) y = -39x + 52B) y = -43x + 60C) y = -47x + 68D) y = -43x + 48Answer: B

Solve the problem.

103) An object moves along the y-axis (marked in feet) so that its position at time t (in seconds) is given by

 $f(t) = 9t^3 - 9t^2 + t + 7$. Find the velocity at three seconds.

A) 192 feet per second

B) 197 feet per second

- C) 190 feet per second
- D) 109 feet per second

Answer: C

104) A pen manufacturer determined that the total cost in dollars of producing x dozen pens in one day is given by:

 $C(x) = 350 + 2x - 0.01x^2$ $0 \le x \le 100$

Find the marginal cost at a production level of 70 dozen pens and interpret the result.

- A) The marginal cost is \$0.58/doz. The cost of producing 1 dozen more pens at a production level of 70 dozen pens is approximately \$0.58.
- B) The marginal cost is \$0.60/doz. The cost of producing 1 dozen more pens at a production level of 70 dozen pens is approximately \$0.60.
- C) The marginal cost is \$0.62/doz. The cost of producing 1 dozen more pens at a production level of 70 dozen pens is approximately \$0.62.
- D) The marginal cost is \$0.59/doz. The cost of producing 1 dozen more pens at a production level of 70 dozen pens is approximately \$0.59.

Answer: B

105) According to one theory of learning, the number of items, w(t), that a person can learn after t hours of instruction is given by:

 $w(t) = 15\sqrt[3]{t^2}$ $0 \le t \le 64$

Find the rate of learning at the end of eight hours of instruction.

A) 5 items per hour

B) 45 items per hour

C) 20 items per hour

D) 60 items per hour

Answer: A

Find $\triangle y$ for the given values of x_1 and x_2 .

106) y = 2x + 3; x = 18, $\Delta x = 0.5$ A) 5 B) 0.1 C) 0.5 D) 1 Answer: D

Find dy.

107) $y = 5x^2 - 7x - 7$ A) 10x - 7 dx B) 10x dx C) 10x - 14 dx D) (10x - 7) dx Answer: D

108)
$$y = x\sqrt{5x + 1}$$

A)
$$\frac{15x - 2}{2\sqrt{5x + 1}} dx$$

B)
$$\frac{15x - 2}{\sqrt{5x + 1}} dx$$

C)
$$\frac{15x + 2}{2\sqrt{5x + 1}} dx$$

D)
$$\frac{15x + 2}{\sqrt{5x + 1}} dx$$

Answer: C

Provide an appropriate response.

109) Evaluate dy and $\triangle y$ for $y = f(x) = x^2 - 7x + 5$, x = 7, and $dx = \triangle x = 0.5$. A) dy = 3.5; $\triangle y = 3.75$ B) dy = 3.5; $\triangle y = 3.5$ C) dy = 3.75; $\triangle y = 3.75$ D) dy = 3.75; $\triangle y = 3.5$ Answer: A

110) Evaluate dy and $\triangle y$ for $y = f(x) = 20 + 15x^2 - x^3$, x = 2, and $dx = \triangle x = 0.3$. A) dy = 15.183; $\triangle y = 14.4$ B) dy = 14.4; $\triangle y = 15.183$ C) dy = 14.4; $\triangle y = 14.4$ D) dy = 15.183; $\triangle y = 15.183$ Answer: B

111) A spherical balloon is being inflated. Find the approximate change in volume if the radius increases from 6.2 cm to 6.4 cm. (Recall that $V = \frac{4}{3}\pi r^3$.)

A) 0.992π cm³
B) 153.76π cm³
C) 317.77 cm³
D) 30.752π cm³
Answer: D

Solve the problem.

112) A cube 4 inches on an edge is given a protective coating 0.1 inches thick. About how much coating should a production manager order for 900 cubes?

A) About 4320 in.²
B) About 5760 in.³
C) About 1440 in.²
D) About 8640 in.³

Answer: D

- 113) One hour after x milligrams of a particular drug are given to a person, the change in body temperature T (in degrees Fahrenheit) is given by $T = x^2 \left(1 \frac{x}{9}\right)$, where $0 \le x \le 3$. Approximate the changes in body temperature produced by changing the drug dosage from 1 to 1.9 milligrams. Round to the nearest hundredth when necessary. A) 0.22°F
 - ., B) 1.5°F
 - C) 1.67°F
 - D) 3.17°F

Answer: B

114) $V = \frac{4}{3}\pi r^3$, where r is the radius, in centimeters. By approximately how much does the volume of a sphere

increase when the radius is increased from 1.0 cm to 1.1 cm? (Use 3.14 for π .)

A) 1.1 cm³ B) 1.3 cm³ C) 1.5 cm³ D) 0.1 cm³ Answer: B

Provide an appropriate response.

115) Suppose that the total profit in hundreds of dollars from selling x items is given by $P(x) = 4x^2 - 5x + 10$. Find the marginal profit at x = 5.

A) \$32B) \$15C) \$35

D) \$45

Answer: C

- 116) The revenue (in thousands of dollars) from producing x units of an item is modeled by $R(x) = 5x 0.0005x^2$. Find the marginal revenue at x = 1000.
 - A) \$4.50
 B) \$104.00
 C) \$10,300.00
 D) \$4.00

Answer: D

117) Let C(x) be the cost function and R(x) the revenue function. Compute the marginal cost, marginal revenue, and the marginal profit functions.

$$\begin{split} C(x) &= 0.0004x^3 - 0.036x^2 + 200x + 40,000\\ R(x) &= 450x\\ A) \ C'(x) &= 0.0012x^2 - 0.072x + 200\\ R'(x) &= 450\\ P'(x) &= -0.0012x^2 + 0.072x + 250\\ B) \ C'(x) &= 0.0012x^2 - 0.072x + 200\\ R'(x) &= 450\\ P'(x) &= 0.0012x^2 - 0.072x - 250\\ C) \ C'(x) &= 0.0012x^2 + 0.072x + 200\\ R'(x) &= 450\\ P'(x) &= 0.0012x^2 + 0.072x + 250\\ R'(x) &= 450\\ P'(x) &= 0.0012x^2 + 0.072x + 250\\ Answer: A \end{split}$$

118) The total cost to produce x units of paint is C(x) = (5x + 3)(7x + 4). Find the marginal average cost function.

A)
$$\overline{C'}(x) = 70x + 41$$

B) $\overline{C'}(x) = 35x + 41 + \frac{12}{x}$
C) $\overline{C'}(x) = 70 - \frac{41}{x}$
D) $\overline{C'}(x) = 35 - \frac{12}{x^2}$

Answer: D

119) The total profit from selling x units of doorknobs is P(x) = (6x - 7)(9x - 8). Find the marginal average profit function.

A)
$$\overline{P}'(x) = 54 - \frac{56}{x^2}$$

B) $\overline{P}'(x) = 54x - 111$
C) $\overline{P}'(x) = 54x - 56$
D) $\overline{P}'(x) = 54 - \frac{111}{x^2}$

Answer: A

120) The total cost in dollars of producing x lawn mowers is given by $C(x) = 4,000 + 90x - \frac{x^2}{3}$. Find the marginal

average cost at x = 20, $\overline{C}'(20)$ and interpret the result.

- A) -\$13.33; a unit increase in production will decrease the average cost per unit by approximately \$13.33 at a production level of 20 units.
- B) -\$10.33; a unit increase in production will decrease the average cost per unit by approximately \$10.33 at a production level of 20 units.
- C) -\$20.33; a unit increase in production will decrease the average cost per unit by approximately \$20.33 at a production level of 20 units.
- D) -\$1.33; a unit increase in production will decrease the average cost per unit by approximately \$1.33 at a production level of 20 units.

Answer: B

Calculus for Business Economics Life Sciences and Social Sciences 13th Edition Barnett Test Bank

Full Download: http://testbanklive.com/download/calculus-for-business-economics-life-sciences-and-social-sciences-13th-edition-

Solve the problem.

121) The demand equation for a certain item is $p = 14 - \frac{x}{1,000}$ and the cost equation is C(x) = 7,000 + 4x. Find the

marginal profit at a production level of 3,000 and interpret the result.

- A) \$14; at the 3,000 level of production, profit will increase by approximately \$14 for each unit increase in production.
- B) \$16; at the 3,000 level of production, profit will increase by approximately \$16 for each unit increase in production.
- C) \$7; at the 3,000 level of production, profit will increase by approximately \$7 for each unit increase in production.
- D) \$4; at the 3,000 level of production, profit will increase by approximately \$4 for each unit increase in production.

Answer: D

122) A company is planning to manufacture a new blender. After conducting extensive market surveys, the research department estimates a weekly demand of 600 blenders at a price of \$50 per blender and a weekly demand of 800 blenders at a price of \$40 per blender. Assuming the demand equation is linear, use the research department's estimates to find the revenue equation in terms of the demand x.

A)
$$R(x) = 80x - 20x^2$$

B) $R(x) = 80x - \frac{x^2}{20}$
C) $R(x) = 20x + \frac{x^2}{20}$
D) $R(x) = 80x - 20$
Answer: B

- 123) Suppose the demand for a certain item is given by $D(p) = -3p^2 + 4p + 8$, where p represents the price of the item. Find D'(p), the rate of change of demand with respect to price.
 - A) D'(p) = -3p + 4B) D'(p) = -6p + 4C) $D'(p) = -3p^2 + 4$ D) $D'(p) = -6p^2 + 4$ Answer: B

Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com