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Chapter 8

Sequences and Infinite Series

8.1 An Overview

8.1.1 A sequence is an ordered list of numbers a1, a2, a3, . . . , often written {a1, a2, . . . } or {an}. For example,
the natural numbers {1, 2, 3, ...} are a sequence where an = n for every n.

8.1.2 a1 = 1
1 = 1; a2 = 1

2 ; a3 = 1
3 ; a4 = 1

4 ; a5 = 1
5 .

8.1.3 a1 = 1 (given); a2 = 1 · a1 = 1; a3 = 2 · a2 = 2; a4 = 3 · a3 = 6; a5 = 4 · a4 = 24.

8.1.4 A finite sum is the sum of a finite number of items, for example the sum of a finite number of terms
of a sequence.

8.1.5 An infinite series is an infinite sum of numbers. Thus if {an} is a sequence, then a1+a2+· · · =∑∞
k=1 ak

is an infinite series. For example, if ak = 1
k , then

∑∞
k=1 ak =

∑∞
k=1

1
k is an infinite series.

8.1.6 S1 =
∑1

k=1 k = 1; S2 =
∑2

k=1 k = 1 + 2 = 3; S3 =
∑3

k=1 k = 1 + 2 + 3 = 6; S4 =
∑4

k=1 k =
1 + 2 + 3 + 4 = 10.

8.1.7 S1 =
∑1

k=1 k
2 = 1; S2 =

∑2
k=1 k

2 = 1 + 4 = 5; S3 =
∑3

k=1 k
2 = 1 + 4 + 9 = 14; S4 =

∑4
k=1 k

2 =
1 + 4 + 9 + 16 = 30.

8.1.8 S1 =
∑1

k=1
1
k = 1

1 = 1; S2 =
∑2

k=1
1
k = 1

1 + 1
2 = 3

2 ; S3 =
∑3

k=1
1
k = 1

1 + 1
2 + 1

3 = 11
6 ; S4 =

∑4
k=1

1
k =

1
1 + 1

2 + 1
3 + 1

4 = 25
12 .

8.1.9 a1 =
1

10
; a2 =

1

100
; a3 =

1

1000
; a4 =

1

10000
.

8.1.10 a1 = 3(1) + 1 = 4. a2 = 3(2) + 1 = 7, a3 = 3(3) + 1 = 10, a4 = 3(4) + 1 = 13.

8.1.11 a1 = −1
2 , a2 = 1

22 = 1
4 . a3 = −2

23 = −1
8 , a4 = 1

24 = 1
16 .

8.1.12 a1 = 2− 1 = 1. a2 = 2 + 1 = 3, a3 = 2− 1 = 1, a4 = 2 + 1 = 3.

8.1.13 a1 = 22

2+1 = 4
3 . a2 = 23

22+1 = 8
5 . a3 = 24

23+1 = 16
9 . a4 = 25

24+1 = 32
17 .

8.1.14 a1 = 1 + 1
1 = 2; a2 = 2 + 1

2 = 5
2 ; a3 = 3 + 1

3 = 10
3 ; a4 = 4 + 1

4 = 17
4 .

8.1.15 a1 = 1+sin(π/2) = 2; a2 = 1+sin(2π/2) = 1+sinπ = 1; a3 = 1+sin(3π/2) = 0; a4 = 1+sin(4π/2) =
1 + sin 2π = 1.

8.1.16 a1 = 2 ·12−3 ·1+1 = 0; a2 = 2 ·22−3 ·2+1 = 3; a3 = 2 ·32−3 ·3+1 = 10; a4 = 2 ·42−3 ·4+1 = 21.
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4 Chapter 8. Sequences and Infinite Series

8.1.17 a1 = 2, a2 = 2 · 2 = 4, a3 = 2(4) = 8, a4 = 2 · 8 = 16.

8.1.18 a1 = 32, a2 = 32/2 = 16, a3 = 16/2 = 8, a4 = 8/2 = 4.

8.1.19 a1 = 10 (given); a2 = 3 · a1 − 12 = 30− 12 = 18; a3 = 3 · a2 − 12 = 54− 12 = 42; a4 = 3 · a3 − 12 =
126− 12 = 114.

8.1.20 a1 = 1 (given); a2 = a21 − 1 = 0; a3 = a22 − 1 = −1; a4 = a23 − 1 = 0.

8.1.21 a1 = 0 (given); a2 = 3 · a21 + 1 + 1 = 2; a3 = 3 · a22 + 2 + 1 = 15; a4 = 3 · a23 + 3 + 1 = 679.

8.1.22 a0 = 1 (given); a1 = 1 (given); a2 = a1 + a0 = 2; a3 = a2 + a1 = 3; a4 = a3 + a2 = 5.

8.1.23

a. 1
32 ,

1
64 .

b. a1 = 1; an+1 = an

2 .

c. an = 1
2n−1 .

8.1.24

a. −6, 7.

b. a1 = 1; an+1 = (−1)n(|an|+ 1).

c. an = (−1)n+1n.

8.1.25

a. −5, 5.

b. a1 = −5, an+1 = −an.

c. an = (−1)n · 5.

8.1.26

a. 14, 17.

b. a1 = 2; an+1 = an + 3.

c. an = −1 + 3n.

8.1.27

a. 32, 64.

b. a1 = 1; an+1 = 2an.

c. an = 2n−1.

8.1.28

a. 36, 49.

b. a1 = 1; an+1 = (
√
an + 1)2.

c. an = n2.

8.1.29

a. 243, 729.

b. a1 = 1; an+1 = 3an.

c. an = 3n−1.

8.1.30

a. 2, 1.

b. a1 = 64; an+1 = an

2 .

c. an = 64
2n−1 = 27−n.

8.1.31 a1 = 9, a2 = 99, a3 = 999, a4 = 9999. This sequence diverges, because the terms get larger without
bound.

8.1.32 a1 = 2, a2 = 17, a3 = 82, a4 = 257. This sequence diverges, because the terms get larger without
bound.

8.1.33 a1 = 1
10 , a2 = 1

100 , a3 = 1
1000 , a4 = 1

10,000 . This sequence converges to zero.

8.1.34 a1 = 1
10 , a2 = 1

100 , a3 = 1
1000 , a4 = 1

10,000 . This sequence converges to zero.

8.1.35 a1 = − 1
2 , a2 = 1

4 , a3 = − 1
8 , a4 = 1

16 . This sequence converges to 0 because each term is smaller in
absolute value than the preceding term and they get arbitrarily close to zero.

8.1.36 a1 = 0.9, a2 = 0.99, a3 = 0.999, a4 = .9999. This sequence converges to 1.

Copyright c© 2015 Pearson Education, Inc.



8.1. An Overview 5

8.1.37 a1 = 1 + 1 = 2, a2 = 1 + 1 = 2, a3 = 2, a4 = 2. This constant sequence converges to 2.

8.1.38 a1 = 9+ 9
10 = 9.9, a2 = 9+ 9.9

10 = 9.99, a3 = 9+ 9.99
10 = 9.999, a4 = 9+ 9.999

10 = 9.9999. This sequence
converges to 10.

8.1.39 a1 = 50
11+50 ≈ 54.545, a2 = 54.545

11 +50 ≈ 54.959, a3 = 54.959
11 +50 ≈ 54.996, a4 = 54.996

11 +50 ≈ 55.000.
This sequence converges to 55.

8.1.40 a1 = 0 − 1 = −1. a2 = −10 − 1 = −11, a3 = −110 − 1 = −111, a4 = −1110 − 1 = −1111. This
sequence diverges.

8.1.41

n 1 2 3 4 4 6 7 8 9 10

an 0.4636 0.2450 0.1244 0.0624 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010

This sequence appears to converge to 0.

8.1.42

n 1 2 3 4 5 6 7 8 9 10

an 3.1396 3.1406 3.1409 3.1411 3.1412 3.1413 3.1413 3.1413 3.1414 3.1414

This sequence appears to converge to π.

8.1.43

n 1 2 3 4 5 6 7 8 9 10

an 0 2 6 12 20 30 42 56 72 90

This sequence appears to diverge.

8.1.44

n 1 2 3 4 5 6 7 8 9 10

an 9.9 9.95 9.9667 9.975 9.98 9.9833 9.9857 9.9875 9.9889 9.99

This sequence appears to converge to 10.

8.1.45

n 1 2 3 4 5 6 7 8 9 10

an 0.83333 0.96154 0.99206 0.99840 0.99968 0.99994 0.99999 1.0000 1.0000 1.0000

This sequence appears to converge to 1.

8.1.46

n 1 2 3 4 5 6 7 8 9 10 11

an 0.9589 0.9896 0.9974 0.9993 0.9998 1.000 1.000 1.0000 1.000 1.000 1.000

This sequence converges to 1.

8.1.47

a. 2.5, 2.25, 2.125, 2.0625.

b. The limit is 2.

8.1.48

a. 1.33333, 1.125, 1.06667, 1.04167.

b. The limit is 1.

Copyright c© 2015 Pearson Education, Inc.
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8.1.49

n 0 1 2 3 4 5 6 7 8 9 10

an 3 3.500 3.750 3.875 3.938 3.969 3.984 3.992 3.996 3.998 3.999

This sequence converges to 4.

8.1.50

n 0 1 2 3 4 5 6 7 8 9

an 1 −2.75 −3.688 −3.922 −3.981 −3.995 −3.999 −4.000 −4.000 −4.000

This sequence converges to −4.

8.1.51

n 0 1 2 3 4 5 6 7 8 9 10

an 0 1 3 7 15 31 63 127 255 511 1023

This sequence diverges.

8.1.52

n 0 1 2 3 4 5 6 7 8 9 10

an 10 4 3.4 3.34 3.334 3.333 3.333 3.333 3.333 3.333 3.333

This sequence converges to 10
3 .

8.1.53

n 0 1 2 3 4 5 6 7 8 9

an 1000 18.811 5.1686 4.1367 4.0169 4.0021 4.0003 4.0000 4.0000 4.0000

This sequence converges to 4.

8.1.54

n 0 1 2 3 4 5 6 7 8 9 10

an 1 1.4212 1.5538 1.5981 1.6119 1.6161 1.6174 1.6179 1.6180 1.6180 1.6180

This sequence converges to 1+
√
5

2 ≈ 1.618.

8.1.55

a. 20, 10, 5, 2.5.

b. hn = 20(0.5)n.

8.1.56

a. 10, 9, 8.1, 7.29.

b. hn = 10(0.9)n.

8.1.57

a. 30, 7.5, 1.875, 0.46875.

b. hn = 30(0.25)n.

8.1.58

a. 20, 15, 11.25, 8.438

b. hn = 20(0.75)n.

8.1.59 S1 = 0.3, S2 = 0.33, S3 = 0.333, S4 = 0.3333. It appears that the infinite series has a value of
0.3333 . . . = 1

3 .

8.1.60 S1 = 0.6, S2 = 0.66, S3 = 0.666, S4 = 0.6666. It appears that the infinite series has a value of
0.6666 . . . = 2

3 .

Copyright c© 2015 Pearson Education, Inc.



8.1. An Overview 7

8.1.61 S1 = 4, S2 = 4.9, S3 = 4.99, S4 = 4.999. The infinite series has a value of 4.999 · · · = 5.

8.1.62 S1 = 1, S2 = 3
2 = 1.5, S3 = 7

4 = 1.75, S4 = 15
8 = 1.875. The infinite series has a value of 2.

8.1.63

a. S1 = 2
3 , S2 = 4

5 , S3 = 6
7 , S4 = 8

9 .

b. It appears that Sn = 2n
2n+1 .

c. The series has a value of 1 (the partial sums converge to 1).

8.1.64

a. S1 = 1
2 , S2 = 3

4 , S3 = 7
8 , S4 = 15

16 .

b. Sn = 1− 1
2n .

c. The partial sums converge to 1, so that is the value of the series.

8.1.65

a. S1 = 1
3 , S2 = 2

5 , S3 = 3
7 , S4 = 4

9 .

b. Sn = n
2n+1 .

c. The partial sums converge to 1
2 , which is the value of the series.

8.1.66

a. S1 = 2
3 , S2 = 8

9 , S3 = 26
27 , S4 = 80

81 .

b. Sn = 1− 1
3n .

c. The partial sums converge to 1, which is the value of the series.

8.1.67

a. True. For example, S2 = 1 + 2 = 3, and S4 = a1 + a2 + a3 + a4 = 1 + 2 + 3 + 4 = 10.

b. False. For example, 1
2 ,

3
4 ,

7
8 , · · · where an = 1− 1

2n converges to 1, but each term is greater than the
previous one.

c. True. In order for the partial sums to converge, they must get closer and closer together. In order
for this to happen, the difference between successive partial sums, which is just the value of an, must
approach zero.

8.1.68 The height at the nth bounce is given by the recurrence hn = r · hn−1; an explicit form for this
sequence is hn = h0 · rn. The distance traveled by the ball between the nth and the (n+ 1)st bounce is thus
2hn = 2h0 · rn, so that Sn+1 =

∑n
i=0 2h0 · ri.

a. Here h0 = 20, r = 0.5, so S1 = 40, S2 = 40 + 40 · 0.5 = 60, S3 = S2 + 40 · (0.5)2 = 70, S4 =
S3 + 40 · (0.5)3 = 75, S5 = S4 + 40 · (0.5)4 = 77.5

b.

n 1 2 3 4 5 6

an 40 60 70 75 77.5 78.75

n 7 8 9 10 11 12

an 79.375 79.688 79.844 79.922 79.961 79.980

n 13 14 15 16 17 18

an 79.990 79.995 79.998 79.999 79.999 80.000

n 19 20 21 22 23 24

an 80.000 80.000 80.000 80.000 80.000 80.000

The sequence converges to 80.

Copyright c© 2015 Pearson Education, Inc.
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8.1.69 Using the work from the previous problem:

a. Here h0 = 20, r = 0.75, so S1 = 40, S2 = 40 + 40 · 0.75 = 70, S3 = S2 + 40 · (0.75)2 = 92.5,
S4 = S3 + 40 · (0.75)3 = 109.375, S5 = S4 + 40 · (0.75)4 = 122.03125

b.

n 1 2 3 4 5 6

an 40 70 92.5 109.375 122.031 131.523

n 7 8 9 10 11 12

an 138.643 143.982 147.986 150.990 153.242 154.932

n 13 14 15 16 17 18

an 156.199 157.149 157.862 158.396 158.797 159.098

n 19 20 21 22 23 24

an 159.323 159.493 159.619 159.715 159.786 159.839

The sequence converges to 160.

8.1.70

a. s1 = −1, s2 = 0, s3 = −1, s4 = 0.

b. The limit does not exist.

8.1.71

a. 0.9, 0.99, 0.999, .9999.

b. The limit is 1.

8.1.72

a. 1.5, 3.75, 7.125, 12.1875.

b. The limit does not exist.

8.1.73

a. 1
3 ,

4
9 ,

13
27 ,

40
81 .

b. The limit is 1/2.

8.1.74

a. 1, 3, 6, 10.

b. The limit does not exist.

8.1.75

a. −1, 0, −1, 0.

b. The limit does not exist.

8.1.76

a. −1, 1, −2, 2.

b. The limit does not exist.

8.1.77

a. 3
10 = 0.3, 33

100 = 0.33, 333
1000 = 0.333, 3333

10000 = 0.3333.

b. The limit is 1/3.

8.1.78

a. p0 = 250, p1 = 250 ·1.03 = 258, p2 = 250 ·1.032 = 265, p3 = 250 ·1.033 = 273, p4 = 250 ·1.034 = 281.

b. The initial population is 250, so that p0 = 250. Then pn = 250 · (1.03)n, because the population
increases by 3 percent each month.

c. pn+1 = pn · 1.03.
d. The population increases without bound.
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8.1.79

a. M0 = 20, M1 = 20 · 0.5 = 10, M2 = 20 · 0.52 = 5, M3 = 20 · 0.53 = 2.5, M4 = 20 · 0.54 = 1.25

b. Mn = 20 · 0.5n.
c. The initial mass is M0 = 20. We are given that 50% of the mass is gone after each decade, so that

Mn+1 = 0.5 ·Mn, n ≥ 0.

d. The amount of material goes to 0.

8.1.80

a. c0 = 100, c1 = 103, c2 = 106.09, c3 = 109.27, c4 = 112.55.

b. cn = 100(1.03)n for n ≥ 0.

c. We are given that c0 = 100 (where year 0 is 1984); because it increases by 3% per year, cn+1 = 1.03 ·cn.
d. The sequence diverges.

8.1.81

a. d0 = 200, d1 = 200 · .95 = 190, d2 = 200 · .952 = 180.5, d3 = 200 · .953 = 171.475, d4 = 200 · .954 =
162.90125.

b. dn = 200(0.95)n, n ≥ 0.

c. We are given d0 = 200; because 5% of the drug is washed out every hour, that means that 95% of the
preceding amount is left every hour, so that dn+1 = 0.95 · dn.

d. The sequence converges to 0.

8.1.82

a. Using the recurrence an+1 = 1
2

(
an + 10

an

)
, we build a table:

n 0 1 2 3 4 5

an 10 5.5 3.659090909 3.196005081 3.162455622 3.162277665

The true value is
√
10 ≈ 3.162277660, so the sequence converges with an error of less than 0.01 after

only 4 iterations, and is within 0.0001 after only 5 iterations.

b. The recurrence is now an+1 = 1
2

(
an + 2

an

)
c

√
c 0 1 2 3 4 5 6

2 1.414 2 1.5 1.417 1.414 1.414 1.414 1.414

3 1.732 3 2 1.750 1.732 1.732 1.732 1.732

4 2.000 4 2.5 2.050 2.001 2.000 2.000 2.000

5 2.236 5 3 2.333 2.238 2.236 2.236 2.236

6 2.449 6 3.6 2.607 2.454 2.449 2.449 2.449

7 2.646 7 4 2.875 2.655 2.646 2.646 2.646

8 2.828 8 4.5 3.139 2.844 2.828 2.828 2.828

9 3.000 9 5.0 3.400 3.024 3.000 3.000 3.000

10 3.162 10 5.5 3.659 3.196 3.162 3.162 3.162

For c = 2 the sequence converges to within 0.01 after two iterations.
For c = 3, 4, 5, 6, and 7 the sequence converges to within 0.01 after three iterations.
For c = 8, 9, and 10 it requires four iterations.
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8.2 Sequences

8.2.1 There are many examples; one is an = 1
n . This sequence is nonincreasing (in fact, it is decreasing)

and has a limit of 0.

8.2.2 Again there are many examples; one is an = ln(n). It is increasing, and has no limit.

8.2.3 There are many examples; one is an = 1
n . This sequence is nonincreasing (in fact, it is decreasing), is

bounded above by 1 and below by 0, and has a limit of 0.

8.2.4 For example, an = (−1)n. For all values of n we have |an| = 1, so it is bounded. All the odd terms
are −1 and all the even terms are 1, so the sequence does not have a limit.

8.2.5 {rn} converges for −1 < r ≤ 1. It diverges for all other values of r (see Theorem 8.3).

8.2.6 By Theorem 8.1, if we can find a function f(x) such that f(n) = an for all positive integers n, then if
lim
x→∞ f(x) exists and is equal to L, we then have lim

n→∞ an exists and is also equal to L. This means that we

can apply function-oriented limit methods such as L’Hôpital’s rule to determine limits of sequences.

8.2.7 {en/100} grows faster than {n100} as n → ∞.

8.2.8 The definition of the limit of a sequence involves only the behavior of the nth term of a sequence as n
gets large (see the Definition of Limit of a Sequence). Thus suppose an, bn differ in only finitely many terms,
and that M is large enough so that an = bn for n > M . Suppose an has limit L. Then for ε > 0, if N is
such that |an − L| < ε for n > N , first increase N if required so that N > M as well. Then we also have
|bn −L| < ε for n > N . Thus an and bn have the same limit. A similar argument applies if an has no limit.

8.2.9 Divide numerator and denominator by n4 to get lim
n→∞

1/n

1+ 1
n4

= 0.

8.2.10 Divide numerator and denominator by n12 to get lim
n→∞

1
3+ 4

n12
= 1

3 .

8.2.11 Divide numerator and denominator by n3 to get lim
n→∞

3−n−3

2+n−3 = 3
2 .

8.2.12 Divide numerator and denominator by en to get lim
n→∞

2+(1/en)
1 = 2.

8.2.13 Divide numerator and denominator by 3n to get lim
n→∞

3+(1/3n−1)
1 = 3.

8.2.14 Divide numerator by k and denominator by k =
√
k2 to get lim

k→∞
1√

9+(1/k2)
= 1

3 .

8.2.15 lim
n→∞ tan−1 n = π

2 .

8.2.16 Multiply by

√
n2 + 1 + n√
n2 + 1 + n

to obtain

lim
n→∞

(√
n2 + 1− n

)
= lim

n→∞

(√
n2 + 1− n

) (√
n2 + 1 + n

)
√
n2 + 1 + n

= lim
n→∞

1√
n2 + 1 + n

= 0.

8.2.17 Because lim
n→∞ tan−1 n = π

2 , lim
n→∞

tan−1 n
n = 0.

8.2.18 Let y = n2/n. Then ln y = 2 lnn
n . By L’Hôpital’s rule we have lim

x→∞
2 ln x
x = lim

x→∞
2
x = 0, so lim

n→∞n2/n =

e0 = 1.
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8.2.19 Find the limit of the logarithm of the expression, which is n ln
(
1 + 2

n

)
. Using L’Hôpital’s rule:

lim
n→∞n ln

(
1 +

2

n

)
= lim

n→∞
ln
(
1 + 2

n

)
1/n

= lim
n→∞

1
1+(2/n)

(−2
n2

)
−1/n2

= lim
n→∞

2

1 + (2/n)
= 2.

Thus the limit of the original expression is e2.

8.2.20 Take the logarithm of the expression and use L’Hôpital’s rule:

lim
n→∞n ln

(
n

n+ 5

)
= lim

n→∞

ln
(

n
n+5

)
1/n

= lim
n→∞

n+5
n · 5

(n+5)2

−1/n2
= lim

n→∞
−5n

n+ 5
= −5.

Thus the original limit is e−5.

8.2.21 Take the logarithm of the expression and use L’Hôpital’s rule:

lim
n→∞

n

2
ln

(
1 +

1

2n

)
= lim

n→∞
ln(1 + (1/2n))

2/n
= lim

n→∞

1
1+(1/2n) · −1

2n2

−2/n2
= lim

n→∞
1

4(1 + (1/2n))
=

1

4
.

Thus the original limit is e1/4.

8.2.22 Find the limit of the logarithm of the expression, which is 3n ln
(
1 + 4

n

)
. Using L’Hôpital’s rule:

lim
n→∞ 3n ln

(
1 +

4

n

)
= lim

n→∞
3 ln
(
1 + 4

n

)
1/n

= lim
n→∞

1
1+(4/n)

(−12
n2

)
−1/n2

= lim
n→∞

12

1 + (4/n)
= 12.

Thus the limit of the original expression is e12.

8.2.23 Using L’Hôpital’s rule: lim
n→∞

n
en+3n = lim

n→∞
1

en+3 = 0.

8.2.24 ln 1
n = − lnn, so this is − lim

n→∞
lnn
n . By L’Hôpital’s rule, we have − lim

n→∞
lnn
n = − lim

n→∞
1
n = 0.

8.2.25 Taking logs, we have lim
n→∞

1
n ln(1/n) = lim

n→∞− lnn
n = lim

n→∞
−1
n = 0 by L’Hôpital’s rule. Thus the

original sequence has limit e0 = 1.

8.2.26 Find the limit of the logarithm of the expression, which is n ln
(
1− 4

n

)
, using L’Hôpital’s rule:

lim
n→∞n ln

(
1− 4

n

)
= lim

n→∞
ln(1− 4

n )
1/n = lim

n→∞

1
1−(4/n) (

4
n2 )

−1/n2 = lim
n→∞

−4
1−(4/n) = −4. Thus the limit of the origi-

nal expression is e−4.

8.2.27 Except for a finite number of terms, this sequence is just an = ne−n, so it has the same limit as this
sequence. Note that lim

n→∞
n
en = lim

n→∞
1
en = 0, by L’Hôpital’s rule.

8.2.28 ln(n3 + 1)− ln(3n3 + 10n) = ln
(

n3+1
3n3+10n

)
= ln

(
1+n−3

3+10n−2

)
, so the limit is ln(1/3) = − ln 3.

8.2.29 ln(sin(1/n)) + lnn = ln(n sin(1/n)) = ln
(

sin(1/n)
1/n

)
. As n → ∞, sin(1/n)/(1/n) → 1, so the limit of

the original sequence is ln 1 = 0.

8.2.30 Using L’Hôpital’s rule:

lim
n→∞n(1− cos(1/n)) = lim

n→∞
1− cos(1/n)

1/n
= lim

n→∞
− sin(1/n)(−1/n2)

−1/n2
= − sin(0) = 0.

8.2.31 lim
n→∞n sin(6/n) = lim

n→∞
sin(6/n)

1/n = lim
n→∞

−6 cos(6/n)

n2

(−1/n2) = lim
n→∞ 6 cos(6/n) = 6 · cos 0 = 6.
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12 Chapter 8. Sequences and Infinite Series

8.2.32 Because − 1
n ≤ (−1)n

n ≤ 1
n , and because both − 1

n and 1
n have limit 0 as n → ∞, the limit of the given

sequence is also 0 by the Squeeze Theorem.

8.2.33 The terms with odd-numbered subscripts have the form − n
n+1 , so they approach −1, while the terms

with even-numbered subscripts have the form n
n+1 so they approach 1. Thus, the sequence has no limit.

8.2.34 Because −n2

2n3+n ≤ (−1)n+1n2

2n3+n ≤ n2

2n3+n , and because both −n2

2n3+n and n2

2n3+n have limit 0 as n → ∞, the

limit of the given sequence is also 0 by the Squeeze Theorem. Note that lim
n→∞

n2

2n3+n = lim
n→∞

1/n
2+1/n2 = 0

2 = 0.

8.2.35

When n is an integer, sin
(
nπ
2

)
oscillates be-

tween the values ±1 and 0, so this sequence
does not converge. 5 10 15 20

n

y

8.2.36

The even terms form a sequence b2n = 2n
2n+1 ,

which converges to 1 (e.g. by L’Hôpital’s
rule); the odd terms form the sequence
b2n+1 = − n

n+1 , which converges to −1. Thus
the sequence as a whole does not converge.

5 10 15 20
n

y

8.2.37
The numerator is bounded in absolute value
by 1, while the denominator goes to ∞, so
the limit of this sequence is 0.

20 40 60 80 100
n

y

8.2.38
The reciprocal of this sequence is bn = 1

an
=

1 +
(
4
3

)n
, which increases without bound as

n → ∞. Thus an converges to zero.

10 20 30 40 50
n

0.05

0.10

0.15

y

Copyright c© 2015 Pearson Education, Inc.



8.2. Sequences 13

8.2.39 lim
n→∞(1 + cos(1/n)) = 1 + cos(0) = 2.

2 4 6 8 10
n

0.5

1.0

1.5

2.0
y

8.2.40

By L’Hôpital’s rule we have: lim
n→∞

e−n

2 sin(e−n) =

lim
n→∞

−e−n

2 cos(e−n)(−e−n) =
1

2 cos 0 = 1
2 .

0 2 4 6 8 10
n

0.1

0.2

0.3

0.4

0.5

0.6
y

8.2.41

This is the sequence cosn
en ; the numerator is

bounded in absolute value by 1 and the de-
nominator increases without bound, so the
limit is zero.

2 4 6 8 10 12 14
n

�0.2

�0.1

0.1

0.2
y

8.2.42

Using L’Hôpital’s rule, we have lim
n→∞

lnn
n1.1 =

lim
n→∞

1/n
(1.1)n.1 = lim

n→∞
1

(1.1)n1.1 = 0.

20 40 60 80 100
n

0.05

0.10

0.15

0.20

y

8.2.43

Ignoring the factor of (−1)n for the moment,
we see, taking logs, that lim

n→∞
lnn
n = 0, so

that lim
n→∞

n
√
n = e0 = 1. Taking the sign

into account, the odd terms converge to −1
while the even terms converge to 1. Thus the
sequence does not converge.

5 10 15 20 25 30
n

�1.5

�1.0

�0.5

0.5

1.0

1.5
y
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14 Chapter 8. Sequences and Infinite Series

8.2.44
lim

n→∞
nπ

2n+2 = π
2 , using L’Hôpital’s rule. Thus

the sequence converges to cot(π/2) = 0.

10 20 30 40
n

0.05

0.10

0.15

0.20

0.25

0.30

0.35

y

8.2.45 Because 0.2 < 1, this sequence converges to 0. Because 0.2 > 0, the convergence is monotone.

8.2.46 Because 1.2 > 1, this sequence diverges monotonically to ∞.

8.2.47 Because |−0.7| < 1, the sequence converges to 0; because −0.7 < 0, it does not do so monotonically.
The sequence converges by oscillation.

8.2.48 Because |−1.01| > 1, the sequence diverges; because −1.01 < 0, the divergence is not monotone.

8.2.49 Because 1.00001 > 1, the sequence diverges; because 1.00001 > 0, the divergence is monotone.

8.2.50 This is the sequence
2n+1

3n
= 2 ·

(
2

3

)n

;

because 0 < 2
3 < 1, the sequence converges monotonically to zero.

8.2.51 Because |−2.5| > 1, the sequence diverges; because −2.5 < 0, the divergence is not monotone. The
sequence diverges by oscillation.

8.2.52 |−0.003| < 1, so the sequence converges to zero; because −.003 < 0, the convergence is not monotone.

8.2.53 Because −1 ≤ cosn ≤ 1, we have −1
n ≤ cosn

n ≤ 1
n . Because both −1

n and 1
n have limit 0 as n → ∞,

the given sequence does as well.

8.2.54 Because −1 ≤ sin 6n ≤ 1, we have − 1
5n ≤ sin 6n

5n ≤ 1
5n . Because both − 1

5n and 1
5n have limit 0 as

n → ∞, the given sequence does as well.

8.2.55 Because −1 ≤ sinn ≤ 1 for all n, the given sequence satisfies − 1
2n ≤ sinn

2n ≤ 1
2n , and because both

± 1
2n → 0 as n → ∞, the given sequence converges to zero as well by the Squeeze Theorem.

8.2.56 Because −1 ≤ cos(nπ/2) ≤ 1 for all n, we have −1√
n
≤ cos(nπ/2)√

n
≤ 1√

n
and because both ± 1√

n
→ 0 as

n → ∞, the given sequence converges to 0 as well by the Squeeze Theorem.

8.2.57 The inverse tangent function takes values between −π/2 and π/2, so the numerator is always between

−π and π. Thus −π
n3+4 ≤ 2 tan−1 n

n3+4 ≤ π
n3+4 , and by the Squeeze Theorem, the given sequence converges to

zero.

8.2.58 This sequence diverges. To see this, call the given sequence an, and assume it converges to limit L.
Then because the sequence bn = n

n+1 converges to 1, the sequence cn = an

bn
would converge to L as well. But

cn = sin3 πn
2 doesn’t converge (because it is 1,−1, 1,−1 · · · ), so the given sequence doesn’t converge either.

8.2.59

a. After the nth dose is given, the amount of drug in the bloodstream is dn = 0.5 · dn−1 +80, because the
half-life is one day. The initial condition is d1 = 80.
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b. The limit of this sequence is 160 mg.

c. Let L = lim
n→∞ dn. Then from the recurrence relation, we have dn = 0.5 · dn−1 +80, and thus lim

n→∞ dn =

0.5 · lim
n→∞ dn−1 + 80, so L = 0.5 · L+ 80, and therefore L = 160.

8.2.60

a.

B0 = $20, 000

B1 = 1.005 ·B0 − $200 = $19, 900

B2 = 1.005 ·B1 − $200 = $19, 799.50

B3 = 1.005 ·B2 − $200 = $19, 698.50

B4 = 1.005 ·B3 − $200 = $19, 596.99

B5 = 1.005 ·B4 − $200 = $19, 494.97

b. Bn = 1.005 ·Bn−1 − $200

c. Using a calculator or computer program, Bn becomes negative after the 139th payment, so 139 months
or almost 11 years.

8.2.61

a.

B0 = 0

B1 = 1.0075 ·B0 + $100 = $100

B2 = 1.0075 ·B1 + $100 = $200.75

B3 = 1.0075 ·B2 + $100 = $302.26

B4 = 1.0075 ·B3 + $100 = $404.52

B5 = 1.0075 ·B4 + $100 = $507.56

b. Bn = 1.0075 ·Bn−1 + $100.

c. Using a calculator or computer program, Bn > $5, 000 during the 43rd month.

8.2.62

a. Let Dn be the total number of liters of alcohol in the mixture after the nth replacement. At the next
step, 2 liters of the 100 liters is removed, thus leaving 0.98 ·Dn liters of alcohol, and then 0.1 · 2 = 0.2
liters of alcohol are added. Thus Dn = 0.98 ·Dn−1+0.2. Now, Cn = Dn/100, so we obtain a recurrence
relation for Cn by dividing this equation by 100: Cn = 0.98 · Cn−1 + 0.002.

C0 = 0.4

C1 = 0.98 · 0.4 + 0.002 = 0.394

C2 = 0.98 · C1 + 0.002 = 0.38812

C3 = 0.98 · C2 + 0.002 = 0.38236

C4 = 0.98 · C3 + 0.002 = 0.37671

C5 = 0.98 · C4 + 0.002 = 0.37118

The rounding is done to five decimal places.
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b. Using a calculator or a computer program, Cn < 0.15 after the 89th replacement.

c. If the limit of Cn is L, then taking the limit of both sides of the recurrence equation yields L =
0.98L+ 0.002, so .02L = .002, and L = .1 = 10%.

8.2.63 Because n! 	 nn by Theorem 8.6, we have lim
n→∞

n!
nn = 0.

8.2.64 {3n} 	 {n!} because {bn} 	 {n!} in Theorem 8.6. Thus, lim
n→∞

3n

n! = 0.

8.2.65 Theorem 8.6 indicates that lnq n 	 np, so ln20 n 	 n10, so lim
n→∞

n10

ln20 n
= ∞.

8.2.66 Theorem 8.6 indicates that lnq n 	 np, so ln1000 n 	 n10, so lim
n→∞

n10

ln1000 n
= ∞.

8.2.67 By Theorem 8.6, np 	 bn, so n1000 	 2n, and thus lim
n→∞

n1000

2n = 0.

8.2.68 Note that e1/10 = 10
√
e ≈ 1.1. Let r = e1/10

2 and note that 0 < r < 1. Thus lim
n→∞

en/10

2n = lim
n→∞ rn = 0.

8.2.69 Let ε > 0 be given and letN be an integer withN > 1
ε . Then if n > N , we have

∣∣ 1
n − 0

∣∣ = 1
n < 1

N < ε.

8.2.70 Let ε > 0 be given. We wish to find N such that |(1/n2) − 0| < ε if n > N . This means that∣∣ 1
n2 − 0

∣∣ = 1
n2 < ε. So choose N such that 1

N2 < ε, so that N2 > 1
ε , and then N > 1√

ε
. This shows that such

an N always exists for each ε and thus that the limit is zero.

8.2.71 Let ε > 0 be given. We wish to find N such that for n > N ,
∣∣∣ 3n2

4n2+1 − 3
4

∣∣∣ = ∣∣∣ −3
4(4n2+1)

∣∣∣ = 3
4(4n2+1) < ε.

But this means that 3 < 4ε(4n2 + 1), or 16εn2 + (4ε− 3) > 0. Solving the quadratic, we get n > 1
4

√
3
ε − 4,

provided ε < 3/4. So let N = 1
4

√
3
ε if ε < 3/4 and let N = 1 otherwise.

8.2.72 Let ε > 0 be given. We wish to find N such that for n > N , |b−n−0| = b−n < ε, so that −n ln b < ln ε.
So choose N to be any integer greater than − ln ε

ln b .

8.2.73 Let ε > 0 be given. We wish to find N such that for n > N ,
∣∣∣ cn
bn+1 − c

b

∣∣∣ = ∣∣∣ −c
b(bn+1)

∣∣∣ = c
b(bn+1) < ε.

But this means that εb2n+ (bε− c) > 0, so that N > c
b2ε will work.

8.2.74 Let ε > 0 be given. We wish to find N such that for n > N ,
∣∣∣ n
n2+1 − 0

∣∣∣ = n
n2+1 < ε. Thus we want

n < ε(n2 + 1), or εn2 − n+ ε > 0. Whenever n is larger than the larger of the two roots of this quadratic,

the desired inequality will hold. The roots of the quadratic are 1±√
1−4ε2

2ε , so we choose N to be any integer

greater than 1+
√
1−4ε2

2ε .

8.2.75

a. True. See Theorem 8.2 part 4.

b. False. For example, if an = 1/n and bn = en, then lim
n→∞ anbn = ∞.

c. True. The definition of the limit of a sequence involves only the behavior of the nth term of a sequence
as n gets large (see the Definition of Limit of a Sequence). Thus suppose an, bn differ in only finitely
many terms, and that M is large enough so that an = bn for n > M . Suppose an has limit L. Then
for ε > 0, if N is such that |an −L| < ε for n > N , first increase N if required so that N > M as well.
Then we also have |bn − L| < ε for n > N . Thus an and bn have the same limit. A similar argument
applies if an has no limit.
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d. True. Note that an converges to zero. Intuitively, the nonzero terms of bn are those of an, which
converge to zero. More formally, given ε, choose N1 such that for n > N1, an < ε. Let N = 2N1 + 1.
Then for n > N , consider bn. If n is even, then bn = 0 so certainly bn < ε. If n is odd, then
bn = a(n−1)/2, and (n − 1)/2 > ((2N1 + 1) − 1)/2 = N1 so that a(n−1)/2 < ε. Thus bn converges to
zero as well.

e. False. If {an} happens to converge to zero, the statement is true. But consider for example an = 2+ 1
n .

Then lim
n→∞ an = 2, but (−1)nan does not converge (it oscillates between positive and negative values

increasingly close to ±2).

f. True. Suppose {0.000001an} converged to L, and let ε > 0 be given. Choose N such that for n > N ,
|0.000001an−L| < ε·0.000001. Dividing through by 0.000001, we get that for n > N , |an−1000000L| <
ε, so that an converges as well (to 1000000L).

8.2.76 {2n− 3}∞n=3.

8.2.77 {(n− 2)2 + 6(n− 2)− 9}∞n=3 = {n2 + 2n− 17}∞n=3.

8.2.78 If f(t) =
∫ t

1
x−2dx, then lim

t→∞ f(t) = lim
n→∞ an. But

lim
t→∞ f(t) =

∫ ∞

1

x−2dx = lim
b→∞

[
− 1

x

∣∣∣∣b
1

]
= lim

b→∞

(
−1

b
+ 1

)
= 1.

8.2.79 Evaluate the limit of each term separately: lim
n→∞

75n−1

99n = 1
99 lim

n→∞
(
75
99

)n−1
= 0, while −5n

8n ≤ 5n sinn
8n ≤

5n

8n , so by the Squeeze Theorem, this second term converges to 0 as well. Thus the sum of the terms converges
to zero.

8.2.80 Because lim
n→∞

10n
10n+4 = 1, and because the inverse tangent function is continuous, the given sequence

has limit tan−1 1 = π/4.

8.2.81 Because lim
n→∞ 0.99n = 0, and because cosine is continuous, the first term converges to cos 0 = 1. The

limit of the second term is lim
n→∞

7n+9n

63n = lim
n→∞

(
7
63

)n
+ lim

n→∞
(

9
63

)n
= 0. Thus the sum converges to 1.

8.2.82 Dividing the numerator and denominator by n! gives an = (4n/n!)+5
1+(2n/n!) . By Theorem 8.6, we have

4n 	 n! and 2n 	 n!. Thus, lim
n→∞ an = 0+5

1+0 = 5.

8.2.83 Dividing the numerator and denominator by 6n gives an = 1+(1/2)n

1+(n100/6n) . By Theorem 8.6, n100 	 6n.

Thus lim
n→∞ an = 1+0

1+0 = 1.

8.2.84 Dividing the numerator and denominator by n8 gives an = 1+(1/n)
(1/n)+lnn . Because 1 + (1/n) → 1 as

n → ∞ and (1/n) + lnn → ∞ as n → ∞, we have lim
n→∞ an = 0.

8.2.85 We can write an = (7/5)n

n7 . Theorem 8.6 indicates that n7 	 bn for b > 1, so lim
n→∞ an = ∞.

8.2.86 A graph shows that the sequence appears to converge. Assuming that it does, let its limit be L.
Then lim

n→∞ an+1 = 1
2 lim
n→∞ an + 2, so L = 1

2L+ 2, and thus 1
2L = 2, so L = 4.

8.2.87 A graph shows that the sequence appears to converge. Let its supposed limit be L, then lim
n→∞ an+1 =

lim
n→∞(2an(1−an)) = 2( lim

n→∞ an)(1− lim
n→∞ an), so L = 2L(1−L) = 2L−2L2, and thus 2L2−L = 0, so L = 0, 1

2 .

Thus the limit appears to be either 0 or 1/2; with the given initial condition, doing a few iterations by hand
confirms that the sequence converges to 1/2: a0 = 0.3; a1 = 2 · 0.3 · 0.7 = .42; a2 = 2 · 0.42 · 0.58 = 0.4872.
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8.2.88 A graph shows that the sequence appears to converge, and to a value other than zero; let its limit be
L. Then lim

n→∞ an+1 = lim
n→∞

1
2 (an + 2

an
) = 1

2 lim
n→∞ an + 1

lim
n→∞ an

, so L = 1
2L+ 1

L , and therefore L2 = 1
2L

2 + 1.

So L2 = 2, and thus L =
√
2.

8.2.89 Computing three terms gives a0 = 0.5, a1 = 4 · 0.5 · 0.5 = 1, a2 = 4 · 1 · (1 − 1) = 0. All successive
terms are obviously zero, so the sequence converges to 0.

8.2.90 A graph shows that the sequence appears to converge. Let its limit be L. Then lim
n→∞ an+1 =√

2 + lim
n→∞ an, so L =

√
2 + L. Thus we have L2 = 2 + L, so L2 − L− 2 = 0, and thus L = −1, 2. A square

root can never be negative, so this sequence must converge to 2.

8.2.91 For b = 2, 23 > 3! but 16 = 24 < 4! = 24, so the crossover point is n = 4. For e, e5 ≈ 148.41 > 5! =
120 while e6 ≈ 403.4 < 6! = 720, so the crossover point is n = 6. For 10, 24! ≈ 6.2 × 1023 < 1024, while
25! ≈ 1.55× 1025 > 1025, so the crossover point is n = 25.

8.2.92

a. Rounded to the nearest fish, the populations are

F0 = 4000

F1 = 1.015F0 − 80 = 3980

F2 = 1.015F1 − 80 ≈ 3960

F3 = 1.015F2 − 80 ≈ 3939

F4 = 1.015F3 − 80 ≈ 3918

F5 = 1.015F4 − 80 ≈ 3897

b. Fn = 1.015Fn−1 − 80

c. The population decreases and eventually reaches zero.

d. With an initial population of 5500 fish, the population increases without bound.

e. If the initial population is less than 5333 fish, the population will decline to zero. This is essentially
because for a population of less than 5333, the natural increase of 1.5% does not make up for the loss
of 80 fish.

8.2.93

a. The profits for each of the first ten days, in dollars are:

n 0 1 2 3 4 5 6 7 8 9 10

hn 130.00 130.75 131.40 131.95 132.40 132.75 133.00 133.15 133.20 133.15 133.00

b. The profit on an item is revenue minus cost. The total cost of keeping the heifer for n days is .45n,
and the revenue for selling the heifer on the nth day is (200 + 5n) · (.65 − .01n), because the heifer
gains 5 pounds per day but is worth a penny less per pound each day. Thus the total profit on the nth

day is hn = (200 + 5n) · (.65− .01n)− .45n = 130 + 0.8n− 0.05n2. The maximum profit occurs when
−.1n+ .8 = 0, which occurs when n = 8. The maximum profit is achieved by selling the heifer on the
8th day.

8.2.94

a. x0 = 7, x1 = 6, x2 = 6.5 = 13
2 , x3 = 6.25, x4 = 6.375 = 51

8 , x5 = 6.3125 = 101
16 , x6 = 6.34375 = 203

32 .
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b. For the formula given in the problem, we have x0 = 19
3 + 2

3

(− 1
2

)0
= 7, x1 = 19

3 + 2
3 · −1

2 = 19
3 − 1

3 = 6,

so that the formula holds for n = 0, 1. Now assume the formula holds for all integers ≤ k; then

xk+1 =
1

2
(xk + xk−1) =

1

2

(
19

3
+

2

3

(
−1

2

)k

+
19

3
+

2

3

(
−1

2

)k−1
)

=
1

2

(
38

3
+

2

3

(
−1

2

)k−1(
−1

2
+ 1

))

=
1

2

(
38

3
+ 4 · 2

3

(
−1

2

)k+1

· 1
2

)

=
1

2

(
38

3
+ 2 · 2

3

(
−1

2

)k+1
)

=
19

3
+

2

3

(
−1

2

)k+1

.

c. As n → ∞, (−1/2)n → 0, so that the limit is 19/3, or 6 1/3.

8.2.95 The approximate first few values of this sequence are:

n 0 1 2 3 4 5 6

cn .7071 .6325 .6136 .6088 .6076 .6074 .6073

The value of the constant appears to be around 0.607.

8.2.96 We first prove that dn is bounded by 200. If dn ≤ 200, then dn+1 = 0.5·dn+100 ≤ 0.5·200+100 ≤ 200.
Because d0 = 100 < 200, all dn are at most 200. Thus the sequence is bounded. To see that it is monotone,
look at

dn − dn−1 = 0.5 · dn−1 + 100− dn−1 = 100− 0.5dn−1.

But we know that dn−1 ≤ 200, so that 100−0.5dn−1 ≥ 0. Thus dn ≥ dn−1 and the sequence is nondecreasing.

8.2.97

a. If we “cut off” the expression after n square roots, we get an from the recurrence given. We can thus
define the infinite expression to be the limit of an as n → ∞.

b. a0 = 1, a1 =
√
2, a2 =

√
1 +

√
2 ≈ 1.5538, a3 ≈ 1.5981, a4 ≈ 1.6118, and a5 ≈ 1.6161.

c. a10 ≈ 1.618, which differs from 1+
√
5

2 ≈ 1.61803394 by less than .001.

d. Assume lim
n→∞ an = L. Then lim

n→∞ an+1 = lim
n→∞

√
1 + an =

√
1 + lim

n→∞ an, so L =
√
1 + L, and thus

L2 = 1 + L. Therefore we have L2 − L− 1 = 0, so L = 1±√
5

2 .

Because clearly the limit is positive, it must be the positive square root.

e. Letting an+1 =
√
p+

√
an with a0 = p and assuming a limit exists we have lim

n→∞ an+1 = lim
n→∞

√
p+ an

=
√
p+ lim

n→∞ an, so L =
√
p+ L, and thus L2 = p + L. Therefore, L2 − L − p = 0, so L = 1±√

1+4p
2 ,

and because we know that L is positive, we have L = 1+
√
4p+1
2 . The limit exists for all positive p.

8.2.98 Note that 1− 1
i = i−1

i , so that the product is 1
2 · 23 · 34 · 45 · · · , so that an = 1

n for n ≥ 2. The sequence
{ 1
2 ,

1
3 ,

1
4 , . . .} has limit zero.
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8.2.99

a. Define an as given in the problem statement. Then we can define the value of the continued fraction
to be lim

n→∞ an.

b. a0 = 1, a1 = 1 + 1
a0

= 2, a2 = 1 + 1
a1

= 3
2 = 1.5, a3 = 1 + 1

a2
= 5

3 ≈ 1.667, a4 = 1 + 1
a3

= 8
5 = 1.6,

a5 = 1 + 1
a4

= 13
8 = 1.625.

c. From the list above, the values of the sequence alternately decrease and increase, so we would expect
that the limit is somewhere between 1.6 and 1.625.

d. Assume that the limit is equal to L. Then from an+1 = 1 + 1
an

, we have lim
n→∞ an+1 = 1 + 1

lim
n→∞ an

, so

L = 1 + 1
L , and thus L2 − L− 1 = 0. Therefore, L = 1±√

5
2 , and because L is clearly positive, it must

be equal to 1+
√
5

2 ≈ 1.618.

e. Here a0 = a and an+1 = a+ b
an

. Assuming that lim
n→∞ an = L we have L = a+ b

L , so L2 = aL+ b, and

thus L2 − aL− b = 0. Therefore, L = a±√
a2+4b
2 , and because L > 0 we have L = a+

√
a2+4b
2 .

8.2.100

a. With p = 0.5 we have for an+1 = apn:

n 1 2 3 4 5 6 7

an 0.707 0.841 0.971 0.958 0.979 0.989 0.995

Experimenting with recurrence (1) one sees that for 0 < p ≤ 1 the sequence converges to 1, while for
p > 1 the sequence diverges to ∞.

b. With p = 1.2 and an = pan−1 we obtain

n 1 2 3 4 5 6 7 8 9 10

an 1.2 1.2446 1.2547 1.2570 1.2577 1.2577 1.2577 1.2577 1.2577 1.2577

With recurrence (2), in addition to converging for p < 1 it also converges for values of p less than
approximately 1.444. Here is a table of approximate values for different values of p:

p 1.1 1.2 1.3 1.4 1.44 1.444 1.445

lim
n→∞ an 1.1118 1.25776 1.471 1.887 2.39385 2.587 Diverges

It appears that the upper limit of convergence is about 1.444.

8.2.101

a. f0 = f1 = 1, f2 = 2, f3 = 3, f4 = 5, f5 = 8, f6 = 13, f7 = 21, f8 = 34, f9 = 55, f10 = 89.

b. The sequence is clearly not bounded.

c. f10
f9

≈ 1.61818
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d. We use induction. Note that 1√
5

(
ϕ+ 1

ϕ

)
= 1√

5

(
1+

√
5

2 + 2
1+

√
5

)
= 1√

5

(
1+2

√
5+5+4

2(1+
√
5)

)
= 1 = f1. Also

note that 1√
5

(
ϕ2 − 1

ϕ2

)
= 1√

5

(
3+

√
5

2 − 2
3+

√
5

)
= 1√

5

(
9+6

√
5+5−4

2(3+
√
5)

)
= 1 = f2. Now note that

fn−1 + fn−2 =
1√
5
(ϕn−1 − (−1)n−1ϕ1−n + ϕn−2 − (−1)n−2ϕ2−n)

=
1√
5
((ϕn−1 + ϕn−2)− (−1)n(ϕ2−n − ϕ1−n)).

Now, note that ϕ− 1 = 1
ϕ , so that

ϕn−1 + ϕn−2 = ϕn−1

(
1 +

1

ϕ

)
= ϕn−1 · ϕ = ϕn

and

ϕ2−n − ϕ1−n = ϕ−n(ϕ2 − ϕ) = ϕ−n(ϕ(ϕ− 1)) = ϕ−n.

Making these substitutions, we get

fn = fn−1 + fn−2 =
1√
5
(ϕn − (−1)nϕ−n)

8.2.102

a. We show that the arithmetic mean of any two positive numbers exceeds their geometric mean. Let a,
b > 0; then a+b

2 −√
ab = 1

2 (a − 2
√
ab + b) = 1

2 (
√
a −√

b)2 ≥ 0. Because in addition a0 > b0, we have
an > bn for all n.

b. To see that {an} is decreasing, note that

an+1 =
an + bn

2
<

an + an
2

= an.

Similarly,

bn+1 =
√
anbn >

√
bnbn = bn,

so that {bn} is increasing.

c. {an} is monotone and nonincreasing by part (b), and bounded below by part (a) (it is bounded below
by any of the bn), so it converges by the monotone convergence theorem. Similarly, {bn} is monotone
and nondecreasing by part (b) and bounded above by part (a), so it too converges.

d.

an+1 − bn+1 =
an + bn

2
−
√
anbn =

1

2
(an − 2

√
anbn + bn) <

1

2
(an − 2

√
b2n + bn) =

1

2
(an − bn).

Thus the difference between an+1 and bn+1 is less than half the difference between an and bn, so that
difference goes to zero and the two limits are the same.

e. The AGM of 12 and 20 is approximately 15.745; Gauss’ constant is 1
AGM(1,

√
2)

≈ 0.8346.
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8.2.103

a.

2 : 1

3 : 10, 5, 16, 8, 4, 2, 1

4 : 2, 1

5 : 16, 8, 4, 2, 1

6 : 3, 10, 5, 16, 8, 4, 2, 1

7 : 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

8 : 4, 2, 1

9 : 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

10 : 5, 16, 8, 4, 2, 1

b. From the above, H2 = 1, H3 = 7, and H4 = 2.

c.

This plot is for 1 ≤ n ≤ 100. Like hailstones,
the numbers in the sequence an rise and fall
but eventually crash to the earth. The con-
jecture appears to be true.

0 20 40 60 80 100
n

20

40

60

80

100

120
y

8.2.104 {an} 	 {bn} means that lim
n→∞

an

bn
= 0. But lim

n→∞
can

dbn
= c

d lim
n→∞

an

bn
= 0, so that {can} 	 {dbn}.

8.2.105

a. Note that a2 =
√
3a1 =

√
3
√
3 >

√
3 = a1. Now assume that

√
3 = a1 < a2 < . . . ak−1 < ak. Then

ak+1 =
√
3ak >

√
3ak−1 = ak.

Thus {an} is increasing.

b. Clearly because a1 =
√
3 > 0 and {an} is increasing, the sequence is bounded below by

√
3 > 0.

Further, a1 =
√
3 < 3; assume that ak < 3. Then ak+1 =

√
3ak <

√
3 · 3 = 3, so that ak+1 < 3. So by

induction, {ak} is bounded above by 3.

c. Because {an} is bounded and monotonically increasing, lim
n→∞ an exists by Theorem 8.5.

d. Because the limit exists, we have

lim
n→∞ an+1 = lim

n→∞
√
3an =

√
3 lim
n→∞

√
an =

√
3
√

lim
n→∞ an.

Let L = lim
n→∞ an+1 = lim

n→∞ an; then L =
√
3
√
L, so that L = 3.

8.2.106 By Theorem 8.6,

lim
n→∞

2 lnn√
n

= 2 lim
n→∞

lnn

n1/2
= 0,

so that
√
n has the larger growth rate. Using computational software, we see that

√
74 ≈ 8.60233 < 2 ln 74 ≈

8.60813, while
√
75 ≈ 8.66025 > 2 ln 75 ≈ 8.63493.
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8.2.107 By Theorem 8.6,

lim
n→∞

n5

en/2
= 25 lim

n→∞
(n/2)5

en/2
= 0,

so that en/2 has the larger growth rate. Using computational software we see that e35/2 ≈ 3.982 × 107 <
355 ≈ 5.252× 107, while e36/2 ≈ 6.566× 107 > 365 ≈ 6.047× 107.

8.2.108 By Theorem 8.6, lnn10 	 n1.001, so that n1.001 has the larger growth rate. Using computational
software we see that 351.001 ≈ 35.1247 < ln 3510 ≈ 35.5535 while 361.001 ≈ 36.1292 > ln 3610 ≈ 35.8352.

8.2.109 Experiment with a few widely separated values of n:

n n! n0.7n

1 1 1

10 3.63× 106 107

100 9.33× 10157 10140

1000 4.02× 102567 102100

It appears that n0.7n starts out larger, but is overtaken by the factorial somewhere between n = 10 and
n = 100, and that the gap grows wider as n increases. Looking between n = 10 and n = 100 revels that for
n = 18, we have n! ≈ 6.402 × 1015 < n0.7n ≈ 6.553 × 1015 while for n = 19 we have n! ≈ 1.216 × 1017 >
n0.7n ≈ 1.017× 1017.

8.2.110 By Theorem 8.6,

lim
n→∞

n9 ln3 n

n10
= lim

n→∞
ln3 n

n
= 0,

so that n10 has a larger growth rate. Using computational software we see that 9310 ≈ 4.840 × 1019 <
939 ln3 93 ≈ 4.846× 1019 while 9410 ≈ 5.386× 1019 > 949 ln3 94 ≈ 5.374× 1019.

8.2.111 First note that for a = 1 we already know that {nn} grows fast than {n!}. So if a > 1, then
nan ≥ nn, so that {nan} grows faster than {n!} for a > 1 as well. To settle the case a < 1, recall Stirling’s
formula which states that for large values of n,

n! ∼
√
2πnnne−n.

Thus

lim
n→∞

n!

nan
= lim

n→∞

√
2πnnne−n

nan

=
√
2π lim

n→∞n
1
2+(1−a)ne−n

≥
√
2π lim

n→∞n(1−a)ne−n

=
√
2π lim

n→∞ e(1−a)n lnne−n

=
√
2π lim

n→∞ e((1−a) lnn−1)n.

If a < 1 then (1− a) lnn− 1 > 0 for large values of n because 1− a > 0, so that this limit is infinite. Hence
{n!} grows faster than {nan} exactly when a < 1.

8.3 Infinite Series

8.3.1 A geometric series is a series in which the ratio of successive terms in the underlying sequence is a
constant. Thus a geometric series has the form

∑
ark where r is the constant. One example is 3 + 6+ 12+

24 + 48 + · · · in which a = 3 and r = 2.
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8.3.2 A geometric sum is the sum of a finite number of terms which have a constant ratio; a geometric series
is the sum of an infinite number of such terms.

8.3.3 The ratio is the common ratio between successive terms in the sum.

8.3.4 Yes, because there are only a finite number of terms.

8.3.5 No. For example, the geometric series with an = 3 · 2n does not have a finite sum.

8.3.6 The series converges if and only if |r| < 1.

8.3.7 S = 1 · 1− 39

1− 3
=

19682

2
= 9841.

8.3.8 S = 1 · 1− (1/4)11

1− (1/4)
=

411 − 1

3 · 410 =
4194303

3 · 1048576 =
1398101

1048576
≈ 1.333.

8.3.9 S = 1 · 1− (4/25)21

1− 4/25
=

2521 − 421

2521 − 4 · 2520 ≈ 1.1905.

8.3.10 S = 16 · 1− 29

1− 2
= 511 · 16 = 8176.

8.3.11 S = 1 · 1− (−3/4)10

1 + 3/4
=

410 − 310

410 + 3 · 49 =
141361

262144
≈ 0.5392.

8.3.12 S = (−2.5) · 1− (−2.5)5

1 + 2.5
= −70.46875.

8.3.13 S = 1 · 1− π7

1− π
=

π7 − 1

π − 1
≈ 1409.84.

8.3.14 S =
4

7
· 1− (4/7)10

3/7
=

375235564

282475249
≈ 1.328.

8.3.15 S = 1 · 1− (−1)21

2
= 1.

8.3.16
65

27
. 8.3.17

1093

2916
.

8.3.18
1

5

(
1− (3/5)6

1− 3/5

)
=

7448

15625
. 8.3.19

1

1− 1/4
=

4

3
.

8.3.20
1

1− 3/5
=

5

2
. 8.3.21

1

1− 0.9
= 10.

8.3.22
1

1− 2/7
=

7

5
. 8.3.23 Divergent, because r > 1.

8.3.24
1

1− 1/π
=

π

π − 1
. 8.3.25

e−2

1− e−2
=

1

e2 − 1
.

8.3.26
5/4

1− 1/2
=

5

2
. 8.3.27

2−3

1− 2−3
=

1

7
.
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8.3.28
3 · 43/73
1− 4/7

=
64

49
. 8.3.29

1/625

1− 1/5
=

1

500
.

8.3.30 Note that this is the same as
∑∞

i=0

(
3
4

)k
. Then S =

1

1− 3/4
= 4.

8.3.31
1

1− e/π
=

π

π − e
. (Note that e < π, so r < 1 for this series.)

8.3.32
1/16

1− 3/4
=

1

4
.

8.3.33
∞∑
k=0

(
1

4

)k

53−k = 53
∞∑
k=0

(
1

20

)k

= 53 · 1

1− 1/20
=

53 · 20
19

=
2500

19
.

8.3.34
36/86

1− (3/8)3
=

729

248320
8.3.35

1

1 + 9/10
=

10

19
.

8.3.36 − 2/3

1 + 2/3
= −2

5
. 8.3.37 3 · 1

1 + 1/π
=

3π

π + 1
.

8.3.38

∞∑
k=1

(
−1

e

)k

= − 1/e

1 + 1/e
= − 1

e+ 1
. 8.3.39

0.152

1.15
=

9

460
≈ 0.0196.

8.3.40 − 3/83

1 + 1/83
= − 1

171
.

8.3.41

a. 0.3 = 0.333 . . . =
∑∞

k=1 3(0.1)
k.

b. The limit of the sequence of partial sums is 1/3.

8.3.42

a. 0.6 = 0.666 . . . =
∑∞

k=1 6(0.1)
k.

b. The limit of the sequence of partial sums is 2/3.

8.3.43

a. 0.1 = 0.111 . . . =
∑∞

k=1(0.1)
k.

b. The limit of the sequence of partial sums is 1/9.

8.3.44

a. 0.5 = 0.555 . . . =
∑∞

k=1 5(0.1)
k.

b. The limit of the sequence of partial sums is 5/9.

8.3.45

a. 0.09 = 0.0909 . . . =
∑∞

k=1 9(0.01)
k.

b. The limit of the sequence of partial sums is
1/11.

8.3.46

a. 0.27 = 0.272727 . . . =
∑∞

k=1 27(0.01)
k.

b. The limit of the sequence of partial sums is
3/11.

8.3.47

a. 0.037 = 0.037037037 . . . =
∑∞

k=1 37(0.001)
k.

b. The limit of the sequence of partial sums is
37/999 = 1/27.

8.3.48

a. 0.027 = 0.027027027 . . . =
∑∞

k=1 27(0.001)
k

b. The limit of the sequence of partial sums is
27/999 = 1/37.

8.3.49 0.12 = 0.121212 . . . =

∞∑
k=0

.12 · 10−2k =
.12

1− 1/100
=

12

99
=

4

33
.

8.3.50 1.25 = 1.252525 . . . = 1 +

∞∑
k=0

.25 · 10−2k = 1 +
.25

1− 1/100
= 1 +

25

99
=

124

99
.
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8.3.51 0.456 = 0.456456456 . . . =

∞∑
k=0

.456 · 10−3k =
.456

1− 1/1000
=

456

999
=

152

333
.

8.3.52 1.0039 = 1.00393939 . . . = 1+

∞∑
k=0

.0039·10−2k = 1+
.0039

1− 1/100
= 1+

.39

99
= 1+

39

9900
=

9939

9900
=

3313

3300
.

8.3.53 0.00952 = 0.00952952 . . . =

∞∑
k=0

.00952 · 10−3k =
.00952

1− 1/1000
=

9.52

999
=

952

99900
=

238

24975
.

8.3.54 5.1283 = 5.12838383 . . . = 5.12 +

∞∑
k=0

.0083 · 10−2k = 5.12 +
.0083

1− 1/100
=

512

100
+

.83

99
=

128

25
+

83

9900
=

50771

9900
.

8.3.55 The second part of each term cancels with the first part of the succeeding term, so Sn = 1
1+1 − 1

n+2 =
n

2n+4 , and lim
n→∞

n
2n+4 = 1

2 .

8.3.56 The second part of each term cancels with the first part of the succeeding term, so Sn = 1
1+2 − 1

n+3 =
n

3n+6 , and lim
n→∞

n
3n+9 = 1

3 .

8.3.57
1

(k + 6)(k + 7)
=

1

k + 6
− 1

k + 7
, so the series given is the same as

∑∞
k=1

(
1

k+6 − 1
k+7

)
. In that series,

the second part of each term cancels with the first part of the succeeding term, so Sn = 1
1+6 − 1

n+7 . Thus

lim
n→∞Sn = 1

7 .

8.3.58
1

(3k + 1)(3k + 4)
=

1

3

(
1

3k + 1
− 1

3k + 4

)
, so the series given can be written

1

3

∞∑
k=0

(
1

3k + 1
− 1

3k + 4

)
. In that series, the second part of each term cancels with the first part of the

succeeding term (because 3(k + 1) + 1 = 3k + 4), so we are left with Sn = 1
3

(
1
1 − 1

3n+4

)
= n+1

3n+4 and

lim
n→∞

n+1
3n+4 = 1

3 .

8.3.59 Note that 4
(4k−3)(4k+1) =

1
4k−3 − 1

4k+1 . Thus the given series is the same as

∞∑
k=3

(
1

4k − 3
− 1

4k + 1

)
.

In that series, the second part of each term cancels with the first part of the succeeding term (because

4(k + 1)− 3 = 4k + 1), so we have Sn = 1
9 − 1

4n+1 , and thus lim
n→∞Sn =

1

9
.

8.3.60 Note that 2
(2k−1)(2k+1) =

1
2k−1 − 1

2k+1 . Thus the given series is the same as

∞∑
k=3

(
1

2k − 1
− 1

2k + 1

)
.

In that series, the second part of each term cancels with the first part of the succeeding term (because

2(k + 1)− 1 = 2k + 1), so we have Sn = 1
5 − 1

2n+1 . Thus, lim
n→∞Sn =

1

5
.

8.3.61 ln

(
k + 1

k

)
= ln(k+1)−ln k, so the series given is the same as

∑∞
k=1(ln(k+1)−ln k), in which the first

part of each term cancels with the second part of the next term, so we have Sn = ln(n+1)− ln 1 = ln(n+1),
and thus the series diverges.

8.3.62 Note that Sn = (
√
2−√

1)+ (
√
3−√

2)+ · · ·+(
√
n+ 1−√

n). The second part of each term cancels
with the first part of the previous term. Thus, Sn =

√
n+ 1 − 1. and because lim

n→∞
√
n+ 1 − 1 = ∞, the

series diverges.
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8.3.63
1

(k + p)(k + p+ 1)
=

1

k + p
− 1

k + p+ 1
, so that

∞∑
k=1

1

(k + p)(k + p+ 1)
=

∞∑
k=1

(
1

k + p
− 1

k + p+ 1

)
and this series telescopes to give Sn = 1

p+1 − 1
n+p+1 = n

n(p+1)+(p+1)2 so that lim
n→∞Sn = 1

p+1 .

8.3.64
1

(ak + 1)(ak + a+ 1)
=

1

a

(
1

ak + 1
− 1

ak + a+ 1

)
, so that

∞∑
k=1

1

(ak + 1)(ak + a+ 1)
=

1

a

∞∑
k=1

(
1

ak + 1
− 1

ak + a+ 1

)
. This series telescopes - the second term of each summand cancels with the

first term of the succeeding summage – so that Sn = 1
a

(
1

a+1 − 1
an+a+1

)
, and thus the limit of the sequence

is 1
a(a+1) .

8.3.65 Let an =
1√
n+ 1

− 1√
n+ 3

. Then the second term of an cancels with the first term of an+2, so the

series telescopes and Sn = 1√
2
+ 1√

3
− 1√

n−1+3
− 1√

n+3
and thus the sum of the series is the limit of Sn, which

is
1√
2
+

1√
3
.

8.3.66 The first term of the kth summand is sin( (k+1)π
2k+1 ); the second term of the (k + 1)st summand is

− sin( (k+1)π
2(k+1)−1 ); these two are equal except for sign, so they cancel. Thus Sn = − sin 0 + sin( (n+1)π

2n+1 ) =

sin( (n+1)π
2n+1 ). Because (n+1)π

2n+1 has limit π/2 as n → ∞, and because the sine function is continuous, it follows
that lim

n→∞Sn is sin(π2 ) = 1.

8.3.67 16k2 + 8k − 3 = (4k + 3)(4k − 1), so 1
16k2+8k−3 = 1

(4k+3)(4k−1) = 1
4

(
1

4k−1 − 1
4k+3

)
. Thus the series

given is equal to
1

4

∞∑
k=0

(
1

4k − 1
− 1

4k + 3

)
. This series telescopes, so Sn = 1

4

(
−1− 1

4n+3

)
, so the sum of

the series is equal to lim
n→∞Sn = − 1

4 .

8.3.68 This series clearly telescopes to give Sn = − tan−1(1) + tan−1(n) = tan−1(n) − π
4 . Then because

lim
n→∞ tan−1(n) = π

2 , the sum of the series is equal to lim
n→∞Sn = π

4 .

8.3.69

a. True.
(π
e

)−k

=
( e
π

)k
; because e < π, this is a geometric series with ratio less than 1.

b. True. If
∞∑

k=12

ak = L, then

∞∑
k=0

ak =

(
11∑
k=0

ak

)
+ L.

c. False. For example, let 0 < a < 1 and b > 1.

d. True. Suppose a > 1
2 . Then we want a =

∑∞
k=0 r

k = 1
1−r . Solving for r gives r = 1− 1

a . Because a > 0

we have r < 1; because a > 1
2 we have r > 1− 1

1/2 = −1. Thus |r| < 1 so that
∑∞

k=0 r
k converges, and

it converges to a.

e. True. Suppose a > − 1
2 . Then we want a =

∑∞
k=1 r

k = r
1−r . Solving for r gives r = a

a+1 . For a ≥ 0,

clearly 0 ≤ r < 1 so that
∑∞

k=1 r
k converges to a. For − 1

2 < a < 0, clearly r < 0, but |a| < |a+ 1|, so
that |r| < 1. Thus in this case

∑∞
k=1 r

k also converges to a.

8.3.70 We have

Sn =

(
sin−1 1− sin−1 1

2

)
+

(
sin−1 1

2
− sin−1 1

3

)
+ · · ·+

(
sin−1 1

n
− sin−1 1

n+ 1

)
.
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Note that the first part of each term cancels the second part of the previous term, so the nth partial sum

telescopes to be sin−1 1 − sin−1 1
n+1 . Because sin−1 1 = π

2 and lim
n→∞ sin−1 1

n+ 1
= sin−1 0 = 0, we have

lim
n→∞Sn =

π

2
.

8.3.71 This can be written as
1

3

∞∑
k=1

(
−2

3

)k

. This is a geometric series with ratio r = − 2
3 so the sum is

1
3 · −2/3

1−(−2/3) =
1
3 · (− 2

5

)
= − 2

15 .

8.3.72 This can be written as
1

e

∞∑
k=1

(π
e

)k
. This is a geometric series with r = π

e > 1, so the series diverges.

8.3.73 Note that

ln((k + 1)k−1)

(ln k) ln(k + 1)
=

ln(k + 1)

(ln k) ln(k + 1)
− ln k

(ln k) ln(k + 1)
=

1

ln k
− 1

ln(k + 1)
.

In the partial sum Sn, the first part of each term cancels the second part of the preceding term, so we have

Sn = 1
ln 2 − 1

ln(n+1) . Thus we have lim
n→∞Sn =

1

ln 2
.

8.3.74

a. Because the first part of each term cancels the second part of the previous term, the nth partial sum

telescopes to be Sn = 1
2 − 1

2n+1 . Thus, the sum of the series is lim
n→∞Sn =

1

2
.

b. Note that 1
2k

− 1
2k+1 = 2k+1−2k

2k2k+1 = 1
2k+1 . Thus, the original series can be written as

∞∑
k=1

1

2k+1
which is

geometric with r = 1/2 and a = 1/4, so the sum is 1/4
1−1/2 = 1

2 .

8.3.75

a. Because the first part of each term cancels the second part of the previous term, the nth partial sum

telescopes to be Sn = 4
3 − 4

3n+1 . Thus, the sum of the series is lim
n→∞Sn =

4

3
.

b. Note that 4
3k

− 4
3k+1 = 4·3k+1−4·3k

3k3k+1 = 8
3k+1 . Thus, the original series can be written as

∞∑
k=1

8

3k+1
which

is geometric with r = 1/3 and a = 8/9, so the sum is 8/9
1−1/3 = 8

9 · 3
2 = 4

3 .

8.3.76 It will take Achilles 1/5 hour to cover the first mile. At this time, the tortoise has gone 1/5 mile
more, and it will take Achilles 1/25 hour to reach this new point. At that time, the tortoise has gone another
1/25 of a mile, and it will take Achilles 1/125 hour to reach this point. Adding the times up, we have

1

5
+

1

25
+

1

125
+ · · · = 1/5

1− 1/5
=

1

4
,

so it will take Achilles 1/4 of an hour (15 minutes) to catch the tortoise.

8.3.77 At the nth stage, there are 2n−1 triangles of area An = 1
8An−1 = 1

8n−1A1, so the total area of the

triangles formed at the nth stage is
2n−1

8n−1
A1 =

(
1

4

)n−1

A1. Thus the total area under the parabola is

∞∑
n=1

(
1

4

)n−1

A1 = A1

∞∑
n=1

(
1

4

)n−1

= A1
1

1− 1/4
=

4

3
A1.
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8.3.78

a. Note that 3k

(3k+1−1)(3k−1)
= 1

2 ·
(

1
3k−1

− 1
3k+1−1

)
. Then

∞∑
k=1

3k

(3k+1 − 1)(3k − 1)
=

1

2

∞∑
k=1

(
1

3k − 1
− 1

3k+1 − 1

)
.

This series telescopes to give Sn = 1
2

(
1

3−1 − 1
3n+1−1

)
, so that the sum of the series is lim

n→∞Sn = 1
4 .

b. We mimic the above computations. First, ak

(ak+1−1)(ak−1)
= 1

a−1 ·
(

1
ak−1

− 1
ak+1−1

)
, so we see that

we cannot have a = 1, because the fraction would then be undefined. Continuing, we obtain Sn =
1

a−1

(
1

a−1 − 1
an+1−1

)
. Now, lim

n→∞
1

an+1−1 converges if and only if the denominator grows without bound;

this happens if and only if |a| > 1. Thus, the original series converges for |a| > 1, when it converges to
1

(a−1)2 . Note that this is valid even for a negative.

8.3.79

It appears that the loan is paid off after about
470 months. Let Bn be the loan balance
after n months. Then B0 = 180000 and
Bn = 1.005 · Bn−1 − 1000. Then Bn =
1.005 · Bn−1 − 1000 = 1.005(1.005 · Bn−2 −
1000) − 1000 = (1.005)2 · Bn−2 − 1000(1 +
1.005) = (1.005)2 · (1.005 · Bn−3 − 1000) −
1000(1+ 1.005) = (1.005)3 ·Bn−3 − 1000(1+
1.005 + (1.005)2) = · · · = (1.005)nB0 −
1000(1+1.005+(1.005)2+· · ·+(1.005)n−1) =

(1.005)n ·180000−1000
(

(1.005)n−1
1.005−1

)
. Solving

this equation for Bn = 0 gives n ≈ 461.667
months, so the loan is paid off after 462
months.

100 200 300 400 500
n

50 000

100 000

150 000

y

8.3.80

It appears that the loan is paid off after
about 38 months. Let Bn be the loan bal-
ance after n months. Then B0 = 20000 and
Bn = 1.0075 ·Bn−1−60. Then Bn = 1.0075 ·
Bn−1 − 600 = 1.0075(1.0075 ·Bn−2 − 600)−
600 = (1.0075)2 · Bn−2 − 600(1 + 1.0075) =
(1.0075)2(1.0075 · Bn−3 − 600) − 600(1 +
1.0075) = (1.0075)3 ·Bn−3−600(1+1.0075+
(1.0075)2) = · · · = (1.0075)nB0 − 600(1 +
1.0075 + (1.0075)2 + · · · + (1.0075)n−1) =

(1.0075)n · 20000− 600
(

(1.0075)n−1
1.0075−1

)
.

Solving this equation for Bn = 0 gives n ≈
38.501 months, so the loan is paid off after 39
months.

10 20 30 40
n

5000

10 000

15 000

20 000
y

8.3.81 Fn = (1.015)Fn−1 − 120 = (1.015)((1.015)Fn−2 − 120)− 120 = (1.015)((1.015)((1.015)Fn−3 − 120)−
120)− 120 = · · · = (1.015)n(4000)− 120(1 + (1.015) + (1.015)2 + · · ·+ (1.015)n−1). This is equal to

(1.015)n(4000)− 120

(
(1.015)n − 1

1.015− 1

)
= (−4000)(1.015)n + 8000.

The long term population of the fish is 0.
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8.3.82 Let An be the amount of antibiotic in your blood after n 6-hour periods. Then A0 = 200, An =
0.5An−1 +200. We have An = .5An−1 +200 = .5(.5An−2 +200)+ 200 = .5(.5(.5An−3 +200)+ 200)+ 200 =
· · · = .5n(200) + 200(1 + .5 + .52 + · · ·+ .5n−1). This is equal to

.5n(200) + 200

(
.5n − 1

.5− 1

)
= (.5n)(200− 400) + 400 = (−200)(.5n) + 400.

The limit of this expression as n → ∞ is 400, so the steady-state amount of antibiotic in your blood is 400
mg.

8.3.83 Under the one-child policy, each couple will have one child. Under the one-son policy, we compute the
expected number of children as follows: with probability 1/2 the first child will be a son; with probability
(1/2)2, the first child will be a daughter and the second child will be a son; in general, with probability
(1/2)n, the first n − 1 children will be girls and the nth a boy. Thus the expected number of children

is the sum

∞∑
i=1

i ·
(
1

2

)i

. To evaluate this series, use the following “trick”: Let f(x) =

∞∑
i=1

ixi. Then

f(x) +
∞∑
i=1

xi =

∞∑
i=1

(i+ 1)xi. Now, let

g(x) =
∞∑
i=1

xi+1 = −1− x+

∞∑
i=0

xi = −1− x+
1

1− x

and

g′(x) = f(x) +

∞∑
i=1

xi = f(x)− 1 +

∞∑
i=0

xi = f(x)− 1 +
1

1− x
.

Evaluate g′(x) = −1− 1
(1−x)2 ; then

f(x) = 1− 1

1− x
− 1− 1

(1− x)2
=

−1 + x+ 1

(1− x)2
=

x

(1− x)2

Finally, evaluate at x = 1
2 to get f

(
1
2

)
=
∑∞

i=1 i ·
(
1
2

)i
= 1/2

(1−1/2)2 = 2. There will thus be twice as many

children under the one-son policy as under the one-child policy.

8.3.84 Let Ln be the amount of light transmitted through the window the nth time the beam hits the second
pane. Then the amount of light that was available before the beam went through the pane was Ln

1−p , so
pLn

1−p

is reflected back to the first pane, and p2Ln

1−p is then reflected back to the second pane. Of that, a fraction
equal to 1− p is transmitted through the window. Thus

Ln+1 = (1− p)
p2Ln

1− p
= p2Ln.

The amount of light transmitted through the window the first time is (1− p)2. Thus the total amount is

∞∑
i=0

p2n(1− p)2 =
(1− p)2

1− p2
=

1− p

1 + p
.

8.3.85 Ignoring the initial drop for the moment, the height after the nth bounce is 10pn, so the total
time spent in that bounce is 2 ·√2 · 10pn/g seconds. The total time before the ball comes to rest (now

including the time for the initial drop) is then
√
20/g +

∑∞
i=1 2 ·

√
2 · 10pn/g =

√
20
g + 2

√
20
g

∑∞
i=1(

√
p)n =√

20
g + 2

√
20
g

√
p

1−√
p =

√
20
g

(
1 +

2
√
p

1−√
p

)
=
√

20
g

(
1+

√
p

1−√
p

)
seconds.
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8.3.86

a. The fraction of available wealth spent each month is 1 − p, so the amount spent in the nth month is

W (1− p)n. The total amount spent is then
∑∞

n=1 W (1− p)n = W (1−p)
1−(1−p) = W

(
1−p
p

)
dollars.

b. As p → 1, the total amount spent approaches 0. This makes sense, because in the limit, if everyone
saves all of the money, none will be spent. As p → 0, the total amount spent gets larger and larger.
This also makes sense, because almost all of the available money is being respent each month.

8.3.87

a. In+1 is obtained by In by dividing each edge into three equal parts, removing the middle part, and
adding two parts equal to it. Thus 3 equal parts turn into 4, so Ln+1 = 4

3Ln. This is a geometric
sequence with a ratio greater than 1, so the nth term grows without bound.

b. As the result of part (a), In has 3 ·4n sides of length 1
3n ; each of those sides turns into an added triangle

in In+1 of side length 3−n−1. Thus the added area in In+1 consists of 3·4n equilateral triangles with side

3−n−1. The area of an equilateral triangle with side x is
x2

√
3

4
. Thus An+1 = An +3 · 4n · 3−2n−2

√
3

4 =

An +
√
3

12 · ( 49)n , and A0 =
√
3
4 . Thus An+1 = A0 +

∑n
i=0

√
3

12 · ( 49)i , so that

A∞ = A0 +

√
3

12

∞∑
i=0

(
4

9

)i

=

√
3

4
+

√
3

12

1

1− 4/9
=

√
3

4
(1 +

3

5
) =

2

5

√
3.

8.3.88

a. 5
∞∑
i=1

10−k = 5

∞∑
i=1

(
1

10

)k

= 5

(
1/10

9/10

)
=

5

9
.

b. 54
∞∑
i=1

10−2k = 54

∞∑
i=1

(
1

100

)k

= 54

(
1/100

99/100

)
=

54

99
.

c. Suppose x = 0.n1n2 . . . npn1n2 . . . . Then we can write this decimal as n1n2 . . . np

∑∞
i=1 10

−ip =

n1n2 . . . np

∑∞
i=1

(
1

10p

)i
= n1n2 . . . np

1/10p

(10p−1)/10p =
n1n2...np

999...9 , where here n1n2 . . . np does not mean

multiplication but rather the digits in a decimal number, and where there are p 9’s in the denominator.

d. According to part (c), 0.12345678912345678912 . . . = 123456789
999999999

e. Again using part (c), 0.9̄ = 9
9 = 1.

8.3.89 |S − Sn| =
∣∣∣∣∣
∞∑
i=n

rk

∣∣∣∣∣ =
∣∣∣∣ rn

1− r

∣∣∣∣ because the latter sum is simply a geometric series with first term rn

and ratio r.

8.3.90

a. Solve 0.6n

0.4 < 10−6 for n to get n = 29.

b. Solve 0.15n

0.85 < 10−6 for n to get n = 8.

8.3.91

a. Solve
∣∣∣ (−0.8)n

1.8

∣∣∣ = 0.8n

1.8 < 10−6 for n to get n = 60.

b. Solve 0.2n

0.8 < 10−6 for n to get n = 9.
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8.3.92

a. Solve 0.72n

0.28 < 10−6 for n to get n = 46.

b. Solve
∣∣∣ (−0.25)n

1.25

∣∣∣ = 0.25n

1.25 < 10−6 for n to get n = 10.

8.3.93

a. Solve 1/πn

1−1/π < 10−6 for n to get n = 13.

b. Solve 1/en

1−1/e < 10−6 for n to get n = 15.

8.3.94

a. f(x) =
∑∞

k=0 x
k = 1

1−x ; because f is represented by a geometric series, f(x) exists only for |x| < 1.

Then f(0) = 1, f(0.2) = 1
0.8 = 1.25, f(0.5) = 1

1−0.5 = 2. Neither f(1) nor f(1.5) exists.

b. The domain of f is {x : |x| < 1}.
8.3.95

a. f(x) =
∑∞

k=0(−1)kxk = 1
1+x ; because f is a geometric series, f(x) exists only when the ratio, −x, is

such that |−x| = |x| < 1. Then f(0) = 1, f(0.2) = 1
1.2 = 5

6 , f(0.5) = 1
1+.05 = 2

3 . Neither f(1) nor
f(1.5) exists.

b. The domain of f is {x : |x| < 1}.
8.3.96

a. f(x) =
∑∞

k=0 x
2k = 1

1−x2 . f is a geometric series, so f(x) is defined only when the ratio, x2, is less

than 1, which means |x| < 1. Then f(0) = 1, f(0.2) = 1
1−.04 = 25

24 , f(0.5) =
1

1−0.25 = 4
3 . Neither f(1)

nor f(1.5) exists.

b. The domain of f is {x : |x| < 1}.

8.3.97 f(x) is a geometric series with ratio 1
1+x ; thus f(x) converges when

∣∣∣ 1
1+x

∣∣∣ < 1. For x > −1,

∣∣∣∣ 1

1 + x

∣∣∣∣ =
1

1 + x
and

1

1 + x
< 1 when 1 < 1 + x, x > 0. For x < −1,

∣∣∣∣ 1

1 + x

∣∣∣∣ = 1

−1− x
, and this is less than 1 when

1 < −1 − x, i.e. x < −2. So f(x) converges for x > 0 and for x < −2. When f(x) converges, its value is
1

1− 1
1+x

= 1+x
x , so f(x) = 3 when 1 + x = 3x, x = 1

2 .

8.3.98

a. Clearly for k < n, hk is a leg of a right triangle whose hypotenuse is rk and whose other leg is formed
where the vertical line (in the picture) meets a diameter of the next smaller sphere; thus the other leg
of the triangle is rk+1. The Pythagorean theorem then implies that h2

k = r2k − r2k+1.

b. The height is Hn =
∑n

i=1 hi = rn +
∑n−1

i=1

√
r2i − r2i+1 by part (a).

c. From part (b), because ri = ai−1,

Hn = rn +

n−1∑
i=1

√
r2i − r2i+1 = an−1 +

n−1∑
i=1

√
a2i−2 − a2i

= an−1 +

n−1∑
i=1

ai−1
√

1− a2 = an−1 +
√
1− a2

n−1∑
i=1

ai−1

= an−1 +
√
1− a2

(
1− an−1

1− a

)
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d. lim
n→∞Hn = lim

n→∞ an−1 +
√
1− a2 lim

n→∞
1−an−1

1−a = 0 +
√
1− a2

(
1

1−a

)
=
√

1−a2

(1−a)(1−a) =
√

1+a
1−a .

8.3.99

a. Using Theorem 8.7 in each case except for r = 0 gives

r f(r)

−0.9 0.526

−0.7 0.588

−0.5 0.667

−0.2 0.833

0 1

0.2 1.250

0.5 2

0.7 3.333

0.9 10

b. A plot of f is

�1.0 �0.5 0.5 1.0 r

1

2

3

4

5

6

y

c. For −1 < r < 1 we have f(r) = 1
1−r , so that

lim
r→−1+

f(r) = lim
r→−1+

1

1− r
=

1

2
, lim

r→1−
f(r) = lim

r→1−

1

1− r
= ∞.

8.3.100

a. In each case (except for r = 0 where N(r) is clearly 0), compute |S − Sn| for various values of n gives
the following results:
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r N(r) |S − SN(r)−1| |S − SN(r)|
−0.9 81 1.0× 10−4 9.3× 10−5

−0.7 24 1.1× 10−4 7.9× 10−5

−0.5 12 1.6× 10−4 8.1× 10−5

−0.2 5 2.7× 10−4 5.3× 10−5

0 0 — 0

0.2 5 4.0× 10−4 8.0× 10−5

0.5 14 1.2× 10−4 6.1× 10−5

0.7 29 1.1× 10−4 7.5× 10−5

0.9 109 1.0× 10−4 9.3× 10−5

b. A plot of r versus N(r) for these values of r is

�0.5 0.5 r

20

40

60

80

100

y

c. The rate of convergence is faster for r closer to 0, since N(r) is smaller. The reason for this is that rk

gets smaller faster as k increases when |r| is closer to zero than when it is closer to 1.

8.4 The Divergence and Integral Tests

8.4.1 If the sequence of terms has limit 1, then the corresponding series diverges. It is necessary (but not
sufficient) that the sequence of terms has limit 0 in order for the corresponding series to be convergent.

8.4.2 No. For example, the harmonic serkes
∑∞

k=1
1
k diverges although 1

k → 0 as k → ∞.

8.4.3 Yes. Either the series and the integral both converge, or both diverge, if the terms are positive and
decreasing.

8.4.4 It converges for p > 1, and diverges for all other values of p.

8.4.5 For the same values of p as in the previous problem – it converges for p > 1, and diverges for all other
values of p.

8.4.6 Let Sn be the partial sums. Then Sn+1 − Sn = an+1 > 0 because an+1 > 0. Thus the sequence of
partial sums is increasing.

8.4.7 The remainder of an infinite series is the error in approximating a convergent infinite series by a finite
number of terms.
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8.4.8 Yes. Suppose
∑

ak converges to S, and let the sequence of partial sums be {Sn}. Then for any ε > 0
there is some N such that for any n > N , |S − Sn| < ε. But |S − Sn| is simply the remainder Rn when the
series is approximated to n terms. Thus Rn → 0 as n → ∞.

8.4.9 ak = k
2k+1 and lim

k→∞
ak = 1

2 , so the series diverges.

8.4.10 ak = k
k2+1 and lim

k→∞
ak = 0, so the divergence test is inconclusive.

8.4.11 ak = k
ln k and lim

k→∞
ak = ∞, so the series diverges.

8.4.12 ak = k2

2k
and lim

k→∞
ak = 0, so the divergence test is inconclusive.

8.4.13 ak = 1
1000+k and lim

k→∞
ak = 0, so the divergence test is inconclusive.

8.4.14 ak = k3

k3+1 and lim
k→∞

ak = 1, so the series diverges.

8.4.15 ak =
√
k

ln10 k
and lim

k→∞
ak = ∞, so the series diverges.

8.4.16 ak =
√
k2+1
k and lim

k→∞
ak = 1, so the series diverges.

8.4.17 ak = k1/k. In order to compute limk→∞ ak, we let yk = ln ak = ln k
k . By Theorem 9.6, (or by

L’Hôpital’s rule), limk→∞ yk = 0, so limk→∞ ak = e0 = 1. The given series thus diverges.

8.4.18 By Theorem 9.6 k3 	 k!, so limk→∞ k3

k! = 0. The divergence test is inconclusive.

8.4.19 Clearly 1
ex = e−x is continuous, positive, and decreasing for x ≥ 2 (in fact, for all x), so the integral

test applies. Because∫ ∞

2

e−x dx = lim
c→∞

∫ c

2

e−x dx = lim
c→∞(−e−x)

∣∣∣∣c
2

= lim
c→∞(e−2 − e−c) = e−2,

the Integral Test tells us that the original series converges as well.

8.4.20 Let f(x) = x√
x2+4

. f(x) is continuous for x ≥ 1. Note that f ′(x) = 4
(
√
x2+4)3

> 0. Thus f

is increasing, and the conditions of the Integral Test aren’t satisfied. The given series diverges by the
Divergence Test.

8.4.21 Let f(x) = x · e−2x2

. This function is continuous for x ≥ 1. Its derivative is e−2x2

(1 − 4x2) < 0 for

x ≥ 1, so f(x) is decreasing. Because
∫∞
1

x · e−2x2

dx = 1
4e2 , the series converges.

8.4.22 Let f(x) = 1
3
√
x+10

. f(x) is obviously continuous and decreasing for x ≥ 1. Because
∫∞
1

1
3
√
x+10

dx =

∞, the series diverges.

8.4.23 Let f(x) = 1√
x+8

. f(x) is obviously continuous and decreasing for x ≥ 1. Because
∫∞
1

1√
x+8

dx = ∞,

the series diverges.

8.4.24 Let f(x) = 1
x(ln x)2 . f(x) is continuous and decreasing for x ≥ 2. Because

∫∞
2

f(x) dx = 1
ln 2 the

series converges.

8.4.25 Let f(x) = x
ex . f(x) is clearly continuous for x > 1, and its derivative, f ′(x) = ex−xex

e2x = (1− x) ex

e2x ,

is negative for x > 1 so that f(x) is decreasing. Because
∫∞
1

f(x) dx = 2e−1, the series converges.

8.4.26 Let f(x) = 1
x·ln x·ln ln x . f(x) is continuous and decreasing for x > 3, and

∫∞
3

1
x·ln x·ln ln x dx = ∞. The

given series therefore diverges.
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8.4.27 The integral test does not apply, because the sequence of terms is not decreasing.

8.4.28 f(x) = x
(x2+1)3 is decreasing and continuous, and

∫∞
1

x
(x2+1)3 dx = 1

16 . Thus, the given series con-
verges.

8.4.29 This is a p-series with p = 10, so this series converges.

8.4.30
∑∞

k=2
ke

kπ =
∑∞

k=2
1

kπ−e . Note that π − e ≈ 3.1416− 2.71828 < 1, so this series diverges.

8.4.31
∑∞

k=3
1

(k−2)4 =
∑∞

k=1
1
k4 , which is a p-series with p = 4, thus convergent.

8.4.32
∑∞

k=1 2k
−3/2 = 2

∑∞
k=1

1
k3/2 is a p-series with p = 3/2, thus convergent.

8.4.33
∑∞

k=1
1
3√
k
=
∑∞

k=1
1

k1/3 is a p-series with p = 1/3, thus divergent.

8.4.34
∑∞

k=1
1

3√
27k2

= 1
3

∑∞
k=1

1
k2/3 is a p-series with p = 2/3, thus divergent.

8.4.35

a. The remainder Rn is bounded by
∫∞
n

1
x6 dx = 1

5n5 .

b. We solve 1
5n5 < 10−3 to get n = 3.

c. Ln = Sn +
∫∞
n+1

1
x6 dx = Sn + 1

5(n+1)5 , and Un = Sn +
∫∞
n

1
x6 dx = Sn + 1

5n5 .

d. S10 ≈ 1.017341512, so L10 ≈ 1.017341512 + 1
5·115 ≈ 1.017342754, and U10 ≈ 1.017341512 + 1

5·105 ≈
1.017343512.

8.4.36

a. The remainder Rn is bounded by
∫∞
n

1
x8 dx = 1

7n7 .

b. We solve 1
7n7 < 10−3 to obtain n = 3.

c. Ln = Sn +
∫∞
n+1

1
x8 dx = Sn + 1

7(n+1)7 , and Un = Sn +
∫∞
n

1
x8 dx = Sn + 1

7n7 .

d. S10 ≈ 1.004077346, so L10 ≈ 1.004077346 + 1
7·117 ≈ 1.004077353, and U10 ≈ 1.004077346 + 1

7·107 ≈
1.004077360.

8.4.37

a. The remainder Rn is bounded by
∫∞
n

1
3x dx = 1

3n ln 3 .

b. We solve 1
3n ln 3 < 10−3 to obtain n = 7.

c. Ln = Sn +
∫∞
n+1

1
3x dx = Sn + 1

3n+1 ln 3 , and Un = Sn +
∫∞
n

1
3x dx = Sn + 1

3n ln 3 .

d. S10 ≈ 0.4999915325, so L10 ≈ 0.4999915325 + 1
311 ln 3 ≈ 0.4999966708, and U10 ≈ 0.4999915325 +

1
310 ln 3 ≈ 0.5000069475.

8.4.38

a. The remainder Rn is bounded by
∫∞
n

1
x ln2 x

dx = 1
lnn .

b. We solve 1
lnn < 10−3 to get n = e1000 ≈ 10434.

c. Ln = Sn +
∫∞
n+1

1
x ln2 x

dx = Sn + 1
ln(n+1) , and Un = Sn +

∫∞
n

1
x ln2 x

dx = Sn + 1
lnn .

d. S11 =
∑11

k=2
1

k ln2 k
≈ 1.700396385, so L11 ≈ 1.700396385 + 1

ln 12 ≈ 2.102825989, and

U11 ≈ 1.700396385 + 1
ln 11 ≈ 2.117428776.

Copyright c© 2015 Pearson Education, Inc.



8.4. The Divergence and Integral Tests 37

8.4.39

a. The remainder Rn is bounded by
∫∞
n

1
x3/2 dx = 2n−1/2.

b. We solve 2n−1/2 < 10−3 to get n > 4× 106, so let n = 4× 106 + 1.

c. Ln = Sn +
∫∞
n+1

1
x3/2 dx = Sn + 2(n+ 1)−1/2, and Un = Sn +

∫∞
n

1
x3/2 dx = Sn + 2n−1/2.

d. S10 =
∑10

k=1
1

k3/2 ≈ 1.995336493, so L10 ≈ 1.995336493 + 2 · 11−1/2 ≈ 2.598359182, and U10 ≈
1.995336493 + 2 · 10−1/2 ≈ 2.627792025.

8.4.40

a. The remainder Rn is bounded by
∫∞
n

e−x dx = e−n.

b. We solve e−n < 10−3 to get n = 7.

c. Ln = Sn +
∫∞
n+1

e−x dx = Sn + e−(n+1), and Un = Sn +
∫∞
n

e−x dx = Sn + e−n.

d. S10 =
∑10

k=1 e
−k ≈ 0.5819502852, so L10 ≈ 0.5819502852 + e−11 ≈ 0.5819669869, and U10 ≈

0.5819502852 + e−10 ≈ 0.5819956851.

8.4.41

a. The remainder Rn is bounded by
∫∞
n

1
x3 dx = 1

2n2 .

b. We solve 1
2n2 < 10−3 to get n = 23.

c. Ln = Sn +
∫∞
n+1

1
x3 dx = Sn + 1

2(n+1)2 , and Un = Sn +
∫∞
n

1
x3 dx = Sn + 1

2n2 .

d. S10 ≈ 1.197531986, so L10 ≈ 1.197531986 + 1
2·112 ≈ 1.201664217, and U10 ≈ 1.197531986 + 1

2·102 ≈
1.202531986.

8.4.42

a. The remainder Rn is bounded by
∫∞
n

xe−x2

dx = 1
2en2 .

b. We solve 1
2en2 < 10−3 to get n = 3.

c. Ln = Sn +
∫∞
n+1

xe−x2

dx = Sn + 1
2e(n+1)2

, and Un = Sn +
∫∞
n

xe−x2

dx = Sn + 1
2en2 .

d. S10 ≈ 0.4048813986, so L10 ≈ 0.4048813986+ 1
2e112

≈ 0.4048813986, and U10 ≈ 0.4048813986+ 1
2e102

≈
0.4048813986.

8.4.43 This is a geometric series with a = 1
3 and r = 1

12 , so
∑∞

k=1
4

12k
= 1/3

1−1/12 = 1/3
11/12 = 4

11 .

8.4.44 This is a geometric series with a = 3/e2 and r = 1/e, so
∑∞

k=2 3e
−k = 3/e2

1−(1/e) =
3/e2

(e−1)/e = 3
e(e−1) .

8.4.45

∞∑
k=0

(
3

(
2

5

)k

− 2

(
5

7

)k
)

= 3

∞∑
k=0

(
2

5

)k

− 2

∞∑
k=0

(
5

7

)k

= 3

(
1

3/5

)
− 2

(
1

2/7

)
= 5− 7 = −2.

8.4.46
∞∑
k=1

(
2

(
3

5

)k

+ 3

(
4

9

)k
)

= 2

∞∑
k=1

(
3

5

)k

+ 3

∞∑
k=1

(
4

9

)k

= 2

(
3/5

2/5

)
+ 3

(
4/9

5/9

)
= 3 +

12

5
=

27

5
.

8.4.47
∞∑
k=1

(
1

3

(
5

6

)k

+
3

5

(
7

9

)k
)

=
1

3

∞∑
k=1

(
5

6

)k

+
3

5

∞∑
k=1

(
7

9

)k

=
1

3

(
5/6

1/6

)
+

3

5

(
7/9

2/9

)
=

5

3
+

21

10
=

113

30
.
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8.4.48

∞∑
k=0

(
1

2
(0.2)k +

3

2
(0.8)k

)
=

1

2

∞∑
k=0

(0.2)k +
3

2

∞∑
k=0

(0.8)k =
1

2

(
1

0.8

)
+

3

2

(
1

0.2

)
=

5

8
+

15

2
=

65

8
.

8.4.49

∞∑
k=1

((
1

6

)k

+

(
1

3

)k−1
)

=

∞∑
k=1

(
1

6

)k

+

∞∑
k=1

(
1

3

)k−1

=
1/6

5/6
+

1

2/3
=

17

10
.

8.4.50

∞∑
k=0

2− 3k

6k
=

∞∑
k=0

(
2

6k
− 3k

6k

)
= 2

∞∑
k=0

(
1

6

)k

−
∞∑
k=0

(
1

2

)k

= 2

(
1

5/6

)
− 1

1/2
=

2

5
.

8.4.51

a. True. The two series differ by a finite amount (
∑9

k=1 ak), so if one converges, so does the other.

b. True. The same argument applies as in part (a).

c. False. If
∑

ak converges, then ak → 0 as k → ∞, so that ak + 0.0001 → 0.0001 as k → ∞, so that∑
(ak + 0.0001) cannot converge.

d. False. Suppose p = −1.0001. Then
∑

pk diverges but p + 0.001 = −0.9991 so that
∑

(p + .0001)k

converges.

e. False. Let p = 1.0005; then −p+ .001 = −(p− .001) = −.9995, so that
∑

k−p converges (p-series) but∑
k−p+.001 diverges.

f. False. Let ak = 1
k , the harmonic series.

8.4.52 Diverges by the Divergence Test because lim
k→∞

ak = lim
k→∞

√
k + 1

k
= 1 �= 0.

8.4.53 Converges by the Integral Test because

∫ ∞

1

1

(3x+ 1)(3x+ 4)
dx =

∫ ∞

1

1

3(3x+ 1)
− 1

3(3x+ 4)
dx =

lim
b→∞

∫ b

1

(
1

3(3x+ 1)
− 1

3(3x+ 4)

)
dx = lim

b→∞
1

9

(
ln

(
3x+ 1

3x+ 4

))∣∣∣∣b
1

= lim
b→∞

= −1

9
· ln(4/7) ≈ 0.06217 < ∞.

Alternatively, this is a telescoping series with nth partial sum equal to Sn = 1
3

(
1
4 − 1

3n+4

)
which con-

verges to 1
12 .

8.4.54 Converges by the Integral Test because

∫ ∞

0

10

x2 + 9
dx =

10

3
lim
b→∞

(
tan−1(x/3)

∣∣b
0

)
=

10

3

π

2
≈ 5.236 <

∞.

8.4.55 Diverges by the Divergence Test because lim
k→∞

ak = lim
k→∞

k√
k2 + 1

= 1 �= 0.

8.4.56 Converges because it is the sum of two geometric series. In fact,
∑∞

k=1
2k+3k

4k
=
∑∞

k=1(2/4)
k +∑∞

k=1(3/4)
k = 1/2

1−(1/2) +
3/4

1−(3/4) = 1 + 3 = 4.

8.4.57 Converges by the Integral Test because

∫ ∞

2

4

x ln2 x
dx = lim

b→∞

(
−4

lnx

∣∣∣∣b
2

)
=

4

ln 2
< ∞.

8.4.58

a. In order for the series to converge, the integral
∫∞
2

1
x(ln x)p dx must exist. But∫

1

x(lnx)p
dx =

1

1− p
(lnx)1−p,

so in order for this improper integral to exist, we must have that 1− p < 0 or p > 1.
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b. The series converges faster for p = 3 because the terms of the series get smaller faster.

8.4.59

a. Note that
∫

1
x ln x(ln ln x)p dx = 1

1−p (ln lnx)
1−p, and thus the improper integral with bounds n and ∞

exists only if p > 1 because ln lnx > 0 for x > e. So this series converges for p > 1.

b. For large values of z, clearly
√
z > ln z, so that z > (ln z)2. Write z = lnx; then for large x,

lnx > (ln lnx)2; multiplying both sides by x lnx we have that x ln2 x > x lnx(ln lnx)2, so that the first
series converges faster because the terms get smaller faster.

8.4.60

a.
∑

1
k2.5 .

b.
∑

1
k0.75 .

c.
∑

1
k3/2 .

8.4.61 Let Sn =
∑n

k=1
1√
k
. Then this looks like a left Riemann sum for the function y = 1√

x
on [1, n + 1].

Because each rectangle lies above the curve itself, we see that Sn is bounded below by the integral of 1√
x
on

[1, n+ 1]. Now, ∫ n+1

1

1√
x
dx =

∫ n+1

1

x−1/2 dx = 2
√
x

∣∣∣∣n+1

1

= 2
√
n+ 1− 2.

This integral diverges as n → ∞, so the series does as well by the bound above.

8.4.62
∑∞

k=1(ak ± bk) = limn→∞
∑n

k=1(ak ± bk) = limn→∞ (
∑n

k=1 ak ±∑n
k=1 bk) = limn→∞

∑n
k=1 ak ±

limn→∞
∑n

k=1 bk = A±B.

8.4.63
∑∞

k=1 cak = lim
n→∞

∑n
k=1 cak = lim

n→∞ c
∑n

k=1 ak = c lim
n→∞

∑n
k=1 ak, so that one sum diverges if and

only if the other one does.

8.4.64
∞∑
k=2

1

k ln k
diverges by the Integral Test, because

∫∞
2

1
x ln x = limb→∞

(
ln lnx|b2

)
= ∞.

8.4.65 To approximate the sequence for ζ(m), note that the remainder Rn after n terms is bounded by∫ ∞

n

1

xm
dx =

1

m− 1
n1−m.

For m = 3, if we wish to approximate the value to within 10−3, we must solve
1

2
n−2 < 10−3, so that n = 23,

and

23∑
k=1

1

k3
≈ 1.201151926. The true value is ≈ 1.202056903.

For m = 5, if we wish to approximate the value to within 10−3, we must solve
1

4
n−4 < 10−3, so that n = 4,

and
4∑

k=1

1

k5
≈ 1.036341789. The true value is ≈ 1.036927755.
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8.4.66

a. Starting with cot2 x <
1

x2
< 1 + cot2 x, substitute kθ for x:

cot2(kθ) <
1

k2θ2
< 1 + cot2(kθ),

n∑
k=1

cot2(kθ) <

n∑
k=1

1

k2θ2
<

n∑
k=1

(1 + cot2(kθ)),

n∑
k=1

cot2(kθ) <
1

θ2

n∑
k=1

1

k2
< n+

n∑
k=1

cot2(kθ).

Note that the identity is valid because we are only summing for k up to n, so that kθ < π
2 .

b. Substitute
n(2n− 1)

3
for the sum, using the identity:

n(2n− 1)

3
<

1

θ2

n∑
k=1

1

k2
< n+

n(2n− 1)

3
,

θ2
n(2n− 1)

3
<

n∑
k=1

1

k2
< θ2

n(2n+ 2)

3
,

n(2n− 1)π2

3(2n+ 1)2
<

n∑
k=1

1

k2
<

n(2n+ 2)π2

3(2n+ 1)2
.

c. By the Squeeze Theorem, if the expressions on either end have equal limits as n → ∞, the expression
in the middle does as well, and its limit is the same. The expression on the left is

π2 2n2 − n

12n2 + 12n+ 3
= π2 2− n−1

12 + 12n−1 + 3n−2
,

which has a limit of
π2

6
as n → ∞. The expression on the right is

π2 2n2 + 2n

12n2 + 12n+ 3
= π2 2 + 2n−1

12 + 12n−1 + 3n−3
,

which has the same limit. Thus lim
n→∞

n∑
k=1

1

k2
=

∞∑
k=1

1

k2
=

π2

6
.

8.4.67

∞∑
k=1

1

k2
=

∞∑
k=1

1

(2k)2
+

∞∑
k=1

1

(2k − 1)2
, splitting the series into even and odd terms. But

∑∞
k=1

1
(2k)2 =

1
4

∑∞
k=1

1
k2 . Thus

π2

6 = 1
4
π2

6 +
∑∞

k=1
1

(2k−1)2 , so that the sum in question is 3π2

24 = π2

8 .

8.4.68

a. {Fn} is a decreasing sequence because each term in Fn is smaller than the corresponding term in Fn−1

and thus the sum of terms in Fn is smaller than the sum of terms in Fn−1.
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b. 0 5 10 15 20
n

0.2

0.4

0.6

0.8

1.0
y

c. It appears that lim
n→∞Fn = 0.

8.4.69

a. x1 =
∑2

k=2
1
k = 1

2 , x2 =
∑4

k=3
1
k = 1

3 + 1
4 = 7

12 , x3 =
∑6

k=4
1
k = 1

4 + 1
5 + 1

6 = 37
60 .

b. xn has n terms. Each term is bounded below by 1
2n and bounded above by 1

n+1 . Thus xn ≥ n · 1
2n = 1

2 ,

and xn ≤ n · 1
n+1 < n · 1

n = 1.

c. The right Riemann sum for
∫ 2

1
dx
x using n subintervals has n rectangles of width 1

n ; the right edges of

those rectangles are at 1+ i
n = n+i

n for i = 1, 2, . . . , n. The height of such a rectangle is the value of 1
x

at the right endpoint, which is n
n+i . Thus the area of the rectangle is 1

n · n
n+i =

1
n+i . Adding up over

all the rectangles gives xn.

d. The limit lim
n→∞xn is the limit of the right Riemann sum as the width of the rectangles approaches zero.

This is precisely
∫ 2

1
dx
x = lnx

∣∣∣∣2
1

= ln 2.

8.4.70

a.

The first diagram is a left Riemann sum for
f(x) = 1

x on the interval [1, 11] (we assume
n = 10 for purposes of drawing a graph). The

area under the curve is
∫ n+1

1
1
x dx = ln(n+1),

and the sum of the areas of the rectangles is
obviously 1 + 1

2 + 1
3 + · · ·+ 1

n . Thus

ln(n+ 1) < 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

The second diagram is a right Riemann sum
for the same function on the same interval.
Considering only [1, n], we see that, compar-
ing the area under the curve and the sum of
the areas of the rectangles, that

1

2
+

1

3
+ · · ·+ 1

n
< lnn.

Adding 1 to both sides gives the desired in-
equality.

0 2 4 6 8 10
x

0.2

0.4

0.6

0.8

1.0
y

0 2 4 6 8 10
x

0.2

0.4

0.6

0.8

1.0
y

b. According to part (a), ln(n+ 1) < Sn for n = 1, 2, 3, . . . ,, so that En = Sn − ln(n+ 1) > 0.

c. Using the second figure above and assuming n = 9, the final rectangle corresponds to 1
n+1 , and the

area under the curve between n+ 1 and n+ 2 is clearly ln(n+ 2)− ln(n+ 1).
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d. En+1 −En = Sn+1 − ln(n+ 2)− (Sn − ln(n+ 1)) = 1
n+1 − (ln(n+ 2)− ln(n+ 1)). But this is positive

because of the bound established in part (c).

e. Using part (a), En = Sn − ln(n+ 1) < 1 + lnn− ln(n+ 1) < 1.

f. En is a monotone (increasing) sequence that is bounded, so it has a limit.

g. The first ten values (E1 through E10) are

.3068528194, .401387711, .447038972, .473895421, .491573864,

.504089851, .513415601, .520632566, .526383161, .531072981.

E1000 ≈ 0.576716082.

h. For Sn > 10 we need 10−0.5772 = 9.4228 > ln(n+1). Solving for n gives n ≈ 12366.16, so n = 12367.

8.4.71

a. Note that the center of gravity of any stack of dominoes is the average of the locations of their centers.
Define the midpoint of the zeroth (top) domino to be x = 0, and stack additional dominoes down and
to its right (to increasingly positive x-coordinates). Let m(n) be the x-coordinate of the midpoint of
the nth domino. Then in order for the stack not to fall over, the left edge of the nth domino must
be placed directly under the center of gravity of dominos 0 through n − 1, which is 1

n

∑n−1
i=0 m(i),

so that m(n) = 1 + 1
n

∑n−1
i=0 m(i). We claim that in fact m(n) =

∑n
k=1

1
k . Use induction. This is

certainly true for n = 1. Note first that m(0) = 0, so we can start the sum at 1 rather than at 0.

Now, m(n) = 1 + 1
n

∑n−1
i=1 m(i) = 1 + 1

n

∑n−1
i=1

∑i
j=1

1
j . Now, 1 appears n − 1 times in the double

sum, 2 appears n − 2 times, and so forth, so we can rewrite this sum as m(n) = 1 + 1
n

∑n−1
i=1

n−i
i =

1 + 1
n

∑n−1
i=1

(
n
i − 1

)
= 1 + 1

n

(
n
∑n−1

i=1
1
i − (n− 1)

)
=
∑n−1

i=1
1
i + 1− n−1

n =
∑n

i=1
1
i , and we are done

by induction (noting that the statement is clearly true for n = 0, n = 1). Thus the maximum overhang
is
∑n

k=2
1
k .

b. For an infinite number of dominos, because the overhang is the harmonic series, the distance is poten-
tially infinite.

8.4.72

a. The circumference of the kth layer is 2π · 1
k , so its area is 2π · 1

k and thus the total vertical surface area∑∞
k=1 2π · 1

k = 2π
∑∞

k=1
1
k = ∞. The horizontal surface area, however, is π, since looking at the cake

from above, the horizontal surface covers the circle of radius 1, which has area π · 12 = π.

b. The volume of a cylinder of radius r and height h is πr2h, so the volume of the kth layer is π · 1
k2 ·1 = π

k2 .
Thus the volume of the cake is

∞∑
k=1

π

k2
= π

∞∑
k=1

1

k2
=

π3

6
≈ 5.168.

c. This cake has infinite surface area, yet it has finite volume!

8.4.73

a. Dividing both sides of the recurrence equation by fn gives fn+1

fn
= 1 + fn−1

fn
. Let the limit of the ratio

of successive terms be L. Taking the limit of the previous equation gives L = 1+ 1
L . Thus L

2 = L+1,

so L2 − L− 1 = 0. The quadratic formula gives L =
1±

√
1−4·(−1)

2 , but we know that all the terms are

positive, so we must have L = 1+
√
5

2 = φ ≈ 1.618.

b. Write the recurrence in the form fn−1 = fn+1 − fn and divide both sides by fn+1. Then we have
fn−1

fn+1
= 1− fn

fn+1
. Taking the limit gives 1− 1

φ on the right-hand side.
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c. Consider the harmonic series with the given groupings, and compare it with the sum of fk−1

fk+1
as shown.

The first three terms match exactly. The sum of the next two are 1
4 + 1

5 > 1
5 + 1

5 = 2
5 . The sum of the

next three are 1
6 + 1

7 + 1
8 > 1

8 + 1
8 + 1

8 = 3
8 . The sum of the next five are 1

9 + · · · + 1
13 > 5 · 1

13 = 5
13 .

Thus the harmonic series is bounded below by the series
∑∞

k=1
fk−1

fk+1
.

d. The result above implies that the harmonic series diverges, because the series
∑∞

k=1
fk−1

fk+1
diverges,

since its general term has limit 1− 1
φ �= 0.

8.5 The Ratio, Root, and Comparison Tests

8.5.1 Given a series
∑

ak of positive terms, compute limk→∞
ak+1

ak
and call it r. If 0 ≤ r < 1, the given

series converges. If r > 1 (including r = ∞), the given series diverges. If r = 1, the test is inconclusive.

8.5.2 Given a series
∑

ak of positive terms, compute limk→∞ k
√
ak and call it r. If 0 ≤ r < 1, the given

series converges. If r > 1 (including r = ∞), the given series diverges. If r = 1, the test is inconclusive.

8.5.3 Given a series of positive terms
∑

ak that you suspect converges, find a series
∑

bk that you know
converges, for which limk→∞ ak

bk
= L where L ≥ 0 is a finite number. If you are successful, you will have

shown that the series
∑

ak converges.
Given a series of positive terms

∑
ak that you suspect diverges, find a series

∑
bk that you know diverges,

for which limk→∞ ak

bk
= L where L > 0 (including the case L = ∞). If you are successful, you will have

shown that
∑

ak diverges.

8.5.4 The Divergence Test.

8.5.5 The Ratio Test.

8.5.6 The Comparison Test or the Limit Comparison Test.

8.5.7 The difference between successive partial sums is a term in the sequence. Because the terms are
positive, differences between successive partial sums are as well, so the sequence of partial sums is increasing.

8.5.8 No. They all determine convergence or divergence by approximating or bounding the series by some
other series known to converge or diverge; thus, the actual value of the series cannot be determined.

8.5.9 The ratio between successive terms is ak+1

ak
= 1

(k+1)! · (k)!
1 = 1

k+1 , which goes to zero as k → ∞, so the

given series converges by the Ratio Test.

8.5.10 The ratio between successive terms is ak+1

ak
= 2k+1

(k+1)! · (k)!
2k

= 2
k+1 ; the limit of this ratio is zero, so the

given series converges by the Ratio Test.

8.5.11 The ratio between successive terms is ak+1

ak
= (k+1)2

4(k+1)
· 4k

(k)2 = 1
4

(
k+1
k

)2
. The limit is 1/4 as k → ∞,

so the given series converges by the Ratio Test.

8.5.12 The ratio between successive terms is

ak+1

ak
=

(k + 1)(k+1)

2(k+1)
· 2

k

kk
=

k + 1

2

(
k + 1

k

)k

.

Note that limk→∞
(
k+1
k

)k
= e, but limk→∞ k+1

2 = ∞, so the given series diverges by the Ratio Test.

8.5.13 The ratio between successive terms is ak+1

ak
= (k+1)e−(k+1)

(k)e−(k) = k+1
(k)e . The limit of this ratio as k → ∞

is 1/e < 1, so the given series converges by the Ratio Test.
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8.5.14 The ratio between successive terms is ak+1

ak
= (k+1)k+1

(k+1)! · k!
kk =

(
k+1
k

)k
. This has limit e as k → ∞, so

the limit of the ratio of successive terms is e > 1, so the given series diverges by the Ratio Test.

8.5.15 The ratio between successive terms is 2k+1

(k+1)99 · (k)99

2k
= 2

(
k

k+1

)99
; the limit as k → ∞ is 2, so the

given series diverges by the Ratio Test.

8.5.16 The ratio between successive terms is (k+1)6

(k+1)! · (k)!
(k)6 = 1

k+1

(
k+1
k

)6
; the limit as k → ∞ is zero, so the

given series converges by the Ratio Test.

8.5.17 The ratio between successive terms is ((k+1)!)2

(2(k+1))! · (2k)!
((k)!)2 = (k+1)2

(2k+2)(2k+1) ; the limit as k → ∞ is 1/4, so

the given series converges by the Ratio Test.

8.5.18 Note that this series is
∑∞

k=1
2k

k4 . The ratio between successive terms is 2k+1k4

2k(k+1)4
= 2
(

k
k+1

)4
→ 2 as

k → ∞. So the given series diverges by the ratio test.

8.5.19 The kth root of the kth term is 10k3+3
9k3+k+1 . The limit of this as k → ∞ is 10

9 > 1, so the given series
diverges by the Root Test.

8.5.20 The kth root of the kth term is 2k
k+1 . The limit of this as k → ∞ is 2 > 1, so the given series diverges

by the Root Test.

8.5.21 The kth root of the kth term is k2/k

2 . The limit of this as k → ∞ is 1
2 < 1, so the given series

converges by the Root Test.

8.5.22 The kth root of the kth term is
(
1 + 3

k

)k
. The limit of this as k → ∞ is = e3 > 1, so the given series

diverges by the Root Test.

8.5.23 The kth root of the kth term is
(

k
k+1

)2k
. The limit of this as k → ∞ is e−2 < 1, so the given series

converges by the Root Test.

8.5.24 The kth root of the kth term is 1
ln(k+1) . The limit of this as k → ∞ is 0, so the given series converges

by the Root Test.

8.5.25 The kth root of the kth term is
(

1
kk

)
. The limit of this as k → ∞ is 0, so the given series converges

by the Root Test.

8.5.26 The kth root of the kth term is k1/k

e . The limit of this as k → ∞ is 1
e < 1, so the given series

converges by the Root Test.

8.5.27 1
k2+4 < 1

k2 , and
∑∞

k=1
1
k2 converges, so

∑∞
k=1

1
k2+4 converges as well, by the Comparison Test.

8.5.28 Use the Limit Comparison Test with
{

1
k2

}
. The ratio of the terms of the two series is k4+k3−k2

k4+4k2−3
which has limit 1 as k → ∞. Because the comparison series converges, the given series does as well.

8.5.29 Use the Limit Comparison Test with
{

1
k

}
. The ratio of the terms of the two series is k3−k

k3+4 which has
limit 1 as k → ∞. Because the comparison series diverges, the given series does as well.

8.5.30 Use the Limit Comparison Test with
{

1
k

}
. The ratio of the terms of the two series is 0.0001k

k+4 which
has limit 0.0001 as k → ∞. Because the comparison series diverges, the given series does as well.

8.5.31 For all k, 1
k3/2+1

< 1
k3/2 . The series whose terms are 1

k3/2 is a p-series which converges, so the given
series converges as well by the Comparison Test.

8.5.32 Use the Limit Comparison Test with {1/k}. The ratio of the terms of the two series is k
√

k
k3+1 =√

k3

k3+1 , which has limit 1 as k → ∞. Because the comparison series diverges, the given series does as well.
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8.5.33 sin(1/k) > 0 for k ≥ 1, so we can apply the Comparison Test with 1/k2. sin(1/k) < 1, so sin(1/k)
k2 < 1

k2 .
Because the comparison series converges, the given series converges as well.

8.5.34 Use the Limit Comparison Test with {1/3k}. The ratio of the terms of the two series is 3k

3k−2k
=

1

1−
(

2k

3k

) , which has limit 1 as k → ∞. Because the comparison series converges, the given series does as well.

8.5.35 Use the Limit Comparison Test with {1/k}. The ratio of the terms of the two series is k
2k−√

k
=

1
2−1/

√
k
, which has limit 1/2 as k → ∞. Because the comparison series diverges, the given series does as

well.

8.5.36 1
k
√
k+2

< 1
k
√
k
= 1

k3/2 . Because the series whose terms are 1
k3/2 is a p−series with p > 1, it converges.

Because the comparison series converges, the given series converges as well.

8.5.37 Use the Limit Comparison Test with k2/3

k3/2 . The ratio of corresponding terms of the two series is
3√k2+1√
k3+1

· k3/2

k2/3 =
3√k2+1

3√
k2

·
√
k3√

k3+1
, which has limit 1 as k → ∞. The comparison series is the series whose terms

are k2/3−3/2 = k−5/6, which is a p-series with p < 1, so it, and the given series, both diverge.

8.5.38 For all k, 1
(k ln k)2 < 1

k2 . Because the series whose terms are 1
k2 converges, the given series converges

as well.

8.5.39

a. False. For example, let {ak} be all zeros, and {bk} be all 1’s.

b. True. This is a result of the Comparison Test.

c. True. Both of these statements follow from the Comparison Test.

d. True. The limit of the ratio is always 1 in the case, so the test is inconclusive.

8.5.40 Use the Divergence Test: lim
k→∞

ak = lim
k→∞

(
1− 1

k

)k
= 1

e �= 0, so the given series diverges.

8.5.41 Use the Divergence Test: lim
k→∞

ak = lim
k→∞

(
1 + 2

k

)k
= e2 �= 0, so the given series diverges.

8.5.42 Use the Root Test: The kth root of the kth term is k2

2k2+1 . The limit of this as k → ∞ is 1
2 < 1, so

the given series converges by the Root Test.

8.5.43 Use the Ratio Test: the ratio of successive terms is (k+1)100

(k+2)! · (k+1)!
k100 =

(
k+1
k

)100 · 1
k+2 . This has limit

1100 · 0 = 0 as k → ∞, so the given series converges by the Ratio Test.

8.5.44 Use the Comparison Test. Note that sin2 k ≤ 1 for all k, so sin2 k
k2 ≤ 1

k2 for all k. Because
∑∞

k=1
1
k2

converges, so does the given series.

8.5.45 Use the Root Test. The kth root of the kth term is (k1/k − 1)2, which has limit 0 as k → ∞, so the
given series converges by the Root Test.

8.5.46 Use the Limit Comparison Test with the series whose kth term is
(
2
e

)k
. Note that limk→∞ 2k

ek−1
· ek
2k

=

limk→∞ ek

ek−1
= 1. The given series thus converges because

∑∞
k=1

(
2
e

)k
converges (because it is a geometric

series with r = 2
e < 1). Note that it is also possible to show convergence with the Ratio Test.

8.5.47 Use the Divergence Test: limk→∞ k2+2k+1
3k2+1 = 1

3 �= 0, so the given series diverges.
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8.5.48 Use the Limit Comparison Test with the series whose kth term is 1
5k
. Note that limk→∞ 1

5k−1
· 5k1 = 1,

and the series
∑∞

k=1
1
5k

converges because it is a geometric series with r = 1
5 . Thus, the given series also

converges.

8.5.49 Use the Limit Comparison Test with the harmonic series. Note that limk→∞
1

ln k
1
k

= limk→∞ k
ln k = ∞,

and because the harmonic series diverges, the given series does as well.

8.5.50 Use the Limit Comparison Test with the series whose kth term is 1
5k
. Note that limk→∞ 1

5k−3k
· 5k1 =

limk→∞ 1
1−(3/5)k

= 1, and the series
∑∞

k=3
1
5k

converges because it is a geometric series with r = 1
5 . Thus,

the given series also converges.

8.5.51 Use the Limit Comparison Test with the series whose kth term is 1
k3/2 . Note that limk→∞ 1√

k3−k+1
·

√
k3

1 = limk→∞
√

k3

k3−k+1 =
√
1 = 1, and the series

∑∞
k=1

1
k3/2 converges because it is a p-series with p = 3

2 .

Thus, the given series also converges.

8.5.52 Use the Ratio Test: ak+1

ak
= ((k+1)!)3

(3k+3)! · (3k)!
(k!)3 = (k+1)3

(3k+1)(3k+2)(3k+3) , which has limit 1/27 as k → ∞.

Thus the given series converges.

8.5.53 Use the Comparison Test. Each term 1
k + 2−k > 1

k . Because the harmonic series diverges, so does
this series.

8.5.54 Use the Comparison Test with {5/k}. Note that 5 ln k
k > 5

k for k > 1. Because the series whose terms
are 5/k diverges, the given series diverges as well.

8.5.55 Use the Ratio Test. ak+1

ak
= 2k+1(k+1)!

(k+1)k+1 · (k)k

2k(k)!
= 2
(

k
k+1

)k
, which has limit 2

e as k → ∞, so the given

series converges.

8.5.56 Use the Root Test. lim
k→∞

(
1− 1

k

)k
= e−1 < 1, so the given series converges.

8.5.57 Use the Limit Comparison Test with {1/k3}. The ratio of corresponding terms is k11

k11+3 , which has
limit 1 as k → ∞. Because the comparison series converges, so does the given series.

8.5.58 Use the Root Test. lim
k→∞

1
1+p = 1

1+p < 1 because p > 0, so the given series converges.

8.5.59 This is a p-series with exponent greater than 1, so it converges.

8.5.60 Use the Comparison Test: 1
k2 ln k < 1

k2 . Because the series whose terms are 1
k2 is a convergent

p−series, the given series converges as well.

8.5.61 ln
(

k+2
k+1

)
= ln(k+ 2)− ln(k+ 1), so this series telescopes. We get

∑n
k=1 ln

(
k+2
k+1

)
= ln(n+ 2)− ln 2.

Because limn→∞ ln(n+2)− ln 2 = ∞, the sequence of partial sums diverges, so the given series is divergent.

8.5.62 Use the Divergence Test. Note that limk→∞ k−1/k = limk→∞ 1
k√
k

= 1 �= 0, so the given series

diverges.

8.5.63 For k > 7, ln k > 2 so note that 1
kln k < 1

k2 . Because
∑∞

k=1
1
k2 converges, the given series converges

as well.

8.5.64 Use the Limit Comparison Test with {1/k2}. Note that sin2(1/k)
1/k2 =

(
sin(1/k)

1/k

)2
. Because lim

x→0

sin x
x = 1,

the limit of this expression is 12 = 1 as k → ∞. Because
∑∞

k=1
1
k2 converges, the given series does as well.

8.5.65 Use the Limit Comparison Test with the harmonic series. tan(1/k)
1/k has limit 1 as k → ∞ because

lim
x→0

tan x
x = 1. Thus the original series diverges.

Copyright c© 2015 Pearson Education, Inc.



8.5. The Ratio, Root, and Comparison Tests 47

8.5.66 Use the Root Test. lim
k→∞

k
√
ak = lim

k→∞
k
√
100 · 1

k = 0, so the given series converges.

8.5.67 Note that
1

(2k + 1) · (2k + 3)
=

1

2

(
1

2k + 1
− 1

2k + 3

)
. Thus this series telescopes.

n∑
k=0

1

(2k + 1)(2k + 3)
=

1

2

n∑
k=0

(
1

2k + 1
− 1

2k + 3

)
=

1

2

(
− 1

2n+ 3
+ 1

)
,

so the given series converges to 1/2, because that is the limit of the sequence of partial sums.

8.5.68 This series is
∑∞

k=1
k−1
k2 =

∑∞
k=1

(
1
k − 1

k2

)
. Because

∑∞
k=1

1
k2 converges, if the original series also

converged, we would have that
∑∞

k=1
1
k converged, which is false. Thus the original series diverges.

8.5.69 This series is
∑∞

k=1
k2

k! . By the Ratio Test, ak+1

ak
= (k+1)2

(k+1)! · k!
k2 = 1

k+1

(
k+1
k

)2
, which has limit 0 as

k → ∞, so the given series converges.

8.5.70 For any p, if k is sufficently large then k1/p > ln k because powers grow faster than logs, so that
k > (ln k)p and thus 1/k < 1/(ln k)p. Because

∑
1/k diverges, we see that the original series diverges for all

p.

8.5.71 For p ≤ 1 and k > e, ln k
kp > 1

kp . The series
∑∞

k=1
1
kp diverges, so the given series diverges. For p > 1,

let q < p− 1; then for sufficiently large k, ln k < kq, so that by the Comparison Test, ln k
kp < kq

kp = 1
kp−q . But

p− q > 1, so that
∑∞

k=1
1

kp−q is a convergent p-series. Thus the original series is convergent precisely when
p > 1.

8.5.72 For p �= 1, ∫ ∞

2

dx

x lnx(ln lnx)p
= lim

b→∞

(
(ln lnx)1−p

1− p

∣∣∣∣b
2

)
.

This improper integral converges if and only p > 1. If p = 1, we have∫ ∞

2

dx

x(lnx) ln lnx
= lim

b→∞
ln ln lnx

∣∣∣∣b
2

= ∞.

Thus the original series converges for p > 1.

8.5.73 For p ≤ 1, (ln k)p

kp > 1
kp for k ≥ 3, and

∑∞
k=1

1
kp diverges for p ≤ 1, so the original series diverges. For

p > 1, let q < p− 1; then for sufficiently large k, (ln k)p < kq. Note that (ln k)p

kp < kq

kp = 1
kp−q . But p− q > 1,

so
∑∞

k=1
1

kp−q converges, so the given series converges. Thus, the given series converges exactly for p > 1.

8.5.74 Using the Ratio Test, ak+1

ak
= (k+1)!pk+1

(k+2)k+1 · (k+1)k

(k)!pk = (k+1)p(k+1)k

(k+2)k+1 = p
(

k+1
k+2

)k+1

= p ·
(

1
1+ 1

k+1

)k+1

,

which has limit pe−1. The series converges if the ratio limit is less than 1, so if p < e. If p > e, the given
series diverges by the Ratio Test. If p = e, the given series diverges by the Divergence Test.

8.5.75 Use the Ratio Test:

lim
k→∞

ak+1

ak
= lim

k→∞
(k + 1)pk+1

k + 2
· k + 1

kpk
= p,

so the given series converges for p < 1 and diverges for p > 1. For p = 1 the given series diverges by limit
comparison with the harmonic series.

8.5.76 ln
(

k
k+1

)p
= p(ln(k)− ln(k + 1)), so

∞∑
k=1

ln

(
k

k + 1

)p

= p

∞∑
k=1

(ln(k)− ln(k + 1))

which telescopes, and the nth partial sum is −p ln(n + 1), and limn→∞ −p ln(n + 1) is not a finite number
for any value of p other than 0. The given series diverges for all values of p other than p = 0.
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8.5.77 lim
k→∞

ak = lim
k→∞

(
1− p

k

)k
= e−p �= 0, so this sequence diverges for all p by the Divergence Test.

8.5.78 Use the Limit Comparison Test: lim
k→∞

a2
k

ak
= lim

k→∞
ak = 0, because

∑
ak converges. By the Limit

Comparison Test, the series
∑

a2k must converge as well.

8.5.79 These tests apply only for series with positive terms, so assume r > 0. Clearly the series do not
converge for r = 1, so we assume r �= 1 in what follows. Using the Integral Test,

∑
rk converges if and

only if

∫ ∞

1

rxdx converges. This improper integral has value lim
b→∞

rx

ln r

∣∣∣∣b
1

, which converges only when lim
b→∞

rb

exists, which occurs only for r < 1. Using the Ratio Test,
ak+1

ak
=

rk+1

rk
= r, so by the Ratio Test, the series

converges if and only if r < 1. Using the Root Test, lim
k→∞

k
√
ak = lim

k→∞
k
√
rk = lim

k→∞
r = r, so again we have

convergence if and only if r < 1. By the Divergence Test, we know that a geometric series diverges if |r| ≥ 1.

8.5.80

a. Use the Limit Comparison Test with the divergent harmonic series. Note that lim
k→∞

sin(1/k)
1/k = 1,

because lim
x→0

sin x
x = 1. Because the comparison series diverges, the given series does as well.

b. We use the Limit Comparison Test with the convergent series
∑

1
k2 . Note that lim

k→∞
(1/k) sin(1/k)

1/k2 =

lim
k→∞

sin(1/k)
1/k = 1, so the given series converges.

8.5.81 To prove case (2), assume L = 0 and that
∑

bk converges. Because L = 0, for every ε > 0, there is
some N such that for all n > N , |ak

bk
| < ε. Take ε = 1; this then says that there is some N such that for all

n > N , 0 < ak < bk. By the Comparison Test, because
∑

bk converges, so does
∑

ak. To prove case (3),
because L = ∞, then lim

k→∞
bk
ak

= 0, so by the argument above, we have 0 < bk < ak for sufficient large k.

But
∑

bk diverges, so by the Comparison Test,
∑

ak does as well.

8.5.82 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

(k + 1)!
· k!
xk

=
x

k + 1
. This has

limit 0 as k → ∞ for any value of x, so the series converges for all x ≥ 0.

8.5.83 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

xk
= x. This has limit x as

k → ∞, so the series converges for x < 1. It clearly does not converge for x = 1. So the series converges for
x ∈ [0, 1).

8.5.84 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

k + 1
· k

xk
= x · k

k + 1
, which

has limit x as k → ∞. Thus this series converges for x < 1; additionally, for x = 1 (where the Ratio Test is
inconclusive), the series is the harmonic series which diverges. So the series converges for x ∈ [0, 1).

8.5.85 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

(k + 1)2
· k

2

xk
= x

(
k

k + 1

)2

,

which has limit x as k → ∞. Thus the series converges for x < 1. When x = 1, the series is 1
k2 , which

converges. Thus the original series converges for 0 ≤ x ≤ 1.

8.5.86 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

x2k+2

(k + 1)2
· k2

x2k
= x2

(
k

k + 1

)2

,

which has limit x2 as k → ∞, so the series converges for x < 1. When x = 1, the series is 1
k2 , which

converges. Thus this series converges for 0 ≤ x ≤ 1.
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8.5.87 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

2k+1
· 2

k

xk
=

x

2
, which has limit

x/2 as k → ∞. Thus the series converges for 0 ≤ x < 2. For x = 2, it is obviously divergent.

8.5.88

a. Let Pn be the nth partial product of the ak: Pn =
∏n

k=1 ak. Then
∑n

k=1 ln ak = ln
∏n

k=1 ak = lnPn.
If
∑

ln ak is a convergent series, then
∑∞

k=1 ln ak = lim
n→∞ lnPn = L < ∞. But then eL = lim

n→∞ elnPn =

lim
n→∞Pn, so that the infinite product converges.

b.
n 2 3 4 5 6 7 8

Pn 3/4 2/3 5/8 3/5 7/12 4/7 9/16

It appears that Pn = n+1
2n , so that lim

n→∞Pn = 1
2 .

c. Because lim
n→∞

∏n
k=2

(
1− 1

k2

)
= 1

2 , taking logs and using part (a) we see that lim
n→∞

∑n
k=1 ln

(
1− 1

k2

)
=

ln 1
2 = − ln 2.

8.5.89

a. ln
∏∞

k=0 e
1/2k =

∑∞
k=0

1
2k

= 2, so that the original product converges to e2.

b. ln
∏∞

k=2

(
1− 1

k

)
= ln

∏∞
k=2

k−1
k =

∑∞
k=2 ln

k−1
k =

∑∞
k=2(ln(k − 1) − ln(k)). This series telescopes to

give Sn = − ln(n), so the original series has limit lim
n→∞Pn = lim

n→∞ e− ln(n) = 0.

8.5.90 The sum on the left is simply the left Riemann sum over n equal intervals between 0 and 1 for

f(x) = xp. The limit of the sum is thus
∫ 1

0
xpdx = 1

p+1x
p+1

∣∣∣∣1
0

= 1
p+1 , because p is positive.

8.5.91

a. Use the Ratio Test:

ak+1

ak
=

1 · 3 · 5 · · · (2k + 1)

pk+1(k + 1)!
· pk(k)!

1 · 3 · 5 · · · (2k − 1)
=

(2k + 1)

(k + 1)p

and this expression has limit 2
p as k → ∞. Thus the series converges for p > 2.

b. Following the hint, when p = 2 we have

∞∑
k=1

(2k)!

2kk!(2 · 4 · 6 · · · 2k) =
∞∑
k=1

(2k)!

(2k)2(k!)2
. Using Stirling’s

formula, the numerator is asymptotic to 2
√
π
√
k(2k)2ke−2k = 2

√
π
√
k(2k)2(kk)2e−2k while the denom-

inator is asymptotic to (2k)22πk(kk)2e−2k, so the quotient is asymptotic to 1√
π
√
k
. Thus the original

series diverges for p = 2 by the Limit Comparison Test with the divergent p-series
∑∞

k=1
1

k1/2 .

8.6 Alternating Series

8.6.1 Because Sn+1 − Sn = (−1)nan+1 alternates signs.

8.6.2 Check that the terms of the series are nonincreasing in magnitude after some finite number of terms,
and that lim

k→∞
ak = 0.
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8.6.3 We have
S = S2n+1 + (a2n − a2n+1) + (a2n+2 − a2n+3) + · · ·

and each term of the form a2k − a2k+1 > 0, so that S2n+1 < S. Also

S = S2n + (−a2n+1 + a2n+2) + (−a2n+3 + a2n+4) + · · ·

and each term of the form −a2k+1 + a2k+2 < 0, so that S < S2n. Thus the sum of the series is trapped
between the odd partial sums and the even partial sums.

8.6.4 The difference between L and Sn is bounded in magnitude by an+1.

8.6.5 The remainder is less than the first neglected term because

S − Sn = (−1)n+1(an+1 + (−an+2 + an+3) + · · · )

so that the sum of the series after the first disregarded term has the opposite sign from the first disregarded
term.

8.6.6 The alternating harmonic series
∑

(−1)k 1
k converges, but not absolutely.

8.6.7 No. If the terms are positive, then the absolute value of each term is the term itself, so convergence
and absolute convergence would mean the same thing in this context.

8.6.8 The idea of the proof is to note that 0 ≤ |ak|+ak ≤ 2 |ak| and apply the Comparison Test to conclude
that if

∑ |ak| converges, then so does
∑

2 |ak|, and thus so must
∑

(|ak|+ak), and then conclude that
∑

ak
must converge as well.

8.6.9 Yes. For example,
∑ (−1)k

k3 converges absolutely and thus not conditionally (see the definition).

8.6.10 The alternating harmonic series
∑

(−1)k 1
k converges conditionally, but not absolutely.

8.6.11 The terms of the series decrease in magnitude, and limk→∞ 1
2k+1 = 0, so the given series converges.

8.6.12 The terms of the series decrease in magnitude, and limk→∞ 1√
k
= 0, so the given series converges.

8.6.13 limk→∞ k
3k+2 = 1

3 �= 0, so the given series diverges.

8.6.14 limk→∞
(
1 + 1

k

)k
= e �= 0, so the given series diverges.

8.6.15 The terms of the series decrease in magnitude, and lim
k→∞

1
k3 = 0, so the given series converges.

8.6.16 The terms of the series decrease in magnitude, and lim
k→∞

1
k2+10 = 0, so the given series converges.

8.6.17 The terms of the series decrease in magnitude, and lim
k→∞

k2

k3+1 = lim
k→∞

1/k
1+1/k3 = 0, so the given series

converges.

8.6.18 The terms of the series eventually decrease in magnitude, because if f(x) = ln x
x2 , then f ′(x) =

x(1−2 ln x)
x4 = 1−2 ln x

x3 , which is negative for large enough x. Further, lim
k→∞

ln k
k2 = lim

k→∞
1/k
2k = lim

k→∞
1

2k2 = 0.

Thus the given series converges.

8.6.19 lim
k→∞

k2−1
k2+3 = 1, so the terms of the series do not tend to zero and thus the given series diverges.

8.6.20
∑∞

k=0

(− 1
5

)k
=
∑∞

k=0(−1)k
(
1
5

)k
. (1/5)k is decreasing, and tends to zero as k → ∞, so the given

series converges.

Copyright c© 2015 Pearson Education, Inc.



8.6. Alternating Series 51

8.6.21 lim
k→∞

(
1 + 1

k

)
= 1, so the given series diverges.

8.6.22 Note that cos(πk) = (−1)k, and so the given series is alternating. Because lim
k→∞

1
k2 = 0 and 1

k2 is

decreasing, the given series is convergent.

8.6.23 The derivative of f(k) = k10+2k5+1
k(k10+1) is f ′(k) = −(k20+2k10+12k15−8k5+1)

k2(k10+1)2 . The numerator is negative

for large enough values of k, and the denominator is always positive, so the derivative is negative for large

enough k. Also, lim
k→∞

k10+2k5+1
k(k10+1) = lim

k→∞
1+2k−5+k−10

k+k−9 = 0. Thus the given series converges.

8.6.24 Clearly 1
k ln2 k

is nonincreasing, and lim
k→∞

1
k ln2 k

= 0, so the given series converges.

8.6.25 lim
k→∞

k1/k = 1 (for example, take logs and apply L’Hôpital’s rule), so the given series diverges by the

Divergence Test.

8.6.26 ak+1 < ak because ak+1

ak
= (k+1)!

(k+1)k+1 · kk

k! =
(

k
k+1

)k
< 1. Additionally, k!

kk → 0 as k → ∞, so the given

series converges.

8.6.27 1√
k2+4

is decreasing and tends to zero as k → ∞, so the given series converges.

8.6.28 lim
k→∞

k sin(1/k) = lim
k→∞

sin(1/k)
1/k = 1, so the given series diverges.

8.6.29 We want 1
n+1 < 10−4, or n+ 1 > 104, so n = 104.

8.6.30 The series starts with k = 0, so we want 1
n! < 10−4, or n! > 104 = 10000. This happens for n = 8.

8.6.31 The series starts with k = 0, so we want 1
2n+1 < 10−4, or 2n+ 1 > 104, n = 5000.

8.6.32 We want 1
(n+1)2 < 10−4, or (n+ 1)2 > 104, so n = 100.

8.6.33 We want 1
(n+1)4 < 10−4, or (n+ 1)4 > 104, so n = 10.

8.6.34 The series starts with k = 0, so we want 1
(2n+1)3 < 10−4, or 2n+ 1 > 104/3, so n = 11.

8.6.35 The series starts with k = 0, so we want 1
3n+1 < 10−4, or 3n+ 1 > 104, n = 3334.

8.6.36 We want 1
(n+1)6 < 10−4, or (n+ 1)6 > 104 = 10000, so n = 4.

8.6.37 The series starts with k = 0, so we want 1
4n

(
2

4n+1 + 2
4n+2 + 1

4n+3

)
< 10−4, or 4n(4n+1)(4n+2)(4n+3)

4(20n2+21n+5) >

10000, which occurs first for n = 6.

8.6.38 The series starts with k = 0, so we want 1
3n+2 < 10−4, so 3n+ 2 > 10000, n = 3333.

8.6.39 To figure out how many terms we need to sum, we must find n such that 1
(n+1)5 < 10−3, so that

(n+ 1)5 > 1000; this occurs first for n = 3. Thus −1
1 + 1

25 − 1
35 ≈ −0.973.

8.6.40 To figure out how many terms we need to sum, we must find n such that 1
(2(n+1)+1)3 < 10−3, or

(2n+ 3)3 > 103, so 2n+ 3 > 10 and n = 4. Thus the approximation is
∑4

k=1
(−1)n

(2n+1)3 ≈ −0.306.

8.6.41 To figure out how many terms we need to sum, we must find n so that n+1
(n+1)2+1 < 10−3, so that

(n+1)2+1
n+1 = n+ 1 + 1

n+1 > 1000. This occurs first for n = 999. We have
∑999

k=1
(−1)kk
k2+1 ≈ −0.269.
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8.6.42 To figure out how many terms we need to sum, we must find n such that n+1
(n+1)4+1 < 10−3, so that

(n+1)4+1
n+1 = (n+ 1)3 + 1

n+1 > 1000, which occurs for n = 9. We have
∑9

k=1
(−1)kk
k4+1 ≈ −0.409.

8.6.43 To figure how many terms we need to sum, we must find n such that 1
(n+1)n+1 < 10−3, or (n+1)n+1 >

1000, so n = 4 (55 = 3125). Thus the approximation is
∑4

k=1
(−1)n

nn ≈ −.783.

8.6.44 To figure how many terms we need to sum, we must find n such that 1
(2(n+1)+1)! < 10−3, or (2n+3)! >

1000, so 2n+ 3 ≥ 7 and n = 2. The approximation is
∑2

k=1
(−1)n+1

(2n+1)! ≈ 0.158

8.6.45 The series of absolute values is a p-series with p = 2/3, so it diverges. The given alternating series
does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.

8.6.46 The series of absolute values is a p-series with p = 1/2, so it diverges. The given alternating series
does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.

8.6.47 The series of absolute values is a p-series with p = 3/2, so it converges absolutely.

8.6.48 The series of absolute values is
∑

1
3k
, which converges, so the series converges absolutely.

8.6.49 The series of absolute values is
∑ |cos(k)|

k3 , which converges by the Comparison Test because |cos(k)|
k3 ≤

1
k3 . Thus the series converges absolutely.

8.6.50 The series of absolute values is
∑

k2√
k6+1

. The limit comparison test with 1
k gives lim

k→∞
k3√
k6+1

=

lim
k→∞

√
k6

k6+1 = 1. Because the comparison series diverges, so does the series of absolute values. The

original series converges conditionally, however, because the terms are nonincreasing and lim
k→∞

k2√
k6+1

=

lim
k→∞

√
k4

k6+1 = 0.

8.6.51 The absolute value of the kth term of this series has limit π/2 as k → ∞, so the given series is
divergent by the Divergence Test.

8.6.52 The series of absolute values is a geometric series with r = 1
e and |r| < 1, so the given series converges

absolutely

8.6.53 The series of absolute values is
∑

k
2k+1 , but lim

k→∞
k

2k+1 = 1
2 , so by the Divergence Test, this series

diverges. The original series does not converge conditionally, either, because lim
k→∞

ak = 1
2 �= 0.

8.6.54 The series of absolute values is
∑

1
ln k , which diverges, so the series does not converge absolutely.

However, because lim
k→∞

1
ln k → 0 and the terms are nonincreasing, the series does converge conditionally.

8.6.55 The series of absolute values is
∑ tan−1(k)

k3 , which converges by the Comparison Test because
tan−1(k)

k3 < π
2

1
k3 , and

∑
π
2

1
k3 converges because it is a constant multiple of a convergent p−series. So the

original series converges absolutely.

8.6.56 The series of absolute values is
∑

ek

(k+1)! . Using the ratio test, ak+1

ak
= ek+1

(k+2)! · (k+1)!
ek

= e
k+2 , which

tends to zero as k → ∞, so the original series converges absolutely.

8.6.57

a. False. For example, consider the alternating harmonic series.

b. True. This is part of Theorem 8.21.
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c. True. This statement is simply saying that a convergent series converges.

d. True. This is part of Theorem 8.21.

e. False. Let ak = 1
k .

f. True. Use the Comparison Test: lim
k→∞

a2
k

ak
= lim

k→∞
ak = 0 because

∑
ak converges, so

∑
a2k and

∑
ak

converge or diverge together. Because the latter converges, so does the former.

g. True, by definition. If
∑|ak| converged, the original series would converge absolutely, not conditionally.

8.6.58 Neither condition is satisfied. ak+1

ak
= (k+1)(2k+1)

(2k+3)k = 2k2+3k+1
2k2+3k > 1, and lim

k→∞
ak = 1

2 .

8.6.59
∑∞

k=1
1
k2 −

∑∞
k=1

(−1)k+1

k2 = 2
∑∞

k=1
1

(2k)2 = 2 · 14
∑∞

k=1
1
k2 , and thus

∑∞
k=1

(−1)k+1

k2 = π2

6 − 1
2 · π

2

6 = π2

12 .

8.6.60
∑∞

k=1
1
k4 −

∑∞
k=1

(−1)k+1

k4 = 2
∑∞

k=1
1

(2k)4 = 2· 1
16

∑∞
k=1

1
k4 , and thus

∑∞
k=1

(−1)k+1

k4 = π4

90 − 1
8 · π

4

90 = 7π4

720 .

8.6.61 Write r = −s; then 0 < s < 1 and
∑

rk =
∑

(−1)ksk. Because |s| < 1, the terms sk are nonincreasing
and tend to zero, so by the Alternating Series Test, the series

∑
(−1)ksk =

∑
rk converges.

8.6.62

a.

As p gets larger, fewer terms are needed to
achieve a particular level of accuracy; this
means that for larger p, the series converge
faster.

2 3 4 5 6 7 8
r

2 � 107

4 � 107

6 � 107

8 � 107

1 � 108

N

p = 1

2 3 4 5 6 7 8
r

2000

4000

6000

8000

10 000

N

p = 2

2 3 4 5 6 7 8
r

100

200

300

400

N

p = 3
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b. This graph shows that
∑

1
k! converges much

faster than any of the powers of k.

2 4 6 8
r

2

4

6

8

10

N

8.6.63 Let S = 1− 1
2 + 1

3 − · · · . Then

S =
(
1− 1

2

)
+
(
1
3 − 1

4

)
+
(
1
5 − 1

6

)
+
(
1
7 − 1

8

)
+ . . .

1
2S = 1

2 − 1
4 + 1

6 − 1
8 + . . .

Add these two series together to get

3

2
S =

3

2
ln 2 = 1 +

1

3
− 1

2
+

1

5
+ · · ·

To see that the results are as desired, consider a collection of four terms:

· · ·+
(

1
4k+1 − 1

4k+2

)
+

(
1

4k+3 − 1
4k+4

)
+ . . .

. . . + 1
4k+2 − 1

4k+4 + · · ·

Adding these results in the desired sign pattern. This repeats for each group of four elements.

8.6.64

a. Note that we can write

Sn = −a1
2

+
1

2

(
n−1∑
k=1

(−1)k(ai − ai+1)

)
+

(−1)nan
2

,

so that

Sn +
(−1)n+1an+1

2
= −a1

2
+

1

2

(
n∑

k=1

(−1)kdi

)
where di = ai − ai+1. Now consider the expression on the right-hand side of this last equation as the
nth partial sum of a series which converges to S. Because the di’s are decreasing and positive, the error
made by stopping the sum after n terms is less than the absolute value of the first omitted term, which
would be 1

2 |dn+1| = 1
2 |an+1 − an+2|. The method in the text for approximating the error simply takes

the absolute value of the first unused term as an approximation of |S − Sn|. Here, Sn is modified by
adding half the next term. Because the terms are decreasing in magnitude, this should be a better
approximation to S than just Sn itself; the right side shows that this intuition is correct, because
1
2 |an+1 − an+2| is at most an+1 and is generally less than that (because generally an+2 < an+1).

b. i. Using the method from the text, we need n such that 1
n+1 < 10−6, i.e. n > 106 − 1. Using the

modified method from this problem, we want 1
2 |an+1 − an+2| < 10−6, so

1

2

(
1

n+ 1
− 1

n+ 2

)
=

1

2(n+ 1)(n+ 2)
< 10−6

This is true when 106 < 2(n+ 1)(n+ 2), which requires n > 705.6, so n ≥ 706.
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ii. Using the method from the book, we need n such that k ln k > 106, which means k ≥ 87848.
Using the method of this problem, we want

1

2

∣∣∣∣( 1

k ln k
− 1

(k + 1) ln(k + 1)

)∣∣∣∣ = ∣∣∣∣ (k + 1) ln(k + 1)− k ln k

2k(k + 1) ln k ln(k + 1)

∣∣∣∣ < 10−6,

so that |2k(k + 1) ln k ln(k + 1)| > |106(k ln k − (k + 1) ln(k + 1))|, which means k ≥ 319.

iii. Using the method from the book, we need k such that
√
k > 106, so k > 1012. Using the method

of this problem, we want

1

2

(
1√
k
− 1√

k + 1

)
=

√
k + 1−√

k

2
√
k(k + 1)

< 10−6

which means that k > 3968.002 so that k ≥ 3969.

8.6.65 Both series diverge, so comparisons of their values are not meaningful.

8.6.66

a. The first ten terms are

(2− 1) +

(
1− 1

2

)
+

(
2

3
− 1

3

)
+

(
1

2
− 1

4

)
+

(
2

5
− 1

5

)

Suppose that k = 2i is even (and so k − 1 = 2i − 1 is odd). Then the sum of the (k − 1)st term and
the kth term is 4

k − 2
k = 2

k = 1
i . Then the sum of the first 2n terms of the given series is

∑n
i=1

1
i .

b. Note that limk→∞ 4
k+1 = limk→∞ 2

k = 0. Thus given ε > 0 there exists N1 so that for k > N1, we have
4

k+1 < ε. Also, there exist N2 so that for k > N2,
2
k < ε. Let N be the larger of N1 or N2. Then for

k > N , we have ak < ε, as desired.

c. The series can be seen to diverge because the even partial sums have limit ∞. This does not contradict
the alternating series test because the terms ak are not nonincreasing.

Chapter Eight Review

1

a. False. Let an = 1− 1
n . This sequence has limit 1.

b. False. The terms of a sequence tending to zero is necessary but not sufficient for convergence of the
series.

c. True. This is the definition of convergence of a series.

d. False. If a series converges absolutely, the definition says that it does not converge conditionally.

e. True. It has limit 1 as n → ∞.

f. False. The subsequence of the even terms has limit 1 and the subsequence of odd terms has limit −1,
so the sequence does not have a limit.

g. False. It diverges by the Divergence Test because limk→∞ k2

k2+1 = 1 �= 0.

h. True. The given series converges by the Limit Comparison Test with the series
∑∞

k=1
1
k2 , and thus its

sequence of partial sums converges.
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2 lim
n→∞

n2 + 4√
4n4 + 1

= lim
n→∞

1 + 4n−2

√
4 + n−4

=
1

2
.

3 lim
n→∞

8n

n!
= 0 because exponentials grow more slowly than factorials.

4 After taking logs, we want to compute

lim
n→∞ 2n ln(1 + 3/n) = lim

n→∞
ln(1 + 3/n)

1/(2n)
.

By L’Hôpital’s rule, this is lim
n→∞

6n
n+3 (after some algebraic manipulations), which is 6. Thus the original

limit is e6.

5 Take logs and compute lim
n→∞(1/n) lnn = lim

n→∞(lnn)/n = lim
n→∞

1
n = 0 by L’Hôpital’s rule. Thus the original

limit is e0 = 1.

6 lim
n→∞(n−√

n2 − 1) = lim
n→∞

n−√
n2−1
1 · n+

√
n2−1

n+
√
n2−1

= lim
n→∞

1
n+

√
n2+1

= 0.

7 Take logs, and then evaluate lim
n→∞

1
lnn ln(1/n) = lim

n→∞(−1) = −1, so the original limit is e−1.

8 This series oscillates among the values ±1/2,±√
3/2,±1, and 0, so it has no limit.

9 an = (−1/0.9)n = (−10/9)n. The terms grow without bound so the sequence does not converge.

10 lim
n→∞ tan−1 n = lim

x→∞ tan−1 x =
π

2
.

11

a. S1 = 1
3 , S2 = 11

24 , S3 = 21
40 , S4 = 17

30 .

b. Sn =
1

2

(
1

1
+

1

2
− 1

n+ 1
− 1

n+ 2

)
, because the series telescopes.

c. From part (b), lim
n→∞Sn = 3

4 , which is the sum of the series.

12 This is a geometric series with ratio 9/10, so the sum is 9/10
1−9/10 = 9.

13
∑∞

k=1 3(1.001)
k = 3

∑∞
k=1(1.001)

k. This is a geometric series with ratio greater than 1, so it diverges.

14 This is a geometric series with ratio −1/5, so the sum is 1
1+1/5 = 5

6

15 1
k(k+1) = 1

k − 1
k+1 , so the series telescopes, and Sn = 1 − 1

n+1 . Thus lim
n→∞Sn = 1, which is the value of

the series.

16 This series clearly telescopes, and Sn = 1√
n
− 1, so lim

n→∞Sn = −1.

17 This series telescopes. Sn = 3− 3
3n+1 , so that lim

n→∞Sn = 3, which is the value of the series.

18
∑∞

k=1 4
−3k =

∑∞
k=1(1/64)

k. This is a geometric series with ratio 1/64, so its sum is 1/64
1−1/64 = 1

63 .

19

∞∑
k=1

2k

3k+2
=

1

9

∞∑
k=1

(
2

3

)k

=
1

9
· 2/3

1− 2/3
=

2

9
.
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20 This is the difference of two convergent geometric series (because both have ratios less than 1). Thus the
sum of the series is equal to

∞∑
k=0

(
1

3

)k

−
∞∑
k=0

(
2

3

)k+1

=
1

1− 1/3
− 2/3

1− 2/3
=

3

2
− 2 = −1

2
.

21

a. It appears that the series converges, because the sequence of partial sums appears to converge to 1.5.

b. The convergence is uncertain.

c. This series clearly appears to diverge, because the partial sums seem to be growing without bound.

22 This is p-series with p = 3/2 > 1, so this series is convergent.

23 The series can be written
∑

1
k2/3 , which is a p-series with p = 2/3 < 1, so this series diverges.

24 ak = 2k2+1√
k3+2

=
√

4k4+4k2+1
k3+2 , so the sequence of terms diverges. By the Divergence Test, the given series

diverges as well.

25 This is a geometric series with ratio 2/e < 1, so the series converges.

26 Note that 1
ak

=
((

1 + 3
k

)k)2
, so lim

k→∞
1

ak
= lim

k→∞

((
1 +

3

k

)k
)2

= (e3)2, so lim
k→∞

ak =
1

e6
�= 0, so the

given series diverges by the Divergence Test.

27 Applying the Ratio Test:

lim
k→∞

ak+1

ak
= lim

k→∞
2k+1(k + 1)!

(k + 1)k+1
· kk

2kk!
= lim

k→∞
2

(
k

k + 1

)k

=
2

e
< 1,

so the given series converges.

28 Use the Limit Comparison Test with 1
k :

1√
k2 + k

/
1

k
=

k√
k2 + k

=

√
k2

k2 + k
,

which has limit 1 as k → ∞. Because
∑

1/k diverges, the original series does as well.

29 Use the Comparison Test: 3
2+ek

< 3
ek
, but

∑
3
ek

converges because it is a geometric series with ratio
1
e < 1. Thus the original series converges as well.

30 lim
k→∞

ak = lim
k→∞

k sin(1/k) = lim
k→∞

sin(1/k)
1/k = 1, so the given series diverges by the Divergence Test.

31 ak = k1/k

k3 = 1
k3−1/k . For k ≥ 2, then, ak < 1

k2 . Because
∑

1
k2 converges, the given series also converges,

by the Comparison Test.

32 Use the Comparison Test: 1
1+ln k > 1

k for k > 1. Because
∑

1
k diverges, the given series does as well.

33 Use the Ratio Test: ak+1

ak
= (k+1)5

ek+1 · ek

k5 = 1
e · (k+1

k

)5
, which has limit 1/e < 1 as k → ∞. Thus the given

series converges.

34 For k > 5, we have k2 − 10 > (k − 1)2, so that ak = 2
k2−10 < 2

(k−1)2 . Because
∑

2
(k−1)2 converges, the

original series does as well.
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35 Use the Comparison Test. Because lim
k→∞

ln k

k1/2
= 0, we have that for sufficiently large k, ln k < k1/2, so

that ak = 2 ln k
k2 < 2k1/2

k2 = 2
k3/2 . Now

∑
2

k3/2 is convergent, because it is a p-series with p = 3/2 > 1. Thus
the original series is convergent.

36 By the Ratio Test: lim
k→∞

ak+1

ak
= lim

k→∞
k+1
ek+1 · ek

k = lim
k→∞

1
e · k+1

k = 1
e < 1. Thus the given series converges.

37 Use the Ratio Test. The ratio of successive terms is 2·4k+1

(2k+3)! · (2k+1)!
2·4k = 4

(2k+3)(2k+2) . This has limit 0 as

k → ∞, so the given series converges.

38 Use the Ratio Test. The ratio of successive term is 9k+1

(2k+2)! · (2k)!
9k

= 9
(2k+2)(2k+1) . This has limit 0 as

k → ∞, so the given series converges.

39 Use the Limit Comparison Test with the harmonic series. Note that lim
k→∞

coth k

k
· k
1
= lim

k→∞
coth k = 1.

Because the harmonic series diverges, the given series does as well.

40 Use the Limit Comparison Test with the convergent geometric series whose kth term is 1
ek
. We have

limk→∞ 1
sinh k · ek

1 = limk→∞ 2ek

ek−e−k = 2 limk→∞ 1
1−e−2k = 2. The given series is therefore convergent.

41 Use the Divergence Test. limk→∞ tanh k = limk→∞ ek+e−k

ek−e−k = 1 �= 0, so the given series diverges.

42 Use the Limit Comparison Test with the convergent geometric series whose kth term is 1
ek
. We have

limk→∞ 1
cosh k · ek

1 = limk→∞ 2ek

ek+e−k = 2 limk→∞ 1
1+e−2k = 2. The given series is therefore convergent.

43 |ak| = 1
k2−1 . Use the Limit Comparison Test with the convergent series

∑
1
k2 . Because lim

k→∞

1
k2−1

1
k2

=

lim
k→∞

k2

k2−1 = 1, the given series converges absolutely.

44 This series does not converge, because lim
k→∞

|ak| = lim
k→∞

k2+4
2k2+1 = 1

2 .

45 Use the Ratio Test on the absolute values of the sequence of terms: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k+1
ek+1 · ek

k =

lim
k→∞

1
e · k+1

k = 1
e < 1. Thus, the original series is absolutely convergent.

46 Using the Limit Comparison Test with the harmonic series, we consider lim
k→∞

ak/(1/k) = lim
k→∞

k√
k2+1

= lim
k→∞

√
k2

k2+1 = 1; because the comparison series diverges, so does the original series. Thus the series is not

absolutely convergent. However, the terms are clearly decreasing to zero, so it is conditionally convergent.

47 Use the Ratio Test on the absolute values of the sequence of terms: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

10
k+1 = 0, so the

series converges absolutely.

48
∑

1
k ln k does not converge because

∫∞
2

1
x ln x dx = limb→∞ ln(lnx)

∣∣∣∣∞
2

= ∞, so the improper integral

diverges. Thus the given series does not converge absolutely. However, it does converge conditionally
because the terms are decreasing and approach zero.

49 Because k2 	 2k, limk→∞
−2·(−2)k

k2 �= 0. The given series thus diverges by the Divergence Test.

50 The series of absolute values converges, by the Limit Comparison Test with the convergent geometric

series whose kth term is 1
ek
. This follows because limk→∞ 1

ek+e−k · ek

1 = limk→∞ 1
1+e−2k = 1.
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51

a. For |x| < 1, lim
k→∞

xk = 0, so this limit is zero.

b. This is a geometric series with ratio −4/5, so the sum is 1
1+4/5 = 5

9 .

52

a. lim
k→∞

(
1
k − 1

k+1

)
= lim

k→∞
1

k(k+1) = 0.

b. This series telescopes, and Sn = 1− 1
n+1 , so lim

n→∞Sn = 1, which is the sum of the series.

53 Consider the constant sequence with ak = 1 for all k. The sequence {ak} converges to 1, but the
corresponding series

∑
ak diverges by the divergence test.

54 This is not possible. If the series
∑∞

k=1 ak converges, then we must have limk→∞ ak = 0.

55

a. This sequence converges because limk→∞ k
k+1 = limk→∞ 1

1+ 1
k

= 1
1+0 = 1.

b. Because the sequence of terms has limit 1 (which means its limit isn’t zero) this series diverges by the
divergence test.

56 No. The geometric sequence converges for −1 < r ≤ 1, while the geometric series converges for −1 <
r < 1. So the geometric sequence converges for r = 1 but the geometric series does not.

57 Because the series converges, we must have lim
k→∞

ak = 0. Because it converges to 8, the partial sums

converge to 8, so that lim
k→∞

Sk = 8.

58 Rn is given by

Rn ≤
∫ ∞

n

1

x5
dx = lim

b→∞

(
− 1

4x4

∣∣∣∣b
n

)
=

1

4n4
.

Thus to approximate the sum to within 10−4, we need 1
4n4 < 10−4, so 4n4 > 104 and n = 8.

59 The series converges absolutely for p > 1, conditionally for 0 < p ≤ 1 in which case {k−p} is decreasing
to zero.

60 By the Integral Test, the series converges if and only if the following integral converges:∫ ∞

2

1

x lnp(x)
dx = lim

b→∞

(
1

1− p
ln(1−p)(x)

∣∣∣∣b
2

)
= lim

b→∞
1

1− p
ln(1−p)(b)−

(
1

1− p

)
· ln(1−p)(2).

This limit exists only if 1 − p < 0, i.e. p > 1. Note that the above calculation is for the case p �= 1. In the
case p = 1, the integral also diverges.

61 The sum is 0.2500000000 to ten decimal places. The maximum error is∫ ∞

20

1

5x
dx = lim

b→∞

(
− 1

5x ln 5

∣∣∣∣b
20

)
=

1

520 ln 5
≈ 6.5× 10−15.

62 The sum is 1.037. The maximum error is∫ ∞

20

1

x5
dx = lim

b→∞

(
− 1

4x4

∣∣∣∣b
20

)
=

1

4 · 204 ≈ 1.6× 10−6.
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63 The maximum error is an+1, so we want an+1 = 1
(k+1)4 < 10−8, or (k + 1)4 > 108, so k = 100.

64

a.
∑∞

k=0 e
kx =

∑∞
k=0(e

x)k = 1
1−ex = 2, so 1− ex = 1/2. Thus ex = 1/2 and x = − ln(2).

b.
∑∞

k=0(3x)
k = 1

1−3x = 4, so that 1− 3x = 1
4 , x = 1

4 .

c. The x’s cancel, so the equation reads
∑∞

k=0

(
1

k−1/2 − 1
k+1/2

)
= 6. The series telescopes, so that the

left side, up to n, is

n∑
k=0

(
1

k − 1/2
− 1

k + 1/2

)
=

1

−1/2
− 1

n+ 1/2
= −2− 1

n+ 1/2

and in the limit the equation then reads −2 = 6, so that there is no solution.

65

a. Let Tn be the amount of additional tunnel dug during week n. Then T0 = 100 and Tn = .95 · Tn−1 =
(.95)nT0 = 100(0.95)n, so the total distance dug in N weeks is

SN = 100

N−1∑
k=0

(0.95)k = 100

(
1− (0.95)N

1− 0.95

)
= 2000(1− 0.95N ).

Then S10 ≈ 802.5 meters and S20 ≈ 1283.03 meters.

b. The longest possible tunnel is S∞ = 100
∑∞

k=0(0.95)
k = 100

1−.95 = 2000 meters.

66 Let tn be the time required to dig meters (n − 1) · 100 through n · 100, so that t1 = 1 week. Then
tn = 1.1 · tn−1 = (1.1)n−1t1 = (1.1)n−1 weeks. The time required to dig 1500 meters is then

15∑
k=1

tk =

15∑
k=1

(1.1)k−1 ≈ 31.77 weeks.

So it is not possible.

67

a. The area of a circle of radius r is πr2. For r = 21−n, this is 22−2nπ. There are 2n−1 circles on the nth

page, so the total area of circles on the nth page is 2n−1 · π22−2n = 21−nπ.

b. The sum of the areas on all pages is
∑∞

k=1 2
1−kπ = 2π

∑∞
k=1 2

−k = 2π · 1/2
1/2 = 2π.

68 x0 = 1, x1 ≈ 1.540302, x2 ≈ 1.57079, x3 ≈ 1.570796327, which is π
2 to nine decimal places. Thus p = 2.

69

a. Bn = 1.0025Bn−1 + 100 and B0 = 100.

b. Bn = 100 · 1.0025n + 100 · 1−1.0025n

1−1.0025 = 100 · 1.0025n − 40000(1− 1.0025n) = 40000(1.0025n+1 − 1).

70

a. an =

∫ 1

0

xn dx =
1

n+ 1
xn+1

∣∣∣∣1
0

=
1

n+ 1
, so lim

n→∞ an = 0.

b. bn =

∫ n

1

1

xp
dx =

1

1− p
x1−p

∣∣∣∣n
1

=
1

1− p
(n1−p − 1). Because p > 1, n1−p → 0 as n → ∞, so that

lim
n→∞ bn = 1

p−1 .
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71

a. T1 =
√
3

16 and T2 = 7
√
3

64 .

b. At stage n, 3n−1 triangles of side length 1/2n are removed. Each of those triangles has an area of√
3

4 · 4n =

√
3

4n+1
, so a total of

3n−1 ·
√
3

4n+1
=

√
3

16
·
(
3

4

)n−1

is removed at each stage. Thus

Tn =

√
3

16

n∑
k=1

(
3

4

)k−1

=

√
3

16

n−1∑
k=0

(
3

4

)k

=

√
3

4

(
1−
(
3

4

)n)
.

c. lim
n→∞Tn =

√
3
4 because

(
3
4

)n → 0 as n → ∞.

d. The area of the triangle was originally
√
3
4 , so none of the original area is left.

72 Because the given sequence is non-decreasing and bounded above by 1, it must have a limit. A reasonable
conjecture is that the limit is 1.
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Chapter 9

Power Series

9.1 Approximating Functions With Polynomials

9.1.1 Let the polynomial be p(x). Then p(0) = f(0), p′(0) = f ′(0), and p′′(0) = f ′′(0).

9.1.2 It generally increases, because the more derivatives of f are taken into consideration, the better “fit”
the polynomial will provide to f .

9.1.3 The approximations are p0(0.1) = 1, p1(0.1) = 1 + 0.1
2 = 1.05, and p2(0.1) = 1 + 0.1

2 − .01
8 = 1.04875.

9.1.4 The first three terms: f(a) + f ′(a)(x− a) + 1
2f

′′(a)(x− a)2.

9.1.5 The remainder is the difference between the value of the Taylor polynomial at a point and the true
value of the function at that point, Rn(x) = f(x)− pn(x).

9.1.6 This is explained in Theorem 9.2. The idea is that the error when using an nth order Taylor polynomial

centered at a is |Rn(x)| ≤ M · |x−a|n+1

(n+1)! where M is an upper bound for the (n+1)st derivative of f for values

between a and x.

9.1.7

a. Note that f(1) = 8, and f ′(x) = 12
√
x, so f ′(1) = 12. Thus, p1(x) = 8 + 12(x− 1).

b. f ′′(x) = 6/
√
x, so f ′′(1) = 6. Thus p2(x) = 8 + 12(x− 2) + 3(x− 1)2.

c. p1(1.1) = 12 · 0.1 + 8 = 9.2. p2(1.1) = 3(.1)2 + 12 · 0.1 + 8 = 9.23.

9.1.8

a. Note that f(1) = 1, and that f ′(x) = −1/x2, so f ′(1) = −1. Thus, p1(x) = 1− (x− 1) = −x+ 2.

b. f ′′(x) = 2/x3, so f ′′(1) = 2. Thus, p2(x) = 2− x+ (x− 1)2.

c. p1(1.05) = 0.95. p2(1.05) = (0.05)2 − 0.05 + 2 = .953.

9.1.9

a. f ′(x) = −e−x, so p1(x) = f(0) + f ′(0)x = 1− x.

b. f ′′(x) = e−x, so p2(x) = f(0) + f ′(0)x+ 1
2f

′′(0)x2 = 1− x+ 1
2x

2.

c. p1(0.2) = 0.8, and p2(0.2) = 1− 0.2 + 1
2 (0.04) = 0.82.

63
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9.1.10

a. f ′(x) = 1
2x

−1/2, so p1(x) = f(4) + f ′(4)(x− 4) = 2 + 1
4 (x− 4).

b. f ′′(x) = − 1
4x

−3/2, so p2(x) = f(4) + f ′(4)(x− 4) + 1
2f

′′(4)(x− 4)2 = 2 + 1
4 (x− 4)− 1

64 (x− 4)2.

c. p1(3.9) = 2 + 1
4 (−0.1) = 2− 0.025 = 1.975, and p2(3.9) = 2− 0.025− 1

64 (0.001) = 1.975.

9.1.11

a. f ′(x) = − 1
(x+1)2 , so p1(x) = f(0) + f ′(0)x = 1− x.

b. f ′′(x) = 2
(x+1)3 , so p2(x) = f(0) + f ′(0)x+ 1

2f
′′(0)x2 = 1− x+ x2.

c. p1(0.05) = 0.95, and p2(0.05) = 1− 0.05 + 0.0025 = 0.953.

9.1.12

a. f ′(x) = − sinx, so p1(x) = cos(π/4)− sin(π/4)(x− π/4) =
√
2
2 (1− (x− π/4)).

b. f ′′(x) = − cosx, so

p2(x) = cos(π/4)− sin(π/4)(x− π/4)− 1

2
cos(π/4)(x− π/4)2

=

√
2

2

(
1− (x− π/4)− 1

2
(x− π/4)2

)
.

c. p1(0.24π) ≈ 0.729, p2(0.24π) ≈ 0.729.

9.1.13

a. f ′(x) = (1/3)x−2/3, so p1(x) = f(8) + f ′(8)(x− 8) = 2 + 1
12 (x− 8).

b. f ′′(x) = (−2/9)x−5/3, so p2(x) = f(8) + f ′(8)(x− 8) + 1
2f

′′(8)(x− 8)2 = 2 + 1
12 (x− 8)− 1

288 (x− 8)2.

c. p1(7.5) ≈ 1.958, p2(7.5) ≈ 1.957.

9.1.14

a. f ′(x) = 1
1+x2 , so p1(x) = f(0) + f ′(0)x = x.

b. f ′′(x) = − 2x
(1+x2)2 , so p2(x) = f(0) + f ′(0)x+ 1

2f
′′(0)x2 = x.

c. p1(0.1) = p2(0.1) = 0.1.

9.1.15 f(0) = 1, f ′(0) = − sin 0 = 0, f ′′(0) = − cos 0 = −1, so that p0(x) = 1, p1(x) = 1, p2(x) = 1− 1
2x

2.

1

�1

q�q

�� � x

y

0

y � cos x

y � p0(x) � p1(x)

y � p2(x)

9.1.16 f(0) = 1, f ′(0) = −e0 = −1, f ′′(0) = e0 = 1, so that p0(x) = 1, p1(x) = 1− x, p2(x) = 1− x+ x2

2 .
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y�e�x

y�p0�x�

y�p1�x�

y�p2�x�

�2 �1 1 2 3 4
x

�2

2

4

6
y

9.1.17 f(0) = 0, f ′(0) = − 1
1−0 = −1,f ′′(0) = − 1

(1−0)2 = −1, so that p0(x) = 0, p1(x) = −x,

p2(x) = −x− 1
2x

2.

�2

�3

�1

1

2

321�1�2�3 x

y

0

y � ln (1 � x)

y � p1(x)

y � p0(x)

y � p2(x)

9.1.18 f(0) = 1, f ′(0) = (−1/2)(0 + 1)−3/2 = −1/2, f ′′(0) = (3/4)(0 + 1)−5/2 = 3/4, so that p0(x) = 1,
p1(x) = 1− x

2 , p2(x) = 1− x
2 + 3

8x
2.

y��1�x���1�2�

y�p0�x�

y�p1�x�

y�p2�x�

�1.0 �0.5 0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

y

9.1.19 f(0) = 0. f ′(x) = sec2 x, f ′′(x) = 2 tanx sec2 x, so that f ′(0) = 1, f ′′(0) = 0. Thus p0(x) = 0,
p1(x) = x, p2(x) = x.

y � tan x

�2

�3

�4

�1

1

2

3

4

q�q x

y

y � p1(x) � p2(x)

y � p0(x)

9.1.20 f(0) = 1, f ′(0) = (−2)(1 + 0)−3 = −2, f ′′(0) = 6(1 + 0)−4 = 6. Thus p0(x) = 1, p1(x) = 1 − 2x,
p2(x) = 1− 2x+ 3x2.
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y��1�x���2�

y�p0�x�
y�p1�x�

y�p2�x�

�1.0 �0.5 0.5 1.0
x

�1

1

2

3

4

5

y

9.1.21 f(0) = 1, f ′(0) = −3(1 + 0)−4 = −3, f ′′(0) = 12(1 + 0)−5 = 12, so that p0(x) = 1, p1(x) = 1 − 3x,
p2(x) = 1− 3x+ 6x2.

2

3

1�1 x

y

0

y � p2(x)

y � p0(x)

y � p1(x)

y � (1 � x)�3

9.1.22 f(0) = 0, f ′(x) = 1√
1−x2

, f ′′(x) = x
(1−x2)3/2

, so that f ′(0) = 1, f ′′(0) = 0. Thus p0(x) = 0, p1(x) = x,

p2(x) = x.

y�p1�x��p2�x�

y�sin��1��x�

y�p0�x�

�1.0 �0.5 0.5 1.0
x

�1.5

�1.0

�0.5

0.5

1.0

1.5

y

9.1.23

a. p2(0.05) ≈ 1.025.

b. The absolute error is
√
1.05− p2(0.05) ≈ 7.68× 10−6.

9.1.24

a. p2(0.1) ≈ 1.032.

b. The absolute error is 1.11/3 − p2(0.1) ≈ 5.8× 10−5.

9.1.25

a. p2(0.08) ≈ 0.962.

b. The absolute error is p2(0.08)− 1√
1.08

≈ 1.5× 10−4.
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9.1.26

a. p2(0.06) = 0.058.

b. The absolute error is ln 1.06− p2(0.06) ≈ 6.9× 10−5.

9.1.27

a. p2(0.15) ≈ 0.861.

b. The absolute error is p2(0.15)− e−0.15 ≈ 5.4× 10−4.

9.1.28

a. p2(0.12) ≈ 0.726.

b. The absolute error is p2(0.12) =
1

1.123 ≈ 1.5× 10−2.

9.1.29

a. Note that f(1) = 1, f ′(1) = 3, and f ′′(1) = 6. Thus, p0(x) = 1, p1(x) = 1 + 3(x − 1), and p2(x) =
1 + 3(x− 1) + 3(x− 1)2.

b.

p0�x�

p1�x�

p2�x�

f�x�
0.0 0.2 0.4 0.6 0.8 1.0 1.2 x

0.5

1.0

1.5

2.0
y

9.1.30

a. Note that f(1) = 8, f ′(1) = 4√
1
= 4, and f ′′(1) = −2

(1)3/2
= −2 Thus, p0(x) = 8, p1(x) = 8 + 4(x − 1),

p2(x) = 8 + 4(x− 1)− (x− 1)2.

b.

p0�x�

p1�x�

p2�x�

f�x�

0.5 1.0 1.5 2.0 2.5 3.0 x

5

10

15

y

9.1.31

a. p0(x) =
√
2
2 , p1(x) =

√
2
2 +

√
2
2 (x− π

4 ), p2(x) =
√
2
2 +

√
2
2 (x− π

4 )−
√
2
4 (x− π

4 )
2.
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b.

�1

1

y

d q f�d x

y � sin x

y � p0(x)

y � p1(x)

y � p2(x)

9.1.32

a. p0(x) =
√
3
2 , p1(x) =

√
3
2 − 1

2

(
x− π

6

)
, p2(x) =

√
3
2 − 1

2

(
x− π

6

)− √
3
4

(
x− π

6

)2
.

b.

y�cos�x�

y�p0�x�

y�p1�x�

y�p2�x�

�1 1 2
x

�1.5

�1.0

�0.5

0.5

1.0

1.5

y

9.1.33

a. p0(x) = 3, p1(x) = 3 + 1
6 (x− 9), p2(x) = 3 + 1

6 (x− 9)− 1
216 (x− 9)2.

b.

�2

2

4

6

8

4 6 8 10 12 14 16 18 20 22 242 x

y

y � �x

y � p0(x)

y � p2(x)

y � p1(x)

9.1.34

a. p0(x) = 2, p1(x) = 2 + 1
12 (x− 8), p2(x) = x+ 1

12 (x− 8)− 1
288 (x− 8)2.

b.

y�x�1�3�

y�p0�x�

y�p1�x�

y�p2�x�

2 4 6 8 10 12
x

0.5

1.0

1.5

2.0

y
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9.1.35

a. p0(x) = 1, p1(x) = 1 + 1
e (x− e), p2(x) = 1 + 1

e (x− e)− 1
2e2 (x− e)2.

b.

y � ln x

�1

�2

�3

1

2

3

4

5

1 2 3 4 5 6 7 8 9 x

y

y � p0(x)

y � p1(x)

y � p2(x)

9.1.36

a. p0(x) = 2, p1(x) = 2 + 1
32 (x− 16), p2(x) = 2 + 1

32 (x− 16)− 3
4096 (x− 16)2.

b.

y�x�1�4�

y�p0�x�

y�p1�x�y�p2�x�

5 10 15 20
x

0.5

1.0

1.5

2.0

y

9.1.37

a. f(1) = π
4 + 2, f ′(1) = 1

2 + 2 = 5
2 . f ′′(1) = − 1

2 + 2 = 3
2 . p0(x) = 2 + π

4 , p1(x) = 2 + π
4 + 5

2 (x − 1),
p2(x) = 2 + π

4 + 5
2 (x− 1) + 3

4 (x− 1)2.

b.

9.1.38

a. f(ln 2) = 2, f ′(ln 2) = 2, f ′′(ln 2) = 2. So p0(x) = 2, p1(x) = 2 + 2(x− ln 2), p2(x) = 2 + 2(x− ln 2) +
(x− ln 2)2.
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b.

y�p0�x�

y�f�x�

y�p1�x�

y�p2�x�

0.5 1.0 1.5 2.0 x

1

2

3

4

5

6

7

y

9.1.39

a. Ue the Taylor polynomial centered at 0 with f(x) = ex. We have p3(x) = 1 + x + 1
2x

2 + 1
6x

3.
p3(0.12) ≈ 1.127.

b. |f(0.12)− p3(0.12)| ≈ 8.9× 10−6.

9.1.40

a. Use the Taylor polynomial centered at 0 with f(x) = cos(x). We have p3(x) = 1− 1
2x

2. p3(−0.2) = 0.98.

b. |f(0.12)− p3(0.12)| ≈ 6.7× 10−5.

9.1.41

a. Use the Taylor polynomial centered at 0 with f(x) = tan(x). We have p3(x) = x+ 1
3x

3.
p3(−0.1) ≈ −0.100.

b. |p3(−0.1)− f(−0.1)| ≈ 1.3× 10−6.

9.1.42

a. Use the Taylor polynomial centered at 0 with f(x) = ln(1 + x). We have p3(x) = x − 1
2x

2 + 1
3x

3.
p3(0.05) ≈ 0.0488.

b. |p3(0.05)− f(0.05)| ≈ 1.5× 10−6.

9.1.43

a. Use the Taylor polynomial centered at 0 with f(x) =
√
1 + x. We have p3(x) = 1 + 1

2x− 1
8x

2 + 1
16x

3.
p3(0.06) ≈ 1.030.

b. |f(0.06)− p3(0.06)| ≈ 4.9× 10−7.

9.1.44

a. Use the Taylor polynomial centered at 81 with f(x) = 4
√
x. We have p3(x) = 3+ 1

108 (x−81)− 1
23328 (x−

81)2 + 7
22674816 (x− 81)3. p3(79) ≈ 2.981.

b. |p3(79)− f(79)| ≈ 4.3× 10−8.

9.1.45

a. Use the Taylor polynomial centered at 100 with f(x) =
√
x. We have p3(x) = 10 + 1

20 (x − 100) −
1

8000 (x− 100)2 + 1
1600000 (x− 100)3. p3(101) ≈ 10.050.

b. |p3(101)− f(101)| ≈ 3.9× 10−9.

9.1.46

a. Use the Taylor polynomial centered at 125 with f(x) = 3
√
x. We have p3(x) = 5 + 1

75 (x − 125) −
1

28125 (x− 125)2 + 1
6328125 (x− 125)3. p3(125) ≈ 5.013.
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b. |p3(126)− f(126)| ≈ 8.4× 10−10.

9.1.47

a. Use the Taylor polynomial centered at 0 with f(x) = sinh(x). Note that f(0) = 0, f ′(0) = 1, f ′′(0) = 0
and f ′′′(0) = 1. Then we have p3(x) = x+ x3/6, so sinh(.5) ≈ (.5)3/6 + .5 ≈ 0.521.

b. |p3(.5)− sinh(.5)| ≈ 2.6× 10−4.

9.1.48

a. Use the Taylor polynomial centered at 0 with f(x) = tanh(x), Note that f(0) = 0, f ′(0) = 1, f ′′(0) = 0,
f ′′′(0) = −2. Then we have p3(x) = −x3/3 + x, so tanh(.5) ≈ −(.5)2/3 + .5 ≈ 0.449.

b. |p3(x)− tanh(.5)| ≈ 3.8× 10−3.

9.1.49 With f(x) = sinx we have Rn(x) =
f (n+1)(c)

(n+ 1)!
xn+1 for c between 0 and x.

9.1.50 With f(x) = cos 2x we have Rn(x) =
f (n+1)(c)

(n+ 1)!
xn+1 for c between 0 and x.

9.1.51 With f(x) = e−x we have f (n+1)(x) = (−1)n+1e−x, so that Rn(x) =
(−1)n+1e−c

(n+ 1)!
xn+1 for c between

0 and x.

9.1.52 With f(x) = cosx we have Rn(x) =
f (n+1)(c)

(n+ 1)!

(
x− π

2

)n+1

for c between π
2 and x.

9.1.53 With f(x) = sinx we have Rn(x) =
f (n+1)(c)

(n+ 1)!

(
x− π

2

)n+1

for c between π
2 and x.

9.1.54 With f(x) = 1
1−x we have f (n+1)(x) = (−1)n+1 1

(1−x)n+2 so that Rn(x) =
(−1)n+1

(1− c)n+2

(
xn+1

)
for c

between 0 and x.

9.1.55 f(x) = sinx, so f (5)(x) = cosx. Because cosx is bounded in magnitude by 1, the remainder is

bounded by |R4(x)| ≤ 0.35

5! ≈ 2.0× 10−5.

9.1.56 f(x) = cosx, so f (4)(x) = cosx. Because cosx is bounded in magnitude by 1, the remainder is

bounded by |R3(x)| ≤ 0.454

4! ≈ 1.7× 10−3.

9.1.57 f(x) = ex, so f (5)(x) = ex. Because e0.25 is bounded by 2, |R4(x)| ≤ 2 · 0.255

5! ≈ 1.63× 10−5.

9.1.58 f(x) = tanx, so f (3)(x) = 2 sec2 x(sec2 x+ 2 tan2 x). Now, since both tanx and secx are increasing
on [0, π/2], and 0.3 < π

6 ≈ 0.524, we can get an upper bound on f (3)(x) on [0, 0.3] by evaluating at π
6 ; this

gives f (3)(x) < 16
3 on [0, 0.3]. Thus |R2(x)| ≤ 16

3 · 0.33

3! = 2.4× 10−2.

9.1.59 f(x) = e−x, so f (5)(x) = −e−x. Because f (5) achieves its maximum magnitude in the range at x = 0,

which has absolute value 1, |R4(x)| ≤ 1 · 0.55

5! ≈ 2.6× 10−4.

9.1.60 f(x) = ln(1 + x), so f (4)(x) = − 6
(x+1)4 . On [0, 0.4], the maximum magnitude is 6, so |R3(x)| ≤

6 · 0.44

4! = 6.4× 10−3.

9.1.61 Here n = 3 or 4, so use n = 4, and M = 1 because f (5)(x) = cosx, so that R4(x) ≤ (π/4)5

5! ≈
2.49× 10−3.
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9.1.62 n = 2 or 3, so use n = 3, and M = 1 because f (4)(x) = cosx, so that |R3(x)| ≤ (π/4)4

4! ≈ 1.6× 10−2.

9.1.63 n = 2 and M = e1/2 < 2, so |R2(x)| ≤ 2 · (1/2)3

3! ≈ 4.2× 10−2.

9.1.64 n = 1 or 2, so use 2, and f (3)(x) = 2 sec2 x(sec2 x+ 2 tan2 x). On [−π
6 , π

6 ] this achieves its maximum

value at ±π
6 ; that value is 16

3 . Thus |R2(x)| ≤ 16
3 · (π/6)3

3! ≈ 1.28× 10−1.

9.1.65 n = 2; f (3)(x) = 2
(1+x)3 , which achieves its maximum at x = −0.2: |f (3)(x)| = 2

0.83 < 4. Then

|R2(x)| ≤ 4 · 0.23

3! ≈ 5.4× 10−3.

9.1.66 n = 1, f ′′(x) = − 1
4 (1 + x)−3/2, which achieves its maximum magnitude at x = −0.1, where it is less

than 1/3. Thus R1(x) ≤ 1
3 · 0.12

2! ≈ 1.7× 10−3.

9.1.67 Use the Taylor series for ex at x = 0. The derivatives of ex are ex. On [−0.5, 0], the maximum

magnitude of any derivative is thus 1 at x = 0, so |Rn(−0.5)| ≤ 0.5n+1

(n+1)! , so for Rn(−0.5) < 10−3 we need
n = 4.

9.1.68 Use the Taylor series at x = 0 for sinx. The magnitude of any derivative of sinx is bounded by 1,

so |Rn(0.2)| ≤ 0.2n+1

(n+1)! , so for Rn(0.2) < 10−3 we need n = 3.

9.1.69 Use the Taylor series for cosx at x = 0. The magnitude of any derivative of cosx is bounded by 1,

so |Rn(−0.25)| ≤ 0.25n+1

(n+1)! , so for |Rn(−0.25)| < 10−3 we need n = 3.

9.1.70 Use the Taylor series for f(x) = ln(1 + x) at x = 0. Then |f (n+1)(x)| = n!
(1+x)n+1 , which for x ∈

[−0.15, 0] achieves its maximum at x = −.15. This maximum is less than (1.2)n+1 · n!. Thus |Rn(−0.15)| ≤
(1.2)n+1 · n! · .18n+1

(n+1)! =
1.2·(0.15)n+1

n , so for |Rn(−0.15)| < 10−3 we need n = 3.

9.1.71 Use the Taylor series for f(x) =
√
x at x = 1. Then |f (n+1)(x)| = 1·3·····(2n−1)

2n+1 x−(2n+1)/2, which
achieves its maximum on [1, 1.06] at x = 1. Then

|Rn(1.06)| ≤ 1 · 3 · · · · · (2n− 1)

2n+1
· (1.06− 1)n+1

(n+ 1)!
,

and for |Rn(0.06)| < 10−3 we need n = 1.

9.1.72 Use the Taylor series for f(x) =
√
1/(1− x) at x = 0. Then |f (n+1)(x)| = 1 · 3 · · · · · (2n+ 1)

2n+1
(1 −

x)(−3−2n)/2, which achieves its maximum on [0, 0.15] at x = 0.15. Thus

|Rn(0.15)| ≤ 1 · 3 · · · · · (2n+ 1)

2n+1
·
(

1

1− 0.15

)(2n+3)/2

· 0.15
n+1

(n+ 1)!

=
1 · 3 · · · · · (2n+ 1)

2n+1(n+ 1)!
·
(

0.15n+1

0.85(2n+3)/2

)
,

and for |Rn(0.15)| < 10−3 we need n = 3.

9.1.73

a. False. If f(x) = e−2x, then f (n)(x) = (−1)n2ne−2x, so that f (n)(0) �= 0 and all powers of x are present
in the Taylor series.

b. True. The constant term of the Taylor series is f(0) = 1. Higher-order terms all involve derivatives of
f(x) = x5 − 1 evaluated at x = 0; clearly for n < 5, f (n)(0) = 0, and for n > 5, the derivative itself
vanishes. Only for n = 5, where f (5)(x) = 5!, is the derivative nonzero, so the coefficient of x5 in the
Taylor series is f (5)(0)/5! = 1 and the Taylor polynomial of order 10 is in fact x5 − 1. Note that this
statement is true of any polynomial of degree at most 10.
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c. True. The odd derivatives of
√
1 + x2 vanish at x = 0, while the even ones do not.

d. True. Clearly the second-order Taylor polynomial for f at a has degree at most 2. However, the
coefficient of (x− a)2 is 1

2f
′′(a), which is zero because f has an inflection point at a.

9.1.74 Let p(x) =
∑n

k=0 ck(x−a)k be the nth polynomial for f(x) at a. Because f(a) = p(a), it follows that
c0 = f(0). Now, the kth derivative of p(x), 1 ≤ k ≤ n, is p(k)(x) = k!ck + terms involving (x− a)i, i > 0, so

that f (k)(a) = p(k)(a) = k! · ck so that ck = f(k)(a)
k! .

9.1.75

a. This matches (C) because for f(x) = (1 + 2x)1/2, f ′′(x) = −(1 + 2x)−3/2 so f ′′(0)
2! = − 1

2 .

b. This matches (E) because for f(x) = (1 + 2x)−1/2, f ′′(x) = 3(1 + 2x)−5/2, so f ′′(0)
2! = 3

2 .

c. This matches (A) because f (n)(x) = 2ne2x, so that f (n)(0) = 2n, which is (A)’s pattern.

d. This matches (D) because f ′′(x) = 8(1 + 2x)−3 and f ′′(0) = 8, so that f ′′(0)/2! = 4

e. This matches (B) because f ′(x) = −6(1 + 2x)−4 so that f ′(0) = −6.

f. This matches (F) because f (n)(x) = (−2)ne−2x, so f (n)(0) = (−2)n, which is (F)’s pattern.

9.1.76

a. �0.4 �0.2 0.2 0.4
x

0.01

0.02

0.03

0.04

0.05

0.06

y

|ln(1− x)− p2(x)|
�0.4 �0.2 0.2 0.4

x

0.005

0.010

0.015

y

|ln(1− x)− p3(x)|

b. The error seems to be largest at x = 1
2 and smallest at x = 0.

c. The error bound found in Example 7 for |ln(1− x)− p3(x)| was 0.25. The actual error seems much
less than that, about 0.02.

9.1.77

a. p2(0.1) = 0.1. The maximum error in the approximation is 1 · 0.13

3! ≈ 1.67× 10−4.

b. p2(0.2) = 0.2. The maximum error in the approximation is 1 · 0.23

3! ≈ 1.33× 10−3.

9.1.78

a. p1(0.1) = 0.1. f ′′(x) = 2 tanx(1 + tan2 x). Because tan(0.1) < 0.2, |f ′′(c)| ≤ 2(.2)(1 + .22) = 0.416.
Thus the maximum error is 0.416

2! · 0.12 ≈ 2.1× 10−3.

b. p1(0.2) = 0.2. The maximum error is 0.416
2 · 0.22 ≈ 8.3× 10−3.

9.1.79

a. p3(0.1) = 1− .01/2 = 0.995. The maximum error is 1 · 0.14

4! ≈ 4.2× 10−6.

b. p3(0.2) = 1− .04/2 = 0.98. The maximum error is 1 · 0.24

4! ≈ 6.7× 10−5.
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9.1.80

a. p2(0.1) = 0.1 (we can take n = 2 because the coefficient of x2 in p2(x) is 0). f (3)(x) = 6x2−2
(x2+1)3 has a

maximum magnitude value of 2, the maximum error is 2 · 0.13

3! ≈ 3.3× 10−4.

b. p2(0.2) = 0.2. The maximum error is 2 · 0.23

3! ≈ 2.7× 10−3.

9.1.81

a. p1(0.1) = 1.05. Because |f ′′(x)| = 1
4 (1 + x)−3/2 has a maximum value of 1/4 at x = 0, the maximum

error is 1
4 · 0.12

2 ≈ 1.3× 10−3.

b. p1(0.2) = 1.1. The maximum error is 1
4 · 0.22

2 = 5× 10−3.

9.1.82

a. p2(0.1) = 0.1 − 0.01/2 = 0.095. Because |f (3)(x)| = 2
(x+1)3 achieves a maximum of 2 at x = 0, the

maximum error is 2 · 0.13

3! ≈ 3.3× 10−4.

b. p2(0.2) = 0.2− 0.04/2 = 0.18. The maximum error is 2 · 0.23

3! ≈ 2.7× 10−3.

9.1.83

a. p1(0.1) = 1.1. Because f ′′(x) = ex is less than 2 on [0, 0.1], the maximum error is less than 2 · 0.12

2! =
10−2.

b. p1(0.2) = 1.2. The maximum error is less than 2 · 0.22

2! = .04 = 4× 10−2.

9.1.84

a. p1(0.1) = 0.1. Because f ′′(x) = x
(1−x2)3/2

is less than 1 on [0, 0.2], the maximum error is 1 · 0.13

3! ≈
1.7× 10−4.

b. p1(0.2) = 0.2. The maximum error is 1 · 0.23

3! ≈ 1.3× 10−3.

9.1.85

a.

|secx− p2(x)| |secx− p4(x)|
−0.2 3.4× 10−4 5.5× 10−6

−0.1 2.1× 10−5 8.5× 10−8

0.0 0 0

0.1 2.1× 10−5 8.5× 10−8

0.2 3.4× 10−4 5.5× 10−6

b. The errors are equal for positive and negative x.
This makes sense, because sec(−x) = secx and
pn(−x) = pn(x) for n = 2, 4. The errors appear
to get larger as x gets farther from zero.

9.1.86

a.

|cosx− p2(x)| |cosx− p4(x)|
−0.2 6.66× 10−5 8.88× 10−8

−0.1 4.17× 10−6 1.39× 10−9

0.0 0 0

0.1 4.17× 10−6 1.39× 10−9

0.2 6.66× 10−5 8.88× 10−8

b. The errors are equal for positive and negative x.
This makes sense, because cos(−x) = cosx and
pn(−x) = pn(x) for n = 2, 4. The errors appear
to get larger as x gets farther from zero.
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9.1.87

a.

|e−x − p1(x)| |e−x − p2(x)|
−0.2 2.14× 10−2 1.40× 10−3

−0.1 5.17× 10−3 1.71× 10−4

0.0 0 0

0.1 4.84× 10−3 1.63× 10−4

0.2 1.87× 10−2 1.27× 10−3

b. The errors are different for positive and negative
displacements from zero, and appear to get larger
as x gets farther from zero.

9.1.88

a.

|f(x)− p1(x)| |f(x)− p2(x)|
−0.2 2.31× 10−2 3.14× 10−4

−0.1 5.36× 10−3 3.61× 10−4

0.0 0 0

0.1 4.69× 10−3 3.10× 10−4

0.2 1.77× 10−2 2.32× 10−3

b. The errors are different for positive and negative
displacements from zero, and appear to get larger
as x gets farther from zero.

9.1.89

a.

|tanx− p1(x)| |tanx− p3(x)|
−0.2 2.71× 10−3 4.34× 10−5

−0.1 3.35× 10−4 1.34× 10−6

0.0 0 0

0.1 3.35× 10−4 1.34× 10−6

0.2 2.71× 10−3 4.34× 10−5

b. The errors are equal for positive and negative x.
This makes sense, because tan(−x) = − tanx and
pn(−x) = −pn(x) for n = 1, 3. The errors appear
to get larger as x gets farther from zero.

9.1.90 The true value of cos
π

12
=

1 +
√
3

2
√
2

≈ 0.966. The 6th-order Taylor polynomial for cosx centered at

x = 0 is

p6(x) = 1− x2

2
+

x4

24
− x6

720
.

Evaluating the polynomials at x = π/12 produces the following table:

n pn
(

π
12

) |pn
(

π
12

)− cos π
12 |

1 1.0000000000 3.41× 10−2

2 0.9657305403 1.95× 10−4

3 0.9657305403 1.95× 10−4

4 0.9659262729 4.47× 10−7

5 0.9659262729 4.47× 10−7

6 0.9659258257 5.47× 10−10

The 6th-order Taylor polynomial for cosx centered at x = π/6 is

p6(x) =

√
3

2
− 1

2

(
x− π

6

)
−

√
3

4

(
x− π

6

)2
+

1

12

(
x− π

6

)3
+

√
3

48

(
x− π

6

)4
− 1

240

(
x− π

6

)5
−

√
3

1440

(
x− π

6

)6
.
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Evaluating the polynomials at x = π/12 produces the following table:

n pn
(

π
12

) |pn
(

π
12

)− cos π
12 |

1 0.9969250977 3.10× 10−2

2 0.9672468750 1.32× 10−3

3 0.9657515877 1.74× 10−4

4 0.9659210972 4.73× 10−6

5 0.9659262214 3.95× 10−7

6 0.9659258342 7.88× 10−9

Comparing the tables shows that using the polynomial centered at x = 0 is more accurate when n is
even while using the polynomial centered at x = π/6 is more accurate when n is odd. To see why, consider
the remainder. Let f(x) = cosx. By Theorem 9.2, the magnitude of the remainder when approximating
f(π/12) by the polynomial pn centered at 0 is:∣∣∣Rn

( π

12

)∣∣∣ = |f (n+1)(c)|
(n+ 1)!

( π

12

)n+1

for some c with 0 < c < π
12 , while the magnitude of the remainder when approximating f(π/12) by the

polynomial pn centered at π/6 is: ∣∣∣Rn

( π

12

)∣∣∣ = |f (n+1)(c)|
(n+ 1)!

( π

12

)n+1

for some c with π
12 < c < π

6 . When n is odd, |f (n+1)(c)| = | cos c|. Because cosx is a positive and decreasing
function over [0, π/6], the magnitude of the remainder in using the polynomial centered at π/6 will be less
than the remainder in using the polynomial centered at 0, and the former polynomial will be more accurate.
When n is even, |f (n+1)(c)| = | sin c|. Because sinx is a positive and increasing function over [0, π/6], the
remainder in using the polynomial centered at 0 will be less than the remainder in using the polynomial
centered at π/6, and the former polynomial will be more accurate.

9.1.91 The true value of e0.35 ≈ 1.419067549. The 6th-order Taylor polynomial for ex centered at x = 0 is

p6(x) = 1 + x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
.

Evaluating the polynomials at x = 0.35 produces the following table:

n pn (0.35) |pn (0.35)− e0.35|
1 1.350000000 6.91× 10−2

2 1.411250000 7.82× 10−3

3 1.418395833 6.72× 10−4

4 1.419021094 4.65× 10−5

5 1.419064862 2.69× 10−6

6 1.419067415 1.33× 10−7

The 6th-order Taylor polynomial for ex centered at x = ln 2 is

p6(x) = 2 + 2(x− ln 2) + (x− ln 2)2 +
1

3
(x− ln 2)3 +

1

12
(x− ln 2)4

+
1

60
(x− ln 2)5 +

1

360
(x− ln 2)6.

Evaluating the polynomials at x = 0.35 produces the following table:
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n pn (0.35) |pn (0.35)− e0.35|
1 1.313705639 1.05× 10−1

2 1.431455626 1.24× 10−2

3 1.417987101 1.08× 10−3

4 1.419142523 7.50× 10−5

5 1.419063227 4.32× 10−6

6 1.419067762 2.13× 10−7

Comparing the tables shows that using the polynomial centered at x = 0 is more accurate for all n. To
see why, consider the remainder. Let f(x) = ex. By Theorem 9.2, the magnitude of the remainder when
approximating f(0.35) by the polynomial pn centered at 0 is:

|Rn(0.35)| = |f (n+1)(c)|
(n+ 1)!

(0.35)n+1 =
ec

(n+ 1)!
(0.35)n+1

for some c with 0 < c < 0.35 while the magnitude of the remainder when approximating f(0.35) by the
polynomial pn centered at ln 2 is:

|Rn(0.35)| = |f (n+1)(c)|
(n+ 1)!

|0.35− ln 2|n+1 =
ec

(n+ 1)!
(ln 2− 0.35)n+1

for some c with 0.35 < c < ln 2. Because ln 2 − 0.35 ≈ 0.35, the relative size of the magnitudes of the
remainders is determined by ec in each remainder. Because ex is an increasing function, the remainder in
using the polynomial centered at 0 will be less than the remainder in using the polynomial centered at ln 2,
and the former polynomial will be more accurate.

9.1.92

a. Let x be a point in the interval on which the derivatives of f are assumed continuous. Then f ′ is con-
tinuous on [a, x], and the Fundamental Theorem of Calculus implies that because f is an antiderivative
of f ′, then

∫ x

a
f ′(t) dt = f(x)− f(a), or f(x) = f(a) +

∫ x

a
f ′(t) dt.

b. Using integration by parts with u = f ′(t) and dv = dt, note that we may choose any antiderivative of
dv; we choose t− x = −(x− t). Then

f(x) = f(a)− f ′(t)(x− t)

∣∣∣∣x
t=a

+

∫ x

a

(x− t)f ′′(t) dt

= f(a)− f ′(a)(x− a) +

∫ x

a

(x− t)f ′′(t) dt.

c. Integrate by parts again, using u = f ′′(t), dv = (x− t) dt, so that v = − (x−t)2

2 :

f(x) = f(a) + f ′(a)(x− a) +

∫ x

a

(x− t)f ′′(t) dt

= f(a) + f ′(a)(x− a)− (x− t)2

2
f ′′(t)

∣∣∣∣x
a

+
1

2

∫ x

a

(x− t)2f ′′′(t) dt

= f(a) + f ′(a)(x− a) +
f ′′(t)
2

(x− a)2 +
1

2

∫ x

a

(x− t)2f ′′′(t) dt.

It is clear that continuing this process will give the desired result, because successive integral of x− t
give − 1

k! (x− t)k.
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d. Lemma: Let g and h be continuous functions on the interval [a, b] with g(t) ≥ 0. Then there is a
number c in [a, b] with ∫ b

a

h(t)g(t) dt = h(c)

∫ b

a

g(t) dt.

Proof: We note first that if g(t) = 0 for all t in [a, b], then the result is clearly true. We can thus
assume that there is some t in [a, b] for which g(t) > 0. Because g is continuous, there must be an
interval about this t on which g is strictly positive, so we may assume that∫ b

a

g(t) dt > 0.

Because h is continuous on [a, b], the Extreme Value Theorem shows that h has an absolute minimum
value m and an absolute maximum value M on the interval [a, b]. Thus

m ≤ h(t) ≤ M

for all t in [a, b], so

m

∫ b

a

g(t) dt ≤
∫ b

a

h(t)g(t) dt ≤ M

∫ b

a

g(t) dt.

Because
∫ b

a
g(t) dt > 0, we have

m ≤
∫ b

a
h(t)g(t) dt∫ b

a
g(t) dt

≤ M.

Now there are points in [a, b] at which h(t) equals m and M , so the Intermediate Value Theorem shows
that there is a point c in [a, b] at which

h(c) =

∫ b

a
h(t)g(t) dt∫ b

a
g(t) dt

or ∫ b

a

h(t)g(t) dt = h(c)

∫ b

a

g(t) dt.

Applying the lemma with h(t) = f(n+1)(t)
n! , g(t) = (x− t)n, we see that Rn(x) =

f(n+1)(c)
n!

∫ x

a
(x− t)n dt =

f(n+1)(c)
n! · 1

n+1 (x− a)n+1 = f(n+1)(c)
(n+1)! (x− a)n+1 for some c ∈ [a, b].

9.1.93

a. The slope of the tangent line to f(x) at x = a is by definition f ′(a); by the point-slope form for the
equation of a line, we have y − f(a) = f ′(a)(x− a), or y = f(a) + f ′(a)(x− a).

b. The Taylor polynomial centered at a is p1(x) = f(a) + f ′(a)(x− a), which is the tangent line at a.

9.1.94

a. p2(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2 (x− a)2, so that p′2(x) = f ′(a) + f ′′(a)(x− a) and p′′2(x) = f ′′(a).

If f has a local maximum at a, then f ′(a) = 0, f ′′(a) ≤ 0, but then p′2(a) = 0 and p′′2(a) ≤ 0 by the
above, so that p2(x) also has a local maximum at a.

b. Similarly, if f has a local minimum at a, then f ′(a) = 0, f ′′(a) ≥ 0, but then p′2(a) = 0 and p′′2(a) ≥ 0
by the above, so that p2(x) also has a local minimum at a.

c. Recall that f has an inflection point at a if the second derivative of f changes sign at a. But p′′2(x) is
a constant, so p2 does not have an inflection point at a (or anywhere else).
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d. No. For example, let f(x) = x3. Then p2(x) = 0, so that the second-order Taylor polynomial has a
local maximum at x = 0, but f(x) does not. It also has a local minimum at x = 0, but f(x) does not.

9.1.95

a. We have

f(0) = f (4)(0) = sin 0 = 0 f(π) = f (4)(π) = sinπ = 0

f ′(0) = f (5)(0) = cos 0 = 1 f ′(π) = f (5)(0) = cosπ = −1

f ′′(0) = − sin 0 = 0 f ′′(π) = − sinπ = 0

f ′′′(0) = − cos 0 = −1 f ′′′(π) = − cosπ = 1.

Thus

p5(x) = x− x3

3!
+

x5

5!

q5(x) = −(x− π) +
1

3!
(x− π)3 − 1

5!
(x− π)5.

b. A plot of the three functions, with sinx the black solid line, p5(x) the dashed line, and q5(x) the dotted
line is below.

�Π �
3 Π

4
�
Π

2
�
Π

4

Π

4

Π

2

3 Π

4
Π 5 Π

4

3 Π

2

7 Π

4
2 Π

x

�1.5

�1.0

�0.5

0.5

1.0

1.5

y

p5(x) and sinx are almost indistinguishable on [−π/2, π/2], after which p5(x) diverges pretty quickly
from sinx. q5(x) is reasonably close to sinx over the entire range, but the two are almost indistin-
guishable on [π/2, 3π/2]. p5(x) is a better approximation than q5(x) on about [−π, π/2), while q5(x)
is better on about (π/2, 2π].

c. Evaluating the errors gives

x |sinx− p5(x)| |sinx− q5(x)|
π
4 3.6× 10−5 7.4× 10−2

π
2 4.5× 10−3 4.5× 10−3

3π
4 7.4× 10−2 3.6× 10−5

5π
4 2.3 3.6× 10−5

7π
4 20.4 7.4× 10−2

d. p5(x) is a better approximation than q5(x) only at x = π
4 , in accordance with part (b). The two are

equal at x = π
2 , after which q5(x) is a substantially better approximation than p5(x).
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9.1.96

a. We have

f(1) = ln 1 = 0 f(e) = ln e = 1

f ′(1) = 1 f ′(e) =
1

3

f ′′(1) = −1 f ′′(e) = − 1

e2

f ′′′(1) = 2 f ′′′(e) =
2

e3
.

Thus

p3(x) = (x− 1)− 1

2!
(x− 1)2 +

2

3!
(x− 1)3 = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3

q3(x) = 1 +
1

e
(x− e)− 1

2e2
(x− e)2 +

1

3e3
(x− e)3.

b. A plot of the three functions, with lnx the black solid line, p3(x) the dashed line, and q3(x) the dotted
line is below.
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c. Evaluating the errors gives

x |lnx− p3(x)| |lnx− q3(x)|
0.5 2.6× 10−2 3.6× 10−1

1.0 0 8.4× 10−2

1.5 1.1× 10−2 1.6× 10−2

2.0 1.4× 10−1 1.5× 10−3

2.5 5.8× 10−1 1.1× 10−5

3.0 1.6 2.7× 10−5

3.5 3.3 1.4× 10−3

d. p3(x) is a better approximation than q3(x) for x = 0.5, 1.0, and 1.5, and q3(x) is a better approximation
for the other points. To see why this is true, note that on [0.5, 4] that f (4)(x) = − 6

x4 is bounded in
magnitude by 6

0.54 = 96, so that (using P3 for the error term for p3 and Q3 as the error term for q3)

P3(x) ≤ 96 · |x− 1|4
4!

= 4 |x− 1|4 , Q3(x) ≤ 96 · |x− e|4
4!

= 4 |x− e|4 .

Thus the relative sizes of P3(x) and Q3(x) are governed by the distance of x from 1 and e. Looking at
the different possibilities for x reveals why the results in part (c) hold.
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9.1.97

a. We have

f(36) =
√
36 = 6 f(49) =

√
49 = 7

f ′(36) =
1

2
· 1√

36
=

1

12
f ′(49) =

1

2
· 1√

49
=

1

14
.

Thus

p1(x) = 6 +
1

12
(x− 36) q1(x) = 7 +

1

14
(x− 49).

b. Evaluating the errors gives

x |√x− p1(x)| |√x− q1(x)|
37 5.7× 10−4 6.0× 10−2

39 5.0× 10−3 4.1× 10−2

41 1.4× 10−2 2.5× 10−2

43 2.6× 10−2 1.4× 10−2

45 4.2× 10−2 6.1× 10−3

47 6.1× 10−2 1.5× 10−3

c. p1(x) is a better approximation than q1(x) for x ≤ 41, and q1(x) is a better approximation for x ≥ 43.
To see why this is true, note that f ′′(x) = − 1

4x
−3/2, so that on [36, 49] it is bounded in magnitude by

1
4 · 36−3/2 = 1

864 . . Thus (using P1 for the error term for p1 and Q1 for the error term for q1)

P1(x) ≤ 1

864
· |x− 36|2

2!
=

1

1728
(x− 36)2, Q1(x) ≤ 1

864
· |x− 49|2

2!
=

1

1728
(x− 49)2.

It follows that the relative sizes of P1(x) and Q1(x) are governed by the distance of x from 36 and 49.
Looking at the different possibilities for x reveals why the results in part (b) hold.

9.1.98

a. The quadratic Taylor polynomial for sinx centered at π
2 is

p2(x) = sin
π

2
+ cos

π

2
·
(
x− π

2

)
− 1

2
sin

π

2
·
(
x− π

2

)2
= 1− 1

2

(
x− π

2

)2
= −1

2
x2 +

π

2
x+ 1− π2

8
.

b. Let q(x) = ax2 + bx+ c. Because q(0) = sin 0 = 0, we must have c = 0, so that q(x) = ax2 + bx. Then
the other two conditions give us a pair of linear equation in a and b:

π2

4
a+

π

2
b = 1

π2a+ πb = 0

where the first equation comes from the fact that q(π/2) = sin(π/2) = 1 and the second from the fact
that q(π) = sinπ = 0. Solving the linear system of equations gives b = 4

π and a = − 4
π2 , so that

q(x) = − 4

π2
x2 +

4

π
x.
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c. A plot of the three function, with sinx the black solid line, p2(x) the dashed line, and q(x) the dotted
line is below.
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d. Evaluating the errors gives

x |sinx− p2(x)| |sinx− q(x)|
π
4 1.6× 10−2 4.3× 10−2

π
2 0 0
3π
4 1.6× 10−2 4.3× 10−2

π 2.3× 10−1 0

e. q is a better approximation than p at x = π, and the two are equal at x = π
2 . At the other two

points, however, p2(x) is a better approximation than q(x). Clearly q(x) will be exact at x = 0, x = π
2 ,

and x = π, because it was chosen that way. Also clearly p2(x) will be exact at x = π
2 since it is the

Taylor polynomial centered at π
2 . The fact that p2(x) is a better approximation than q(x) at the two

intermediate points is a result of the way the polynomials were constructed: the goal of p2(x) was to
be as good an approximation as possible near x = π

2 , while the goal of q(x) was to match sinx at three
given points. Overall, it appears that q(x) does a better job over the full range (the total area between
q(x) and sinx is certainly smaller than the total area between p2(x) and sinx).

9.2 Properties of Power Series

9.2.1 c0 + c1x+ c2x
2 + c3x

3.

9.2.2 c0 + c1(x− 3) + c2(x− 3)2 + c3(x− 3)3.

9.2.3 Generally the Ratio Test or Root Test is used.

9.2.4 Theorem 9.3 says that on the interior of the interval of convergence, a power series centered at a
converges absolutely, and that the interval of convergence is symmetric about a. So it makes sense to try to
find this interval using the Ratio Test, and check the endpoints individually.

9.2.5 The radius of convergence does not change, but the interval of convergence may change at the end-
points.

9.2.6 2R, because for |x| < 2R we have |x/2| < R so that
∑

ck(x/2)
k converges.

9.2.7 |x| < 1
4 .

9.2.8 (−1)kckx
k = ck(−x)k, so the two series have the same radius of convergence, because |−x| = |x|.
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9.2.9 Using the Root Test: limk→∞ k
√|ak| = limk→∞ |2x| = |2x|. So the radius of convergence is 1

2 . At
x = 1/2 the series is

∑
1 which diverges, and at x = −1/2 the series is

∑
(−1)k which also diverges. So the

interval of convergence is (−1/2, 1/2).

9.2.10 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (2x)k+1

(k+1)! · k!
(2x)k

∣∣∣ = lim
k→∞

∣∣∣ 2x
k+1

∣∣∣ = 0. So the radius of

convergence is ∞ and the interval of convergence is (−∞,∞).

9.2.11 Using the Root Test, lim
k→∞

k
√|ak| = lim

k→∞
|x−1|
k1/k = |x− 1|. So the radius of convergence is 1. At x = 2,

we have the harmonic series (which diverges) and at x = 0 we have the alternating harmonic series (which
converges). Thus the interval of convergence is [0, 2).

9.2.12 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (x−1)k+1

(k+1)! · k!
(x−1)k

∣∣∣ = lim
k→∞

∣∣∣x−1
k+1

∣∣∣ = 0. Thus the radius of

convergence is ∞ and the interval of convergence is (−∞,∞).

9.2.13 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (k+1)k+1xk+1

kkxk

∣∣∣ = lim
k→∞

(k + 1)
(
k+1
k

)k |x| = ∞ (for x �= 0)

because lim
k→∞

(
k+1
k

)k
= e. Thus, the radius of convergence is 0, the series only converges at x = 0.

9.2.14 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (k+1)!(x−10)k+1

k!(x−10)k

∣∣∣ = lim
k→∞

(k + 1) |x− 10| = ∞ (for x �= 10).

Thus, the radius of convergence is 0, the series only converges at x = 10.

9.2.15 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
sin(1/k)|x| = sin(0)|x| = 0. Thus, the radius of convergence

is ∞ and the interval of convergence is (−∞,∞).

9.2.16 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
2|x−3|
k1/k = 2 |x− 3|. Thus, the radius of convergence is 1/2.

When x = 7/2, we have the harmonic series (which diverges), and when x = 5/2, we have the alternating
harmonic series which converges. The interval of convergence is thus [5/2, 7/2).

9.2.17 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
|x|
3 = |x|

3 , so the radius of convergence is 3. At −3, the

series is
∑

(−1)k, which diverges. At 3, the series is
∑

1, which diverges. So the interval of convergence is
(−3, 3).

9.2.18 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
|x|
5 = |x|

5 , so the radius of convergence is 5. At 5, we obtain∑
(−1)k which diverges. At −5, we have

∑
1, which also diverges. So the interval of convergence is (−5, 5).

9.2.19 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
|x|
k = 0, so the radius of convergence is infinite and the

interval of convergence is (−∞,∞).

9.2.20 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣( (k+1)(x−4)k+1

2k+1 · 2k

k(x−4)k

)∣∣∣ = lim
k→∞

(
k+1
k · |x−4|

2

)
= |x−4|

2 ,

so that the radius of convergence is 2. The interval is (2, 6), because at the left endpoint, the series becomes∑
k (which diverges) and at the right endpoint, it becomes

∑
(−1)kk (which diverges).

9.2.21 Using the Ratio Test: lim
k→∞

∣∣∣ (k+1)2x2k+2

(k+1)! · k!
k2x2k

∣∣∣ = lim
k→∞

k+1
k2 x2 = 0, so the radius of convergence is

infinite, and the interval of convergence is (−∞,∞).

9.2.22 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
k1/k |x− 1| = |x− 1|. The radius of convergence is therefore

1. At both x = 2 and x = 0 the series diverges by the Divergence Test. The interval of convergence is therefore
(0, 2).

9.2.23 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = ∣∣∣x2k+3

3k
· 3k−1

x2k+1

∣∣∣ = x2

3 so that the radius of convergence is
√
3. At

x =
√
3, the series is

∑
3
√
3, which diverges. At x = −√

3, the series is
∑

(−3
√
3), which also diverges, so

the interval of convergence is (−√
3,
√
3).
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9.2.24
∑(−x

10

)2k
=
∑(

x2

100

)k
. Using the Root Test: lim

k→∞
k
√|ak| = lim

k→∞
x2

100 = x2

100 , so that the radius of

convergence is 10. At x = ±10, the series is then
∑

1, which diverges, so the interval of convergence is
(−10, 10).

9.2.25 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
(|x−1|)k

k+1 = |x− 1|, so the series converges when |x− 1| < 1,

so for 0 < x < 2. The radius of convergence is 1. At x = 2, the series diverges by the Divergence Test. At
x = 0, the series diverges as well by the Divergence Test. Thus the interval of convergence is (0, 2).

9.2.26 Using the Ratio Test:

lim
k→∞

|ak+1|
|ak| =

∣∣∣∣ (−2)k+1(x+ 3)k+1

3k+2
· 3k+1

(−2)k(x+ 3)k

∣∣∣∣ = 2

3
|x+ 3|.

Thus the series converges when 2
3 |x + 3| < 1, or − 9

2 < x < − 3
2 . At x = − 9

2 , the series diverges by the
Divergence Test. At x = − 3

2 , the series diverges by the Divergence Test. Thus the interval of convergence is(− 9
2 ,− 3

2

)
.

9.2.27 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = ∣∣∣ (k+1)20xk+1

(2k+3)! · (2k+1)!
xkk20

∣∣∣ = lim
k→∞

(
k+1
k

)20 |x|
(2k+2)(2k+3) = 0, so the

radius of convergence is infinite, and the interval of convergence is (−∞,∞).

9.2.28 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
|x3|
27 =

|x3|
27 , so the radius of convergence is 3. The series is

divergent by the Divergence Test for x = ±3, so the interval of convergence is (−3, 3).

9.2.29 f(3x) = 1
1−3x =

∑∞
k=0 3

kxk, which converges for |x| < 1/3, and diverges at the endpoints.

9.2.30 g(x) = x3

1−x =
∑∞

k=0 x
k+3, which converges for |x| < 1 and is divergent at the endpoints.

9.2.31 h(x) = 2x3

1−x =
∑∞

k=0 2x
k+3, which converges for |x| < 1 and is divergent at the endpoints.

9.2.32 f(x3) = 1
1−x3 =

∑∞
k=0 x

3k. By the Root Test, lim
k→∞

k
√|ak| =

∣∣x3
∣∣, so this series also converges for

|x| < 1. It is divergent at the endpoints.

9.2.33 p(x) = 4x12

1−x =
∑∞

k=0 4x
k+12 = 4

∑∞
k=0 x

k+12, which converges for |x| < 1. It is divergent at the
endpoints.

9.2.34 f(−4x) = 1
1+4x =

∑∞
k=0(−4x)k =

∑∞
k=0(−1)k4kxk, which converges for |x| < 1/4 and is divergent

at the endpoints.

9.2.35 f(3x) = ln(1− 3x) = −∑∞
k=1

(3x)k

k = −∑∞
k=1

3k

k xk. Using the Ratio Test:

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

3k

k + 1
|x| = 3 |x| ,

so the radius of convergence is 1/3. The series diverges at 1/3 (harmonic series), and converges at −1/3
(alternating harmonic series).

9.2.36 g(x) = x3 ln(1 − x) = −∑∞
k=1

xk+3

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+1 |x| = |x|, so the

radius of convergence is 1. The series diverges at 1 and converges at −1.

9.2.37 h(x) = x ln(1 − x) = −∑∞
k=1

xk+1

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+1 |x| = |x| , so the

radius of convergence is 1, and the series diverges at 1 (harmonic series) but converges at −1 (alternating
harmonic series).
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9.2.38 f(x3) = ln(1 − x3) = −∑∞
k=1

x3k

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+1

∣∣x3
∣∣ = ∣∣x3

∣∣ , so
the radius of convergence is 1. The series diverges at 1 (harmonic series) but converges at −1 (alternating
harmonic series).

9.2.39 p(x) = 2x6 ln(1 − x) = −2
∑∞

k=1
xk+6

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+1 |x| = |x|, so

the radius of convergence is 1. The series diverges at 1 (harmonic series) but converges at −1 (alternating
harmonic series).

9.2.40 f(−4x) = ln(1+ 4x) = −∑∞
k=1

(−4x)k

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+14 |x| = 4 |x|, so

the radius of convergence is 1/4. The series converges at 1/4 (alternating harmonic series) but diverges at
−1/4 (harmonic series).

9.2.41 The power series for f(x) is
∑∞

k=0(2x)k, convergent for −1 < 2x < 1, so for −1/2 < x < 1/2. The
power series for g(x) = f ′(x) is

∑∞
k=1 k(2x)

k−1 · 2 = 2
∑∞

k=1 k(2x)
k−1, also convergent on |x| < 1/2.

9.2.42 The power series for f(x) is
∑∞

k=0 x
k, convergent for −1 < x < 1, so the power series for g(x) =

1
2f

′′(x) is 1
2

∑∞
k=2 k(k − 1)xk−2 = 1

2

∑∞
k=0(k + 1)(k + 2)xk, also convergent on |x| < 1.

9.2.43 The power series for f(x) is
∑∞

k=0 x
k, convergent for −1 < x < 1, so the power series for g(x) =

1
6f

′′′(x) is 1
6

∑∞
k=3 k(k − 1)(k − 2)xk−3 = 1

6

∑∞
k=0(k + 1)(k + 2)(k + 3)xk, also convergent on |x| < 1.

9.2.44 The power series for f(x) is
∑∞

k=0(−1)kx2k, convergent on |x| < 1. Because g(x) = − 1
2f

′(x), the
power series for g is − 1

2

∑∞
k=1(−1)k2kx2k−1 =

∑∞
k=1(−1)k+1kx2k−1, also convergent on |x| < 1.

9.2.45 The power series for 1
1−3x is

∑∞
k=0(3x)

k, convergent on |x| < 1/3. Because g(x) = ln(1 − 3x) =

−3
∫

1
1−3x dx and because g(0) = 0, the power series for g(x) is −3

∑∞
k=0 3

k 1
k+1x

k+1 = −∑∞
k=1

3k

k xk, also
convergent on [−1/3, 1/3).

9.2.46 The power series for x
1+x2 is x

∑∞
k=0(−1)kx2k =

∑∞
k=0(−1)kx2k+1, convergent on |x| < 1. Be-

cause g(x) = 2
∫
f(x) dx, and because g(0) = 0, the power series for g(x) is 2

∑∞
k=0(−1)k 1

2k+2x
2k+2 =∑∞

k=0(−1)k 1
k+1x

2k+2. This can be written as
∑∞

k=1(−1)k+1 1
kx

2k, which is convergent on [−1, 1].

9.2.47 Start with g(x) = 1
1+x . The power series for g(x) is

∑∞
k=0(−1)kxk. Because f(x) = g(x2), its power

series is
∑∞

k=0(−1)kx2k. The radius of convergence is still 1, and the series is divergent at both endpoints.
The interval of convergence is (−1, 1).

9.2.48 Start with g(x) = 1
1−x . The power series for g(x) is

∑∞
k=0 x

k. Because f(x) = g(x4), its power series

is
∑∞

k=0 x
4k. The radius of convergence is still 1, and the series is divergent at both endpoints. The interval

of convergence is (−1, 1).

9.2.49 Note that f(x) = 3
3+x = 1

1+(1/3)x . Let g(x) =
1

1+x . The power series for g(x) is
∑∞

k=0(−1)kxk, so the

power series for f(x) = g((1/3)x) is
∑∞

k=0(−1)k3−kxk =
∑∞

k=0

(−x
3

)k
. Using the Ratio Test: lim

k→∞

∣∣∣ak+1

ak

∣∣∣ =
lim
k→∞

∣∣∣ 3−(k+1)xk+1

3−kxk

∣∣∣ = |x|
3 , so the radius of convergence is 3. The series diverges at both endpoints. The

interval of convergence is (−3, 3).

9.2.50 Note that f(x) = 1
2 ln(1 − x2). The power series for g(x) = ln(1 − x) is −∑∞

k=1
1
kx

k, so the power
series for f(x) = 1

2g(x
2) is −1

2

∑∞
k=1

1
kx

2k. The radius of convergence is still 1. The series diverges at both
1 and −1, its interval of convergence is (−1, 1).

9.2.51 Note that f(x) = ln
√
4− x2 = 1

2 ln(4 − x2) = 1
2

(
ln 4 + ln

(
1− x2

4

))
= ln 2 + 1

2 ln
(
1− x2

4

)
. Now,

the power series for g(x) = ln(1 − x) is −∑∞
k=1

1
kx

k, so the power series for f(x) is ln 2 − 1
2

∑∞
k=1

1
k
x2k

4k
=

ln 2 −∑∞
k=1

x2k

k22k+1 . Now, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ x2k+2

(k+1)22k+3 · k22k+1

x2k

∣∣∣ = lim
k→∞

k
4(k+1)x

2 = x2

4 , so that the radius

of convergence is 2. The series diverges at both endpoints, so its interval of convergence is (−2, 2).
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9.2.52 By Example 5, the Taylor series for g(x) = tan−1 x is
∑∞

k=0
(−1)kx2k+1

2k+1 , so that f(x) = g((2x)2) has

Taylor series
∑∞

k=0
(−1)k(2x)4k+2

2k+1 =
∑∞

k=0
(−1)k42k+1

2k+1 x4k+2. Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ =
lim
k→∞

∣∣∣ 42k+3x4k+6

2k+3 · 2k+1
42k+1x4k+2

∣∣∣ = lim
k→∞

16(2k+1)
2k+3 x4 = 16x4, so that the radius of convergence is 1/2. The interval

of convergence is (−1/2, 1/2).

9.2.53

a. True. This power series is centered at x = 3, so its interval of convergence will be symmetric about 3.

b. True. Use the Root Test.

c. True. Substitute x2 for x in the series.

d. True. Because the power series is zero on the interval, all its derivatives are as well, which implies
(differentiating the power series) that all the ck are zero.

9.2.54 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
(
1 + 1

k

)k |x| = ex. Thus, the radius of convergence is 1
e .

9.2.55 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (k+1)! xk+1

(k+1)k+1 · kk

k! xk

∣∣∣ = lim
k→∞

(
k

k+1

)k
|x| = 1

e |x|. The radius

of convergence is therefore e.

9.2.56 1 +
∑∞

k=1
1
2kx

k

9.2.57
∑∞

k=0(−1)k 1
k+1x

k

9.2.58
∑∞

k=0(−1)k x2k+1

(k+1)2

9.2.59
∑∞

k=1(−1)k x2k

k!

9.2.60 The power series for f(ax) is
∑

ck(ax)
k. Then

∑
ck(ax)

k converges if and only if |ax| < R (because∑
ckx

k converges for |x| < R), which happens if and only if |x| < R
|a| .

9.2.61 The power series for f(x−a) is
∑

ck(x−a)k. Then
∑

ck(x−a)k converges if and only if |x− a| < R,
which happens if and only if a−R < x < a+R, so the radius of convergence is the same.

9.2.62 Let’s first consider where this series converges. By the Root Test, lim
k→∞

k
√|ak| = lim

k→∞
(x2 + 1)2 =

(x2 + 1)2, which is always greater than 1 for x �= 0. This series also diverges when x = 0, because there
we have the divergent series

∑
1. Because this series diverges everywhere, it doesn’t represent any function,

except perhaps the empty function.

9.2.63 This is a geometric series with ratio
√
x− 2, so its sum is 1

1−(
√
x−2)

= 1
3−√

x
. Again using the Root

Test, lim
k→∞

k
√|ak| = |√x− 2|, so the interval of convergence is given by |√x− 2| < 1, so 1 <

√
x < 3 and

1 < x < 9. The series diverges at both endpoints.

9.2.64 This series is 1
4

∑∞
k=1

x2k

k . Because
∑∞

k=1
xk

k is the power series for − ln(1−x), the power series given

is − 1
4 ln(1− x2). Using the Ratio Test: lim

k→∞

∣∣∣ak+1

ak

∣∣∣ = ∣∣∣∣ limk→∞
x2k+2

4k+4 · 4k
x2k

∣∣∣∣ = lim
k→∞

k
k+1x

2 = x2, so the radius of

convergence is 1. The series diverges at both endpoints (it is a multiple of the harmonic series). The interval
of convergence is (−1, 1).

9.2.65 This is a geometric series with ratio e−x, so its sum is 1
1−e−x . By the Root Test, lim

k→∞
k
√|ak| = e−x,

so the power series converges for x > 0.
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9.2.66 This is a geometric series with ratio x−2
9 , so its sum is (x−2)/9

1−(x−2)/9 = x−2
9−(x−2) =

x−2
11−x . Using the Root

Test: lim
k→∞

k
√|ak| = lim

k→∞
∣∣x−2

9

∣∣ = ∣∣x−2
9

∣∣, so the series converges for |x− 2| < 9, or −7 < x < 11. It diverges

at both endpoints.

9.2.67 This is a geometric series with ratio (x2 − 1)/3, so its sum is 1

1− x2−1
3

= 3
3−(x2−1) = 3

4−x2 . Using the

Root Test, the series converges for
∣∣x2 − 1

∣∣ < 3, so that −2 < x2 < 4 or −2 < x < 2. It diverges at both
endpoints.

9.2.68 Replacing x by x− 1 gives lnx =
∑∞

k=1
(−1)k+1(x−1)k

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ =
lim
k→∞

∣∣∣ (x−1)k+1

k+1 · k
(x−1)k

∣∣∣ = lim
k→∞

k
k+1 |x− 1| = |x− 1| , so that the series converges for |x− 1| < 1. Checking

the endpoints, the interval of convergence is (0, 2].

9.2.69 The power series for ex is
∑∞

k=0
xk

k! . Substitute −x for x to get e−x =
∑∞

k=0(−1)k xk

k! . The series
converges for all x.

9.2.70 Substitute 2x for x in the power series for ex to get e2x =
∑∞

k=0
(2x)k

k! =
∑∞

k=0
2k

k! x
k. The series

converges for all x.

9.2.71 Substitute −3x for x in the power series for ex to get e−3x =
∑∞

k=0
(−3x)k

k! =
∑∞

k=0(−1)k 3k

k! x
k. The

series converges for all x.

9.2.72 Multiply the power series for ex by x2 to get x2ex =
∑∞

k=0
xk+2

k! , which converges for all x.

9.2.73 The power series for xmf(x) is
∑

ckx
k+m. The radius of convergence of this power series is deter-

mined by the limit

lim
k→∞

∣∣∣∣ck+1x
k+1+m

ckxk+m

∣∣∣∣ = lim
k→∞

∣∣∣∣ck+1x
k+1

ckxk

∣∣∣∣ ,
and the right-hand side is the limit used to determine the radius of convergence for the power series for f(x).
Thus the two have the same radius of convergence.

9.2.74

a. Rn = f(x)− Sn(x) =
∑∞

k=n x
k. This is a geometric series with ratio x. Its sum is then Rn = xn

1−x as
desired.

b. Rn(x) increases without bound as x approaches 1, and its absolute value smallest at x = 0 (where it
is zero). In general, for x > 0, Rn(x) < Rn−1(x), so the approximations get better the more terms of
the series are included.
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c. To minimize |Rn(x)|, set its derivative to zero. Assuming n > 1, we have R′
n(x) = n(1−x)xn−1+xn

(1−x)2 ,

which is zero for x = 0. There is a minimum at this critical point.

d.

The following is a plot that shows, for each x ∈
(0, 1), the n required so that Rn(x) < 10−6. The
closer x gets to 1, the more terms are required in
order for the estimate given by the power series
to be accurate. The number of terms increases
rapidly as x → 1.

0.2 0.4 0.6 0.8 1.0
x

50

100

150

y

9.2.75

a. f(x)g(x) = c0d0 + (c0d1 + c1d0)x+ (c0d2 + c1d1 + c2d0)x
2 + . . .

b. The coefficient of xn in f(x)g(x) is
∑n

i=0 cidn−i.

9.2.76 The function 1√
1−x2

is the derivative of the inverse sine function, and sin−1(0) = 0, so the power

series for sin−1 x is the integral of the given power series, or x+ 1
6x

3 + 1·3
2·4·5x

5 + 1·3·5
2·4·6·7x

7 + . . .. This can also

be written x+
∑∞

k=1
1·3···(2k−1)

2·4···2k·(2k+1)x
2k+1.

9.2.77

a.

For both graphs, the difference between the true
value and the estimate is greatest at the two ends
of the range; the difference at 0.9 is greater than
that at −0.9.
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b. The difference between f(x) and Sn(x) is greatest for x = 0.9; at that point, f(x) = 1
(1−0.9)2 = 100,

so we want to find n such that Sn(x) is within 0.01 of 100. We find that S111 ≈ 99.98991435 and
S112 ≈ 99.99084790, so n = 112.

9.3 Taylor Series

9.3.1 The nth Taylor Polynomial is the nth sum of the corresponding Taylor Series.

9.3.2 In order to have a Taylor series centered at a, a function f must have derivatives of all orders on some
interval containing a.
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9.3.3 The nth coefficient is f(n)(a)
n! .

9.3.4 The interval of convergence is found in the same manner that it is found for a more general power
series.

9.3.5 Substitute x2 for x in the Taylor series. By theorems proved in the previous section about power
series, the interval of convergence does not change except perhaps at the endpoints of the interval.

9.3.6 The Taylor series terminates if f (n)(0) = 0 for n > N for some N . For (1 + x)p, this occurs if and
only if p is an integer ≥ 0.

9.3.7 It means that the limit of the remainder term is zero.

9.3.8 The Maclaurin series is e2x =
∑∞

k=0
(2x)k

k! . This is determined by substituting 2x for x in the Maclaurin
series for ex.

9.3.9

a. Note that f(0) = 1, f ′(0) = −1, f ′′(0) = 1, and f ′′′(0) = −1. So the Maclaurin series is 1−x+x2/2−
x3/6 + · · · .

b.
∑∞

k=0(−1)k xk

k! .

c. The series converges on (−∞,∞), as can be seen from the Ratio Test.

9.3.10

a. Note that f(0) = 1, f ′(0) = 0, f ′′(0) = −4, f ′′′(0) = 0, f (4)(0) = 16, . . . . Thus the Maclaurin series is

1− 2x2 + 2x4

3 − 4x6

45 + · · · .

b.
∑∞

k=0(−1)k (2x)2k

(2k)!

c. The series converges on (−∞,∞), as can be seen from the Ratio Test.

9.3.11

a. Because the series for 1
1+x is 1− x+ x2 − x3 + · · · , the series for 1

1+x2 is 1− x2 + x4 − x6 + · · · .

b.
∑∞

k=0(−1)kx2k.

c. The absolute value of the ratio of consecutive terms is x2, so by the Ratio Test, the radius of convergence
is 1. The series diverges at the endpoints by the Divergence Test, so the interval of convergence is
(−1, 1).

9.3.12

a. Note that f(0) = 0, f ′(0) = 4, f ′′(0) = −16, f ′′′(0) = 128, and f ′′′′(0) = −1526. Thus, the series is

given by 4x− 16x2

2 + 128x3

6 − 1536x4

24 + · · · .

b.
∑∞

k=1(−1)k+1 (k−1)!(4x)k

k! =
∑∞

k=1(−1)k+1 (4x)k

k .

c. The absolute value of the ratio of consecutive terms is 4|x|k
k+1 , which has limit 4|x| as k → ∞, so the

interval of convergence is (−1/4, 1/4]. Note that for x = 1/4 we have the alternating harmonic series,
while for x = −1/4 we have negative 1 times the harmonic series, which diverges.

9.3.13

a. Note that f(0) = 1, and that f (n)(0) = 2n. Thus, the series is given by 1 + 2x+ 4x2

2 + 8x3

6 + · · · .
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b.
∑∞

k=0
(2x)k

k! .

c. The absolute value of the ratio of consecutive terms is 2|x|
n , which has limit 0 as n → ∞. So by the

Ratio Test, the interval of convergence is (−∞,∞).

9.3.14

a. Substitute 2x for x in the Taylor series for (1 + x)−1, to obtain the series 1− 2x+ 4x2 − 8x3 + · · · .
b.
∑∞

k=0(−1)k(2x)k.

c. The Root Test shows that the series converges absolutely for |2x| < 1, or |x| < 1/2. The interval of
convergence is (−1/2, 1/2), because the series at both endpoints diverge by the Divergence Test.

9.3.15

a. By integrating the Taylor series for 1
1+x2 (which is the derivative of tan−1(x)), we obtain the series

x− x3

3 + x5

5 − x7

7 + · · · . Then by replacing x by x/2 we have x
2 − x3

3·23 + x5

5·25 − x7

7·27 + · · · .
b.
∑∞

k=0(−1)k 1
(2k+1)·22k+1x

2k+1.

c. By the Ratio Test (the ratio of consecutive terms has limit x2

4 ), the radius of convergence is |x| < 2.
Also, at the endpoints we have convergence by the Alternating Series Test, so the interval of convergence
is [−2, 2].

9.3.16

a. Substitute 3x for x in the Taylor series for sinx, to obtain the series 3x− 9x3

2 + 81x5

40 − 243x7

560 + · · · .

b.
∑∞

k=0(−1)k 32k+1

(2k+1)!x
2k+1.

c. The ratio of successive terms is 9
2n(2n+1)x

2, which has limit zero as n → ∞, so the interval of conver-

gence is (−∞,∞).

9.3.17

a. Note that f(0) = 1, f ′(0) = ln 3, f ′′(0) = ln2 3, f ′′(0) = ln3 3. So the first four terms of the desired

series are 1 + (ln 3)x+ ln2 3
2 x2 + ln3 3

6 x3 + · · · .

b.
∑∞

k=0
(lnk 3)xk

k! .

c. The ratio of successive terms is (lnk+1 3)xk+1

(k+1)! · k!
(lnk 3)xk = ln 3

k+1x, and the limit as k → ∞ of this quantity

is 0, so the interval of convergence is (−∞,∞).

9.3.18

a. Note that f(0) = 0, f ′(0) = 1
ln 3 , f

′′(0) = − 1
ln 3 , f

′′′(0) = 2
ln3 , f

′′′′(0) = − 6
ln 3 . So the first terms of the

desired series are 0 + x
ln 3 − x2

2 ln 3 + x3

3 ln 3 − x4

4 ln 3 + · · · .

b.
∑∞

k=1
(−1)k+1xk

k ln 3 .

c. The absolute value of the ratio of successive terms is
∣∣∣ xk+1

(k+1) ln 3 · k ln 3
xk

∣∣∣ = k
k+1 |x|, which has limit |x|

as k → ∞. Thus the radius of convergence is 1. At x = −1 we have a multiple of the harmonic series
(which diverges) and at x = 1 we have a multiple of the alternating harmonic series (which converges)
so the interval of convergence is (−1, 1].

Copyright c© 2015 Pearson Education, Inc.



9.3. Taylor Series 91

9.3.19

a. Note that f(0) = 1, f ′(0) = 0, f ′′(0) = 9, f ′′′(0) = 0, etc. The first terms of the series are 1 + 9x2/2 +
81x4/4! + 36x6/6! + · · · .

b.
∑∞

k=0
(3x)2k

(2k)! .

c. The absolute value of the ratio of successive terms is
∣∣∣ (3x)2k+2

(2k+2)! · (2k)!
(3x)2k

∣∣∣ = 1
(2k+2)(2k+1) · 9x2, which has

limit 0 as x → ∞. The interval of convergence is therefore (−∞,∞).

9.3.20

a. Note that f(0) = 0, f ′(0) = 2, f ′′(0) = 0, f ′′′(0) = 8, etc. The first terms of the series are 2x+8x3/6+

32x5/5! + 128x7/7! + · · · , or 2x+ 4x3

3 + 4x5

15 + 8x7

315 + · · · .

b.
∑∞

k=0
22k+1x2k+1

(2k+1)! .

c. The absolute value of the ratio of successive terms is
∣∣∣ 22k+3x2k+3

(2k+3)! · (2k+1)!
22k+1x2k+1

∣∣∣ = 4
(2k+3)(2k+2)x

2, which

has limit 0 as x → ∞. The interval of convergence is therefore (−∞,∞).

9.3.21

a. Note that f(π/2) = 1, f ′(π/2) = cos(π/2) = 0, f ′′(π/2) = − sin(π/2) = −1, f ′′′(π/2) = − cos(π/2) =

0, and so on. Thus the series is given by 1− 1
2

(
x− π

2

)2
+ 1

24

(
x− π

2

)4 − 1
720

(
x− π

2

)6
+ · · · .

b.
∑∞

k=0(−1)k 1
(2k)!

(
x− π

2

)2k
.

9.3.22

a. Note that f(π) = −1, f ′(π) = − sinπ = 0, f ′′(π) = − cosπ = 1, f ′′′(π) = − sinπ = 0, and so on. Thus
the series is given by −1 + 1

2 (x− π)2 − 1
24 (x− π)4 + 1

720 (x− π)6 + · · · .
b.
∑∞

k=0(−1)k+1 1
(2k)! (x− π)2k.

9.3.23

a. Note that f (k)(1) = (−1)k k!
1k+1 = (−1)k ·k!. Thus the series is given by 1−(x−1)+(x−1)2−(x−1)3+· · · .

b.
∑∞

k=0(−1)k(x− 1)k.

9.3.24

a. Note that f (k)(2) = (−1)k k!
2k+1 . Thus the series is given by 1

2 − x−2
4 + 1

8 (x− 2)2 − 1
16 (x− 2)3 + 1

32 (x−
2)4 + · · · .

b.
∑∞

k=0(−1)k 1
2k+1 (x− 2)k.

9.3.25

a. Note that f (k)(3) = (−1)k−1 (k−1)!
3k

. Thus the series is given by ln(3)+ x−3
3 − 1

18 (x−3)2+ 1
81 (x−3)3+· · · .

b. ln 3 +
∑∞

k=1(−1)k+1 1
k·3k (x− 3)k.

9.3.26

a. Note that f (k)(ln 2) = 2. Thus the series is given by 2 + 2(x− ln(2)) + (x− ln(2))2 + 1
3 (x− ln(2))3 +

1
12 (x− ln(2))4 + · · · .

b.
∑∞

k=0
2
k! (x− ln(2))k.
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9.3.27

a. Note that f(1) = 2, f ′(1) = 2 ln 2, f ′′(1) = 2 ln2 2, f ′′′(1) = 2 ln3 2. The first terms of the series are

2 + (2 ln 2)(x− 1) + (ln2 2)(x− 1)2 + (ln3 2)(x−1)3

3 + · · · .

b.
∑∞

k=0
2(x−1)k lnk 2

k! .

9.3.28

a. Note that f(2) = 100, f ′(2) = 100 ln 10, f ′′(2) = 100 ln2 10, f ′′′(2) = 100 ln3 10. The first terms of the
series are 100 + 100(ln 10)(x− 2) + 50(ln2 10)(x− 2)2 + 50

3 (ln3 10)(x− 2)3 + · · · .

b.
∑∞

k=0
100(x−2)k lnk 10

k! .

9.3.29 Because the Taylor series for ln(1 + x) is x − x2

2 + x3

3 − x4

4 + · · · , the first four terms of the Taylor

series for ln(1 + x2) are x2 − x4

2 + x6

3 − x8

4 + · · ·, obtained by substituting x2 for x.

9.3.30 Because the Taylor series for sinx is x− x3

3! +
x5

5! − x7

7! + · · ·, the first four terms of the Taylor series

for sinx2 are x2 − x6

3! +
x10

5! − x14

7! + · · ·, obtained by substituting x2 for x.

9.3.31 Because the Taylor series for 1
1−x = 1+x+x2 +x3 + · · · , the first four terms of the Taylor series for

1
1−2x are 1 + 2x+ 4x2 + 8x3 + · · · obtained by substituting 2x for x.

9.3.32 Because the Taylor series for ln(1 + x) is x − x2/2 + x3/3 − x4/4 + · · · , the first four terms of the
Taylor series for 2x− 2x2 + 8x3/3− 4x4 + · · · obtained by substituting 2x for x.

9.3.33 The Taylor series for ex − 1 is the Taylor series for ex, less the constant term of 1, so it is x+ x2

2 +
x3

3! +
x4

4! + · · ·. Thus, the first four terms of the Taylor series for ex−1
x are 1+ x

2! +
x2

3! +
x3

4! + · · ·, obtained by
dividing the terms of the first series by x.

9.3.34 Because the Taylor series for cosx is 1− x2

2 + x4

4! − x6

6! + · · ·, the first four terms of the Taylor series

for cosx3 are 1− x6

2! +
x12

4! − x18

6! + · · ·, obtained by substituting x3 for x.

9.3.35 Because the Taylor series for (1 + x)−1 is 1− x+ x2 − x3 + · · ·, if we substitute x4 for x, we obtain
1− x4 + x8 − x12 + · · ·.

9.3.36 The Taylor series for tan−1 x is x − x3

3 + x5

5 − x7

7 − · · ·. Thus, the Taylor series for tan−1 x2 is

x2 − x6

3 + x10

5 − x14

7 − · · · and, multiplying by x, the Taylor series for x tan−1 x2 is x3 − x7

3 + x11

5 − x15

7 − · · ·.

9.3.37 The Taylor series for sinhx is x + x3

6 + x5

120 + x7

5040 + · · · . Thus, the Taylor series for sinhx2 is

x2 + x6

6 + x10

120 + x14

5040 + · · · obtained by substituting x2 for x.

9.3.38 The Taylor series for coshx is 1 + x2

2 + x4

24 + x6

720 + · · · . Thus, the Taylor series for cosh 3x is

1 + 9x2

2 + 81x4

24 + 729x6

720 + · · · , obtained by substituting 3x for x.

9.3.39

a. The binomial coefficients are
(−2

0

)
= 1,

(−2
1

)
= −2

1! = −2,
(−2

2

)
= (−2)(−3)

2! = 3,
(−2

3

)
= (−2)(−3)(−4)

3! =
−4.

Thus the first four terms of the series are 1− 2x+ 3x2 − 4x3 + · · ·.
b. 1− 2 · 0.1 + 3 · 0.01− 4 · 0.001 = 0.826

Copyright c© 2015 Pearson Education, Inc.



9.3. Taylor Series 93

9.3.40

a. The binomial coefficients are
(
1/2
0

)
= 1,

(
1/2
1

)
= 1/2

1! = 1
2 ,
(
1/2
2

)
= (1/2)(−1/2)

2! = − 1
8 ,
(
1/2
3

)
=

(1/2)(−1/2)(−3/2)
3! = 1

16 , so the first four terms of the series are 1 + 1
2x− 1

8x
2 + 1

16x
3 + · · ·.

b. 1 + 1
2 · .06− 1

8 · .062 + 1
16 · .063 ≈ 1.030

9.3.41

a. The binomial coefficients are
(
1/4
0

)
= 1,

(
1/4
1

)
= 1/4

1 = 1
4 ,
(
1/4
2

)
= (1/4)(−3/4)

2! = − 3
32 ,
(
1/4
3

)
=

(1/4)(−3/4)(−7/4)
3! = 7

128 , so the first four terms of the series are 1 + 1
4x− 3

32x
2 + 7

128x
3 + · · ·.

b. Substitute x = 0.12 to get approximately 1.029.

9.3.42

a. The binomial coefficients are
(−3

0

)
= 1,

(−3
1

)
= −3,

(−3
2

)
= (−3)(−4)

2! = 6,
(−3

3

)
= (−3)(−4)(−5)

3! = −10,
so the first four terms of the series are 1− 3x+ 6x2 − 10x3 + · · ·.

b. Substitute x = 0.1 to get 0.750.

9.3.43

a. The binomial coefficients are
(−2/3

0

)
= 1,

(−2/3
1

)
= − 2

3 ,
(−2/3

2

)
= (−2/3)(−5/3)

2! = 5
9 ,
(−2/3

3

)
=

(−2/3)(−5/3)(−8/3)
3! = − 40

81 , so the first four terms of the series are 1− 2
3x+ 5

9x
2 − 40

81x
3 + · · ·.

b. Substitute x = 0.18 to get 0.89512.

9.3.44

a. The binomial coefficients are
(
2/3
0

)
= 1,

(
2/3
1

)
= 2

3 ,
(
2/3
2

)
= (2/3)(−1/3)

2! = − 1
9 ,
(
2/3
3

)
= (2/3)(−1/3)(−4/3)

3! =
4
81 , so the first four terms of the series are 1 + 2

3x− 1
9x

2 + 4
81x

3 + · · ·
b. Substitute x = 0.02 to get ≈ 1.013289284.

9.3.45
√
1 + x2 = 1+ x2

2 − x4

8 + x6

16 −· · · . By the Ratio Test, the radius of convergence is 1. At the endpoints,
the series obtained are convergent by the Alternating Series Test. Thus, the interval of convergence is [−1, 1].

9.3.46
√
4 + x = 2

√
1 + x/4 = 2 + x

4 − x2

64 + x3

512 + · · · . The interval of convergence is (−4, 4].

9.3.47
√
9− 9x = 3

√
1− x = 3− 3

2x− 3
8x

2 − 3
16x

3 − · · · . The interval of convergence is [−1, 1].

9.3.48
√
1− 4x = 1− 2x− 2x2 − 4x3 − · · · , obtained by substituting −4x for x in the original series. The

interval of convergence of [−1/4, 1/4).

9.3.49
√
a2 + x2 = a

√
1 + x2

a2 = a + x2

2a − x4

8a3 + x6

16a5 − · · · . The series converges when x2

a2 is less than 1

in magnitude, so the radius of convergence is a. The series given by the endpoints is convergent by the
Alternating Series Test, so the interval of convergence is [−a, a].

9.3.50
√
4− 16x2 = 2

√
1− (2x)2 = 2− 4x2 − 4x4 − 8x6 − · · · . Because 2x was substituted for x to produce

this series, this series converges when −1 < 2x < 1, or − 1
2 < x < 1

2 . Because only even powers of x appear in
the series, the series at x = − 1

2 and x = 1
2 are identical, and are convergent. Thus the interval of convergence

is
[− 1

2 ,
1
2

]
.

9.3.51 (1 + 4x)−2 = 1− 2(4x) + 3(4x)2 − 4(4x)3 + · · · = 1− 8x+ 48x2 − 256x3 + · · · .

9.3.52 1
(1−4x)2 = (1− 4x)−2 = 1− 2(−4x) + 3(−4x)2 − 4(−4x)3 + · · · = 1 + 8x+ 48x2 + 256x3.
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9.3.53 1
(4+x2)2 = (4 + x2)−2 = 1

16 (1 + (x2/4))−2 = 1
16

(
1− 2 · x2

4 + 3 · x4

16 − 4 · x6

64 + · · ·
)

= 1
16 − 1

32x
2 +

3
256x

4 − 1
256x

6 + · · ·

9.3.54 Note that x2− 4x+5 = 1+(x− 2)2, so (1+ (x− 2)2)−2 = 1− 2(x− 2)2+3(x− 2)4− 4(x− 2)6+ · · ·.

9.3.55 (3 + 4x)−2 = 1
9

(
1 + 4x

3

)−2
= 1

9 − 2
9

(
4x
3

)
+ 3

9

(
4x
3

)2 − 4
9

(
4x
3

)3
+ · · · .

9.3.56 (1 + 4x2)−2 = (1 + (2x)2)−2 = 1− 2(2x)2 + 3(2x)4 − 4(2x)6 + · · · = 1− 8x2 + 48x4 − 256x6 + · · · .

9.3.57 The interval of convergence for the Taylor series for f(x) = sinx is (−∞,∞). The remainder is

Rn(x) =
f(n+1)(c)
(n+1)! xn+1 for some c. Because f (n+1)(x) is ± sinx or ± cosx, we have

lim
n→∞ |Rn(x)| ≤ lim

n→∞
1

(n+ 1)!

∣∣xn+1
∣∣ = 0

for any x.

9.3.58 The interval of convergence for the Taylor series for f(x) = cos 2x is (−∞,∞). The remainder is

Rn(x) =
f(n+1)(c)
(n+1)! xn+1 for some c. The nth derivative of cos 2x is 2n times either ± sinx or ± cosx, so that

f (n+1) is bounded by 2n+1 in magnitude. Thus lim
n→∞ |Rn(x)| ≤ lim

n→∞
2n+1

(n+1)!

∣∣xn+1
∣∣ = lim

n→∞
(2|x|)n+1

(n+1)! = 0 for
any x.

9.3.59 The interval of convergence for the Taylor series for e−x is (−∞,∞). The remainder is Rn(x) =
(−1)n+1e−c

(n+1)! xn+1 for some c. Thus lim
n→∞ |Rn(x)| = 0 for any x.

9.3.60 The interval of convergence for the Taylor series for f(x) = cosx is (−∞,∞). The remainder is

Rn(x) =
f(n+1)(c)
(n+1)! (x− π/2)n+1 for some c. Because fn+1(x) is ± cosx or ± sinx, we have

lim
n→∞ |Rn(x)| ≤ lim

n→∞
1

(n+ 1)!

∣∣(x− π/2)n+1
∣∣ = 0

for any x.

9.3.61

a. False. Not all of its derivatives are defined at zero - in fact, none of them are.

b. True. The derivatives of cscx involve positive powers of cscx and cotx, both of which are defined at
π/2, so that cscx has continuous derivatives at π/2.

c. False. For example, the Taylor series for f(x2) doesn’t converge at x = 1.9, because the Taylor series
for f(x) doesn’t converge at 1.92 = 3.61.

d. False. The Taylor series centered at 1 involves derivatives of f evaluated at 1, not at 0.

e. True. The follows because the Taylor series must itself be an even function.

9.3.62

a. The relevant Taylor series are: cos 2x = 1−2x2+ 2
3x

4− 4
45x

6+ · · · , and 2 sinx = 2x− 1
3x

3+ 1
60x

5−· · · .
Thus, the first four terms of the resulting series are cos 2x+ 2 sinx = 1 + 2x− 2x2 − 1

3x
3 + 2

3x
4 + · · ·.

b. Because each series converges (absolutely) on (−∞,∞), so does their sum. The radius of convergence
is ∞.
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9.3.63

a. The relevant Taylor series are: ex = 1+x+ x2

2! +
x3

3! +
x4

4! +
x5

5! +
x6

6! + · · · and e−x = 1−x+ x2

2! − x3

3! +
x4

4! −
x5

5! +
x6

6! + · · · . Thus the first four terms of the resulting series are 1
2 (e

x + e−x) = 1+ x2

2! +
x4

4! +
x6

6! + · · · .
b. Because each series converges (absolutely) on (−∞,∞), so does their sum. The radius of convergence

is ∞.

9.3.64

a. The first four terms of the Taylor series for sinx are x − x3

6 + x5

120 − x7

5040 , so the first four terms for
sin x
x are 1− x2

6 + x4

120 − x6

5040 .

b. The radius of convergence is the same as that for sinx, namely ∞.

9.3.65

a. Use the binomial theorem. The binomial coefficients are
(−2/3

0

)
= 1,

(−2/3
1

)
= − 2

3 ,
(−2/3

2

)
= (−2/3)(−5/3)

2!

= 5
9 ,
(−2/3

3

)
= (−2/3)(−5/3)(−8/3)

3! = − 40
81 and then, substituting x2 for x, we obtain 1 − 2

3x
2 + 5

9x
4 −

40
81x

6 + · · · .
b. From Theorem 9.6 the radius of convergence is determined from

∣∣x2
∣∣ < 1, so it is 1.

9.3.66

a. The first four terms of cosx are 1− x2

2 + x4

24 − x6

720 , so the first four terms of cosx2 are 1− x4

2 + x8

24 − x12

720 ,

and thus the first four terms of x2 cosx2 are x2 − x6

2 + x10

24 − x14

720 .

b. The radius of convergence is ∞.

9.3.67

a. From the binomial formula, the Taylor series for (1 − x)p is
∑(p

k

)
(−1)kxk, so the Taylor series for

(1−x2)p is
∑(p

k

)
(−1)kx2k. Here p = 1/2, and the binomial coefficients are

(
1/2
0

)
= 1,

(
1/2
1

)
= 1/2

1! = 1
2 ,(

1/2
2

)
= (1/2)(−1/2)

2! = − 1
8 ,
(
1/2
3

)
= (1/2)(−1/2)(−3/2)

3! = 1
16 so that (1−x2)1/2 = 1− 1

2x
2− 1

8x
4− 1

16x
6+· · ·.

b. From Theorem 9.6 the radius of convergence is determined from
∣∣x2
∣∣ < 1, so it is 1.

9.3.68

a. Because bx = ex ln b, the Taylor series is 1 + x ln b+ 1
2! (x ln b)

2 + 1
3! (x ln b)

3 + · · ·
b. Because the series for ex converges on (−∞,∞), the radius of convergence for the series in part a is

∞.

9.3.69

a. f(x) = (1+x2)−2; using the binomial series and substituting x2 for x we obtain 1−2x2+3x4−4x6+· · ·.
b. From Theorem 9.6 the radius of convergence is determined from

∣∣x2
∣∣ < 1, so it is 1.

9.3.70 Because f(36) = 6, and f ′(x) = 1
2x

−1/2, f ′(36) = 1
12 , f

′′(x) = − 1
4x

−3/2, f ′′(36) = − 1
864 , f

′′′(x) =
3
8x

−5/2, and f ′′′(36) = 3
62208 , the first four terms of the Taylor series are 6 + 1

12 (x− 36)− 1
864·2! (x− 36)2 +

3
62208·3! (x− 36)3. Evaluating at x = 39 we get 6.245008681.

9.3.71 Because f(64) = 4, and f ′(x) = 1
3x

−2/3, f ′(64) = 1
48 , f

′′(x) = − 2
9x

−5/3, f ′′(64) = − 1
4608 , f

′′′(x) =
10
27x

−8/3, and f ′′′(64) = 10
1769472 = 5

884736 , the first four terms of the Taylor series are 4 + 1
48 (x − 64) −

1
4608·2! (x− 64)2 + 5

884736·3! (x− 64)3. Evaluating at x = 60, we get 3.914870274.
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9.3.72 Because f(4) = 1
2 , and f ′(x) = − 1

2x
−3/2, f ′(4) = − 1

16 , f
′′(x) = 3

4x
−5/2, f ′′(4) = 3

128 , f
′′′(x) =

− 15
8 x−7/2, and f ′′′(4) = − 15

1024 , the first four terms of the Taylor series are 1
2 − 1

16 (x− 4) + 3
128·2! (x− 4)2 −

15
1024·3! (x− 4)3. Evaluating at x = 3, we get 0.5766601563.

9.3.73 Because f(16) = 2, and f ′(x) = 1
4x

−3/4, f ′(16) = 1
32 , f

′′(x) = − 3
16x

−7/4, f ′′(16) = − 3
2048 , f

′′′(x) =
21
64x

−11/4, and f ′′′(16) = 21
131072 , the first four terms of the Taylor series are 2+ 1

32 (x−16)− 3
2048·2! (x−16)2+

21
131072·3! (x− 16)3. Evaluating at x = 13, we get 1.898937225.

9.3.74 Evaluate the binomial coefficient
(−1

k

)
= (−1)(−2)···(−1−k+1)

k! = (−1)k, so that the binomial expansion
for (1 + x)−1 is

∑∞
k=0(−1)kxk. Substituting −x for x, we obtain (1− x)−1 =

∑∞
k=0(−1)k(−x)k =

∑∞
k=0 x

k.

9.3.75 Evaluate the binomial coefficient
(
1/2
k

)
= (1/2)(−1/2)(−3/2)···(1/2−k+1)

k! = (1/2)(−1/2)···((3−2k)/2)
k! =

(−1)k−12−k 1·3···(2k−3)
k! = (−1)k−12−k (2k−2)!

2k−1·(k−1)!·k! = (−1)k−121−2k · 1
k

(
2k−2
k−1

)
. This is the coefficient of xk

in the Taylor series for
√
1 + x. Substituting 4x for x, the Taylor series becomes

∑∞
k=0(−1)k−121−2k ·

1
k

(
2k−2
k−1

)
(4x)k =

∑∞
k=0(−1)k−1 2

k

(
2k−2
k−1

)
xk. If we can show that k divides

(
2k−2
k−1

)
, we will be done, for then the

coefficient of xk will be an integer. But
(
2k−2
k−1

)−(2k−2
k−2

)
= (2k−2)!

(k−1)!(k−1)!− (2k−2)!
(k−2)!k! =

(2k−2)!
(k−1)!(k−1)!− (2k−2)!(k−1)

(k−1)!(k−1)!k =
k(2k−2)!−(k−1)(2k−2)!

k(k−1)!(k−1)! = 1
k

(2k−2)!
(k−1)!(k−1)! =

1
k

(
2k−2
k−1

)
and thus we have shown that k divides

(
2k−2
k−1

)
.

9.3.76 The two Taylor series are:

8 +
1

16
(x− 64)− 1

4096
(x− 64)2 +

1

524288
(x− 64)3 − 5

268435456
(x− 64)4 + · · ·

9 +
1

18
(x− 81)− 1

5832
(x− 81)2 +

1

944784
(x− 81)3 − 5

612220032
(x− 81)4 + · · · .

Evaluating these Taylor series at n = 2, 3, 4 (after the quadratic, cubic, and quartic terms) we obtain the
errors:

n 64 81

2 9.064× 10−4 −8.297× 10−4

3 −7.019× 10−5 −5.813× 10−5

4 6.106× 10−6 −4.550× 10−6

The errors using the Taylor series centered at 81 are consistently smaller.

9.3.77

a. The Maclaurin series for sinx is x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · . Squaring the first four terms yields(
x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7

)2

= x2 − 2

3!
x4 +

(
2

5!
+

1

3!3!

)
x6 +

(
−2 · 1

7!
− 2 · 1

3!5!

)
x8

= x2 − 1

3
x4 +

2

45
x6 − 1

315
x8.

b. The Maclaurin series for cosx is 1 − 1
2x

2 + 1
4!x

4 − 1
6!x

6 + 1
8!x

8 − · · · . Substituting 2x for x in the
Maclaurin series for cosx and then computing (1− cos 2x)/2, we obtain

(1− (1−1

2
(2x)2 +

1

4!
(2x)4 − 1

6!
(2x)6) +

1

8!
(2x)8)/2

= (2x2 − 2

3
x4 +

4

45
x6 − 2

315
x8)/2

= x2 − 1

3
x4 +

2

45
x6 − 1

315
x8,

and the two are the same.
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c. If f(x) = sin2 x, then f(0) = 0, f ′(x) = sin 2x, so f ′(0) = 0. f ′′(x) = 2 cos 2x, so f ′′(x) = 2,
f ′′′(x) = −4 sin 2x, so f ′′′(0) = 0. Note that from this point f (n)(0) = 0 if n is odd and f (n)(0) = ±2n−1

if n is even, with the signs alternating for every other even n. Thus, the series for sin2 x is

2x2/2− 8x4/4! + 32x6/6!− 128x8/8! + · · · = x2 − 1

3
x4 +

2

45
x6 − 1

315
x8 + · · · .

9.3.78

a. The Maclaurin series for cosx is 1− 1
2x

2+ 1
4!x

4− 1
6!x

6+ 1
8!x

8−· · ·. Squaring the first four terms yields

(1−1

2
x2 +

1

4!
x4 − 1

6!
x6)2

= 1− (
1

2
+

1

2
)x2 + (

1

4!
+

1

4!
+

1

4
)x4 + (− 1

6!
− 1

6!
− 1

2 · 4! −
1

2 · 4! )x
6

= 1− x2 +
1

3
x4 − 2

45
x6.

b. Substituting 2x for x in the Maclaurin series for cosx and then computing (1 + cos 2x)/2, we obtain

(1 + 1−1

2
(2x)2 +

1

4!
(2x)4 − 1

6!
(2x)6)/2

= (2− 2x2 +
2

3
x4 − 4

45
x6)/2

= 1− x2 +
1

3
x4 − 2

45
x6,

and the two are the same.

c. If f(x) = cos2 x, then f(0) = 1. Also, f ′(x) = −2 cosx sinx = − sin 2x. So f ′(0) = 0. f ′′(x) =
−2 cos 2x, so f ′′(0) = −2. f ′′′(x) = 8 sin 2x, so f ′′′(0) = 0. Note that from this point on, f (n)(0) = 0
if n is odd, and f (n)(0) = ±2n−1 if n is even, with the signs alternating for every other even n. Thus,
the series for cos2 x is

1− 2x2/2 + 8x4/4!− 32x6/6! + · · · = 1− x2 +
1

3
x4 − 2

45
x6 + · · · .

9.3.79 There are many solutions. For example, first find a series that has (−1, 1) as an interval of conver-

gence, say 1
1−x =

∑∞
k=0 x

k. Then the series 1
1−x/2 =

∑∞
k=0

(
x
2

)k
has (−2, 2) as its interval of convergence.

Now shift the series up so that it is centered at 4. We have
∑∞

k=0

(
x−4
2

)k
, which has interval of convergence

(2, 6).

9.3.80 − 1·3·5
2·4·6·8x

4 + 1·3·5·7
2·4·6·8·10x

5.

9.3.81 1·3·5·7
2·4·6·8x

4 − 1·3·5·7·9
2·4·6·8·10x

5.

9.3.82

a. The Maclaurin series in question are

sinx = x− 1

3!
x3 +

1

5!
x5 − · · ·

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · ,

so substituting the series for sinx for x in the series for ex (and considering only those terms that will
give us an exponent at most 3), we obtain esin x = 1+(x− 1

3!x
3)+ 1

2!x
2+ 1

3!x
3+ · · · = 1+x+ 1

2x
2+ · · · .
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b. The Maclaurin series in question are

tanx = x+
1

3
x3 +

2

15
x5 + · · ·

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · ,

so substituting the series for tanx for x in the series for ex (and considering only those terms that will
give us an exponent at most 3), we obtain etan x = 1+(x+ 1

3x
3)+ 1

2!x
2+ 1

3!x
3+ · · · = 1+x+ 1

2x
2+ · · · .

c. The Maclaurin series in question are

sinx = x− 1

3!
x3 +

1

5!
x5 − · · ·√

1 + x2 = 1 +
1

2
x2 − 1

8
x4 + · · · ,

so substituting the series for sinx for x in the series for
√
1 + x2 (and considering only those terms

that will give us an exponent at most 4), we obtain
√
1 + sin2 x = 1 + 1

2 (x − 1
3!x

3)2 − 1
8x

4 + · · · =
1 + 1

2x
2 − 7

24x
4 + · · · .

9.3.83 Use the Taylor series for cosx centered at π/4:
√
2
2 (1− (x−π/4)− 1

2 (x−π/4)2 + 1
6 (x−π/4)3 + · · · ).

The remainder after n terms (because the derivatives of cosx are bounded by 1 in magnitude) is |Rn(x)| ≤
1

(n+1)! ·
(
π
4 − 2π

9

)n+1
.

Solving for |Rn(x)| < 10−4, we obtain n = 3. Evaluating the first four terms (through n = 3) of the
series we get 0.7660427050. The true value is ≈ 0.7660444431.

9.3.84 Use the Taylor series for sinx centered at π: −(x − π) + 1
6 (x − π)3 − 1

120 (x − π)5 + · · · . The
remainder after n terms (because the derivatives of sinx are bounded by 1 in magnitude) is |Rn(x)| ≤

1
(n+1)! · (π − 0.98π)n+1.

Solving for |Rn(x)| < 10−4, we obtain n = 2. Evaluating the first term of the series gives 0.06283185307.
The true value is ≈ 0.06279051953.

9.3.85 Use the Taylor series for f(x) = x1/3 centered at 64: 4 + 1
48 (x− 64)− 1

9216 (x− 64)2 + · · · . Because
we wish to evaluate this series at x = 83, |Rn(x)| = |f(n+1)(c)|

(n+1)! (83− 64)n+1. We compute that |f (n+1)(c)| =
2·5····(3n−1)
3n+1c(3n+2)/3 , which is maximized at c = 64. Thus

|Rn(x)| ≤ 2 · 5 · · · (3n− 1)

3n+164(3n+2)/3(n+ 1)!
19n+1

Solving for |Rn(x)| < 10−4, we obtain n = 5. Evaluating the terms of the series through n = 5 gives
4.362122553. The true value is ≈ 4.362070671.

9.3.86 Use the Taylor series for f(x) = x−1/4 centered at 16: 1
2 − 1

128 (x − 16) + 5
16384 (x − 16)2 + · · · .

Because we wish to evaluate this series at x = 17, |Rn(x)| = |f(n+1)(c)|
(n+1)! (17 − 16)n+1. We compute that

|f (n+1)(c)| = 1·5···(4n+1)
4n+1c(4n+5)/4 which is maximized at c = 16. Thus

|Rn(x)| ≤ 1 · 5 · · · (4n+ 1)

4n+116(4n+5)/4(n+ 1)!
1n+1

Solving for |Rn(x)| < 10−4, we obtain n = 2. Evaluating the terms of the series through n = 2 gives
0.4924926758. The true value is ≈ 0.4924790605.
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9.3.87

a. Use the Taylor series for (125 + x)1/3 centered at x = 0. Using the first four terms and evaluating at
x = 3 gives a result (5.03968) accurate to within 10−4.

b. Use the Taylor series for x1/3 centered at x = 125. Note that this gives the identical Taylor series
except that the exponential terms are (x − 125)n rather than xn. Thus we need terms up through
(x− 125)3, just as before, evaluated at x = 128, and we obtain the identical result.

c. Because the two Taylor series are the same except for the shifting, the results are equivalent.

9.3.88 Suppose that f is differentiable.
Consider the remainder after the zeroth term of the Taylor series. Taylor’s Theorem says that

R0(x) =
f ′(c)
1!

(x− a)1 for some c between x and a,

but f(x) = f(a) +R0(x), which gives f(x) = f(a) + f ′(c)(x− a). Rearranging, we obtain f ′(c) = f(x)−f(a)
x−a

for some c between x and a, which is the conclusion of the Mean Value Theorem.

9.3.89 Consider the remainder after the first term of the Taylor series. Taylor’s Theorem indicates that

R1(x) = f ′′(c)
2 (x − a)2 for some c between x and a, so that f(x) = f(a) + f ′(a)(x − a) + f ′′(c)

2 (x − a)2.
But f ′(a) = 0, so that for every x in an interval containing a, there is a c between x and a such that

f(x) = f(a) + f ′′(c)
2 (x− a)2.

a. If f ′′(x) > 0 on the interval containing a, then for every x in that interval, we have f(x) = f(a) +
f ′′(c)

2 (x− a)2 for some c between x and a. But f ′′(c) > 0 and (x− a)2 > 0, so that f(x) > f(a) and a
is a local minimum.

b. If f ′′(x) < 0 on the interval containing a, then for every x in that interval, we have f(x) = f(a) +
f ′′(c)

2 (x− a)2 for some c between x and a. But f ′′(c) < 0 and (x− a)2 > 0, so that f(x) < f(a) and a
is a local maximum.

9.3.90

a. To show that f ′(0) = 0, we compute the limits of the left and right difference quotients and show that
they are both zero:

lim
x→0+

e−1/x2 − 0

x
= lim

x→0+

e−1/x2

x
and lim

x→0−

e−1/x2 − 0

x
= lim

x→0−

e−1/x2

x
.

For the limit from the right, use the substitution x = 1√
y ; then y = x2 and the limit becomes

lim
y→∞ e−y√y = lim

y→∞

√
y

ey
= 0,

because exponentials dominate power functions. Similarly, for the limit from the left, use the substi-
tution x = − 1√

y ; then again y = x2 and the limit becomes

lim
y→∞(−e−y√y) = − lim

y→∞

√
y

ey
= 0.

Since the left and right limits are both zero, it follows that f is differentiable at x = 0, and its derivative
is zero.

b. Because f (k)(0) = 0, the Taylor series centered at 0 has only one term:f(x) = f(0) = 0, so the Taylor
series is zero.

c. It does not converge to f(x) because f(x) �= 0 for all x �= 0.
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9.4 Working with Taylor Series

9.4.1 Replace f and g by their Taylor series centered at a, and evaluate the limit.

9.4.2 Integrate the Taylor series for f(x) centered at a, and evaluate it at the endpoints.

9.4.3 Substitute −0.6 for x in the Taylor series for ex centered at 0. Note that this series is an alternating
series, so the error can easily be estimated by looking at the magnitude of the first neglected term.

9.4.4 Take the Taylor series for sin−1(x) centered at 0 and evaluate it at x = 1, then multiply the result by
2.

9.4.5 The series is f ′(x) =
∑∞

k=1 kckx
k−1, which converges for |x| < b.

9.4.6 It must have derivatives of all orders on some interval containing a.

9.4.7 Because ex = 1 + x+ x2/2! + x3/3! + · · · , we have ex−1
x = 1 + x/2! + · · · , so limx→0

ex−1
x = 1.

9.4.8 Because tan−1 x = x− x3

3 + x5

5 − x7

7 + · · · , we have tan−1 x−x
x3 = −1

3 + x2

5 − · · · .
So limx→0

tan−1 x−x
3 = −1

3 .

9.4.9 Because − ln(1 − x) = x + x2

2 + x3

3 + x4

4 + x5

5 + · · · , we have −x−ln(1−x)
x2 = 1

2 + x
3 + x2

4 + · · · , so
limx→0

−x−ln(1−x)
x2 = 1

2 .

9.4.10 Because sin 2x = 2x− 4x3

3 + 4x5

15 + · · · , we have sin 2x
x = 2− 4x2

3 + 4x4

15 + · · · , so limx→0
sin 2x

x = 2.

9.4.11 We compute that

ex − e−x

x
=

1

x

((
1 + x+

x2

2
+

x3

6
+ · · ·

)
−
(
1− x+

x2

2
− x3

6
+ · · ·

))
=

1

x

(
2x+

x3

3
+ · · ·

)
= 2 +

x2

3
+ · · ·

so the limit of
ex − e−x

x
as x → 0 is 2.

9.4.12 Because −ex = −1−x−x2/2−x3/6+ · · · , we have 1+x−ex

4x2 = − 1
8 − x

24 + · · · , so limx→0
1+x−ex

4x2 = − 1
8 .

9.4.13 We compute that

2 cos 2x− 2 + 4x2

2x4
=

1

2x4

(
2(1− (2x)2

2
+

(2x)4

24
− (2x)6

720
+ · · · )− 2 + 4x2

)
=

1

2x4

(
(2x)4

12
− (2x)6

360
+ · · ·

)
=

2

3
− 4x2

45
+ · · ·

so the limit of
2 cos 2x− 2 + 4x2

2x4
as x → 0 is

2

3
.

9.4.14 We substitute t =
1

x
and find lim

t→0

sin t

t
. We compute that

sin t

t
=

1

t

(
t− t3

6
+ · · ·

)
= 1− t2

6
+ · · ·

so the limit of x sin

(
1

x

)
as x → ∞ is 1.
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9.4.15 We have ln(1 + x) = x− 1
2x

2 + 1
3x

3 − 1
4x

4 + · · · , so that

ln(1 + x)− x+ x2/2

x3
=

x3/3− x4/4 + · · ·
x3

=
1

3
− x

4
+ · · ·

so that lim
x→0

ln(1 + x)− x+ x2/2

x3
=

1

3
.

9.4.16 The Taylor series for ln(x− 3) centered at x = 4 is

(x− 4)− 1

2
(x− 4)2 + · · · .

We compute that

x2 − 16

ln(x− 3)
=

x2 − 16

(x− 4)− 1
2 (x− 4)2 + · · · =

(x− 4)(x+ 4)

(x− 4)− 1
2 (x− 4)2 + · · ·

=
x+ 4

1− 1
2 (x− 4) + · · ·

so the limit of
x2 − 16

ln(x− 3)
as x → 4 is 8.

9.4.17 We compute that

3 tan−1 x− 3x+ x3

x5
=

1

x5

(
3

(
x− x3

3
+

x5

5
− x7

7
+ · · ·

)
− 3x+ x3

)
=

1

x5

(
3x5

5
− 3x7

7
+ · · ·

)
=

3

5
− 3x2

7
+ · · ·

so the limit of
3 tan−1 x− 3x+ x3

x5
as x → 0 is

3

5
.

9.4.18 The Taylor series for
√
1 + x centered at 0 is

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 + · · · .

We compute that
√
1 + x− 1− (x/2)

4x2
=

1

4x2

((
1 +

x

2
− x2

8
+

x3

16
+ · · ·

)
− 1− x

2

)
=

1

4x2

(
−x2

8
+

x3

16
+ · · ·

)
= − 1

32
+

x

64
+ · · ·

so the limit of

√
1 + x− 1− (x/2)

4x2
as x → 0 is − 1

32
.

9.4.19 The Taylor series for sin 2x centered at 0 is

sin 2x = 2x− 1

3!
(2x)3 +

1

5!
(2x)5 − 1

7!
(2x)7 + · · · = 2x− 4

3
x3 +

4

15
x5 − 8

315
x7 + · · · .

Thus

12x− 8x3 − 6 sin 2x

x5
=

12− 8x3 − (12x− 8x3 + 8
5x

5 − 16
105x

7 + · · · )
x5

= −8

5
+

16

105
x2 − · · · ,

so lim
x→0

12x− 8x3 − 6 sin 2x

x5
= −8

5
.
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9.4.20 The Taylor series for lnx centered at 1 is

lnx = (x− 1)− 1

2
(x− 1)2 + · · · .

We compute that
x− 1

lnx
=

x− 1

(x− 1)− 1
2 (x− 1)2 + · · · =

1

1− 1
2 (x− 1) + · · ·

so the limit of
x− 1

lnx
as x → 1 is 1.

9.4.21 The Taylor series for ln(x− 1) centered at 2 is

ln(x− 1) = (x− 2)− 1

2
(x− 2)2 + · · · .

We compute that
x− 2

ln(x− 1)
=

x− 2

(x− 2)− 1
2 (x− 2)2 + · · · =

1

1− 1
2 (x− 2) + · · ·

so the limit of
x− 2

ln(x− 1)
as x → 2 is 1.

9.4.22 Because e1/x = 1 + (1/x) + 1/(2x2) + · · · , we have

x(e1/x − 1) = 1 + 1/(2x) + · · · .
Thus, limx→∞ x(e1/x − 1) = 1.

9.4.23 Computing Taylor series centers at 0 gives

e−2x = 1− 2x+
1

2!
(−2x)2 +

1

3!
(−2x)3 + · · · = 1− 2x+ 2x2 − 4

3
x3 + · · ·

e−x/2 = 1− x

2
+

1

2!

(
−x

2

)2
+

1

3!

(
−x

2

)3
+ · · · = 1− x

2
+

1

8
x2 − 1

48
x3 + · · · .

Thus

e−2x − 4e−x/2 + 3

2x2
=

1− 2x+ 2x2 − 4
3x

3 + · · · − (4− 2x+ 1
2x

2 − 1
12x

3 + · · · ) + 3

2x2

=
3
2x

2 − 5
4x

3 + · · ·
2x2

=
3

4
− 5

8
x+ · · ·

so lim
x→0

e−2x − 4e−x/2 + 3

2x2
=

3

4
.

9.4.24 The Taylor series for (1− 2x)−1/2 centered at 0 is

(1− 2x)−1/2 = 1 + x+
3x2

2
+

5x3

2
+ · · · .

We compute that

(1− 2x)−1/2 − ex

8x2
=

1

8x2

((
1 + x+

3x2

2
+

5x3

2
+ · · ·

)
−
(
1 + x+

x2

2
+

x3

6
+ · · ·

))
=

1

8x2

(
x2 +

7x3

3
+ · · ·

)
=

1

8
+

7x

24
+ · · ·

so the limit of
(1− 2x)−1/2 − ex

8x2
as x → 0 is

1

8
.
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9.4.25

a. f ′(x) = d
dx (
∑∞

k=0
xk

k! ) =
∑∞

k=1 k
xk−1

k! =
∑∞

k=0
xk

k! = f(x).

b. f ′(x) = ex as well.

c. The series converges on (−∞,∞).

9.4.26

a. f ′(x) = d
dx (
∑∞

k=0(−1)k x2k

(2k)! ) =
∑∞

k=1(−1)k(2k)x
2k−1

(2k)! =
∑∞

k=1(−1)k x2k−1

(2k−1)! = −∑∞
k=0(−1)k x2k+1

(2k+1)! .

b. f ′(x) = − sinx.

c. The series converges on (−∞,∞), because the series for cosx does.

9.4.27

a. f ′(x) = d
dx (ln(1 + x)) = d

dx (
∑∞

k=1(−1)k+1 1
kx

k) =
∑∞

k=1(−1)k+1xk−1 =
∑∞

k=0(−1)kxk.

b. This is the power series for 1
1+x .

c. The Taylor series for ln(1 + x) converges on (−1, 1), as does the Taylor series for 1
1+x .

9.4.28

a. f ′(x) = d
dx (sinx

2) = d
dx (
∑∞

k=0(−1)k x4k+2

(2k+1)! ) =
∑∞

k=0(−1)k · 2(2k + 1) x4k+1

(2k+1)! = 2
∑∞

k=0(−1)k x4k+1

(2k)! =

2x
∑∞

k=0(−1)k x4k

(2k)! .

b. This is the power series for 2x cosx2.

c. Because the Taylor series for sinx2 converges everywhere, the Taylor series for 2x cosx2 does as well.

9.4.29

a.

f ′(x) =
d

dx
(e−2x) =

d

dx
(

∞∑
k=0

(−2x)k

k!
) =

d

dx
(

∞∑
k=0

(−2)k
xk

k!
) = −2

∞∑
k=1

(−2)k−1 xk−1

(k − 1)!
= −2

∞∑
k=0

(−2x)k

k!
.

b. This is the Taylor series for −2e−2x.

c. Because the Taylor series for e−2x converges on (−∞,∞), so does this one.

9.4.30

a. We have

f ′(x) =
d

dx

(
1

1− x

)
=

d

dx

( ∞∑
k=0

xk

)
=

d

dx

(
1 +

∞∑
k=1

xk

)
=

∞∑
k=1

kxk−1 =

∞∑
k=0

(k + 1)xk.

b. From the formula for (1 + x)p in Table 9.5, we see that the Taylor series for 1
(1−x)2 is

∞∑
k=0

(−2)(−3) · · · (−2− k + 1)

k!
(−x)k =

∞∑
k=0

(−1)k(−1)k
(k + 1)!

k!
xk =

∞∑
k=0

(k + 1)xk,

so that f ′(x) is simply 1
(1−x)2 as expected.
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c. Since the Taylor series for 1
1−x converges on (−1, 1), so does the series for 1

(1−x)2 . Checking the

endpoints, we see that the series diverges at both endpoints by the Divergence test, so that the interval
of convergence for f ′(x) is also (−1, 1).

9.4.31

a. tan−1 x = x− x3

3 + x5

5 − · · · , so d
dx tan−1 x2 = 1− x2 + x4 − x6 + · · · .

b. This is the series for 1
1+x2 .

c. Because the series for tan−1 x has a radius of convergence of 1, this series does too. Checking the
endpoints shows that the interval of convergence is (−1, 1).

9.4.32

a. − ln(1− x) = x+ x2

2 + x3

3 + x4

4 + x5

5 + · · · , so d
dx [− ln(1− x)] = 1 + x+ x2 + x3 + · · · .

b. This is the series for 1
1−x .

c. The interval of convergence for 1
1−x is (−1, 1).

9.4.33

a. Because y(0) = 2, we have 0 = y′(0)− y(0) = y′(0)− 2 so that y′(0) = 2. Differentiating the equation
gives y′′(0) = y′(0), so that y′′(0) = 2. Successive derivatives also have the value 2 at 0, so the Taylor

series is 2
∑∞

k=0
tk

k! .

b. 2
∑∞

k=0
tk

k! = 2et.

9.4.34

a. Because y(0) = 0, we see that y′(0) = 8. Differentiating the equation gives y′′(0) + 4y′(0) = 0, so
y′′(0)+4 · 8 = 0, y′′(0) = −4 · 8. Continuing, y′′′(0)+4 · (−4 · 8) = 0, so y′′′(0) = 4 · 4 · 8, and in general

y(k)(0) = (−1)k+12 · 4k for k ≥ 1, so the Taylor series is 2
∑∞

k=1(−1)k+1 (4t)k

k! .

b. 2
∑∞

k=1(−1)k+1 (4t)k

k! = 2(1− e−4t).

9.4.35

a. y(0) = 2, so that y′(0) = 16. Differentiating, y′′(t) − 3y′(t) = 0, so that y′′(0) = 48, and in general

y(k)(0) = 3y(k−1)(0) = 3k−1 · 16. Thus the power series is 2 + 16
3

∑∞
k=1

(3t)k

k! = 2 +
∑∞

k=1
3k−116

k! tk.

b. 2 + 16
3

∑∞
k=1

(3t)k

k! = 2 + 16
3 (e3t − 1) = 16

3 e3t − 10
3 .

9.4.36

a. y(0) = 2, so y′(0) = 12 + 9 = 21. Differentiating, y(n)(0) = 6y(n−1)(0) for n > 1, so that y(n)(0) =

6n−1 · 21 for n ≥ 1. Thus the power series is 2 +
∑∞

k=1 21 · 6k−1 tk

k! = 2 + 7
2

∑∞
k=1

(6t)k

k! .

b. 2 + 7
2

∑∞
k=1

(6t)k

k! = 2 + 7
2 (e

6t − 1) = 7
2e

6t − 3
2 .

9.4.37 The Taylor series for e−x2

is
∑∞

k=0(−1)k x2k

k! . Thus, the desired integral is
∫ 0.25

0

∑∞
k=0(−1)k x2k

k! dx =∑∞
k=0(−1)k x2k+1

(2k+1)k!

∣∣∣∣0.25
0

=
∑∞

k=0(−1)k 1
(2k+1)k!42k+1 . Because this is an alternating series, to approximate it

to within 10−4, we must find n such that an+1 < 10−4, or 1
(2n+3)(n+1)!·42n+3 < 10−4. This occurs for n = 1,

so
∑1

k=0(−1)k 1
(2k+1)·k!·42k+1 = 1

4 − 1
192 ≈ 0.245.
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9.4.38 The Taylor series for sinx2 is
∑∞

k=0(−1)k x4k+2

(2k+1)! . Thus the desired integral is

∫ 0.2

0

∞∑
k=0

(−1)k
x4k+2

(2k + 1)!
dx =

∞∑
k=0

(−1)k
x4k+3

(4k + 3)(2k + 1)!

∣∣∣∣0.2
0

=

∞∑
k=0

(−1)k
0.24k+3

(4k + 3)(2k + 1)!
.

Because this is an alternating series, to approximate it to within 10−4, we must find n such that an+1 < 10−4,

or 0.24n+7

(4n+7)(2n+3)! < 10−4. This occurs first for n = 0, so we obtain 0.23

3·1! ≈ 2.67× 10−3.

9.4.39 The Taylor series for cos 2x2 is
∑∞

k=0(−1)k (2x2)2k

(2k)! =
∑∞

k=0(−1)k 4kx4k

(2k)! . Note that cosx is an even

function, so we compute the integral from 0 to 0.35 and double it:

2

∫ 0.35

0

∞∑
k=0

(−1)k
4kx4k

(2k)!
dx = 2

( ∞∑
k=0

(−1)k
4kx4k+1

(4k + 1)(2k)!

)∣∣∣∣0.35
0

= 2

( ∞∑
k=0

(−1)k
4k(0.35)4k+1

(4k + 1)(2k)!

)
.

Because this is an alternating series, to approximate it to within 1
2 · 10−4, we must find n such that an+1 <

1
2 · 10−4, or 4n+1(0.35)4n+5

(4n+3)(2n+2)! < 1
2 · 10−4. This occurs first for n = 1, and we have 2

(
.35− 4·(0.35)5

5·2!
)
≈ 0.696.

9.4.40 The Taylor series for (1 + x4)1/2 is
∑∞

k=0

(
1/2
k

)
x4k, so the desired integral is∫ 0.2

0

∞∑
k=0

(
1/2

k

)
x4k dx =

∞∑
k=0

1

4k + 1

(
1/2

k

)
x4k+1

∣∣∣∣0.2
0

=

∞∑
k=0

1

4k + 1

(
1/2

k

)
(0.2)4k+1.

This is an alternating series because the binomial coefficients alternate in sign, so to approximate it to

within 10−4, we must find n such that an+1 < 10−4, or
∣∣∣ 1
4n+5

(
1/2
n+1

)
(0.2)4n+5

∣∣∣ < 10−4. This happens first for

n = 0, so the approximation is
(
1/2
0

) · 0.2 = 0.2.

9.4.41 tan−1 x = x−x3/3+x5/5−x7/7+x9/9− · · · , so ∫ tan−1 x dx =
∫
(x−x3/3+x5/5−x7/7+x9/9−

· · · ) dx = C+ x2

2 − x4

12 +
x6

30 − x8

56 + · · · . Thus, ∫ 0.35

0
tan−1 x dx = (0.35)2

2 − (0.35)4

12 + (0.35)6

30 − (0.35)8

56 + · · · . Note

that this series is alternating, and (0.35)6

30 < 10−4, so we add the first two terms to approximate the integral
to the desired accuracy. Calculating gives approximately 0.060.

9.4.42 ln(1 + x2) = x2 − x4

2 + x6

3 − x8

4 + · · · , so
∫
ln(1 + x2) dx =

∫
(x2 − x4

2 + x6

3 − x8

4 + · · · ) dx =

C + x3

3 − x5

10 + x7

21 − x9

36 + x11

55 + · · · . Thus, ∫ 0.4

0
ln(1 + x2) dx = (0.4)3

3 − (0.4)5

10 + (0.4)7

21 − (0.4)9

36 + · · · . Because
(0.4)7

21 < 10−4, we add the first two terms to approximate the integral to the desired accuracy. Calculating
gives approximately 0.020.

9.4.43 The Taylor series for (1+x6)−1/2 is
∑∞

k=0

(−1/2
k

)
x6k, so the desired integral is

∫ 0.5

0

∑∞
k=0

(−1/2
k

)
x6k dx

=
∑∞

k=0
1

6k+1

(−1/2
k

)
x6k+1

∣∣∣∣0.5
0

=
∑∞

k=0
1

6k+1

(−1/2
k

)
(0.5)6k+1. This is an alternating series because the binomial

coefficients alternate in sign, so to approximate it to within 10−4, we must find n such that an+1 < 10−4, or∣∣∣ 1
6n+7

(−1/2
n+1

)
(0.5)6n+7

∣∣∣ < 10−4. This occurs first for n = 1, so we have
(−1/2

0

)
0.5 + 1

7

(−1/2
1

)
(0.5)7 ≈ 0.499.

9.4.44 The Taylor series for ln(1+t)
t centered at 0 is

∑∞
k=0(−1)k tk

k+1 . The desired integral is thus∫ 0.2

0

∑∞
k=0(−1)k tk

k+1 dt =
∑∞

k=0(−1)k tk+1

(k+1)2

∣∣∣∣0.2
0

=
∑∞

k=0(−1)k (0.2)k+1

(k+1)2 . This is an alternating series, so to

approximate it to within 10−4, we must find n such that an+1 < 10−4, or (0.2)n+2

(n+2)2 < 10−4. This occurs first

for n = 3, so we have
∑3

k=0(−1)k (0.2)k+1

(k+1)2 ≈ 0.191.

9.4.45 Use the Taylor series for ex at 0: 1 + 2
1! +

22

2! +
23

3! .
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9.4.46 Use the Taylor series for ex at 0: 1 + 1/2
1! + (1/2)2

2! + (1/2)3

3! = 1 + 1
2 + 1

8 + 1
8·3! .

9.4.47 Use the Taylor series for cosx at 0: 1− 22

2! +
24

4! − 26

6!

9.4.48 Use the Taylor series for sinx at 0: 1− 13

3! +
15

5! − 17

7! = 1− 1
3! +

1
5! − 1

7! .

9.4.49 Use the Taylor series for ln(1 + x) evaluated at x = 1/2: 1
2 − 1

2 · 1
4 + 1

3 · 1
8 − 1

4 · 1
16 .

9.4.50 Use the Taylor series for tan−1 x evaluated at 1/2: 1
2 − 1

3 · 1
8 + 1

5 · 1
32 − 1

7 · 1
128 .

9.4.51 The Taylor series for f centered at 0 is
−1+

∑∞
k=0

xk

k!

x =
∑∞

k=1
xk

k!

x =
∑∞

k=1
xk−1

k! =
∑∞

k=0
xk

(k+1)! .

Evaluating both sides at x = 1, we have e− 1 =
∑∞

k=0
1

(k+1)! .

9.4.52 The Taylor series for f centered at 0 is
−1+

∑∞
k=0

xk

k!

x =
∑∞

k=1
xk

k!

x =
∑∞

k=1
xk−1

k! =
∑∞

k=0
xk

(k+1)! .

Differentiating, the Taylor series for f ′(x) is f ′(x) = (x−1)ex+1
x2 =

∑∞
k=1

kxk−1

(k+1)! . Evaluating both sides

at 2 gives e2+1
4 =

∑∞
k=1

k·2k−1

(k+1)! .

9.4.53 The Maclaurin series for ln(1+x) is x− 1
2x

2+ 1
3x

3− 1
4x

4+ · · · =∑∞
k=1(−1)k+1 xk

k . By the Ratio Test,

lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ xk+1k
xk(k+1)

∣∣∣ = |x|, so the radius of convergence is 1. The series diverges at −1 and converges

at 1, so the interval of convergence is (−1, 1]. Evaluating at 1 gives ln 2 =
∑∞

k=1(−1)k+1 1
k = 1− 1

2+
1
3− 1

4+· · ·.

9.4.54 The Taylor series for ln(1 + x) at 0 is x − 1
2x

2 + 1
3x

3 − 1
4x

4 + · · · =
∑∞

k=1(−1)k+1 xk

k . By the

Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ xk+1k
xk(k+1)

∣∣∣ = |x|, so the radius of convergence is 1. The series diverges

at −1 and converges at 1, so the interval of convergence is (−1, 1]. Evaluate both sides at −1/2 to get

f(−1
2 ) = ln(1/2) = − ln 2 =

∑∞
k=1(−1)k+1 (−1/2)k

k = −∑∞
k=1

1
k·2k , so that ln 2 =

∑∞
k=1

1
k·2k .

9.4.55
∑∞

k=0
xk

2k
=
∑∞

k=0

(
x
2

)k
= 1

1− x
2
= 2

2−x .

9.4.56
∑∞

k=0(−1)k xk

3k
=
∑∞

k=0

(−x
3

)k
= 1

1+ x
3
= 3

3+x .

9.4.57
∑∞

k=0(−1)k x2k

4k
=
∑∞

k=0

(
−x2

4

)k
= 1

1+ x2

4

= 4
4+x2 .

9.4.58
∑∞

k=0 2
kx2k+1 = x

∑∞
k=0(2x

2)k = x
1−2x2 .

9.4.59 ln(1 + x) = −∑∞
k=1(−1)k xk

k , so ln(1− x) = −∑∞
k=1

xk

k , and finally − ln(1− x) =
∑∞

k=1
xk

k .

9.4.60
∑∞

k=0
(−1)kxk+1

4k
= −4

∑∞
k=0

(−x
4

)k+1
= −4(−1 +

∑∞
k=0

(−x
4

)k
) = 4− 4

1+ x
4
= 4− 16

4+x = 4x
4+x

9.4.61

∞∑
k=1

(−1)k
kxk+1

3k
=

∞∑
k=1

(−1)k
k

3k
xk+1 =

∞∑
k=1

k

(
−1

3

)k

xk+1

= x2
∞∑
k=1

(
−1

3

)k

kxk−1 = x2
∞∑
k=1

(
−1

3

)k
d

dx
(xk)

= x2 d

dx

( ∞∑
k=1

(
−x

3

)k)
= x2 d

dx

(
1

1 + x
3

)
= − 3x2

(x+ 3)2
.

9.4.62 By Exercise 53,
∑∞

k=1
xk

k = − ln(1− x), so
∑∞

k=1
x2k

k =
∑∞

k=1
(x2)k

k = − ln(1− x2).
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9.4.63
∑∞

k=2
k(k−1)xk

3k
= x2

∑∞
k=2

k(k−1)xk−2

3k
= x2 d2

dx2

(∑∞
k=2

xk

3k

)
= x2 d2

dx2

(∑∞
k=2

(
x
3

)k)
= x2 d2

dx2

(
x2

9 · 1
1− x

3

)
= x2 d2

dx2

(
x2

9−3x

)
= x2 −6

(x−3)3 = −6x2

(x−3)3 .

9.4.64
∑∞

k=2
xk

k(k−1) =
∑∞

k=2
xk

k−1 −
∑∞

k=2
xk

k = x
∑∞

k=1
xk

k −∑∞
k=1

xk

k + x, = −x ln(1− x) + ln(1− x) + x =

x+ (1− x) ln(1− x).

9.4.65

a. False. This is because 1
1−x is not continuous at 1, which is in the interval of integration.

b. False. The Ratio Test shows that the radius of convergence for the Taylor series for tan−1 x centered
at 0 is 1.

c. True.
∑∞

k=0
xk

k! = ex. Substitute x = ln 2.

9.4.66 The Taylor series for eax centered at 0 is

eax = 1 + ax+
(ax)2

2
+

(ax)3

6
+ · · · .

We compute that

eax − 1

x
=

1

x

((
1 + ax+

(ax)2

2
+

(ax)3

6
+ · · ·

)
− 1

)
=

1

x

(
ax+

(ax)2

2
+

(ax)3

6
+ · · ·

)
= a+

a2x

2
+

a3x2

6
+ · · ·

so the limit of
eax − 1

x
as x → 0 is a.

9.4.67 The Taylor series for sinx centered at 0 is

sinx = x− x3

6
+

x5

120
− · · · .

We compute that

sin ax

sin bx
=

ax− (ax)3

6 + (ax)5

120 − · · ·
bx− (bx)3

6 + (bx)5

120 − · · ·

=
a− a3x2

6 + a5x4

120 − · · ·
b− b3x2

6 + b5x4

120 − · · ·

so the limit of
sin ax

sin bx
as x → 0 is

a

b
.

9.4.68 The Taylor series for sin ax centered at 0 is

sin ax = ax− (ax)3

6
+

(ax)5

120
− · · ·

and the Taylor series for tan−1 ax centered at 0 is

tan−1 ax = ax− (ax)3

3
+

(ax)5

5
− · · · .

We compute that

sin ax− tan−1 ax

bx3
=

1

bx3

((
ax− (ax)3

6
+

(ax)5

120
− · · ·

)
−
(
ax− (ax)3

3
+

(ax)5

5
− · · ·

))
=

1

bx3

(
(ax)3

6
− 23(ax)5

120
+ · · ·

)
=

a3

6b
− 23a5

120b
x2 + · · ·

so the limit of
sin ax− tan−1 ax

bx3
as x → 0 is

a3

6b
.
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9.4.69 Compute instead the limit of the log of this expression, lim
x→0

ln(sin x/x)
x2 . If the Taylor expansion of

ln(sinx/x) is
∑∞

k=0 ckx
k, then lim

x→0

ln(sin x/x)
x2 = lim

x→0

∑∞
k=0 ckx

k−2 = lim
x→0

c0x
−2 + c1x

−1 + c2, because the

higher-order terms have positive powers of x and thus approach zero as x does. So compute the terms
of the Taylor series of ln

(
sin x
x

)
up through the quadratic term. The relevant Taylor series are: sin x

x =

1− 1
6x

2 + 1
120x

4 − · · · , ln(1+ x) = x− 1
2x

2 + 1
3x

3 − · · · and we substitute the Taylor series for sin x
x − 1 for x

in the Taylor series for ln(1 + x). Because the lowest power of x in the first Taylor series is 2, it follows that
only the linear term in the series for ln(1 + x) will give any powers of x that are at most quadratic. The

only term that results is − 1
6x

2. Thus c0 = c1 = 0 in the above, and c2 = − 1
6 , so that lim

x→0

ln(sin x/x)
x2 = − 1

6

and thus lim
x→0

(
sin x
x

)1/x2

= e−1/6.

9.4.70 We can find the Taylor series for ln(x +
√
1 + x2) by substituting into ln(1 + t) the Taylor series

for x +
√
x2 + 1 − 1. The Taylor series in question are: x +

√
x2 + 1 − 1 = x + 1

2x
2 − 1

8x
4 + 1

16x
6 −

. . . , ln(1 + t) = t − 1
2 t

2 + 1
3 t

3 − 1
4 t

4 + 1
5 t

5 − 1
6 t

6 + 1
7 t

7 − . . . . Substituting the former into the latter and

simplifying (not a simple task!), we obtain ln(x+
√
x2 + 1) = x− 1

6x
3+ 3

40x
5− 5

112x
7+ . . .. Using the second

definition, start with the Taylor series for (1 + t2)−1/2, which is 1− 1
2 t

2 + 3
8 t

4 − 5
16 t

6 + . . . , and integrate it:∫ x

0

(
1− 1

2 t
2 + 3

8 t
4 − 5

16 t
6 + . . .

)
dt =

(
t− 1

6 t
3 + 3

40 t
5 − 5

112 t
7 + . . .

) ∣∣∣∣x
0

= x− 1
6x

3 + 3
40x

5 − 5
112x

7 + . . . .

9.4.71 The Taylor series we need are cosx = 1− 1
2x

2 + 1
24x

4 + . . . , et = 1+ t+ 1
2! t

2 + 1
3! t

3 + 1
4! t

4 + . . . . We
are looking for powers of x3 and x4 that occur when the first series is substituted for t in the second series.
Clearly there will be no odd powers of x, because cosx has only even powers. Thus the coefficient of x3 is
zero, so that f (3)(0) = 0. The coefficient of x4 comes from the expansion of 1− 1

2x
2 + 1

24x
4 in each term of

et. Higher powers of x clearly cannot contribute to the coefficient of x4. Thus consider
(
1− 1

2x
2 + 1

24x
4
)k

.

The term − 1
2x

2 generates
(
k
2

)
terms of value 1

4x
4 for k ≥ 2, while the other term generates k terms of value

1
24x

4 for k ≥ 1. These terms all have to be divided by the k! appearing in the series for et. So the total

coefficient of x4 is 1
24

∑∞
k=1

k
k!+

1
4

∑∞
k=2

(
k
2

)
1
k! , =

1
24

∑∞
k=1

1
(k−1)!+

1
4

∑∞
k=2

1
2·(k−2)! , =

1
24

∑∞
k=0

1
k!+

1
8

∑∞
k=0

1
k! ,

= 1
24e+

1
8e =

e
6 Thus f (4)(0) = e

6 · 4! = 4e.

9.4.72 The Taylor series for (1+ x)−1/3 is (1+ x)−1/3 = 1− 1
3x+ 2

9x
2 − 14

81x
3 + 35

243x
4 − . . . , so we want the

coefficients of x3 and x4 in (x2 +1)
(
1− 1

3x+ 2
9x

2 − 14
81x

3 + 35
243x

4
)
. The coefficient of x3 is − 1

3 − 14
81 = − 41

81 ,

and the coefficient of x4 is 2
9 + 35

243 = 89
243 . Thus f

(3)(0) = 6 · −41
81 = −82

27 , and f (4)(0) = 24 · 89
243 = 712

81 .

9.4.73 The Taylor series for sin t2 is sin t2 = t2− 1
3! t

6+ 1
5! t

10− . . ., so that
∫ x

0
sin t2 dt = 1

3 t
3− 1

7·3! t
7+ . . .

∣∣∣∣x
0

=

1
3x

3 − 1
7·3!x

7 + . . .. Thus f (3)(0) = 3!
3 = 2 and f (4)(0) = 0.

9.4.74 1
1+t4 = 1 − t4 + t8 + . . ., so that

∫ x

0
1

1+t4 dt = t − 1
5 t

5 + 1
9 t

9 + . . .

∣∣∣∣x
0

= x − 1
5x

5 + . . . . so that both

f (3)(0) and f (4)(0) are zero.

9.4.75 Consider the series
∑∞

k=1 x
k = x

1−x . Differentiating both sides gives 1
(1−x)2 =

∑∞
k=0 kx

k−1 =
1
x

∑∞
k=0 kx

k so that x
(1−x)2 =

∑∞
k=0 kx

k. Evaluate both sides at x = 1/2 to see that the sum of the se-

ries is 1/2
(1−1/2)2 = 2. Thus the expected number of tosses is 2.

9.4.76

a.
∑∞

k=0
1
6

(
5
6

)2k
= 1

6

∑∞
k=0

(
25
36

)k
= 1

6 · 1
1−25/36 = 6

11 .

b. Consider the series
∑∞

k=1 x
k = x

1−x . Differentiating both sides gives 1
(1−x)2 =

∑∞
k=1 kx

k−1 Evaluating

at x = 5/6 and multiplying the result by 1/6, we get 1
6 · 1

(1−5/6)2 = 6.
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9.4.77

a. We look first for a Taylor series for (1 − k2 sin2 θ)−1/2. Because (1 − k2x2)−1/2 = (1 − (kx)2)−1/2 =∑∞
i=0

(−1/2
i

)
(kx)2i, and sin θ = θ − 1

3!θ
3 + 1

5!θ
5 − . . . , substituting the second series into the first gives

1√
1−k2 sin2 θ

= 1 + 1
2k

2θ2 +
(− 1

6k
2 + 3

8k
4
)
θ4 +

(
1
45k

2 − 1
4k

4 + 5
16k

6
)
θ6 +( −1

630k
2 + 3

40k
4 − 5

16k
6 + 35

128k
8
)
θ8 + . . . .

Integrating with respect to θ and evaluating at π/2 (the value of the antiderivative is 0 at 0) gives 1
2π+

1
48k

2π3+ 1
160

(− 1
6k

2 + 3
8k

4
)
π5+ 1

896

(
1
45k

2 − 1
4k

4 + 5
16k

6
)
π7+ 1

4608

(− 1
630k

2 + 3
40k

4 − 5
16k

6 + 35
128k

8
)
π9.

Evaluating these terms for k = 0.1 gives F (0.1) ≈ 1.574749680. (The true value is approximately
1.574745562.)

b. The terms above, with coefficients of kn converted to decimal approximations, is 1.5707 + .3918 · k2 +
.3597 ·k4− .9682 ·k6+1.7689 ·k8. The coefficients are all less than 2 and do not appear to be increasing
very much if at all, so if we want the result to be accurate to within 10−3 we should probably take n
such that kn < 1

2 × 10−3 = .0005, so n = 4 for this value of k.

c. By the above analysis, we would need a larger n because 0.2n > 0.1n for a given value of n.

9.4.78

a. sin t
t =

∑∞
k=0(−1)k x2k

(2k+1)! = 1− x2

3! +
x4

5! − . . . .

b.
∫ x

0
sin t
t dt =

∑∞
k=0

∫ x

0
(−1)k t2k

(2k+1)! dt =
∑∞

k=0(−1)k x2k+1

(2k+1)(2k+1)! .

c. This is an alternating series, so we want n such that an+1 < 10−3, or 0.52n+3

(2n+3)(2n+3)! < 10−3 (resp.

12n+3

(2n+3)(2n+3)! < 10−3), which gives n = 1 (resp. n = 2). Thus Si(0.5) ≈ 0.5
1 − 0.53

3·3! ≈ 0.4930555556,

Si(1.0) ≈ 1− 1
3·3! +

1
5·5! ≈ 0.9461111111.

9.4.79

a. By the Fundamental Theorem, S′(x) = sinx2, C ′(x) = cosx2.

b. The relevant Taylor series are sin t2 = t2− 1
3! t

6+ 1
5! t

10− 1
7! t

14+. . . , and cos t2 = 1− 1
2! t

4+ 1
4! t

8− 1
6! t

12+. . . .
Integrating, we have S(x) = 1

3x
3 − 1

7·3!x
7 + 1

11·5!x
11 − 1

15·7!x
15 + . . . , and C(x) = x− 1

5·2!x
5 + 1

9·4!x
9 −

1
13·6!x

13 + . . . .

c. S(0.05) ≈ 1
3 (0.05)

3 − 1
42 (0.05)

7 + 1
1320 (0.05)

11 − 1
75600 (0.05)

15 ≈ 4.166664807 × 10−5. C(−0.25) ≈
(−0.25)− 1

10 (−0.25)5 + 1
216 (−0.25)9 − 1

9360 (−0.25)13 ≈ −.2499023616.

d. The series is alternating. Because an+1 = 1
(4n+7)(2n+3)! (0.05)

4n+7, and this is less than 10−4 for n = 0,

only one term is required.

e. The series is alternating. Because an+1 = 1
(4n+5)(2n+2)! (0.25)

4n+5, and this is less than 10−6 for n = 1,

two terms are required.

9.4.80

a. d
dxerf(x) =

2√
π
(e−x2

).

b. e−t2 = 1 − t2 + t4

2! − t6

3! + · · · = ∑∞
k=0(−1)k t2k

k! , so that the Maclaurin series for the error function is

erf(x) = 2√
π

(
x− x3

3 + x5

5·2! − x7

7·3! + . . .
)
.

c. erf(0.15) ≈ 2√
π

(
0.15− 0.153

3 + 0.155

10 − 0.157

42

)
≈ 0.1679959712.

erf(−0.09) ≈ 2√
π

(
−0.09 + 0.093

3 − 0.095

10 + 0.097

42

)
≈ −.1012805939.
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d. The first omitted term in each case is x9

9·5! =
x9

1080 . For x = 0.15, this is ≈ 3.56× 10−11. For x = −0.09,
this is (in absolute value) ≈ 3.59× 10−13.

9.4.81

a. J0(x) = 1− 1
4x

2 + 1
16·2!2x

4 − 1
26·3!2x

6 + . . . .

b. Using the Ratio Test:
∣∣∣ak+1

ak

∣∣∣ = x2k+2

22k+2((k+1)!)2
· 22k(k!)2

x2k = x2

4(k+1)2 , which has limit 0 as k → ∞ for any

x. Thus the radius of convergence is infinite and the interval of convergence is (−∞,∞).

c. Starting only with terms up through x8, we have J0(x) = 1 − 1
4x

2 + 1
64x

4 − 1
2304x

6 + 1
147456x

8 + . . . ,
J ′
0(x) = − 1

2x + 1
16x

3 − 1
384x

5 + 1
18432x

7 + . . . , J ′′
0 (x) = − 1

2 + 3
16x

2 − 5
384x

4 + 7
18432x

6 + . . . so that
x2J0(x) = x2 − 1

4x
4 + 1

64x
6 − 1

2304x
8 + 1

147456x
10 + . . . , xJ ′

0(x) = − 1
2x

2 + 1
16x

4 − 1
384x

6 + 1
18432x

8 + . . . ,
x2J ′′

0 (x) = − 1
2x

2 + 3
16x

4 − 5
384x

6 + 7
18432x

8 + . . . , and x2J ′′
0 (x) + xJ ′

0(x) + x2J0(x) = 0.

9.4.82 secx = 1
cos x = 1

1− x2

2 + x4

24 +...
= 1 + 1

2x
2 + 5

24x
4 + 61

720x
6 + . . .

9.4.83

a. The power series for cosx has only even powers of x, so that the power series has the same value
evaluated at −x as it does at x.

b. The power series for sinx has only odd powers of x, so that evaluating it at −x gives the opposite of
its value at x.

9.4.84 Long division gives cscx = 1
x + 1

6x+ 7
360x

3 + · · · , so that cscx ≈ 1
x + 1

6x as x → 0+.

9.4.85

a. Because f(a) = g(a) = 0, we use the Taylor series for f(x) and g(x) centered at a to compute that

lim
x→a

f(x)

g(x)
= lim

x→a

f(a) + f ′(a)(x− a) + 1
2f

′′(a)(x− a)2 + · · ·
g(a) + g′(a)(x− a) + 1

2g
′′(a)(x− a)2 + · · ·

= lim
x→a

f ′(a)(x− a) + 1
2f

′′(a)(x− a)2 + · · ·
g′(a)(x− a) + 1

2g
′′(a)(x− a)2 + · · ·

= lim
x→a

f ′(a) + 1
2f

′′(a)(x− a) + · · ·
g′(a) + 1

2g
′′(a)(x− a) + · · · =

f ′(a)
g′(a)

.

Because f ′(x) and g′(x) are assumed to be continuous at a and g′(a) �= 0,

f ′(a)
g′(a)

= lim
x→a

f ′(x)
g′(x)

and we have that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)
g′(x)

which is one form of L’Hôpital’s Rule.

b. Because f(a) = g(a) = f ′(a) = g′(a) = 0, we use the Taylor series for f(x) and g(x) centered at a to
compute that

lim
x→a

f(x)

g(x)
= lim

x→a

f(a) + f ′(a)(x− a) + 1
2f

′′(a)(x− a)2 + 1
6f

′′′(a)(x− a)3 + · · ·
g(a) + g′(a)(x− a) + 1

2g
′′(a)(x− a)2 + 1

6g
′′′(a)(x− a)3 + · · ·

= lim
x→a

1
2f

′′(a)(x− a)2 + 1
6f

′′′(a)(x− a)3 + · · ·
1
2g

′′(a)(x− a)2 + 1
6g

′′′(a)(x− a)3 + · · ·

= lim
x→a

1
2f

′′(a) + 1
6f

′′′(a)(x− a) + · · ·
1
2g

′′(a) + 1
6g

′′′(a)(x− a) + · · · =
f ′′(a)
g′′(a)

.
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Because f ′′(x) and g′′(x) are assumed to be continuous at a and g′′(a) �= 0,

f ′′(a)
g′′(a)

= lim
x→a

f ′′(x)
g′′(x)

and we have that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′′(x)
g′′(x)

which is consistent with two applications of L’Hôpital’s Rule.

9.4.86

a. Clearly x = sin s because BE, of length x, is the side opposite the angle measured by s in a right
triangle with unit length hypotenuse.

b. In the formula 1
2r

2θ for the formula for the area of a circular sector, we have r = 1, and θ = s, so that
the area is in fact s

2 . But the area can also be expressed as an integral as follows: the area of the sector
is the area under the circle between P and F (i.e. the area of the region PAEF ), minus the area of
the right triangle PEF . The area of the right triangle is 1

2x
√
1− x2 by the Pythagorean theorem and

the formula for the area of a triangle. Equating these two formulae for the area of the sector, we have
s
2 =

∫ x

0

√
1− t2 dt− 1

2x
√
1− x2, so s = 2

∫ x

0

√
1− t2 dt− x

√
1− x2.

c. The Taylor series for
√
1− t2 is 1− 1

2 t
2 − 1

8 t
4 − 1

16 t
6 − 5

128 t
8 − . . . . Integrating and evaluating at x we

have s = sin−1 x = 2
(
x− 1

6x
3 − 1

40x
5 − 1

112x
7 − 5

1152x
9
) − x

(
1− 1

2x
2 − 1

8x
4 − 1

16x
6 − 5

128x
8
)
+ · · · =

x+ 1
6x

3 + 3
40x

5 + 5
112x

7 + 35
1152x

9 + · · · .
d. Suppose x = sin s = a0 + a1s+ a2s

2 + . . . . Then x = sin(sin−1(x)) = a0 + a1(x+ 1
6x

3 + 3
40x

5 + . . . ) +
a2((x+ 1

6x
3 + 3

40x
5 + . . . )2 + . . . . Equating coefficients yields a0 = 0, a1 = 1, a2 = 0, a3 = −1

6 , and so
on.

Chapter Nine Review

1

a. True. The approximations tend to get better as n increases in size, and also when the value being
approximated is closer to the center of the series. Because 2.1 is closer to 2 than 2.2 is, and because
3 > 2, we should have |p3(2.1)− f(2.1)| < |p2(2.2)− f(2.2)|.

b. False. The interval of convergence may or may not include the endpoints.

c. True. The interval of convergence is an interval centered at 0, and the endpoints may or may not be
included.

d. True. Because f(x) is a polynomial, all its derivatives vanish after a certain point (in this case, f (12)(x)
is the last nonzero derivative).

2 p3(x) = 2x− (2x)3

3! .

3 p2(x) = 1.

4 p2(x) = 1− x+ x2

2 .

5 p3(x) = x− x2

2 + x3

3 .

6 p2(x) =
√
2
2

(
1− (x− π/4)− 1

2 (x− π/4)2
)
.
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7 p2(x) = x− 1− 1
2 (x− 1)2.

8 p4(x) = 8x3/3! + 2x = 4x3/3 + 2x.

9 p3(x) =
5
4 + 3(x−ln 2)

4 + 5(x−ln 2)2

8 + (x−ln 2)3

8 .

10

a. p0(x) = p1(x) = 1, and p2(x) = 1− x2

2 .

b.

n pn(−0.08) |pn(−0.08)− cos(−0.08)|
0 1 3.2× 10−3

1 1 3.2× 10−3

2 0.997 1.7× 10−6

11

a. p0(x) = 1, p1(x) = 1 + x, and p2(x) = 1 + x+ x2

2 .

b.

n pn(−0.08)
∣∣pn(−0.08)− e−0.08

∣∣
0 1 7.7× 10−2

1 0.92 3.1× 10−3

2 0.923 8.4× 10−5

12

a. p0(x) = 1, p1(x) = 1 + 1
2x, and p2(x) = 1 + 1

2x− 1
8x

2.

b.

n pn(0.08)
∣∣pn(0.08)−√

1 + 0.08
∣∣

0 1 3.9× 10−2

1 1.04 7.7× 10−4

2 1.039 3.0× 10−5

13

a. p0(x) =
√
2
2 , p1(x) =

√
2
2 (1 + (x− π/4)), and p2(x) =

√
2
2

(
1 + (x− π/4)− 1

2 (x− π/4)2
)
.

b.

n pn(π/5) |pn(π/5)− sin(π/5)|
0 0.707 1.2× 10−1

1 0.596 8.2× 10−3

2 0.587 4.7× 10−4

14 The bound is |Rn(x)| ≤ M |x|n+1

(n+1)! , where M is a bound for |ex| (because ex is its own derivative) on

[−1, 1]. Thus take M = 3 so that |R3(x)| ≤ 3x4

4! = x4

8 . But |x| < 1, so this is at most 1
8 .
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15 The derivatives of sinx are bounded in magnitude by 1, so |Rn(x)| ≤ M |x|n+1

(n+1)! ≤ |x|n+1

(n+1)! . But |x| < π, so

|R3(x)| ≤ π4

24 .

16 The third derivative of ln(1−x) is −2
(x−1)3 , which is bounded in magnitude by 16 on |x| < 1/2 (at x = 1/2).

Thus |R3(x)| ≤ 16 |x|4
4! ≤ 16 1

244! =
1
4! .

17 Using the Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (k+1)2xk+1

(k+1)! · k!
k2xk

∣∣∣ = lim
k→∞

(
k+1
k

)2 |x|
k+1 = 0, so the interval of

convergence is (−∞,∞).

18 Using the Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ x4k+4

(k+1)2 · k2

x4k

∣∣∣ = lim
k→∞

(
k

k+1

)2
x4 = x4, so that the radius of

convergence is 1. Because
∑

1
k2 converges, the given power series converges at both endpoints, so its interval

of convergence is [−1, 1].

19 Using the Ratio Test, lim
k→∞

ak+1

ak
= lim

k→∞

∣∣∣ (x+1)2k+2

(k+1)! · k!
(x+1)2k

∣∣∣ = lim
k→∞

1
k+1 (x + 1)2 = 0, so the interval of

convergence is (−∞,∞).

20 Using the Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (x−1)k+1

(k+1)5k+1 · k5k

(x−1)k

∣∣∣ = lim
k→∞

k
5k+5 |x− 1| = 1

5 (|x− 1|), so the

series converges when |1/5(x− 1)| < 1, or −5 < x− 1 < 5, so that −4 < x < 6. At x = −4, the series is the
alternating harmonic series. At x = 6, it is the harmonic series, so the interval of convergence is [−4, 6).

21 By the Root Test, lim
k→∞

k
√|ak| = lim

k→∞

(
|x|
9

)3
=

|x3|
729 , so the series converges for |x| < 9. The series given

by letting x = ±9 are both divergent by the Divergence Test. Thus, (−9, 9) is the interval of convergence.

22 By the Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (x+2)k+1

√
k+1

·
√
k

(x+2)k

∣∣∣ = lim
k→∞

√
k

k+1 (|x+ 2|) = |x+ 2| , so that the

series converges for |x+ 2| < 1, so −3 < x < −1. At x = −3, we have a series which converges by the
Alternating Series Test. At x = −1, we have the divergent p−series with p = 1/2. Thus, [−3,−1) is the
interval of convergence.

23 By the Ratio Test, lim
k→∞

∣∣∣ (x+2)k+1

2k+1 ln(k+1)
· 2k ln k
(x+2)k

∣∣∣ = lim
k→∞

ln k
2 ln(k+1) |x+ 2| = |x+2|

2 . The radius of convergence

is thus 2, and a check of the endpoints gives the divergent series
∑

1
ln k at x = 0 and the convergent

alternating series
∑ (−1)k

ln k at x = −4. The interval of convergence is therefore [−4, 0).

24 By the Ratio Test, lim
k→∞

∣∣∣x2k+3

2k+3 · 2k+1
x2k+1

∣∣∣ = x2. The radius of convergence is thus 1. At each endpoint we

have a divergent series, so the interval of convergence is (−1, 1).

25 The Maclaurin series for f(x) is
∑∞

k=0 x
2k. By the Root Test, this converges for

∣∣x2
∣∣ < 1, so −1 < x < 1.

It diverges at both endpoints, so the interval of convergence is (−1, 1).

26 The Maclaurin series for f(x) is determined by replacing x by (−x)3 in the power series for 1
1−x , so it is∑∞

k=0(−1)kx3k. The radius of convergence is still 1. The series diverges at both endpoints, so the interval
of convergence is (−1, 1).

27 The Maclaurin series for f(x) is
∑∞

k=0(−5x)k =
∑∞

k=0(−5)kxk. By the Root Test, this has radius of
convergence 1/5. Checking the endpoints, we obtain an interval of convergence of (−1/5, 1/5).

28 Replace x by −x in the original power series, and multiply the result by 10x, to get the Maclaurin series
for f(x), which is

∑∞
k=0(−1)k10xk+1. By the Ratio Test, the radius of convergence is 1. Checking the

endpoints, we obtain an interval of convergence of (−1, 1).
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29 Note that 1
1−10x =

∑∞
k=0(10x)

k, so 1
10 · 1

1−10x = 1
10

∑∞
k=0(10x)

k. Taking the derivative of 1
10 · 1

1−10x gives

f(x). Thus, the Maclaurin series for f(x) is 1
10

∑∞
k=1 10k(10x)

k−1 =
∑∞

k=1 k(10x)
k−1. Using the Ratio Test,

we see that the radius of convergence is 1/10, and checking endpoints we obtain an interval of convergence
of (−1/10, 1/10).

30 Integrating 1
1−x and then replacing x by 4x gives −f(x), so the series for f(x) is −∑∞

k=0
1

k+1 (4x)
k+1.

The Ratio Test shows that the series has a radius of convergence of 1/4; checking the endpoints, we obtain
an interval of convergence of [−1/4, 1/4).

31 The first three terms are 1 + 3x+ 9x2

2 . The series is
∑∞

k=0
(3x)k

k! .

32 The first three terms are 1− (x− 1) + (x− 1)2. The series is
∑∞

k=0(−1)k(x− 1)k.

33 The first three terms are −(x− π/2) + 1
6 (x− π/2)3 − 1

120 (x− π/2)5. The series is

∞∑
k=0

(−1)k+1 1

(2k + 1)!

(
x− π

2

)2k+1

.

34 The first three terms for 1
1+x are 1 − x + x2, so the first three terms of x2 · 1

1+x are x2 − x3 + x4. The

series is
∑∞

k=0(−1)kxk+2.

35 The first three terms are 4x− 1
3 (4x)

3 + 1
5 (4x)

5. The series is
∑∞

k=0(−1)k (4x)2k+1

2k+1 .

36 The nth derivative of f(x) = sin(2x) is ±2n times either sin 2x or cos 2x. Evaluated at −π
2 , the

even derivatives are therefore zero, and the (2n + 1)st derivative is (−1)n+122n+1. The Taylor series for

sin 2x around x = −π
2 is thus −2

(
x+ π

2

)
+ 23

3!

(
x+ π

2

)3 − 25

5!

(
x+ π

2

)5
+ · · · , and the general series is∑∞

k=0(−1)k+1 22k+1

(2k+1)!

(
x+ π

2

)2k+1
.

37 The nth derivative of cosh 3x at x = 0 is 0 if n is odd and is 3n if n is even. The first 3 terms of the
series are thus 1 + 9x2

2! + 81x4

4! . The whole series can be written as
∑∞

k=0
(3x)2k

(2k)! .

38 f(0) = 1
4 , f

′(x) = −2x
(x2+4)2 , so f ′(0) = 0. f ′′(x) = 6x2−8

(x2+4)3
, so f ′′(0) = − 1

8 . f ′′′(0) = 0, and f ′′′′(0) = 3
8 .

The first three terms are 1
4 − x2

16 + x4

64 . The series is given by
∑∞

k=0
(−1)kx2k

4k+1 .

39 f(x) =
(
1/3
0

)
+
(
1/3
1

)
x+

(
1/3
2

)
x2 + · · · = 1 + 1

3x− 1
9x

2 + · · · .

40 f(x) =
(−1/2

0

)
+
(−1/2

1

)
x+

(−1/2
2

)
x2 + · · · = 1− 1

2x+ 3
8x

2 + · · · .

41 f(x) =
(−3

0

)
+
(−3

1

)
x
2 +

(−3
2

)
x2

4 + · · · = 1− 3
2x+ 3

2x
2 + · · · .

42 f(x) =
(−5

0

)
+
(−5

1

)
(2x) +

(−5
2

)
(2x)2 + · · · = 1− 10x+ 60x2 + · · · .

43 Rn(x) =
(−1)n+1e−c

(n+1)! xn+1 for some c between 0 and x, and lim
n→∞ |Rn(x)| ≤ e−|x| lim

n→∞
|x|n+1

(n+1)! = 0, because

n! grows faster than |x|n as n → ∞ for all x.

44 Rn(x) = f(n+1)(c)
(n+1)! xn+1 for some c between 0 and x. Because all derivatives of sinx are bounded in

magnitude by 1, we have lim
n→∞ |Rn(x)| ≤ lim

n→∞
|x|n+1

(n+1)! = 0 because n! grows faster than |x|n as n → ∞ for all
x.

45 Rn(x) = f(n+1)(c)
(n+1)! xn+1 for some c in (−1/2, 1/2). Now,

∣∣f (n+1)(c)
∣∣ = n!

(1+c)n+1 , so lim
n→∞ |Rn(x)| ≤

lim
n→∞ (2 |x|)n+1 · 1

n+1 ≤ lim
n→∞ 1n+1 1

n+1 = 0.
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46 Rn(x) =
f(n+1)(c)
(n+1)! xn+1 for some c in (−1/2, 1/2). Now the (n+ 1)st derivative of (

√
1 + x) is

± 1·3·5···(2n−1)
2n+1(1+x)(2n+1)/2 , so for c in (−1/2, 1/2), this is bounded in magnitude by 1·3·5···(2n−1)

2n+1(1/2)(2n+1)/2 = 1·3·5···(2n−1)
21/2

,

and thus

lim
n→∞ |Rn(x)| = lim

n→∞

∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣
≤ lim

n→∞
1 · 3 · 5 · (2n− 1)√

2
· 1

2n+1 · (n+ 1)!

= lim
n→∞

1 · 3 · 5 · · · (2n− 1)√
2

· 1

2 · 4 · 6 · · · (2n+ 2)

= lim
n→∞

(
1√
2
· 1
2
· 3
4
· · · 2n− 1

2n
· 1

2n+ 2

)
= 0.

for x in (−1/2, 1/2).

47 The Taylor series for cosx centered at 0 is

cosx = 1− x2

2
+

x4

24
− x6

720
+ · · · .

We compute that

x2/2− 1 + cosx

x4
=

1

x4

(
x2/2− 1 +

(
1− x2

2
+

x4

24
− x6

720
+ · · ·

))
=

1

x4

(
x4

24
− x6

720
+ · · ·

)
=

1

24
− x2

720
+ · · ·

so the limit of
x2/2− 1 + cosx

x4
as x → 0 is

1

24
.

48 The Taylor series for sinx centered at 0 is

sinx = x− x3

6
+

x5

120
− x7

5040
+ · · ·

and the Taylor series for tan−1 x centered at 0 is

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ · · · .

We compute that

2 sinx− tan−1 x− x

2x5

=
1

2x5

(
2

(
x− x3

6
+

x5

120
− x7

5040
+ · · ·

)
−
(
x− x3

3
+

x5

5
− x7

7
+ · · ·

)
− x

)
=

1

2x5

(
11x5

60
+

359x7

2520
− · · ·

)
= − 11

120
+

359x2

5040
− · · ·

so the limit of
2 sinx− tan−1 x− x

2x5
as x → 0 is − 11

120
.

49 The Taylor series for ln(x− 3) centered at 4 is

ln(x− 3) = (x− 4)− 1

2
(x− 4)2 +

1

3
(x− 4)3 − · · · .
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We compute that

ln(x− 3)

x2 − 16
=

1

(x− 4)(x+ 4)

(
(x− 4)− 1

2
(x− 4)2 +

1

3
(x− 4)3 − · · ·

)
=

1

(x− 4)(x+ 4)

(
(x− 4)

(
1− 1

2
(x− 4) +

1

3
(x− 4)2 − · · ·

))
=

1

x+ 4

(
1− 1

2
(x− 4) +

1

3
(x− 4)2 − · · ·

)

so the limit of
ln(x− 3)

x2 − 16
as x → 4 is

1

8
.

50 The Taylor series for
√
1 + 2x centered at 0 is

√
1 + 2x = 1 + x− x2

2
+

x3

2
− · · · .

We compute that

√
1 + 2x− 1− x

x2
=

1

x2

((
1 + x− x2

2
+

x3

2
− · · ·

)
− 1− x

)
=

1

x2

(
−x2

2
+

x3

2
− · · ·

)
= −1

2
+

x

2
− · · ·

so the limit of

√
1 + 2x− 1− x

x2
as x → 0 is −1

2
.

51 The Taylor series for secx centered at 0 is

secx = 1 +
x2

2
+

5x4

24
+

61x6

720
+ · · ·

and the Taylor series for cosx centered at 0 is

cosx = 1− x2

2
+

x4

24
− x6

720
+ · · · .

We compute that

secx− cosx− x2

x4

=
1

x4

((
1 +

x2

2
+

5x4

24
+

61x6

720
+ · · ·

)
−
(
1− x2

2
+

x4

24
− x6

720
+ · · ·

)
− x2

)
=

1

x4

(
x4

6
+

31x6

360
+ · · ·

)
=

1

6
+

31x2

360
+ · · ·

so the limit of
secx− cosx− x2

x4
as x → 0 is

1

6
.

52 The Taylor series for (1 + x)−2 centered at 0 is

(1 + x)−2 = 1− 2x+ 3x2 − 4x3 + · · ·

and the Taylor series for 3
√
1− 6x centered at 0 is

3
√
1− 6x = 1− 2x− 4x2 − 40x3

3
− · · · .
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We compute that

(1 + x)−2 − 3
√
1− 6x

2x2

=
1

2x2

((
1− 2x+ 3x2 − 4x3 + · · · )− (1− 2x− 4x2 − 40x3

3
− · · ·

))
=

1

2x2

(
7x2 +

28x3

3
+ · · ·

)
=

7

2
+

14x

3
+ · · ·

so the limit of
(1 + x)−2 − 3

√
1− 6x

2x2
as x → 0 is

7

2
.

53 We have e−x2

= 1 − x2 + x4

2 − x6

6 + x8

24 − · · · , so ∫ e−x2

dx =
∫
(1 − x2 + x4

2 − x6

6 + x8

24 − · · · ) dx =

C+x− x3

3 + x5

10 − x7

42 + · · · . Thus, ∫ 1/2

0
e−x2

dx = (0.5)− (0.5)3

3 + (0.5)5

10 − (0.5)7

42 + · · · . Because (0.5)7/42 < .001,
we can calculate the approximation using the first three numbers shown, arriving at approximately 0.461.

54 tan−1 x = x−x3/3+x5/5−x7/7+x9/9−· · · , so ∫ tan−1(x) dx =
∫
(x−x3/3+x5/5−x7/7+x9/9−· · · ) dx =

C + x2

2 − x4

12 + x6

30 − x8

56 + · · · . Thus,
∫ 0.5

0
tan−1 x dx = (0.5)2

2 − (0.5)4

12 + (0.5)6

30 − (0.5)8

56 + · · · . Note that this

series is alternating, and (0.5)6

30 < .001, so we add the first two terms showing to approximate the integral to
the desired accuracy. Calculating gives approximately 0.120.

55 x cosx = x− x3

2 + x5

24 − x7

720 + · · · , so ∫ x cosx dx =
∫
(x− x3

2 + x5

24 − x7

720 + · · · ) dx = C + x2

2 − x4

8 + x6

144 −
x8

5760 + x10

403200 − · · · . Thus
∫ 1

0
x cosx dx = 1

2 − 1
8 + 1

144 − 1
5760 + · · · . Because 1

5760 < .001, we add the first

three terms to approximate to the desired accuracy. Calculating gives
∫ 1

0
x cosx dx ≈ 0.382.

56 x2 tan−1 x = x3 − x5/3 + x7/5− x9/7 + x11/9 + · · · , so ∫ x2 tan−1(x) dx =
∫
(x3 − x5/3 + x7/5− x9/7 +

x11/9−· · · ) dx = C+ x4

4 − x6

18 +
x8

40 − x10

70 + · · · . Thus, ∫ 0.5

0
x2 tan−1 x dx = (0.5)4

4 − (0.5)6

18 + (0.5)8

40 − (0.5)10

70 + · · · .
Note that this series is alternating, and (0.5)6

18 < .001, so we use the first term showing to approximate the
integral to the desired accuracy. Calculating gives approximately 0.015.

57 The series for f(x) =
√
x centered at a = 121 is 11 + x−121

22 − (x−121)2

10648 + (x−121)3

2576816 + · · · . Letting x = 119

gives
√
119 ≈ 11− 1

11 − 1
2·113 − 1

2·115 .

58 Because 20 degrees corresponds to π
9 radians, we consider the series for sinx centered at 0. We have

sinx ≈ x− x3/3! + x5/5!− x7/7! + · · · , so sinπ/9 ≈ π
9 − (π/9)3

3! + (π/9)5

5! − (π/9)7

7! .

59 tan−1 x = x− x3/3 + x5/5− x7/7 + x9/9 + · · · , so tan−1(−1/3) ≈ −1
3 + 1

3·33 − 1
5·35 + 1

7·37 .

60 sinhx = x+ x3

6 + x5

120 + x7

5040 + · · · , so sinh(−1) ≈ (−1) + (−1)3

6 + (−1)5

120 + (−1)7

5040 .

61 Because y(0) = 4, we have y′(0) − 16 + 12 = 0, so y′(0) = 4. Differentiating the equation n − 1 times
and evaluating at 0 we obtain y(n)(0) = 4y(n−1)(0), so that y(n)(0) = 4n. The Taylor series for y(x) is thus

y(x) = 4 + 4x+ 42x2

2! + 43x3

3! + · · · , or y(x) = 3 + e4x.

62 We begin with e−102x2

= 1 − 102x2 + 1022x4

2! + · · · . For n = 2, we have 11.4
∫ 0.14

0
(1 − 102x2) dx =

11.4(x−34x3)|0.140 = 0.5324256. For n = 3, 11.4
∫ 0.14

0
(1−102x2+5202x4) dx = 11.4(x−34x3+1040.4x5)|0.140 ≈

1.170314983. Clearly the second estimate is too high, because the true probability cannot exceed 1. The true
value is approximately 0.9547855902.

63

a. The Taylor series for ln(1 + x) is
∑∞

k=1(−1)k+1 xk

k . Evaluating at x = 1 gives ln 2 =
∑∞

k=1(−1)k+1 1
k .
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b. The Taylor series for ln(1 − x) is −∑∞
k=1

xk

k . Evaluating at x = 1/2 gives ln(1/2) = −∑∞
k=1

1
k2k

, so

that ln 2 =
∑∞

k=1
1

k2k
.

c. f(x) = ln
(

1+x
1−x

)
= ln(1 + x) − ln(1 − x). Using the two Taylor series above we have f(x) =∑∞

k=1(−1)k+1 xk

k −
(
−∑∞

k=1
xk

k

)
=
∑∞

k=1(1 + (−1)k+1)x
k

k = 2
∑∞

k=0
x2k+1

2k+1 .

d. Because 1+x
1−x = 2 when x = 1

3 , the resulting infinite series for ln 2 is 2
∑∞

k=0
1

32k+1(2k+1)
.

e. The first four terms of each series are: 1− 1
2 +

1
3 − 1

4 ≈ 0.5833333333, 1
2 +

1
8 +

1
24 +

1
64 ≈ 0.6822916667,

2
3 +

2
81 +

2
1215 +

2
15309 ≈ 0.6931347573 The true value is ln 2 ≈ 0.6931471806. The third series converges

the fastest, because it has 3k+1 in the denominator as opposed to 2k, so its terms get small faster.

64

a. p3(x) = 1− 4x+ 10x2 − 20x3.

b.

�1.0 �0.5 0.5 1.0
x

�10

�5

5

10

15

y

c. The constant polynomial looks like f(x) only at 0. The linear polynomial looks like f(x) on about
(−.1, .1). The quadratic approximation looks like f(x) on about (−.1, .1) as well, and the cubic
approximation looks like f(x) on about (−.2, .2).

Copyright c© 2015 Pearson Education, Inc.



Chapter 10

Parametric and Polar Curves

10.1 Parametric Equations

10.1.1 Given an input value of t, the point (x(t), y(t)) can be plotted in the xy-plane, generating a curve.

10.1.2 x = 6 cos t and y = 6 sin t for 0 ≤ t ≤ 2π generates the circle, because x2+ y2 = 36 cos2 t+36 sin2 t =
36. Similarly, x = 6 sin t and y = 6 cos t for 0 ≤ t ≤ 2π generates the same curve.

10.1.3 Let x = R cos(πt/5) and y = −R sin(πt/5). Note that as t ranges from 0 to 10, πt/5 ranges from 0
to 2π. Because x2 + y2 = R2, this curve represents a circle of radius R. Note also that for t = 0 the initial
point is (R, 0), and for small values of t the plotted points are in the third quadrant — so the curve is being
traced with clockwise orientation.

10.1.4 Let x = t and y = −2t+ 5 for t ∈ (−∞,∞).

10.1.5 Let x = t and y = t2 for t ∈ (−∞,∞).

10.1.6 The former represents the part of the parabola y = x2 lying in the first quadrant. The latter
represents the part of that same parabola lying in the second quadrant.

10.1.7 Solving the first equation for t gives t = 1−x
2 . Substitute that value for t in the second equation to

get y = 3
(
1−x
2

)2
; simplifying gives y = 3

4x
2 − 3

2x+ 3
4 .

10.1.8 With t = 0 the corresponding point on the curve is (−2 sin 0, 2 cos 0) = (0, 2). As t increases
from 0, the x-coordinate becomes negative, while the y coordinate decreases. Thus the curve is generated
counterclockwise, running successively through (0, 2), then (−2, 0) for t = π

2 , then (0,−2) for t = π, then
(2, 0) for t = 3π

2 , and finally back to (0, 2) for t = 2π. Then it repeats.

10.1.9 The slope of the tangent line is dy
dx = dy/dt

dx/dt , so at t = a the slope is given by g′(a)
f ′(a) , f

′(a) �= 0.

10.1.10 There is a horizontal tangent line at t = a where g′(a) = 0, provided f ′(a) �= 0, so these points can
be found by solving g′(t) = 0 and checking that any solution t = a satisfies f ′(a) �= 0.
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10.1.11

a.

t x y

−10 −20 −34

−5 −10 −19

0 0 −4

5 10 11

10 20 26

b.

10 20

y

x�10

�10

10

20

�20

�30

�20

c. Solving x = 2t for t yields t = x/2, so y = 3t− 4 = 3x/2− 4.

d. The curve is the line segment from (−20,−34) to (20, 26).

10.1.12

a.

t x y

−4 18 −16

−2 6 −8

0 2 0

2 6 8

4 18 16

b.

x

y

2 4 6 8 10 12 14 16

�5

5

10

15

�10

�15

c. Solving y = 4t for t yields t = y/4, so x = t2 + 2 = y2/16 + 2.

d. The curve is part of the parabola x = y2/16 + 2 from (18,−16) to (18, 16).
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10.1.13

a.

t x y

−5 11 −18

−3 9 −12

0 6 −3

3 3 6

5 1 12

b.

x

y

2 4 6 8 10 12

�5

5

10

15

�10

�15

�20

c. Solving x = −t+ 6 for t yields t = 6− x, so y = 3t− 3 = 18− 3x− 3 = 15− 3x.

d. The curve is the line segment from (11,−18) to (1, 12).

10.1.14

a.

t x y

−3 −28 −14

−2 −9 −9

−1 −2 −4

0 −1 1

1 0 6

2 7 11

3 26 16

b.

�20 �10 10 20 x

�10

�5

5

10

15

y

c. Because t = 3
√
x+ 1, we have y = 5 3

√
x+ 1 + 1.

d. The curve is a shifted and scaled version of the cube root function.

10.1.15

a. Solving x =
√
t + 4 for t yields t = (x − 4)2. Thus, y = 3

√
t = 3(x − 4), where x ranges from 4 to 8.

Note that all t ≥ 0, x > 0, and y > 0.

b. The curve is the line segment from (4, 0) to (8, 12).

10.1.16

a. Solving y = t+2 for t yields t = y−2. Thus, x = (t+1)2 = (y−2+1)2 = (y−1)2, where −8 ≤ y ≤ 12.

b. The curve is the part of the parabola x = (y − 1)2 from (81,−8) to (121, 12).

10.1.17

a. Because cos2 t+ sin2 t = 1, we have x2 + y = 1, so y = 1− x2, −1 ≤ x ≤ 1.
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122 Chapter 10. Parametric and Polar Curves

b. This is a parabola opening downward with a vertex at (0, 1), and starting at (1, 0) and ending at
(−1, 0).

10.1.18

a. Note that (1− sin2 s)− cos2 s = 0, so x− y2 = 0, so x = y2, −1 ≤ y ≤ 1.

b. This is a parabola opening to the right with a vertex at (0, 0), starting at (1,−1) and ending at (1, 1).

10.1.19

a. Solving x = r − 1 for r yields r = x+ 1. Thus, y = r3 = (x+ 1)3, where −5 ≤ x ≤ 3.

b. The curve is the part of the standard cubic curve, shifted one unit to the left, from (−5,−64) to (3, 64).

10.1.20

a. Solving x = e2t for t yields t = ln(
√
x). Thus, y = et + 1 =

√
x+ 1, where 1 ≤ x ≤ e50.

b. The curve is the part of the standard square root function, shifted one unit vertically, from the point
(1, 2) to (e50, e25 + 1).

10.1.21 Note that x2 + y2 = 9 cos2 t+9 sin2 t = 9, so this represents an arc of the circle of radius 3 centered
at the origin from (−3, 0) to (3, 0) traversed counterclockwise.

10.1.22 Note that x2 + y2 = 9 cos2 t+9 sin2 t = 9, so this represents an arc of the circle of radius 3 centered
at the origin from (3, 0) to (0, 3) traversed counterclockwise.

10.1.23 Note that x2 + (y − 1)2 = cos2 t + sin2 t = 1, so we have a circle of radius 1 centered at (0, 1),
traversed counterclockwise starting at (1, 1).

10.1.24 Note that (x + 3)2 + (y − 5)2 = 4. This is a circle of radius 2 centered at (−3, 5) and traversed
clockwise starting at (−3, 7).

10.1.25 Note that x2 + y2 = 49 cos2 2t + 49 sin2 2t = 49, so this represents an arc of the circle of radius 7
centered at the origin from (−7, 0) to (−7, 0) traversed counterclockwise. (So the whole circle is represented.)

10.1.26 Note that (x− 1)2 + (y − 2)2 = 9 sin2 4πt+ 9 cos2 4πt = 9, so this represents the circle of radius 3
centered at (1, 2) from (1, 5) to (1, 5) traversed counterclockwise.

10.1.27

Let x = 4 cos t and y = 4 sin t for 0 ≤ t ≤ 2π.
Then x2 + y2 = 16 cos2 t+ 16 sin2 t = 16.

x

y

2 31

2

3

1

�2

�1

�3

�2�3
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10.1.28

Let x = 12 sin t and y = 12 cos t for 0 ≤ t ≤
2π. Then x2 + y2 = 144 cos2 t + 144 sin2 t =
144, and for t = 0 the value of (x, y) is (0, 12). x

y

4 8 12

8

12

4

�4

�8

�12

�4�8�12

10.1.29

Let x = cos t+2 and y = sin t+3 for 0 ≤ t ≤
2π. Then (x− 2)2 + (y − 3)2 = 1, which is a
circle with the desired center and radius and
orientation.

0.5 1.0 1.5 2.0 2.5 3.0 x

1

2

3

4

y

10.1.30

Let x = 3 sin t + 2 and y = 3 cos t for 0 ≤
t ≤ 2π. Then (x − 2)2 + y2 = 9, which is a
circle with the desired center and radius and
orientation.

�1 1 2 3 4 5 x

�3

�2

�1

1

2

3

y

10.1.31

Let x = −2 + 8 sin t and y = −3 + 8 cos t for
0 ≤ t ≤ 2π. Then (x + 2)2 + (y + 3)2 =
64 sin2 t+ 64 cos2 t = 64.

x

y

4 8

8

4

�4

�8

�12

�4�8�12
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10.1.32

Let x = 2−(3/2) cos t and y = −4+(3/2) sin t
for π ≤ t ≤ 3π. Then (x−2)2+(y+4)2 = 9

4 .
Note that for t = π, we have x = 7/2 and
y = −4.

x

y

2 4

�4

�2

�6

10.1.33 Let t be time in minutes, so 0 ≤ t ≤ 1.5 Let x = 400 cos(4π/3)t and y = 400 sin(4π/3)t. Then
because x2 + y2 = 4002, the path is a circle of radius 400. Note that the values of x and y are the same at
t = 0 and t = 1.5, and that the circle is traversed counterclockwise.

10.1.34 Let t be time in seconds, so 0 ≤ t ≤ 60 Let x = 15 sin(π/30)t and y = 15 cos(π/30)t. Then because
x2 + y2 = 152, the path is a circle of radius 15. Note that the values of x and y are the same at t = 0 and
t = 60, and that the circle is traversed clockwise.

10.1.35 Let t be time in seconds, so 0 ≤ t ≤ 24 Let x = 50 cos(π/12)t and y = 50 sin(π/12)t. Then because
x2 + y2 = 502, the path is a circle of radius 50. Note that the values of x and y are the same at t = 0 and
t = 24, and that the circle is traversed counterclockwise.

10.1.36 Let t be time in minutes, so 0 ≤ t ≤ 3. Because the low point is the origin, the circle we seek has
its center at (0, 20) and a radius of 20. Let x = −20 sin(2π/3)t and y = 20 − 20 cos(2π/3)t. Then because
x2 +(y− 20)2 = 202, the path is a circle of radius 20. Note that the values of x and y are the same for t = 0
and t = 3.

10.1.37

Because t = x− 3, we have y = 1− (x− 3) =
4− x, so the line has slope −1. When t = 0,
we have the point (3, 1).

x

y
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10.1.38

Because t = 4−x
3 , we have y = −2+6( 4−x

3 ) =
6−2x, so the line has slope −2. When t = 0,
we have the point (4,−2). x

y
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15
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10.1.39

Because y = 1, this is a horizontal line with
slope 0. When t = 0, we have the point (8, 1).

x

y

0

1.5

1.0

0.5

5 10 15 20

10.1.40

Because t = 3
2 (x−1), we have y = − 1

4 − 15
4 x,

so the line has slope − 15
4 . When t = 0, we

have the point (1,−4).
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10.1.41 Let x = x0 + at and y = y0 + bt. Letting (x0, y0) = (0, 0), and then finding a and b so that the
curve is at the point Q when t = 1 yields x = 2t, y = 8t for 0 ≤ t ≤ 1.

10.1.42 Let x = x0 + at and y = y0 + bt. Letting (x0, y0) = (1, 3), and then finding a and b so that the
curve is at the point Q when t = 1 yields x = 1− 3t, y = 3 + 3t for 0 ≤ t ≤ 1.

10.1.43 Let x = x0 + at and y = y0 + bt. Letting (x0, y0) = (−1,−3), and then finding a and b so that the
curve is at the point Q when t = 1 yields x = −1 + 7t, y = −3− 13t for 0 ≤ t ≤ 1.

10.1.44 Let x = x0 + at and y = y0 + bt, and parametrize from t = 0 to t = 1. Because the point is at
(8, 2) when t = 0, we have x0 = 8 and y0 = 2. At t = 1, the point is at (−2,−3), so that −2 = 8 + a and
−3 = 2 + b. Thus a = −10 and b = −5, and our equations are x = 8− 10t and y = 2− 5t for 0 ≤ t ≤ 1.

10.1.45

Let x = t and y = 2t2 − 4, −1 ≤ t ≤ 5.

x

y
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10.1.46

Let x = t3 − 3t and y = t, −∞ < t < ∞.
�2�4 2 4

1

�1

�2

�3

2

3

x

y

10.1.47

Let x = −2 + 4t and y = 3 − 6t, 0 ≤ t ≤ 1,
and x = t+ 1, y = 8t− 11 for 1 ≤ t ≤ 2.

2

�2

4

1�1�2 2 3 x

y

10.1.48

Let x = −4 + 4t and y = 4 + 4t, 0 ≤ t ≤ 1,
and x = t−1, y = 8−2(t−1)2 for 1 ≤ t ≤ 3.
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1�1�2�3�4 2 x
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10.1.49

x

y
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10.1.50
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10.1.51

1 2 3�1

�1

1

2

�2

�3

�4

�2�3 x

y

10.1.52
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y
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10.1.53
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10.1.54
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10.1.55

�2 �1 1 2 x
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10.1.56
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10.1.57
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10.1.58
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�1

1

2

y

10.1.59

a. dy
dx = dy/dt

dx/dt = − 8
4 = −2 for all t. Because the

curve is a line, the tangent line to the curve
at the given point is the line itself.

b.

4 6 8 10 12 14 16 18
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�15

�20

�25

x

y

10.1.60

a. dy
dx = dy/dt

dx/dt = − 3 sin t
3 cos t = − tan t. At the given

value of t, the value of dy
dx doesn’t exist, and

the tangent line is the vertical line x = 3.

b.

x

y
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10.1.61

a. dy
dx = dy/dt

dx/dt = 8 cos t
− sin t = −8 cot t. At the given

value of t, the value of dy
dx is −8 cotπ/2 = 0.

The tangent line at the point (0, 8) is thus
the horizontal line y = 8.

b.
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10.1.62

a. dy
dx = dy/dt

dx/dt = 3t2

2 . At the given value of t,

the value of dy
dx is 3

2 , and the tangent line is
y = 3

2x+ 2, tangent at the point (−2,−1).

b.

x

y
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�2.5

�3.0

10.1.63

a. dy
dx = dy/dt

dx/dt =
1+ 1

t2

1− 1
t2

= t2+1
t2−1 . At the given

value of t, the derivative doesn’t exist, and
the tangent line is the vertical line x = 2,
tangent at the point (2, 0).

b.
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10.1.64

a. dy
dx = dy/dt

dx/dt = 2
1/(2

√
t)

= 4
√
t. At the given

value of t, the value of dy
dx is 8. The equation

of the tangent line is y = 8x − 8, tangent at
the point (2, 8).

b. x

y

1 2 3 4 5 6

10

0

20

30

40

10.1.65

a. False. This generates a circle in the counterclockwise direction.

b. True. Note that when t is increased by one, the value of 2πt is increased by 2π, which is the period of
both the sine and the cosine functions.

c. False. This generates only the portion of the parabola in the first quadrant, omitting the portion in
the second quadrant.

d. True. They describe the portion of the unit circle in the 4th and 1st quadrants.

e. True. This ellipse has vertical tangents at t = 0 and t = π.

10.1.66 The point corresponding to t = π/4 is (
√
2/2,

√
2/2). dy

dx = dy/dt
dx/dt = − sin t

cos t . At t = π/4, we have a

slope of −1. The equation of the tangent line is thus y −√
2/2 = −1(x−√

2/2), or y = −x+
√
2.

10.1.67 The point corresponding to t = 2 is (3, 10). dy
dx = dy/dt

dx/dt = 3t2+1
2t , so the slope at t = 2 is 13

4 . The

equation of the tangent line is therefore y − 10 = 13
4 (x− 3), or y = 13

4 x+ 1
4 .

10.1.68 The point corresponding to t = 0 is (1, 0). dy
dx = dy/dt

dx/dt = 1
(t+1)et , so the slope at t = 0 is 1. The

equation of the tangent line is thus y = x− 1.

10.1.69 The point corresponding to t = π/4 is
(

4
√
2+π

√
2

8 , 4
√
2−π

√
2

8

)
. dy

dx = dy/dt
dx/dt = cos t−(cos t−t sin t)

− sin t+(sin t+t cos t) =

tan t. At t = π/4, we have a slope of 1. The equation of the tangent line is thus y − 4
√
2−π

√
2

8 =

1
(
x− 4

√
2+π

√
2

8

)
, or y = x− π

√
2

4 .

10.1.70 Let x = −t and y = t2 + 1, for 0 ≤ t < ∞.

10.1.71 Let x = 1 + 2t and y = 1 + 4t, for −∞ < t < ∞. Note that y = 2(1 + 2t)− 1, so y = 2x− 1.

10.1.72 Let x = −2− 6 cos t and y = 2− 6 sin t, for 0 ≤ t ≤ π. Then (x+ 2)2 + (y − 2)2 = 36, so the curve
represented is part of the circle of radius 6 centered at (−2, 2). Note also that as t runs from 0 to π, the
portion of the circle traversed is the lower portion, from (−8, 2) to (4, 2).

10.1.73 Let x = t2 and y = t, for 0 ≤ t < ∞. Note that x = t2 = y2, and that the starting point is (0, 0).

10.1.74

a. This corresponds to graph (D). Note that t = 0 corresponds to the point (−2, 0) and as t → ∞, both
x → ∞ and y → ∞.

b. This corresponds to graph (B). Note that −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1 for all values of t.

c. This corresponds to graph (A). Note that as t → −∞, we have x → −∞ and y → −∞.

d. This corresponds to graph (C). Note that −3 ≤ x ≤ 3 and −3 ≤ y ≤ 3 for all values of t.
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10.1.75

The entire curve is traversed for 0 ≤ t ≤ 2π.
x
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10.1.76

The entire curve is traversed for 0 ≤ t ≤ π.
x

y

�2 2 4 6 8 10 12�4�6�8�10�12
�2

1
2
3
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10.1.77

Let x = 3 cos t and y = 3
2 sin t for 0 ≤ t ≤ 2π.

Then the major axis on the x-axis has length
2 · 3 = 6 and the minor axis on the y-axis has

length 2 · 3
2 = 3. Note that

(
x
3

)2
+
(
2y
3

)2
=

cos2 t+ sin2 t = 1.

x

y

�1 1 2 3�2�3
�0.5

�1.0
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1.5
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0.5

10.1.78

Let x = 6 cos t and y = − sin t for 0 ≤ t ≤ 2π.
Then the major axis on the x-axis has length
2 · 6 = 12 and the minor axis on the y-axis

has length 2 · 1 = 2. Note that
(
x
6

)2
+ (y)

2
=

cos2 t+ sin2 t = 1.

x

y

�2 2 4 6�4�6
�0.5

�1.0
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10.1.79

Let x = 15 cos t − 2 and y = 10 sin t − 3 for

0 ≤ t ≤ 2π. Note that
(
x+2
15

)2
+
(
y+3
10

)2
=

cos2 t+ sin2 t = 1.
Then the major axis has length 30 and the
minor axis has length 20.

x

y

�5 5 10 15�10�15�20

�5

�10

10

5

�15

10.1.80

Let x = 5 cos t and y = − 3
2 sin t − 4 for 0 ≤

t ≤ 2π. Note that
(
x
5

)2
+
(

y+4
3/2

)2
= cos2 t+

sin2 t = 1.
Then the major axis has length 10 and the
minor axis has length 3.

x

y

�2 2 4 6�4�6
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�3.5
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10.1.81

a. For (1 + s, 2s) = (1 + 2t, 3t), we must have1 + s = 1+ 2t and 2s = 3t, so that s = 2t and 2s = 3t. The
only solution to this pair of equations is s = t = 0, so these two lines intersect when s = t = 0, at the
point (1, 0).

b. For (2+5s, 1+s) = (4+10t, 3+2t), we must have 2+5s = 4+10t and 1+s = 3+2t, so that s = 2+2t
and s = 2 + 2t. This pair of equations has no solutions, so the lines are parallel.

c. For (1+3s, 4+2s) = (4?3t, 6+4t), we must have 1+3s = 4?3t and 4+2s = 6+4t, so that s = 1?t and
s = 1 + 2t. The only solution to this pair of equations is s = 1 and t = 0, so these two lines intersect
for these values of s and t, at the point (4, 6).

10.1.82 All three represent portions of the parabola x = 2·(y−4)2 where x is between 0 and 32. However, the
curve in part b only represents the portion of the parabola where y ≥ 4, because for that curve, y = 4+t2 ≥ 4.

10.1.83 Note that x2 + y2 = 4 sin2 8t+ 4 cos2 8t = 4, so the curve is the circle x2 + y2 = 4.

10.1.84 Note that 4x2 + y2 = 4 sin2 8t+ 4 cos2 8t = 4, so the curve is the ellipse 4x2 + y2 = 4.

10.1.85 Note that because t = x, we have y =
√
4− t2 =

√
4− x2.

10.1.86 Note that x2 = t+ 1, so y = 1
t+1 = 1

x2 .

10.1.87 Because sec2 t− 1 = tan2 t, we have y = x2.

10.1.88 Note that ( n
√
x/a)2 + ( n

√
y/b)2 = sin2 t+ cos2 t, so ( n

√
x/a)2 + ( n

√
y/b)2 = 1.

10.1.89 dy
dx = dy/dt

dx/dt = 4 cos t
−4 sin t = − cot t. We seek t so that cot t = −1/2, so t = cot−1(−1/2). The

corresponding points on the curve are (− 4
√
5

5 , 8
√
5

5 ) and ( 4
√
5

5 ,− 8
√
5

5 ).
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10.1.90 dy
dx = dy/dt

dx/dt =
8 cos t
−2 sin t = −4 cot t. We seek t so that cot t = 1/4, so t = cot−1(1/4). The corresponding

points on the curve are ( 2
√
17

17 , 32
√
17

17 ) and (− 2
√
17

17 ,− 32
√
17

17 ).

10.1.91 dy
dx = dy/dt

dx/dt =
1+(1/t2)
1−(1/t2) = t2+1

t2−1 . We seek t so that t2+1
t2−1 = 1, which never occurs. Thus, there are no

points on this curve with slope 1.

10.1.92 dy
dx = dy/dt

dx/dt = − 4
(1/2

√
t)

= −8
√
t for t �= 0. Note that this isn’t 0 for t on the interval (0,∞), but

it is the case that limt→0+
dy
dx = 0, so there is a flat tangent line at the point (2, 2), as long as the point is

approached from the right.

10.1.93 Note that in equation B, the parameter is scaled by a factor of 3. Thus, the curves are the same
when the corresponding interval for t is scaled by a factor of 1/3, so for a = 0 and b = 2π

3 . In fact, the same
curve will be generated for a = p, b = p+ 2π/3 where p is any real number.

10.1.94 Note that equation B can be obtained from A by replacing t by t1/3. Thus, the curves are the same
when a = (−2)3 = −8 and b = 23 = 8.

10.1.95

a. dy
dx = dy/dt

dx/dt =
2 cos t
2 cos 2t . This is zero when cos t = 0 but cos 2t �= 0, which occurs for t = π/2 and t = 3π/2.

The corresponding points on the graph are (0, 2) and (0,−2).

b. Using the derivative obtained above, we seek points where cos 2t = 0 but cos t �= 0. This occurs
for t = π/4, 3π/4, 5π/4, and 7π/4. The corresponding points on the curve are (1,

√
2), (−1,

√
2),

(−1,−√
2), and (1,−√

2).

10.1.96

a. dy
dx = dy/dt

dx/dt = 3 cos 3t
4 cos 4t . This is zero when cos 3t = 0 but cos 4t �= 0, which occurs for t = π/6, π/2,

5π/6, 7π/6, 3π/2, and t = 11π/6. The corresponding points on the graph are the four points (±
√
3
2 ,±1)

and the two points (0,±1).

b. Using the derivative obtained above, we seek points where cos 4t = 0 but cos 3t �= 0. This occurs for

t = (2n+1)π
8 , n = 0, 1, . . . , 7. The corresponding points on the curve are the four points (±1,± sin(π/8))

and (±1,± sin(3π/8)).

10.1.97

a. Let sgn(x) =

⎧⎨⎩1 if x ≥ 0

−1 if x < 0.
. Let x = a · sgn(cos t) |cos(t)|2/n and y = b · sgn(sin(t)) |sin(t)|2/n.

b.
x

y
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x

y
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x
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1

2

�1

n � 10

c. As n increases from near 0 to near 1, the curves change from star-shaped to a rectangular shape with
corners at (±a, 0) and (0,±b). As n increases from 1 on, the curves become more rectangular with
corners at (±a,±b).

10.1.98

x

y

2 4 6�2

�2

2

4

6

�4

�6

�4�6

10.1.99 The first graphic shown is for a = 1 and b = 1. The second is for a = 2, b = 1, and the third is for
a = 1, b = 2.
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10.1.100
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a = 1, b = 1, c = 3.
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a = 3, b = 1, c = 5.
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10.1.101
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y
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a = 2, b = 3.5.

Note that for a < b, we have cusps pointing
inward, while for a > b, the cusps point outward.

10.1.102

a.
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c.

�4 �2 2 4 x

�4

�2

2

4

y

For a fixed a, there appear to be loops when n > a.

10.1.103

a.
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c.
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�1500
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10.1.104

The packages lands when y = 0, so we
seek a solution to 0 = −4.9t2 + 3000. So

t =
√

3000
4.9 ≈ 24.744 seconds, at which

point x ≈ 80 · 24.744 ≈ 1979.487 meters.

x

y

500 1000 1500 2000

500

0

1000

1500
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2500

3000

10.1.105 The package lands when y = 0, so when −4.9t2 + 4000 = 0 for t > 0. This occurs when t =√
4000
4.9 ≈ 28.571 seconds. At that time, x ≈ 100 · 28.57 = 2857 meters.

10.1.106

a.
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b. The maximum appears to be reached when θ = π/4.

10.1.107 Let x = 1 + cos2 t− sin2 t and y = t, for −∞ < t < ∞. Note that because 1 − sin2 t = cos2 t, we
have x = 2 cos2 t, y = t.

10.1.108 Note that dy
dt = dy

dx · dx
dt , so

d2y
dt2 = d

dt

(
dy
dx · dx

dt

)
= dy

dx
d2x
dt2 + dx

dt · d
dt

(
dy
dx

)
.

Also d
dt

(
dy
dx

)
= d2y

dx2 · dx
dt , and

dy
dx = dy/dt

dx/dt . Thus,

d2y

dt2
=

dy

dx
· d

2x

dt2
+

dx

dt
· d

2y

dx2
· dx
dt

=
dy/dt

dx/dt
· d

2x

dt2
+

d2y

dx2
·
(
dx

dt

)2

.

Solving for d2y
dx2 yields y′′ = x′(t)y′′(t)−x′′(t)y′(t)

(x′(t))3 = f ′(t)g′′(t)−f ′′(t)g′(t)
(f ′(t))3 .

10.1.109 Suppose that a2 + c2 = b2 + d2, and that ab+ cd = 0. Note that

x2 + y2 = a2 cos2 t+ 2ab sin t cos t+ b2 sin2 t+ c2 cos2 t+ 2cd sin t cos t+ d2 sin2 t,

which can be rewritten as

(a2 + c2) cos2 t+ (b2 + d2) sin2 t+ (2ab+ 2cd) sin t cos t.

Because b2 + d2 = a2 + c2 and because 2ab+ 2cd = 0, we can write this as

(a2 + c2)(cos2 t+ sin2 t) = R2,

so we have the circle x2 + y2 = R2, as desired.

10.1.110 Note that if we let x = t
1

t−1 and y = t
t

t−1 , 1 < t < ∞, then we can see that x ln y = y lnx. Let
L1 represent this curve, and let L2 be the curve with the same parametric equations but for 0 < t < 1, and
let L3 be the line y = x. The region where yx > xy is the region below L1 and above L3, and below L3 but
above L2.

10.2 Polar Coordinates

10.2.1

The coordinates (2, π/6), (2,−11π/6), and
(−2, 7π/6) all give rise to the same point.
Also, the coordinates (−3,−π/2), (3, π/2)
and (−3, 3π/2) give rise to the same point.

1 2�1

�1

1

2

3

x

y

(�3, �q)

(2, k)

10.2.2 For a point with polar coordinates (r, θ), we have the Cartesian coordinates x = r cos θ and y = r sin θ.

10.2.3 If a point has Cartesian coordinates (x, y) then r2 = x2 + y2 and tan θ = y/x for x �= 0. If x = 0,
then θ = π/2 and r = y.
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10.2.4 A cicle of radius |a| centered at the origin has polar equation r = |a|.

10.2.5 Because x = r cos θ, we have that the vertical line x = 5 has polar equation r = 5 sec θ.

10.2.6 Because y = r sin θ, the horizontal line y = 5 has polar equation r = 5 csc θ.

10.2.7 x-axis symmetry occurs if (r, θ) on the graph implies (r,−θ) is on the graph. y-axis symmetry occurs
if (r, θ) on the graph implies (r, π−θ) = (−r,−θ) is on the graph. Symmetry about the origin occurs if (r, θ)
on the graph implies (−r, θ) = (r, θ + π) is on the graph.

10.2.8 Graph r = f(θ) as if r and θ were Cartesian coordinates with θ on the horizontal axis and r on the
vertical axis. Choose an interval in θ on which the entire polar curve is produced. Then use this graph as a
guide to sketch the points (r, θ) on the final polar curve.

10.2.9
The coordinates (2, π/4), (−2, 5π/4), and
(2, 9π/4) represent the same point.

�1 21

�1

1

2

3

x

y

(2, d)

10.2.10
The coordinates (3, 2π/3), (−3, 5π/3) and
(3, 8π/3) represent the same point.

�3 �2 �1

�1

1

2

3

x

y

(3, i)
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10.2.11
The coordinates (−1,−π/3), (1, 2π/3) and
(1,−4π/3) represent the same point.

�2 �1 1

�1

1

2

x

y

(�1, �u)

10.2.12
The coordinates (2, 7π/4), (−2, 3π/4) and
(2,−π/4) represent the same point.

�1 2 31

�3

�2

�1

1

x

y

(2, j)

10.2.13 The coordinates (−4, 3π/2), (4, π/2) and
(−4,−π/2) represent the same point.

�1 1

1

2

3

4

x

y

(�4, w)

10.2.14 A = (4, π/6) = (−4, 7π/6). B = (3, π/4) = (−3, 5π/4). C = (2, π/3) = (−2, 4π/3). D = (4, π/2) =
(−4, 3π/2). E = (2, 4π/3) = (−2, π/3). F = (4,−π/3) = (−4, 2π/3).

10.2.15 x = 3 cos(π/4) = 3
√
2

2 . y = 3 sin(π/4) = 3
√
2

2 .

10.2.16 x = cos(2π/3) = −1/2. y = sin(2π/3) =
√
3
2 .

10.2.17 x = cos(−π/3) = 1
2 . y = sin(−π/3) = −

√
3
2 .
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10.2.18 x = 2 cos(7π/4) = 2 ·
√
2
2 =

√
2. y = 2 sin(7π/4) = −√

2.

10.2.19 x = −4 cos(3π/4) = 2
√
2. y = −4 sin(3π/4) = −2

√
2.

10.2.20 x = 4 cos(5π) = −4. y = 4 sin(5π) = 0.

10.2.21 r2 = x2 + y2 = 4 + 4 = 8, so r =
√
8. tan θ = 1, so θ = π/4, so (2

√
2, π/4) is one representation of

this point, and (−2
√
2,−3π/4) is another.

10.2.22 r2 = x2 + y2 = 1 + 0, so r = ±1. tan θ = 0, so θ = 0, π. (−1, 0) is one representation of this point,
and (1, π) is another.

10.2.23 r2 = x2 + y2 = 1 + 3 = 4, so r = ±2. tan θ =
√
3, so θ = π/3, 4π/3. (2, π/3) is one representation

of this point, and (−2,−2π/3) is another.

10.2.24 r2 = 81, so r = ±9. tan θ = 0, so θ = 0, π. One representation of the given point is (9, π), and
(−9, 0) is another.

10.2.25 r2 = 64, so r = ±8. tan θ = −√
3, so θ = −π/3, 2π/3. One representation of the given point is

(8, 2π/3), and (−8,−π/3) is another.

10.2.26 r2 = 16 + 48 = 64, so r = ±8. tan θ =
√
3. One representation of the given point is (8.π/3), and

another is (−8, 4π/3).

10.2.27 x = r cos θ = −4, so this is the vertical line x = −4 through (−4, 0).

10.2.28 y = r sin θ = cot θ csc θ sin θ = cot θ = x
y . Thus, y2 = x. This curve is a parabola with vertex at

(0, 0) which opens to the right.

10.2.29 Because x2 + y2 = r2 = 4, this is a circle of radius 2 centered at the origin.

10.2.30 Because y = r sin θ = 3 csc θ sin θ = 3, this is the horizontal line y = 3.

10.2.31 Note that x2 + y2 = r2 = 4 sin2 θ + 8 sin θ cos θ + 4 cos2 θ = 4 + 8 sin θ cos θ. Also note that
x = r cos θ = 2 sin θ cos θ + 2 cos2 θ and y = r sin θ = 2 sin2 θ + 2 sin θ cos θ. Thus, 2x+ 2y = 4 + 8 sin θ cos θ.
If we combine these, we see that x2 + y2 − (2x+2y) = 0. Thus (x2 − 2x+1)+ (y2 − 2y+1) = 2, so we have
the circle (x− 1)2 + (y − 1)2 = 2. This is a circle of radius

√
2 centered at (1, 1).

10.2.32 We have r sin θ = ±r cos θ, so y = ±x. These are lines through the origin with slopes ±1.

10.2.33 r cos θ = sin 2θ = 2 sin θ cos θ. Note that if cos θ = 0, then r can be any real number, and the
equation is satisfied. For cos θ �= 0, we have x = r cos θ = 2 sin θ cos θ, so r = 2 sin θ, and thus y = r sin θ =
2 sin2 θ. Thus x2 + y2 − 2y = 4 sin2 θ cos2 θ + 4 sin2 θ sin2 θ − 4 sin2 θ = 4 sin2 θ(sin2 θ + cos2 θ) − 4 sin2 θ =
4 sin2 θ− 4 sin2 θ = 0. Note also that x2 + y2 − 2y = 0 is equivalent to x2 + (y − 1)2 = 1, so we have a circle
of radius one centered at (0, 1), as well as the line x = 0 which is the y-axis.

10.2.34 r = sin θ sec2 θ, so x = r cos θ = tan θ = y
x , so y = x2, the standard parabola.

10.2.35 r = 8 sin θ, so r2 = 8r sin θ, so x2+y2 = 8y. This can be written x2+(y−4)2 = 16, which represents
a circle of radius 4 centered at (0, 4).

10.2.36 The given equation implies that 2r cos θ+3r sin θ = 1, so 2x+3y = 1. This is a line with slope −2
3

and y-intercept 1
3 .

10.2.37

θ 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π

r 8 4
√
3 4

√
2 4 0 −4 −4

√
2 −4

√
3 −8
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x

y

1 2 3 4 5 6 7 8
�1

1

2

3

4

�2

�3

�4

10.2.38

θ 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

r 8 4 + 2
√
2 4 4− 2

√
2 0 4− 2

√
2 4 4 + 2

√
2 8

�2

2

2 4 6 8

4

�4

x

y

10.2.39
r(sin θ − 2 cos θ) = 0 when r = 0 or when
tan θ = 2, so the curve is a straight line
through the origin of slope 2.

21�2

2

4

�4

�1 x

y

10.2.40
θ 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

r 0
√
2−1√
2

1
√
2+1√
2

2
√
2+1√
2

1
√
2−1√
2

0
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�0.5 0.5�1.0�1.5�2.0 x

y

�0.5

0.5

1.0

1.5

�1.0

�1.5

10.2.41

0.5�0.5�1.0 1.0

0.5

1.0

1.5

2.0

x

y

10.2.42

11 2 x

y

�2

�1

�3

�4

10.2.43

2

4

6

�2

�2�4�6�8�10

�4

�6

x

y

10.2.44

x

y

�1

1

2

�2

�0.5 0.5 1.0 1.5�1.0�1.5
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10.2.45

x

y

�1

�2

�3

3

2

1

�2 2 4�4

10.2.46

1�1�2�3 2 3 x

y

�1

1

2

3

�2

�3

10.2.47

�0.5 0.5

�1.0

�0.5

0.5

10.2.48

0.5�0.5�1.0�1.5�2.0

0.5

�0.5

�1.0

�1.5

�2.0

1.0

1.5

2.0

2.5

1.0 1.5 2.0 x

y

10.2.49 Points B, D, F , H, J and L have y-coordinate 0, so the graph is at the pole for each of these points.
Points E, I, and M have maximal radius, so these correspond to the points at the tips of the outer loops.
The points C, G and K correspond to the tips of the smaller loops. Point A corresponds to the polar point
(1, 0).

10.2.50 Points B, D, H and J have y-coordinate 0, so the graph is at the pole for each of these points.
Points A and K lie where the graph intersects the negative x-axis. C and I are at the top of the two large
loops, while F is is where the graph intersects the positive x-axis. E and G are the extreme points of the
large wide loop.
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10.2.51 Points B, D, F , H, J , L, N and P are at the origin. C, G, K and O are on the ends of the long
loops, while A, E, I and M are at the ends of the smaller loops.

10.2.52 Points C, E, G and I are at the origin. B and D are at the ends of the two bigger loops, F and H
are at ends of the two smaller loops. A and J are the points where the graph intersects the positive x-axis.

10.2.53 The interval [0, 8π] generates the entire graph. �1.0 �0.5 0.5 1.0

�0.5

0.5

10.2.54 The interval [0, 2π] generates the entire graph.
�2�4�6 2 4 6 x

y

�2

�4

�6

2

4

6

Copyright c© 2015 Pearson Education, Inc.



10.2. Polar Coordinates 147

10.2.55 The interval [0, 2π] generates the entire graph.
0.5�0.5

0.5

�0.5

�1.0

�1.5

1.0

1.5

1.0 1.5 2.0 x

y

10.2.56 The interval [0, 6π] generates the entire
graph.

�1.5 �1.0 �0.5 0.5 1.0 1.5

�1.5

�1.0

�0.5

0.5

1.0

1.5

10.2.57 The interval [0, 5π] generates the entire
graph. 10.5�1 �0.5 x

y

�1

�0.5

1

0.5
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10.2.58 The interval [0, 7π] generates the entire
graph. 10.5�1 �0.5 x

y

�1

�0.5

1

0.5

10.2.59 The interval [0, 2π] generates the entire
graph. 1 2�1�2

2

�2

�4

4

x

y

10.2.60 The interval [0, 2π] generates the entire
graph. �2�3 �1 x

y

�2

�1

1

2

3

�3

10.2.61

a. True. Note that r2 = 8 and tan θ = −1.

b. True. Their intersection point (in Cartesian coordinates) is (4,−2).

c. False. They intersect at the polar coordinates (2, π/4) and (2, 5π/4).
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d. True. Note that for θ = 3π
2 we have r = −3. But the polar point

(−3, 3π
2

)
is the same as the polar

point
(
3, π

2

)
.

e. True. The first is the line x = 2 because x = r cos θ = 2 sec θ cos θ = 2, and the second is y = 3 because
y = r sin θ = 3 csc θ sin θ = 3.

10.2.62 We have y = r sin θ = 3, so r = 3
sin θ = 3 csc θ.

10.2.63 We have r sin θ = r2 cos2 θ, so r = sin θ
cos2 θ = tan θ sec θ.

10.2.64 We have (r cos θ−1)2+r2 sin2 θ = 1, so r2 cos2 θ−2r cos θ+1+r2 sin2 θ = 1, and thus 2r cos θ = r2.
Thus r = 2 cos θ.

10.2.65 We have r sin θ = 1
r cos θ , so r2 = sec θ csc θ.

10.2.66

x

y

321�3 �2

�3

�2

�1

1

2

3

�1

10.2.67

x

y

1 1.50.5�1

�1

1

2

�2

�0.5�1.5

10.2.68

x

y

2 4 6 8�2

�2

�4

�8

�6

6

8

4

2

�4�6�8

10.2.69

x

y

2 31�2

�2

�1

1

2

�1
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10.2.70

0.5 1.0 1.5 2.0 x

y

0.5

1.0

0

1.5

2.0

10.2.71

10.2.72

�3 �2 �1 1 2 3
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1.0

1.5

2.0

2.5

3.0

10.2.73

x

y

�1

�2

�3

3

2

1

�1 1 2 3�2�3

10.2.74 Let x = r cos θ and y = r sin θ, so that r2 = x2 + y2. Then the given equation can be written
(x2 + y2)− 2ax− 2by + (a2 + b2) = R2, which in turn can be written as (x− a)2 + (y − b)2 = R2, which is
the equation of a circle of radius R centered at (a, b).

10.2.75 Consider the circle with center C(r0, θ0), and let A be the origin and B(r, θ) be a point on the circle
not collinear with A and C. Note that the length of side BC is R, and that the angle CAB has measure
θ − θ0. Applying the law of cosines to triangle CAB yields the equation R2 = r2 + r20 − 2rr0 cos(θ − θ0),
which is equivalent to the given equation.

10.2.76

In relation to number 66, we have 2a = 6, so
a = 3 and b = 0. So R2 − a2 − b2 = R2 − 9 =
16, and thus R2 = 25. Thus we have a circle
centered at (3, 0) with radius 5.

x

y

�2 2 4 6 8

2

4

6

�2

�6

�4
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10.2.77

In relation to number 75, we have r0 = 2 and
θ0 = π/3, and R2−4 = 12, so R2 = 16. Thus
this is a circle with polar center (2, π/3) and
radius 4. x

y

�2�4 2 4 6

2

4

6

�2

�4

10.2.78

In relation to number 75, we have r0 = 4 and
θ0 = π/2, and R2−16 = 9, so R2 = 25. Thus
this is a circle with polar center (4, π/2) and
radius 5.

x

y

�2�6 �4 2 4 6

4

2

6

10

8

�2

10.2.79

In relation to number 66, we have a = 2 and
b = 3. So R2 − a2 − b2 = R2 − 13 = 3, and
thus R2 = 16. Thus we have a circle centered
at (2, 3) with radius 4.

x

y

�2 �1 2 31 4 5 6

3

2

1

4

5

6

7

�1
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10.2.80

In relation to number 66, we have a = −1
and b = 3. So R2 − a2 − b2 = R2 − 10 = 4,
and thus R2 = 14. Thus we have a circle
centered at (−1, 3) with radius

√
14.

x

y

�2 2 4�4�6

�2

2

4

6

8

10.2.81

In relation to number 66, we have a = −1
and b = 2. So R2−a2− b2 = R2−5 = 4, and
thus R2 = 9. Thus we have a circle centered
at (−1, 2) with radius 3.

x

y

�2�3�4 �1 1 2

1

2

3

5

4

�2

�1

10.2.82 The radius of a circle inscribed in a triangle with side lengths a, b, and c is 2A
a+b+c where A is

the area of the triangle. So for the bigger circle, R = r0 = 2
2+2

√
2

= 1
1+

√
2
. For each of the smaller

circles, we have R = 1
2+

√
2
. The area inside the three circles is thus 2π · 1

(2+
√
2)2

+ π · 1
(1+

√
2)2

≈ 1.078.

Because the area of the square is 2, there is more area inside the circles than outside the circles but inside

the square. Using problem 75, the equation of the largest circle is r2 − 2r
(

1
1+

√
2

)
cos(θ − π/2) = 0.

The smaller circle in the 3rd quadrant has center with polar radius r0 =
√
2
2 − 1

2+
√
2

=
√
2 − 1, so its

equation is r2 − 2r
(√

2− 1
)
cos(θ − 5π/4) = R2 − r20 =

√
2 − 3/2, and the other circle has equation

r2 − 2r
(√

2− 1
)
cos(θ + π/4) =

√
2− 3/2.
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10.2.83

a. On all three intervals, the graph is the same
vertical line, oriented upward. x

y

1 1.5 2.5 3 3.5 4 4.5

�5

5

10

15

�10

�15

b. For θ �= 2m+1
2 π wherem is an integer, we have cos θ �= 0, so the equation is equivalent to x = r cos θ = 2.

So the graph is a vertical line.

10.2.84

a. Given y = mx+b, let x = r cos θ and y = r sin θ. Then r sin θ = m(r cos θ)+b, so r sin θ−mr cos θ = b,
and thus r(sin θ −m cos θ) = b, and r = b

sin θ−m cos θ , provided sin θ −m cos θ �= 0.

b. Using the right triangle shown, we see that r0
r = cos(θ0 − θ), so r0 = r cos(θ0 − θ).

10.2.85

Using problem 84b, this is the line with r0 =
3 and θ0 = π

3 . So it is the line through the
polar point (3, π/3) in the direction of angle
π/3 + π/2 = 5π/6. The Cartesian equation
is y = − x√

3
+ 2

√
3.

x

y

1 2 3 4 5 6 7 8�1
�1

1

2

3

4

10.2.86

Using problem 84b, this is the line with r0 =
4 and θ0 = −π

6 . So it is the line through the
polar point (4,−π/6) in the direction of angle
−π/6 + π/2 = π/3. The Cartesian equation
is y =

√
3x− 8.

x

y

2 4 6 8 10�2

�5

5

10

�10
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10.2.87 Using problem 84a, this is the line with b = 3
and m = 4, so y = 4x+ 3.

x

y

2 31�2

�5

5

10

15

�1

10.2.88 Using problem 84a, this is the line with b =
3/2 and m = 3/4, so y = 3

4x+ 3
2 .

x

y

1�2�3�4 �1

�1

1

2

3

10.2.89

a. This matches (A), because we have |a| = 1 = |b|, and the graph is a cardioid.

b. This matches (C). This has an inner loop because |a| = 1 < 2 = |b|. Note that r = 1 when θ = 0, so it
can’t be (D).

c. This matches (B). This has |a| = 2 > 1 = |b|, so it has an oval-like shape.

d. This matches (D). This has an inner loop because |a| = 1 < 2 = |b|. Note that r = −1 when θ = 0, so
this can’t be (C).

e. This matches (E). Note that there is an inner loop because |a| = 1 < 2 = |b|, and that r = 3 when
θ = π/2.

f. This matches (F).

10.2.90 As b → ∞, the inner loop approaches the outer loop, so that for large b the graph appears to be a
single circle with diameter b. Thus, there is no limiting curve as b → ∞.
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10.2.91
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10.2.92

1.0 1.50.5�0.5�1.0�1.5 x

y

�1.0

�1.5

�0.5

0.5

1.0

1.5

10.2.93
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10.2.95
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10.2.96
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10.2.97

�1.0�1.5�2.0 �0.5 0.5 1.0 1.5 2.0
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10.2.98

�2 2 4 6�4�6
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2
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x

y

10.2.99 Note that a sinmθ = 0 for θ = kπ
m , k = 1, 2, . . . , 2m. Thus the graph is back at the pole r = 0 for

each of these values, and each of these gives rise to a distinct petal of the rose if m is odd. If m is even, then
by symmetry, each petal for k = 1, 2, . . . m

2 is equivalent to one for k = m
2 +1, m

2 +2, . . . ,m. (Note that this
follows because the sine function is odd.) A similar result holds for the rose r = a cos θ.

10.2.100 The spirals wind outward counterclockwise.

�2 2 4 6 8�4�6�8�10
�2

2

4

6

8

�4

�6

x

y

�2 2 4 6 8 10�4�6�8
�2

2

4

6

�4

�6

�8

x

y

10.2.101 For a = 1, the spiral winds outward counterclockwise. For a = −1, the spiral winds inward
counterclockwise.
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10.2.102 The spirals wind inward counterclockwise for a = 1 and outward clockwise for a = −1.
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y
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10.2.103 Suppose 2 cos θ = 1 + cos θ. Then cos θ = 1, so this occurs for θ = 0 and θ = 2π. At those values,
r = 2, so the curves intersect at the polar point (2, 0). The curves also intersect when r = 0, which occurs
for θ = π/2 and θ = 3π/2 for the first curve and θ = π for the second.

10.2.104 Suppose 4 cos θ = 1+2 cos θ+cos2 θ. Then (cos θ− 1)2 = 0, so θ = 0. At that value, r = 2, so the
curves intersect at the polar point (2, 0). The curves also intersect when r = 0, which occurs for the first curve
at π/2 and 3π/2, and for the second curve at π. Also, the curves intersect when 4 cos θ = −1−2 cos θ−cos2 θ,
which occurs for cos2 θ + 6 cos θ + 1 = 0, or (using the quadratic formula) θ = cos−1(−3 + 2

√
2) ≈ 1.743.

This leads to the polar intersection points at approximately (0.828,±1.743).

10.2.105 Suppose 1− sin θ = 1 + cos θ, or tan θ = −1. Then θ = 3π/4 or θ = 7π/4. So the curves intersect
at the polar points (1 +

√
2/2, 7π/4) and (1 − √

2/2, 3π/4). They also intersect at the pole (0, 0), which
occurs for the first curve at π/2 and for the second curve at π.

10.2.106 Suppose cos 2θ = sin 2θ ≥ 0. Then 2θ = π
4 , so θ = π

8 ,
9π
8 . The curves intersect at π/8 and 9π/8

where both cos 2θ and sin 2θ have value
√
2
2 . The curves also intersect at the pole, which occurs for the

first curve at π/4, and 3π/4, 5π/4 and 7π/4, and for the second curve at 0, π/2, π, and 3π/2. Thus the
intersection points are (0, 0), and approximately (0.841, 0.393) and (−0.841, 0.393).

10.2.107

a.

�2 1 2 3 4�3�4 �1

�3

�2

�1

1
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4

x

y

b. It adds multiple layers of the same type of curve
as sin5 θ/12 oscillates between −1 and 1 for 0 ≤
θ ≤ 24π.

10.2.108

a. f(0) = cos(1)−1.5, and f(2π) = cos(((1+12π)1/2π)2π)−1.5 = cos(1+12π)−1.5 = cos(1)−1.5 = f(0).
The points correspond to the polar points (−0.960, 0).
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b. No. The curve for −π ≤ θ ≤ 0 has nowhere where the absolute value of the radius is equal to 1,
whereas the curve for π ≤ θ ≤ 2π has numerous places where this is true, because ax has a much
bigger range on [0, π] than on [−π, 0].

c. Because ((1 + 2kπ)1/2π)0 = 1 and ((1 + 2kπ)1/2π)2π = 1 + 2kπ, we have that f(0) = cos(1) − b =
cos(1 + 2kπ)− b = cos(1)− b = f(2π).

d.
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10.2.109

a.
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b. r = 3− 4 cosπt is a limaçon, and x− 2 = r cosπt
and y = r sinπt is a circle, and the composition of
a limaçon and a circle is a limaçon.
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10.2.110

a. The region is given by {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ π}.
b. The inflow is given by {(r, θ) : 1 ≤ r ≤ 2, θ = 0}. The outflow is given by {(r, θ) : 1 ≤ r ≤ 2, θ = π}.
c. The tangential velocity at (1.5, π/4) is v(1.5) = 10 · 1.5 = 15 meters per second. At (1.2, 3π/4) it is

v(1.2) = 10 · 1.2 = 12 meters per second, so it is greater at 1.5.

d. The velocity is greater at r = 1.3, because 20
1.3 > 20

1.8 .

e.
∫ 2

1
10r dr = 5r2

∣∣2
1
= 15, while

∫ 2

1
20
r dr = 20 ln r|21 ≈ 13.86, so the flow is greater in part c).

10.2.111 With r = a cos θ + b sin θ, we have r2 = ar cos θ + br sin θ, or x2 + y2 = ax + by, so
(
x− a

2

)2
+(

y − b
2

)2
= a2+b2

4 . Thus, the center is (a/2, b/2) and r =
√
a2+b2

2 .

10.2.112 Note that cos(2θ) = cos2 θ − sin2 θ, so r2 = a2(cos2 θ − sin2 θ), so r4 = a2(r2 cos2 θ − r2 sin2 θ), so
(x2 + y2)2 = a2(x2 − y2).

10.2.113 Because sin(θ/2) = sin(π − θ/2) = sin((2π − θ)/2), we have that the graph is symmetric with
respect to the x-axis.

10.2.114

a.
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c. If n is even, then the whole curve is generated for 0 ≤ θ ≤ 2mπ. If n is odd, then the whole curve is
generated for 0 ≤ θ ≤ mπ.

10.3 Calculus in Polar Coordinates

10.3.1 Because x = r cos θ and y = r sin θ, we have x = f(θ) cos θ and y = f(θ) sin(θ).

10.3.2 We need dy
dx , which can be computed using the formula dy

dx = dy/dθ
dx/dθ = f ′(θ) sin θ+f(θ) cos θ

f ′(θ) cos θ−f(θ) sin θ , which will

then need to be evaluated at θ = θ0.

10.3.3 Because slope is given relative to the horizontal and vertical coordinates, it is given by dy
dx , not by

dr
dθ .

10.3.4 This would be given by 1
2

∫ β

α
(f(θ)2 − g(θ)2) dθ.

10.3.5 dy
dx = − cos θ sin θ+(1−sin θ) cos θ

− cos2 θ−(1−sin θ) sin θ . At (1/2, π/6), we have dy
dx = 0

−1 = 0. The given curve intersects the

origin r = 0 for θ = π/2. At this point, dy
dx does not exist, and the tangent line is vertical. (It is the line

θ = π/2.)
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10.3.6 dy
dx = −4 sin2 θ+4 cos2 θ

−8 cos θ sin θ . At (2, π/3) we have dy
dx = −2

−2
√
3
=

√
3
3 . The given curve intersects the origin

r = 0 for θ = π/2 and θ = 3π/2. At these points, the derivative does not exist, and the tangent line is
vertical, so θ = π/2 is the tangent line.

10.3.7 dy
dx = 16 cos θ sin θ

−8 sin2 θ+8 cos2 θ
. At (4, 5π/6) we have dy

dx = −4
√
3

4 = −√
3. The given curve intersects the origin

r = 0 for θ = 0 and θ = π. At these points, the derivative is 0, and the tangent line is horizontal, so θ = 0
is the tangent line.

10.3.8 dy
dx = cos θ sin θ+(4+sin θ) cos θ

cos2 θ−(4+sin θ) sin θ . At (4, 0) we have dy
dx = 4

1 = 4. At (3, 3π/2) we have dy
dx = 0

3 = 0. The

given curve does not intersect the origin, because r ≥ 3 for all θ.

10.3.9 dy
dx = −3 sin2 θ+(6+3 cos θ) cos θ

−3 cos θ sin θ−(6+3 cos θ) sin θ . At both (3, π) and (9, 0), this doesn’t exist. The given curve does

not intersect the origin, because r ≥ 3 for all θ.

10.3.10 dy
dx = 6 cos(3θ) sin θ+2 sin(3θ) cos θ

6 cos(3θ) cos θ−2 sin(3θ) sin θ . The tips of the leaves occur at θ = π/6, π/2 and 5π/6. At π/6, we

have dy
dx =

√
3

−1 = −√
3. At π/2 we have dy

dx = 0
2 = 0. At 5π/6 we have dy

dx = −√
3

−1 =
√
3. The graph intersects

the origin for θ = 0, θ = π/3, θ = 2π/3 and θ = π, and these are the corresponding equations of the tangent
lines. (Note that the lines θ = 0 and θ = π are the same.)

10.3.11 dy
dx = −8 sin(2θ) sin θ+4 cos(2θ) cos θ

−8 sin(2θ) cos θ−4 cos(2θ) sin θ . The tips of the leaves occur at θ = 0, π/2, π and 3π/2. At 0 and

at π, we have that dy
dx doesn’t exist. At π/2 and 3π/2 we have dy

dx = 0. The graph intersects the origin
for θ = π/4, θ = 3π/4, θ = 5π/4 and θ = 7π/4, and thus the two distinct tangent lines are θ = π/4 and
θ = 3π/4.

10.3.12 dy
dx = 0+3(

√
2/2)

0−3(
√
2/2)

= −1. The curve is at the origin when sin 2θ = − 1
2 , which occurs when 2θ =

7π/6, 11π/6, 19π/6, and 23π/6, or θ = 7π/12, 11π/12, 19π/12, and 23π/12.

10.3.13 The curve hits the origin at ±π/4, where the tangent lines are given by θ = π/4 and θ = −π/4.
The slopes of those lines are given by tan(π/4) = 1 and tan(−π/4) = −1.

10.3.14 dy
dx = 2 sin θ+2θ cos θ

2 cos θ−2θ sin θ . At (π/2, π/4) this is
√
2+π

√
2/4√

2−π
√
2/4

≈ 8.32. The graph intersects the origin at θ = 0,

where there is a horizontal tangent.

10.3.15 Note that the curve is at the origin at π/2, so there is vertical tangent at (0, π/2). Also, dy
dx =

−4 sin2 θ+4 cos2 θ
−8 sin θ cos θ = 1−2 sin2 θ

sin(2θ) . Thus, there are horizontal tangents at π/4 and 3π/4 (at the polar points

(2
√
2, π/4) and (−2

√
2, 3π/4)). There is also a vertical tangent where θ = 0, at the point (4, 0).

10.3.16 Note that the curve is at the origin at 3π/2, so there is vertical tangent at (0, 3π/2). Also, dy
dx =

2 cos θ sin θ+(2+2 sin θ) cos θ
2 cos2 θ−(2+2 sin θ) sin θ = cos θ(2+4 sin θ)

(2−4 sin2 θ)−2 sin θ
. Thus, the are horizontal tangents where this expression is 0 at

π/2 and 7π/6 and (11π/6) (at the polar points (4, π/2) and (1, 7π/6) and (1, 11π/6)). There are also vertical
tangents where the denominator is 0 and the numerator isn’t, which occurs at the point (3, π/6) and at
(3, 5π/6).

10.3.17 Using the double angle identities somewhat liberally:

dy

dx
=

2 cos(2θ) sin θ + sin(2θ) cos θ

2 cos(2θ) cos θ − sin(2θ) sin θ
=

sin θ(cos 2θ + cos2 θ)

cos θ(cos(2θ)− sin2 θ)
=

sin θ(3 cos2 θ − 1)

cos θ(1− 3 sin2 θ)
=

sin θ(3 cos2 θ − 1)

cos θ(3 cos2 θ − 2)
.

The numerator is 0 for θ = 0 and for θ = ± cos−1(±√
3/3), so there are horizontal tangents at the corre-

sponding points (0, 0), (0.943, 0.955), (−0.943, 2.186), (0.943, 4.097), and (−0.943, 5.328). The denominator
is 0 for θ = π/2 and 3π/2, and for θ = ± cos−1(±√

6/3), so there are vertical tangents at (0, 0), (0.943, 0.615),
(−0.943, 2.526), (0.943, 3.757), and (−0.943, 5.668).
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10.3.18 The curve intersects the origin at θ = 7π/6 and θ = 11π/6, so those don’t give rise to vertical or

horizontal tangents. We have dy
dx = 6 cos θ sin θ+(3+6 sin θ) cos θ

6 cos θ cos θ−(3+6 sin θ) sin θ = cos θ(1+4 sin θ)
(2−sin θ−4 sin2 θ)

. Thus there are horizontal

tangents for θ = π/2 and 3π/2, at the corresponding points (9, π/2) and (−3, 3π/2), and at the points where
sin(θ) = −1/4, which are (3/2, 3.394) and (3/2, 6.031). There are vertical tangents where the denominator

is 0, which occurs for θ = sin−1
(
− 1

8 ±
√
33
8

)
, so the corresponding points are (−2.06, 5.28), and (6.56, .634).

10.3.19 The curve intersects the origin at θ = π/2, and there is a vertical tangent at (0, π/2). dy
dx =

− cos θ sin θ+(1−sin θ) cos θ
− cos2 θ−(1−sin θ) sin θ = cos θ(1−2 sin θ)

sin2 θ−cos2 θ−sin θ
= cos θ(1−2 sin θ)

2 sin2 θ−sin θ−1
. There are horizontal tangents when sin θ = 1/2,

which occurs for θ = π/6, 5π/6, and when cos θ = 0 (but not sin θ = 1) which occurs at θ = 3π/2. So
the horizontal tangents are at (1/2, π/6), ((1/2, 5π/6), and (2, 3π/2). There are vertical tangents when
2 sin2 θ − sin θ − 1 = (2 sin θ + 1)(sin θ − 1) = 0, or θ = 7π/6 and θ = 11π/6. The vertical tangents are thus
at (3/2, 7π/6), (3/2, 11π/6), and (0, π/2), as well as the aforementioned (0, π/2).

10.3.20 Note that this curve is actually the vertical line x = 1, so it has no horizontal tangents, and a
vertical tangent at every θ, so at (sec θ, θ) for every θ.

10.3.21 A = 2 · 1
2

∫ π/2

0
cos θ dθ = sin θ

∣∣∣∣π/2
0

= 1.
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10.3.22 A = 2 · 12
∫ π/4

0
cos 2θ dθ = 1

2 (sin 2θ)
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0

= 1
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10.3.23

A = 1
2

∫ π

0
(8 sin θ)2 dθ = 32

∫ π

0
sin2 θ dθ =

32
∫ π

0
1−cos 2θ

2 dθ = 32
(
1
2θ − sin θ cos θ

2

) ∣∣∣∣π
0

=

16π.
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10.3.24

A = 1
2

∫ 2π

0
(4 + 4 sin θ)2 dθ

= 8
∫ 2π

0
(1 + 2 sin θ + sin2 θ) dθ

= 8
(
θ − 2 cos θ + 1

2θ − sin θ cos θ
2

) ∣∣∣∣2π
0

= 24π.
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10.3.25

Using symmetry, we have 1
2 · 2

∫ π

0
(2 +

cos θ)2 dθ =
∫ π

0
(4 + 4 cos θ + cos2 θ) dθ =(

4θ + 4 sin θ + 1
2θ +

sin θ cos θ
2

) ∣∣∣∣π
0

= 9π
2 .
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10.3.26

Because there are 4 symmetric leaves,
we compute the area of 1/2 of one
of the leaves, and then multiply by
8 to get the total area. We have
1
2

∫ π/4

0
9 sin2(2θ) dθ = 9

2

∫ π/4

0
sin2(2θ) dθ =

9
4

(
θ − sin 2θ cos 2θ

2

) ∣∣∣∣π/4
0

= 9π
16 . So the total

area is 8 · 9π
16 = 9π

2 .
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10.3.27

2 · 1
2

∫ π/6

0
cos2 3θ dθ =

∫ π/6

0
1+cos 6θ

2 dθ =(
θ/2 + sin 6θ

6

) ∣∣∣∣π/6
0

= π
12 .
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10.3.28

2 · 1
2

∫ π/3

0
(cos θ − 1/2)2 dθ =

∫ π/3

0
(cos2 θ −

cos θ + 1/4) dθ =
∫ π/3

0
(cos(2θ)/2 − cos θ +

3/4) dθ = (sin(2θ)/4− sin θ + 3θ/4)

∣∣∣∣π/3
0

=

√
3/8−√

3/2 + π/4 = π/4− 3
√
3

8 .
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10.3.29

The area is given by 2 · 1
2

∫ π/3

0
(cos2 θ −

(1/2)2) dθ =
∫ π/3

0
(cos(2θ)/2 + 1

4 ) dθ =

(sin(2θ)/4 + θ/4)

∣∣∣∣π/3
0

=
√
3
8 + π

12 .
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10.3.30

We have already computed the area inside√
cos θ to be 1. Now we must take away

the portion of the circle with radius 1/
√
2

between θ = −π/3 and θ = π/3. This is
1/3 of a circle, so the area being removed is
(1/3)π(1/2) = π/6. We must also remove
the area of the regions inside

√
cos θ between

−π/2 and −π/3 and π/3 and π/2. These

have area 2 · 1
2

∫ π/2

π/3
cos θ dθ = (sin θ)

∣∣∣∣π/2
π/3

=

1 − √
3/2. So the area is 1 − (π/6 + (1 −√

3/2)) =
√
3/2− π/6.
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10.3.31

The region inside the circle between 0 and
π/3 is 1/6 the area of a circle of radius 1/

√
2

so it has area (1/6)π(1/2) = π/12. The rest
of the area is represented by 1

2

∫ π

π/3
cos θ dθ =

1
2 (sin θ)

∣∣∣∣π
π/3

= 1
2

(
1−√

3/2
)
. The total area

is therefore π
12 + 1

2 −
√
3
4 .
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10.3.32

The region inside the circle between 0 and
π/6 is 1/12 the area of a circle of ra-
dius 1/

√
2 so it has area (1/12)π(1/2) =

π/24. The rest of the area is repre-

sented by 1
2

∫ π/4

π/6
cos 2θ dθ = 1

4 (sin 2θ)

∣∣∣∣π/4
π/6

=

1
4

(
1−√

3/2
)
. The total area is thus π

24 +
1
4 −√

3
8 .
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10.3.33

Using symmetry, we compute the area of 1/2
of one leaf, and then double it. We have A =
1
2

∫ π/10

0
cos2(5θ) dθ = 1

10

∫ π/2

0
cos2 u du =

1
10

(
1
2u+ cosu sinu

2

) ∣∣∣∣π/2
0

= π
40 . So the area

of one leaf is 2 · π
40 = π

20 .

0.2 0.4 0.6 0.8 1.0
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10.3.34

The curves intersect where 4 cos 2θ = 2,
or θ = π/6. By symmetry, we can com-
pute the area of 1/2 of the tip of one
leaf, and then multiply by 8. The area
of 1/2 of the tip of one leaf is given by
1
2

∫ π/6

0
(4 cos(2θ)2− 4) dθ =

∫ π/6

0
(8 cos2(2θ)−

2) dθ = (4θ + sin(4θ)− 2θ)

∣∣∣∣π/6
0

= π
3 +

√
3
2 .

Thus the total area desired is 8
(

π
3 +

√
3
2

)
=

8π
3 + 4

√
3.
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10.3.35

Note that the area inside one leaf
of the rose but outside the circle is
given by 1

2

∫ 5π/12

π/12
(16 sin2(2θ) − 4) dθ =

(2θ − sin(4θ))

∣∣∣∣5π/2
π/12

=
√
3 + 2π

3 . Also,

the area inside one leaf of the rose is

1
2

∫ π/2

0
16 sin2(2θ) dθ = (4θ − sin(4θ) )

∣∣∣∣π/2
0

=

2π. Thus the area inside one leaf of
the rose and inside the circle must be
2π− (

√
3+ 2π

3 ) = 4π
3 −√

3, and the total area
inside the rose and inside the circle must be
4( 4π3 −√

3) = 16π
3 − 4

√
3.

x

y

�2�3�4 �1 1 2 3 4

�2

�3

�4

�1

1

2

3

4

10.3.36

The curves intersect for 2 sin(2θ) = 1, which
occurs in the first quadrant at θ = π/12 and
θ = 5π/12. So one half of the total desired

area is given by 1
2

∫ 5π/12

π/12
(2 sin(2θ) − 1) dθ =

1
2 (− cos(2θ)− θ)

∣∣∣∣5π/12
π/12

= − 1
2

(−√
3 + π

3

)
=

√
3
2 − π

6 . So the total desired area is
√
3− π

3 .
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10.3.37

These curves intersect when sin θ = cos θ,
which occurs at θ = π/4 and θ = 5π/4, and
when r = 0 which occurs for θ = 0 and θ = π
for the first curve and θ = π/2 and θ = 3π/2
for the second curve. Only two of these in-
tersection points are unique: the origin and
the point (3

√
2/2, π/4) = (−3

√
2/2, 5π/4).

x

y

�1 1 2 3�2

�1

1

2

3

�2

10.3.38

The curves intersect where 2 + 2 sin θ = 2 −
2 sin θ, which occurs when sin θ = 0. The
curves also intersect at the origin, which oc-
curs for the first curve at θ = 3π/2 and for
the second curve at π/2. The only points of
intersection are the origin, (2, 0) and (2, π).
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y
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10.3.39

The curves intersect when sin θ = cos θ,
which occurs for θ = π/4 and θ = 5π/4.

The corresponding points are
(

2+
√
2

2 , π
4

)
and(

2−√
2

2 , 5π
4

)
. They also intersect at the pole:

the first curve is at the pole at (0, π) and the
other at (0, 3π/2).
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10.3.40

These curves intersect when cos(2θ) =
√
2
2 ,

which occurs when 2θ = π/4, 7π/4, . . ., so
for θ = π/8, 7π/8, . . .. The intersection
points are thus (1, π/8), (1, 7π/8), (1, 9π/8),
(1, 15π/8), (1, 17π/8), (1, 23π/8), (1, 25π/8),
and ((1, 31π/8).

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

10.3.41 By symmetry, we need to compute the area inside r = 3 sin θ between 0 and π/4 and then double

that result. We have 2 · 12
∫ π/4

0
9 sin2 θ dθ = 9

2

∫ π/4

0
(1−cos(2θ)) dθ = 9

2 (θ − (1/2) sin(2θ))

∣∣∣∣π/4
0

= 9
2

(
π
4 − 1

2

)
=

9
8 (π − 2).

10.3.42 By symmetry, we need to compute the area of the region inside r = 2− 2 sin θ between 0 and π/2

and then quadruple it. We have 4 · 1
2

∫ π/2

0
(2 − 2 sin θ)2 dθ = 8

∫ π/2

0
(1 − 2 sin θ + sin2 θ) dθ = 8

∫ π/2

0
((3/2) −

2 sin θ − (1/2) cos 2θ) dθ = (12θ + 16 cos θ − 2 sin(2θ))

∣∣∣∣π/2
0

= 6π + 0− 0− (0 + 16− 0) = 6π − 16.

10.3.43 By symmetry, we can compute the area between π/4 and 5π/4 inside r = 1+cos θ and then double it.

This will include both the bigger and smaller enclosed regions. We have 2 · 12
∫ 5π/4

π/4
(1+cos θ)2 dθ =

∫ 5π/4

π/4
(1+

2 cos θ+(1/2)(1+cos(2θ))) dθ =
∫ 5π/4

π/4
((3/2)+2 cos θ+(1/2)(cos 2θ)) dθ = (3θ/2 + 2 sin θ + (1/4) sin 2θ)

∣∣∣∣5π/4
π/4

=
(
15π
8 −√

2 + 1
4

)− ( 3π8 +
√
2 + 1

4

)
= 3π

2 − 2
√
2.

10.3.44 By symmetry, we can compute the area between 0 and π/8 within the circle r = 1 and add it to
the area between π/8 and π/4 within the curve

√
2 cos 2θ and then multiply this by 8. The area within

the circle between 0 and π/8 is (1/16)th the area of the circle, so this area is π
16 . The area between π/8

and π/4 within
√
2 cos 2θ is given by 1

2

∫ π/4

π/8
2 cos2 2θ dθ = 1

2

∫ π/4

π/8
(1 + cos 4θ) dθ = 1

2 (θ + (1/4) sin 4θ)

∣∣∣∣π/4
π/8

=

1
2

(
π
4 + 0− (π8 + 1

4

))
= π

16 − 1
8 . Adding this to the previously computed area gives that 1/8 of the total area

is π
16 − 1

8 + π
16 = π

8 − 1
8 . Thus the total area we are seeking is π − 1.

10.3.45

a. False. The area is given by 1
2

∫ β

α
f(θ)2 dθ.

b. False. The slope is given by dy
dx , which can be computed using the formula

dy

dx
=

dy/dθ

dx/dθ
=

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
.

10.3.46 The polar point (−1, 3π/2) is equivalent to the polar point (1, π/2) which does satisfy the equation.

10.3.47 The circles intersect for θ = π/6 and θ = 5π/6.

The area inside r = 2 sin θ but outside of r = 1 would be given by 1
2

∫ 5π/6

π/6
(4 sin2 θ − 1) dθ =

1
2 (x− sin(2x))

∣∣∣∣5π/6
π/6

= π
3 +

√
3
2 . The total area of r = 2 sin θ is π. Thus, the area inside both circles is

π −
(

π
3 +

√
3
2

)
= 2π

3 −
√
3
2 .

Copyright c© 2015 Pearson Education, Inc.



168 Chapter 10. Parametric and Polar Curves

10.3.48 The inner loop is traced from θ = 2π/3 to θ = 4π/3. So the area is given by 1
2

∫ 4π/3

2π/3
(2+4 cos θ)2 dθ =∫ 4π/3

2π/3
(2 + 8 cos θ + 8 cos2 θ) dθ = (2θ + 8 sin θ + 4θ + 2 sin(2θ))

∣∣∣∣4π/3
2π/3

= 4π − 6
√
3.

10.3.49 The inner loop is traced out between θ = π/6 and θ = 5π/6, so its area is given by 1
2

∫ 5π/6

π/6
(3 −

6 sin θ)2 dθ = 1
2

∫ 5π/6

π/6
(9− 36 sin θ + 36 sin2 θ) dθ = 3

2 (3θ + 12 cos θ + 6θ − 3 sin(2θ))

∣∣∣∣5π/6
π/6

= 9π − 27
√
3

2 .

We can determine the area inside the outer loop by using symmetry and doubling the area of the region

traced out between 5π/6 and 3π/2. Thus the area inside the outer region is 2 · 1
2

∫ 3π/2

5π/6
(3 − 6 sin θ)2 dθ =

3 (3θ + 12 cos θ + 6θ − 3 sin(2θ))

∣∣∣∣3π/2
5π/6

= 18π+ 27
√
3

2 . So the area outside the inner loop and inside the outer

loop is 18π + 27
√
3

2 −
(
9π − 27

√
3

2

)
= 9π + 27

√
3.

10.3.50 The curves intersect at θ = π/3, and using symmetry, the area we seek is 2 · 1
2

∫ π/3

0
(1+ cos θ)2 dθ+

2 · 1
2

∫ π/2

π/3
(3 cos θ)2 dθ =

∫ π/3

0
(1 + 2 cos θ + cos2 θ) dθ +

∫ π/2

π/3
9 cos2 θ dθ =

(
θ + 2 sin θ + θ

2 + sin 2θ
4

) ∣∣∣∣π/3
0

+

(
9θ
2 + 9 sin 2θ

4

) ∣∣∣∣π/2
π/3

= π
2 + 2 ·

√
3
2 +

√
3
8 + 9π

4 −
(

3π
2 + 9

√
3

8

)
= 5π

4 .

10.3.51

The first horizontal tangent line is at
the origin. The next is at approxi-
mately (4.0576, 2.0288), and the third at
approximately (9.8262, 4.9131). The first
vertical tangent line is at approximately
(1.7206, 0.8603), the next is at about
(6.8512, 3.4256), and the next at approxi-
mately (12.8746, 6.4373).
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10.3.52

a. The area of one half of one leaf is 1
2

∫ π/(4m)

0
cos2(2mθ) dθ =

(
θ
4 + sin(4mθ)

16m

) ∣∣∣∣π/(4m)

0

= π
16m . So the area

of all 8m half-leaves is π
2 .

b. The area of one half of one leaf is 1
2

∫ π/(4m+2)

0
cos2((2m + 1)θ) dθ =

(
θ
4 + sin(2(2m+1)θ)

4(4m+2)

) ∣∣∣∣π/(4m+2)

0

=

π
8·(2m+1) . So the area of all 2(2m+ 1) half-leaves is π

4 .

10.3.53

a. An = 1
2

∫ (2n−1)π

(2n−2)π
e−2θ dθ − 1

2

∫ (2n+1)π

2nπ
e−2θ dθ = − 1

4e
−(4n−2)π + 1

4e
−(4n−4)π + 1

4e
−(4n+2)π − 1

4e
−4nπ.

b. Each term tends to 0 as n → ∞ so limn→∞ An = 0.

c.
An+1

An
=

e−(4n+2)π + e−(4n)π + e−(4n+6)π − e−(4n+4)π

e−(4n−2)π + e−(4n−4)π + e−(4n+2)π − e−4nπ
= e−4π, so limn→∞

An+1

An
= e−4π.
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10.3.54 The area of one half of one leaf is 1
2

∫ π/6

0
4 · cos2(3θ) dθ =

(
θ + sin(6θ)

6

) ∣∣∣∣π/6
0

= π
6 . So the area of all

6 half-leaves is π.

10.3.55 One half of the area is given by 1
2

∫ π/2

0
6 sin 2θ dθ = − 3

2 cos 2θ

∣∣∣∣π/2
0

= 3, so the total area is 6.

10.3.56 By symmetry, we can compute the area between θ = 5π/6 and θ = 3π/2 and double it. Thus, the

total area we seek is given by
∫ 3π/2

5π/6
(2− 4 sin θ)2 dθ =

∫ 3π/2

5π/6
(4− 16 sin θ + 16 sin2 θ) dθ =

(4θ + 16 cos θ + 8θ − 4 sin(2θ))

∣∣∣∣3π/2
5π/6

= 6
√
3 + 8π.

10.3.57 The area is given by

1

2

∫ 2π

0

(4− 2 cos θ)2 dθ =

∫ 2π

0

(8− 8 cos θ + 2 cos2 θ) dθ =

(
8θ − 8 sin θ + θ +

1

2
sin(2θ)

) ∣∣∣∣2π
0

= 18π.

10.3.58

a. Because V and R are constants, the function is a parabola which opens downward with vertex at
(0, V ), so the velocity is maximal when r = 0.

b. The average velocity is 1
πR2 · 2π · ∫ R

0
V ·
(
1− r2

R2

)
r dr = 2π

πR2V
(
− r4

4R2 + r2

2

) ∣∣∣∣R
0

= 2
R2 · V R2

4 = V
2 .

c. The average velocity is 1
πR2 · 2π · ∫ R

0
V ·
(
1− r2

R2

)1/p
r dr = 2V

R2 · 1
R2/p

∫ R

0
(R2 − r2)1/p · r dr = 2V

R2 ·
1

R1/p

(
−p(R2−r2)

1
p
+1

2p+2

) ∣∣∣∣R
0

= 2V
R2 · 1

R2/p · p(R2)(p+1)/p

2p+2 = 2pV
2p+2 .

c. limp→∞ Vavg = V · limp→∞ 2p
2p+2 = V .

p � 1

p � 2
p � 6

10.3.59 Suppose that the goat is tethered at the origin, and that the center of the corral is (1, π). The
circle that the goat can graze is r = a, and the corral is given by r = −2 cos θ. The intersection occurs for
θ = cos−1(−a/2).

The area grazed by the goat is twice the area of the sector of the circle r = a between cos−1(−a/2) and
π, plus twice the area of the circle r = −2 cos θ between π/2 and cos−1(−a/2). Thus we need to compute

A =
∫ π

cos−1(−a/2)
a2 dθ +

∫ cos−1(−a/2)

π/2
4 cos2 θ dθ = a2π − a2 cos−1(−a/2) + (2 cos θ sin θ + 2θ)

∣∣∣∣cos
−1(−a/2)

π/2

=

a2(π − cos−1(−a/2)) − π − 1
2a

√
4− a2 + 2 cos−1(−a/2). Note that π − cos−1(−a/2) = cos−1(a/2), so this

can be written as (a2 − 2) cos−1(a/2) + π − 1
2a

√
4− a2. Note that for a = 0 this is 0, and for a = 2, this is

π, as desired.
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10.3.60 Imagine that the boundary of the concrete slab is the fence from the previous problem Then the
area the goat could graze in the previous problem becomes the area it can’t graze in this problem. If the
slab weren’t there, the goat could graze a region of area πa2. Thus, the goat can graze a region of area
πa2 − ((a2 − 2) cos−1(a/2) + π − 1

2a
√
4− a2

)
= π(a2 − 1) + 1

2a
√
4− a2 + (2− a2) cos−1(a/2). If a = 0, this

quantity is 0, while if a = 2, this quantity is 3π.

10.3.61 Again, suppose that the goat is tethered at the origin, and that the center of the corral is (1, π).
The equation of the corral fence is given by r = −2 cos θ. Note that to the right of the vertical line θ = π/2,
the goat can graze a half-circle of area πa2/2. Also, there is a region in the 2nd quadrant and one in the 3rd
quadrant of equal size that can also be grazed. Let this region have area A, so that the total area grazed

will then be πa2

2 + 2A.

Imagine that the goat is walking “west” from the polar point (a, π/2), and is keeping the rope taut until
his whole rope is along the fence in the third quadrant. Let φ be the central angle angle from the origin to the
polar point (1, π) to the point on the fence that the goat’s rope is touching as he makes this walk. When the
goat is at (a, π/2), we have φ = 0. When the goat is all the way to the fence, we have φ = a. Then length of

the rope not along the fence is a−φ. Thus, the value of A is 1
2

∫ a

0
(a−φ)2dφ = 1

2

(
a2φ− aφ2 + φ3

3

) ∣∣∣∣a
0

= a3

6 .

Thus, the goat can graze a region of area πa2

2 + a3

3 .

10.3.62

a. The slope of the line tangent to r = f(θ) at P is dy
dx

∣∣∣
P
. Also, the slope of a line intersecting

the x-axis at an angle α is tanα. (Note that in the picture, tan(π − α) = − tan(α) = rise
−run =

−slope of the tangent line.)

b. Draw a vertical line through P and let Q be the point where this line intersects the x-axis. Then in
triangle OPQ we see tan θ = y

x .

c. Note that

dy

dx
=

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
=

tan θ + f(θ)
f ′(θ)

1− f(θ)
f ′(θ) tan θ

= tanα.

Because α = φ+ θ and tan(φ+ θ) = tan θ+tanφ
1−tanφ tan θ , we see that tanφ = f(θ)

f ′(θ) .

d. l is parallel to the x-axis when dy
dx = 0, or when f ′(θ) sin θ + f(θ) cos θ = 0, hence if tan θ = − f(θ)

f ′(θ) .

e. l is parallel to the y-axis when dx
dy = 0, which occurs when f ′(θ) cos θ − f(θ) sin θ = 0, hence if

tan θ = f(θ)
f ′(θ) .

10.3.63

a. If cotφ = f ′(θ)
f(θ) is constant for all θ, then φ = cot−1

(
f ′(θ)
f(θ)

)
is constant. Then d

dθ ln(f(θ)) =
1

f(θ) ·f ′(θ) =
cotφ is constant.

b. If f(θ) = Cekθ, then cotφ = f ′(θ)
f(θ) = kCekθ

Cekθ = k.
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c.
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10.4 Conic Sections

10.4.1 A parabola is the set of points in the plane which are equidistant from a given fixed point and a
given fixed line.

10.4.2 An ellipse is the set of points in the plane with the property that the sum of the distances from the
point to two given fixed points is a given constant.

10.4.3 A hyperbola is the set of points in the plane with the property that the difference of the distances
from the point to two given fixed points is a given constant.
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10.4.6 x2 = 4py, where p < 0.

10.4.7
(x
a

)2
+

y2

a2 − c2
= 1.

10.4.8
(y
a

)2
− x2

c2 − a2
= 1.

10.4.9 The foci for both are (±ae, 0).

10.4.10 By theorem 11.4, this is given by r = ed
1+e cos θ , −π < θ < π.

10.4.11 The asymptotes are y = − b
a · x and y = b

a · x.
10.4.12 If e = 1, the conic section is a parabola. If e > 1, it is a hyperbola. If 0 < e < 1, it is an ellipse.

10.4.13 Directrix: y = −3. Focus: (0, 3).
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y

10.4.14 Directrix: x = −5. Focus: (5, 0).
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10.4.15 Directrix: x = 4. Focus: (−4, 0).
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Copyright c© 2015 Pearson Education, Inc.



10.4. Conic Sections 173

10.4.16 Directrix: x = 1. Focus: (−1, 0).
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10.4.17 Directrix: y = 2
3 . Focus: (0,− 2

3 ).
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10.4.18 Directrix: x = − 3
5 . Focus: (

3
5 , 0).
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10.4.19
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y2 = 16x.

10.4.20
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x2 = −24y.
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10.4.21
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y2 = 12x.

10.4.22
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y

y2 = −16x.

10.4.23 x2 = 4py and 4 = 4p(−6), so p = − 1
6 and

x2 = − 2
3 · y.
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10.4.24 y2 = 4px and (−4)2 = 4p(1), so p = 4 and
y2 = 16x.
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2
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y

10.4.25 Because the vertex is (−1, 0) and the parabola is symmetric about the x-axis, we have y2 = 4p(x+1)
and because the directrix is one unit left of the vertex, we obtain p = 1 and y2 = 4(x+ 1).

10.4.26 Because the vertex is (0, 4) and the parabola is symmetric about the y-axis, we have x2 = 4p(y− 2)
and because the directrix is 2 units above the vertex, we obtain p = −2 and x2 = −8(y − 2).

10.4.27 Vertices are (±2, 0), and the foci are (±√
3, 0). The major axis has length 4 and the minor axis has

length 2.
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10.4.28 Vertices are (±3, 0), and the foci are (±√
5, 0). The major axis has length 6 and the minor axis has

length 4.
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10.4.29 Vertices are (0,±4), and the foci are (0,±2
√
3). The major axis has length 8 and the minor axis

has length 4.
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10.4.30 Vertices are (0,±3), and the foci are (0,±2
√
2). The major axis has length 6 and the minor axis

has length 2.
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10.4.31 Vertices are (0,±√
7), and the foci are (0,±√

2). The major axis has length 2
√
7 and the minor

axis has length 2
√
5.
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(0, �7)

(��5, 0) (�5, 0)

10.4.32 Vertices are (0,±2
√
3), and the foci are (0,±√

7). The major axis has length 4
√
3 and the minor

axis has length 2
√
5.

�1�2�3

�1

�2

�3

�4

1

2

3

4

1 2 3 x

y

(0, ��7)

(0, �2�3)

(0, �7)

(0, 2�3)

(��5, 0) (�5, 0)
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10.4.33 a = 4, and b = 3, so the equation is x2

16 + y2

9 = 1.

�2

�1

�3

3

2

1

2 4�2�4 x

y

(�4, 0)

(0, �3)

(0, 3)

(4, 0)(�7, 0)(��7, 0)

10.4.34 a = 6, and a2 = b2 + c2 where c = 4, so b2 = 36− 16 = 20, and the equation is x2

36 + y2

20 = 1.

�2

2

4

6

�4

�6

�2 2 4 6�4�6 x

y

(�6, 0) (6, 0)(4, 0)(�4, 0)

(0, ��20)

(0, �20)

10.4.35 a = 5, and the equation is of the form x2

25 + y2

b2 = 1. Because (4, 3
5 ) is on the curve, we have

16
25 + 9

25b2 = 1, so b = 1. The equation is x2

25 + y2 = 1.

�1

�2

2

1

�2 2 4 6�4�6 x

y

(�5, 0) (5, 0)

(0, �1)

(0, 1)

(��24, 0) (�24, 0)

10.4.36 a = 10, and the equation is of the form y2

100 + x2

b2 = 1, and because (
√
3/2, 5) is on the curve, we

have 1
4 + 3

4b2 = 1, so b = 1. The equation is x2 + y2

100 = 1.

�5

�10

10

5

�1�2 21 x

y

(1, 0)(�1, 0)

(0, �10)

(0, 10)

(0, ��99)

(0, �99)

10.4.37 a = 3 and b = 2, so the equation is x2

4 + y2

9 = 1.
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10.4.38 a = 10 and b = 8, so x2

100 + y2

64 = 1.

10.4.39 The vertices are (±2, 0), and the foci are (±√
5, 0). The asymptotes are y = ±1

2 · x.

�2

�4

�6

6

4

2

2�2�4�6 4 6 x

y

10.4.40 The vertices are (0,±4), and the foci are (0,±5). The asymptotes are y = ±4
3 · x.

�2

�4

�6

�8

�10

10

8

6

4

2

�2�4�6 642 x

y

10.4.41 The vertices are (±2, 0), and the foci are (±2
√
5, 0). The asymptotes are y = ±2x.

�2

�4

�6

6

4

2

�2�4�6 642 x

y

10.4.42 The vertices are (0,±2), and the foci are (0,±29). The asymptotes are y = ±2
5 · x.

�2

�4

�6

6

4

2

�2�4�6 642 x

y
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10.4.43 The vertices are (±√
3, 0), and the foci are (±2

√
2, 0). The asymptotes are y = ±

√
5
3 · x.

�2

�4

�6

6

4

2

�2�4�6 642 x

y

10.4.44 The vertices are (±√
14, 0), and the foci are (±√

34, 0). The asymptotes are y = ±
√

10
7 · x.

�2

�4

�6

6

4

2

�2�4�6�8 8642 x

y

10.4.45 We have a = 4 and c = 6, so b2 = c2 − a2 = 20, so the equation is x2

16 − y2

20 = 1.

�2

�4

2

4

6

8

10

�6

�8

�10

�6�8�10 2 6 8 10 x

y

(�4, 0)
(�6, 0)

(4, 0)
(6, 0)

y �         x��5
2 y �      x�5

2

10.4.46 We have a = 1, so the equation is of the form x2 − y2

b2 = 1. Because (5/3, 8) is on the curve, we

have 25
9 − 64

b2 = 1, so b = 6. The equation is x2 − y2

36 = 1.

�1 1 2 3 4 5 6�2�3�4�5�6
�2

�4

�6

�8

8

6

4

2

x

y
y � �6x y � 6x

(1, 0)(�1, 0)(��37, 0) (�37, 0)
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10.4.47 We have a = 2, and because the asymptoes are y = ±bx
a , we have that b = 3, so the equation is

x2

4 − y2

9 = 1.

�2�4�6 2 4 6 x

y

2

�2

�4

�6

4

6

(�2, 0)

(��13, 0)

(2, 0)

(�13, 0)

y � �  x3
2 y �   x3

2

10.4.48 We have a = 2 and because the asymptotes are y = ±a
b · x, we have b = 1, and the equation is

y2

4 − x2 = 1.

�2

�4

4

6

�6

�4 2 4 x

y

(0, ��5)

(0, �2)

(0, 2)

(0, �5)

y � �2x y � 2x

10.4.49 We have a = 4 and c = 5, so b2 = 25− 16 = 9, so b = 3 and the equation is x2

16 − y2

9 = 1.

10.4.50 We have a = 6 and c = 10, and b2 = 100− 36 = 64, so b = 8, and the equation is y2

36 − x2

64 = 1.

10.4.51 We have a = 9 and e = 1
3 , so c = ae = 3, and b2 = a2 − c2 = 72, so the equation is x2

81 + y2

72 = 1.

�5�10�15�20�25 �2
�4
�6
�8

8
6
4
2

5 10 15 20 25 x

y

(�3, 0)(�9, 0) (3, 0) (9, 0)

(0, ��72)

(0, �72) x � 27x � �27
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10.4.52 We have a = 9 and e = 1
4 , so c = ae = 9

4 , and b2 = a2 − c2 = 81− 81
16 = 1215

16 . Thus the equation is
16x2

1215 + y2

81 = 1.

�10

10

�5 5 10�10 x

y

(0, �9)

(0, 9)

(0, �   )9
4

(0,    )9
4

�1215
4(�           , 0) �1215

4(           , 0)

10.4.53 We have a = 1 and e = 3, so c = ae = 3 and b2 = c2 − a2 = 9 − 1 = 8. Thus, the equation is

x2 − y2

8 = 1.

10

5

�5

�10

642�2�4�6 x

y

(1, 0)(�1, 0)

x � W x � �W 

x � 2�2x

x � �2�2x

10.4.54 We have a = 4 and e = 2, so c = ae = 8 and b2 = c2 − a2 = 64 − 16 = 48. Thus, the equation is
y2

16 − x2

48 = 1.

�5�10

�5

�10

10

5

5 10 x

y

y � 2

y � �2

y � �(0, �4)

(0, 4)

x

�3
y � 

x

�3
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10.4.55 The vertex is (2, 0). The focus is (0, 0), and the directrix is the line x = 4.

20

10

�10

�20

10�10�20�30�40�50 x

y

(0, 0)
(2, 0)

x � 4

10.4.56 The vertices are (4/3, 0) and (−4, 0). The center is (−4/3, 0). The foci are (0, 0) and (−8/3, 0).

�2�4�6

�1

�2

�3

�4

4

3

2

1

2 x

y

(�4, 0) (0, 0)

x � 4

(�  , 0)8
3 (  , 0)4

3

x � �
20
3

10.4.57 The vertices are (1, 0) and (−1/3, 0). The center is (1/3, 0). The directrices are x = −1 and x = 5/3.

�0.5

�1.0

�1.5

0.5

1.0

1.5

1.5 2.01.00.5�1.5 �1.0 �0.5 x

yx � �1

(�  , 0)1
3 (  , 0)2

3

x � 5
3

(1, 0)(0, 0)
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10.4.58 The vertices are (0, 6/5) and (0,−6). The center is (0,−12/5). The foci are (0, 0) and (−24/5, 0).

1

�1

�2

�3

�4

�5

�6

�7

�8

2

3

4

4321�1�2�3�4 x

y

(0, �6)

y � 3

y � �

(0, �    )24
5

39
5

(0,    )6
5

(0, 0)

10.4.59 The vertex is (0,−1/4), and the focus is (0, 0). The directrix is the line y = −1
2 .

�1

�1

1

2

3

�2�3�4

4

4321 x

y

(0, �E )y � �
x
2

(0, 0)

10.4.60 The vertices are (6, 0) and (−3, 0). The center is (3/2, 0). The foci are (0, 0) and (3, 0).

�2

�2

2

4

6

�4

�6

2 4 6 8 10 12 14 16�4�6�8�10�12 x

y

x � �12 x � 15

(�3, 0) (3, 0) (6, 0)(0, 0)
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10.4.61 The parabola starts at (1, 0) and goes through quadrants I, II, and III for θ ∈ [0, 3π/2]. It then
approaches (1, 0) by traveling through quadrant IV for θ ∈ (3π/2, 2π).

�2

�4

�6

6

4

2

�2�4�6 642 x

y

(1, 0)

10.4.62 Note that the value of r for θ = 0 is 1/3. As θ proceeds to π/2, the curve is traced in the first
quadrant and approaches the polar point (1, π/2) From π/2 to π, the curve approaches the asymptote, and
then appears along the asymptote in the fourth quadrant and heads toward the polar point (−1, π). From π
to 2π, the curve approaches the asymptote in the first quadrant, and then reappears in the third quadrant
along the asymptote, and heads toward the point (1/3, 2π).

�1

1

2

�2

�1�2 21 x

y

(W, 0)

10.4.63 The parabola begins in the first quadrant and passes through the points (0, 3) and then (−3/2, 0)
and (0− 3) as θ ranges from 0 to 2π.

�2

2

4

�4

�2 �1 1 2 3 x

y

Copyright c© 2015 Pearson Education, Inc.



10.4. Conic Sections 185

10.4.64 As θ ranges from 0 to π/3, the branch of the hyperbola in quadrant III starts at the point (−1, 0),
and approaches the asymptote (note that r → ∞ as θ → π/3−.) As θ takes on the values from π/3 to π/2,
the portion of the parabola in quadrant I appears and heads toward the point (0, 1). For θ ranging from
π/2 to 3π/2, the curve ranges from (0, 1) to (−1/3, 0) to (0,−1). From θ = 3π/2 to θ = 5π/3, the curve
approaches the asymptote in quadrant IV. From 5π/3 to 2π, the curve reappears along the asymptote in
quadrant II, and approaches the point (−1, 0).

�1�2 1 2�3

�1

1

2

3

�2

�3

x

y

(�1, 0)

10.4.65 For negative p, the parabola opens to the left and for positive p it opens to the right. As p increases
to 0, the parabola opens wider and as p decreases (for p > 0), it gets narrower.

�2

�4

�6

6

4

2

�2 2 6 10�6�10 x

y

10.4.66 As e gets larger, the vertices move closer to each other.

�2

�4

�6

6

4

2

�2 2 4 6�4 x

y
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10.4.67

a. True. Note that if x = 0, the equation becomes −y2 = 9, which has no solution.

b. True. The slopes of the tangent lines range continuously from −∞ to 0 to ∞ and then back through
0 to −∞ again.

c. True. Given c and d, one can compute a, b, and e. See the summary after Theorem 10.3.

d. True. The vertex is exactly halfway between the focus and the directrix.

10.4.68 Using implicit differentiation, we have 2yy′ = 8, and at the point (8,−8), we have y′ = − 1
2 . So

y − (−8) = − 1
2 (x− 8), or y = − 1

2x− 4 is the equation of the tangent line.

10.4.69 Differentiating gives 2x = −6y′, so at (−6,−6) we obtain −12 = −6y′, so y′ = 2. Thus y − (−6) =
2(x− (−6)), or y = 2x+ 6 is the equation of the tangent line.

10.4.70 We have
dy

dx
=

− cos θ sin θ
(1+sin θ)2 + cos θ

1+sin θ

− cos2 θ
(1+sin θ)2 − sin θ

1+sin θ

=
sin θ − 1

cos θ
.

At θ = π
6 we have y′ = (1/2)−1√

3/2
= −

√
3
3 . The equation of the tangent line is therefore y − 1

3 = −
√
3
3 (x−

√
3
3 ),

or y = −
√
3
3 x+ 2

3 .

10.4.71 Differentiating implicitly, we have 2yy′− x
32 = 0, so at (6,−5/4) we have − 5

2y
′− 3

16 = 0, so y′ = − 3
40 .

The equation of the tangent line is y + 5
4 = − 3

40 (x− 6), or y = − 3x
40 − 4

5 .

10.4.72 We have an ellipse with focus at the origin and directrix x = 2. Because (2/3, 0) is a vertex,

e = |PF |
|PL| =

2/3
4/3 = 1

2 and r(θ) =
1
2 ·2

1+ 1
2 cos θ

= 2
2+cos θ .

10.4.73 We have a hyperbola with focal point at the origin and directrix y = −2. Furthermore P = (0,−4/3)

is a vertex. Thus, e = |PF |
|PL| =

4/3
2/3 = 2, and r(θ) = 2(2)

1−2 sin θ = 4
1−2 sin θ .

10.4.74

a. e = |PF |
|PL| , so r = |PF | = e |PL| = e |−d− r cos θ|, or r = e(d+r cos θ). Solving for r yields r = ed

1−e cos θ .

b. r = |PF | = e |PL|, or r = e(d− r sin θ). Solving for r yields r = ed
1+e sin θ .

c. r = |PF | = e |PL|, or r = e(−d− r sin θ). So r = e(d+ r sin θ), and solving for r yields r = ed
1−e sin θ .

10.4.75 The points on the intersection of the two circles are a distance of 2a + r from F1 and a distance
of r from F2. So for P an intersection point, we have |PF1| − |PF2| = 2a for all r, and the set of all such
points form a hyperbola with foci F1 and F2.

10.4.76

a. Making use of the substitution x√
2
= sin t, we have

A =

∫ 1

0

(√
1− x2

2
− x2

√
2

)
dx =

∫ π/4

0

√
1− sin2 t

√
2 cos t dt− 1√

2

∫ 1

0

x2 dx

=
√
2 · 1

2
(cosx sinx+ x)|π/40 − 1

3
√
2
=

√
2

2
(sin(π/4) cos(π/4) +

π

4
)− 1

3
√
2

=

√
2

2
· (1

2
+

π

4
)−

√
2

6
=

√
2

12
+

√
2π

8
.
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b. About the x-axis, we obtain π
∫ 1

0

(
1− x2

2 − x4

2

)
dx = π

(
x− x3

6 − x5

10

)∣∣∣1
0
= 11π

15 ≈ 2.304.

About the y-axis, we obtain

2π

∫ 1

0

(
x

√
1− x2

2
− x2

√
2

)
dx = 2π

∫ 1

1/2

u1/2 du− 1√
2

∫ 1

0

x3 dx

= 2π

(
2

3
u3/2

)∣∣∣∣1
1/2

−
(

1

4
√
2
x4

)∣∣∣∣1
0

= 2π

(
2

3
− 2

6
√
2
− 1

4
√
2

)
≈ 1.597.

So the volume about the x-axis is greater.

10.4.77 Using implicit differentiation, we have 2x
a2 + 2yy′

b2 = 0, or y′ = − b2x
a2y . If (x0, y0) is the point of

tangency, then − b2x0

a2y0
= y−y0

x−x0
, so x0(x−x0)

a2 = −y0(y−y0)
b2 , so x0x

a2 + y0y
b2 =

x2
0

a2 +
y2
0

b2 = 1.

10.4.78 Using implicit differentiation, we have 2x
a2 − 2yy′

b2 = 0, so y′ = b2x
a2y . At (x0, y0), we have y′ = b2x0

a2y0
,

so the tangent line is given by y − y0 = b2x0

a2y0
(x− x0), or

y(y−y0)
b2 = x0(x−x0)

a2 , or y0y
b2 − x0x

a2 =
y2
0

b2 − x2
0

a2 = −1,

so xx0

a2 − yy0

b2 = 1.

10.4.79 Vx = π
∫ a

−a

(
b2 − b2x2

a2

)
dx = πb2

∫ a

−a

(
1− x2

a2

)
dx = πb2

(
x− x3

3a2

)∣∣∣a
−a

= 4πb2a
3 .

Vy = π
∫ b

−b

(
a2 − a2y2

b2

)
dy = πa2

∫ b

−b

(
1− y2

b2

)
dy = πa2

(
y − y3

3b2

)∣∣∣b
−b

= 4πa2b
3 .

These are different if a �= b. In the case a = b, both volumes give 4πa3

3 , the volume of a sphere.

10.4.80

a. The focus is at c =
√
a2 + b2. We have A =

2b
∫ c

a

√
x2

a2 − 1 dx = 2b
a

∫ c

a

√
x2 − a2 dx. Using either the sub-

stitution x = a sec θ (or a table of integrals), we have

A =
2b

a
·
(
1

2
x
√

x2 − a2 − 1

2
a2 ln

(
2
(√

x2 − a2 + x
)))∣∣∣∣c

a

so

A = ab ln(a)− ab ln(
√
a2 + b2 + b) +

√
a2 + b2

a
· b2.

b. x

y

10.4.81

a. Vx = π
∫ c

a

(√
b2x2

a2 − b2
)2

dx = π
∫ c

a

(
b2x2

a2 − b2
)
dx = πb2

(
x3

3a2 − x
)∣∣∣c

a
= πb2

(
c3

3a2 − c− a
3 + a

)
=

πb2

3a2 (c
3 − 3ca2 + 2a3) = πb2

3a2 (a− c)2(2a+ c).

b. Vy = 2 · 2π ∫ c

a
a2b
√

x2

a2 − 1 dx = 2π
∫ b2/a2

0
a2b

√
u du = 2πa2b

(
2
3u

3/2
) ∣∣∣∣b

2/a2

0

= 2πa2b 2b3

3a3 = 4πb4

3a .

10.4.82 VR = 2π
∫√h/a

0
x(h− ax2) dx = 2π

∫√h/a

0
(xh− ax3) dx = 2π

(
hx2

2 − ax4

4

)∣∣∣√h/a

0
= 2π

(
h2

2a − h2

4a

)
=

πh2

2a . The cone has height h and radius
√
h/a, so Vc =

1
3π

(√
h
a

)2

· h = πh2

3a , and VR = 3
2 · πh2

3a = πh2

2a .
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10.4.83

a. The slope of a line making an angle θ with the horizontal is tan θ. The slope of the tangent line at
(x0, y0) is y

′ = x
2p , so y′ = x0

2p , so tan θ = x0

2p .

b. The distance from (0, y0) to (0, p) is p− y0, and tanφ = opposite
adjacent =

p−y0

x0
.

c. Because l is perpendicular to y = y0, we have α+ θ = π/2, or α = π
2 − θ, so tanα = cot θ = 2p

x0
.

d. tanβ = tan(θ+φ) =
x0
wp+

p−y0
x0

1− p−y0
2p

=
x2
0+2p2−2py0

x0(p+y0)
. Now because x2

0 = 4py0, we obtain tanβ = 4py0+2p2−2py0

x0(p+y0)

= 2p(p+y0)
x0(p+y0)

= 2p
x0
.

e. Because α and β are acute, we have that tanα = tanβ, so α = β.

10.4.84 We have a vertex at (0, 0) and the parabola passes through (640, 152), so 152 = a(640)2, so a =
19

51200 ≈ 0.000371. Thus, y = 19
51200x

2, and the guy wire has length L = 19
51200 (500

2) = 11875
128 ≈ 92.77 meters.

10.4.85 Assume the two fixed points are at (c, 0) and (−c, 0). Let P be the point (0, b), and note that P is
equidistant from the two given points, so we must have b2 + c2 = a2 by the Pythagorean theorem. Now let
Q = (u, 0) be on the ellipse for u > c. Then u−c+(c+u) = 2a, so u = a. Now let R = (x, y) be an arbitrary
point on the ellipse (assume x > 0 and y > 0 – the other cases are similar.) Using the triangles formed
between the foci, R, and the projection of R onto the x-axis, we have

√
(x+ c)2 + y2 = 2a−√(c− x)2 + y2.

Squaring both sides gives (x + c)2 + y2 = 4a2 − 4a
√
(c− x)2 + y2 + (c − x)2 + y2. Isolating the root gives√

(c− x)2 + y2 = 1
4a

(
(c− x)2 + y2 − (c+ x)2 − y2 + 4a2

)
, so

√
(c− x)2 + y2 = a − c

ax. Squaring again

yields (c−x)2+y2 = a2−2xc+ c2

a2x
2, so c2−2cx+x2+y2 = a2−2cx+ c2

a2x
2, or x2

(
1− c2

a2

)
+y2 = a2− c2.

Thus x2

a2 + y2

a2−c2 = 1, which can be written x2

a2 + y2

b2 = 1, because b2 = a2 − c2.

10.4.86 The intersection points of the branches with the x-axis are at (−a, 0) and (a, 0) because the distances
to (c, 0) and (−c, 0) are c+a and c−a, so the difference is ±2a. Consider one point on the right branch (the
left branch will follow by a similar argument.) Let the distance from (−c, 0) to (x, y) be u and the distance
from (c, 0) to (x, y) be v. Then u =

√
(c+ x)2 + y2 and v =

√
(c− x)2 + y2, and because u−v = 2a, we have√

(c+ x)2 + y2 = 2a+
√
(c− x)2 + y2. Squaring gives (c+x)2+y2 = 4a2+4a

√
(c− x)2 + y2+(c−x)2+y2.

Isolating the root gives
√

(c− x)2 + y2 = 1
4a

(
(c+ x)2 + y2 − (c− x)2 − y2 − 4a2

)
, so
√
(c− x)2 + y2 = −a+

c
ax.

Squaring again yields (c − x)2 + y2 = a2 − 2xc + c2

a2x
2, so c2 − 2cx + x2 + y2 = a2 − 2cx + c2

a2x
2, or

x2
(
1− c2

a2

)
+ y2 = a2 − c2. Thus x2

a2 + y2

a2−c2 = 1, which can be written x2

a2 − y2

b2 = 1, where b2 = c2 − a2.

10.4.87 Let the parabola be symmetric about the y-axis with vertex at the origin. Let the circle have
radius r and be centered at (r + a, 0), and let the line be y = −a. The distance form the point P (x, y)
to the line is u = y + a. The distance from the point P to the circle is v =

√
x2 + (r + a− y)2 − r.

Setting u = v yields y + a =
√
x2 + (r + a− y)2 − r, so y + r + a =

√
x2 + (r + a− y)2, and squaring gives

y2 + 2(r + a)y + (r + a)2 = x2 + (r + a− y)2, so y2 + 2(r + a)y + (r + a)2 = x2 + (r + a)2 − 2(r + a)y + y2,
and thus 4(r + a)y = x2, so y = 1

4(r+a)x
2, the equation of a parabola.

10.4.88 With focus at the origin, the cartesian equation of an ellipse with the second focus at (−2c, 0)

and major axis length 2a, minor axis length 2b is (x+c)2

a2 + y2

b2 = 1. Using c = ae and polar coordinates

yields (r cos θ+ae)2

a2 + r2 sin2 θ
a2(1−e2) = 1. Thus, (1 − e2)(r2 cos2 θ + 2aer cos θ + a2e2) + r2 sin2 θ = a2(1 − e2), so

r2− e2r2 cos2 θ+2ae(1− e2)r cos θ+(1− e2)a2e2 = a2(1− e2). Gathering like terms gives (1− e2 cos2 θ)r2+
2ae(1− e2) cos θ · r − a2(1− e2)2 = 0. Using the quadratic formula, we have

r =
−2ae(1− e2) cos θ +

√
4a2e2(1− e2)2 cos2 θ + 4a2(1− e2)2(1− e2 cos2 θ)

2(1− e2 cos2 θ)
.
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This can be written as

r =
−2ae(1− e2) cos θ + 2a(1− e2)

2(1− e2 cos2 θ)
=

a(1− e2)(−e cos θ + 1)

(1− e cos θ)(1 + e cos θ)
=

a(1− e2)

1 + e cos θ
.

10.4.89 Let the hyperbolas be centered at the origin with equations x2

a2 − y2

b2 = 1 and y2

B2 − x2

A2 = 1 and

eccentricities e = c
a and E = C

B , respectively. Because the hyperbolas share a set of asymptotes A = ra and
B = rb fro some r > 0, and

C2 = A2 +B2 = (ra)2 + (rb)2

= r2(a2 + b2) = r2c2.

Then we have

e−2 + E−2 =
( c
a

)−2

+

(
C

B

)−2

=
a2

c2
+

B2

C2

=
a2

c2
+

r2b2

r2c2
=

a2 + b2

c2
=

c2

c2
= 1.

10.4.90 The focal chord of slopem �= 0 has equation y = m(x−p). Because y2 = 4px, the focal chord and the

parabola intersect for (mx−mp)2 = 4px, which occurs (via the quadratic formula) at x = (m2+2±2
√
m2+1)p

m2 .

The corresponding y-values are (m2+2±2
√
m2+1)p

m −mp. Now y′ = 2p
y , so y′ = m

1±√
m2+1

at the two points.

The product of these two values of y′ is −1, so the two lines are perpendicular. If we call the intersection
points found above (x0, y0) and (x1, y1), then the two lines intersect for

m

1 +
√
m2 + 1

(x− x0) + y0 =
m

1−√
m2 + 1

(x− x1) + y1,

which when solved for x gives x = −p, so the two lines meet on the directrix.
Note that in the case of a vertical chord, we have (x0, y0) = (p, 2p) and (x1, y1) = (p,−2p), and thus the

slopes of the tangent lines are 1 and −1, so their product is still −1 and thus they are perpendicular. Then
the tangent lines meet when 1(x− p) + 2p = −1(x− p)− 2p, which occurs when x = −p, so they still meet
on the directrix.

10.4.91 The latus rectum L intersects the parabola at x = p, y = ±2p. The distance between any point
P (x, y) on the parabola to the left of L and L is p − x. The distance from F to P is

√
(x− p)2 + y2 =√

x2 − 2px+ p2 + 4px =
√

x2 + 2px+ p2 = x + p (because both x and p are positive.) Thus D + |FP | =
p− x+ x+ p = 2p.

10.4.92 Because the latus rectum intersects the parabola at (p, 2p) and (p,−2p), its length is 4 |p|.
10.4.93 Let P be a point on the intersection of the latus rectum and the ellipse. The length of the latus
rectum is twice the distance from P to the focus. Let l be the length from P to the focus, and let L be the
distance from P to the other focal point. Then l+L = 2a, so L2 = 4c2+ l2, and thus (2a− l)2 = 4c2+ l2, and

solving for l yields l = a− c2

a . Because c
2 = a2−b2, this can be written as l = a− a2−b2

a = a−(a− b2

a ) =
b2

a . The

length of the latus rectum is therefore 2b2

a . Now because e = c
a , we have

√
1− e2 =

√
1− a2−b2

a2 =
√

b2

a2 = b
a .

The length of the latus rectum can thus also be written as 2b · b
a = 2b

√
1− e2.

10.4.94 Let P be a point on the intersection of the latus rectum and the hyperbola. The length of the latus
rectum is twice the distance from P to the focus. Let l be the length from P to the focus, and let L be the
distance from P to the other focal point. Then L− l = 2a, so L2 = 4c2 + l2, and thus (2a+ l)2 = 4c2 + l2,

and solving for l yields l = c2

a − a. Because c2 = a2 + b2, this can be written as l = a2+b2

a − a = b2

a . The

length of the latus rectum is therefore 2b2

a . Now because e = c
a , we have

√
e2 − 1 =

√
a2+b2

a2 − 1 =
√

b2

a2 = b
a .

The length of the latus rectum can thus also be written as 2b · b
a = 2b

√
e2 − 1.
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10.4.95 Let the equation of the ellipse be x2

a2 +
y2

a2−c2 = 1 and let the equation of the hyperbola be x2

r2 − y2

c2−r2 =
1. Let (x0, y0) be a point of intersection. By evaluating both equations at the point of intersection and
subtracting, we obtain the result

x2
0

a2
− x2

0

r2
+

y20
a2 − c2

+
y20

c2 − r2
= 0,

which can be written
r20x

2
0 − a2x2

0

a2r2
+

(c2 − r2)y20 + (a2 − c2)y20
(a2 − c2)(c2 − r2)

= 0.

This equation can be rewritten in the form
x2
0

y2
0
= a2r2

(a2−c2)(c2−r2) , which we will use later.

Now implicitly differentiating the equation for the ellipse yields 2x
a2 +

2yy′

a2−c2 = 0, and thus the slope of the

tangent line to the ellipse at (x0, y0) is y
′
e = −x0

yo
· a2−c2

a2 . Differentiating the equation of the hyperbola gives
2x
r2 − 2yy′

c2−r2 = 0, so the slope of the tangent line to the hyperbola at the point of intersection is y′h = x0

y0
· c2−r2

r2 .
Now consider the product

−1 · y′e · y′h =
x2
0

y20
· (a

2 − c2)(c2 − r2)

a2r2
.

By the result of the first paragraph, this is equal to 1, and thus the two curves are perpendicular at the
point of intersection.

10.4.96 The vertical distance at x0 is given by d(x0) =
bx0

a −
√

x2
0b

2

a2 − a2 = b
a

(
x0 −

√
x2
0 − a4

b2

)
. We have

lim
x0→∞ d(x0) =

b

a
lim

x0→∞

(
x0 −

√
x2
0 −

a4

b2

)
=

b

a
lim

x0→∞

⎛⎝x2
0 −
(
x2
0 − a4

b2

)
x0 +

√
x2
0 − a4

b2

⎞⎠ = 0.

10.4.97

a. The curve and the line intersect when x2 −m2(x2 − 4x + 4) − 1 = 0, which occurs for 2m2±√
1+3m2

m2−1 ,
assuming m �= ±1. So there are two solutions in this case – but if −1 < m < 1, one of the solutions
is negative (the intersection lies on the other branch of the hyperbola.) If m2 = 1, then the equation
becomes 4x− 5 = 0, and there is only the solution x = 5

4 . So there are two intersection points on the

right branch exactly for |m| > 1. We have v(m) = 2m2+
√
1+3m2

m2−1 and u(m) = 2m2−√
1+3m2

m2−1 .

b. lim
m→1+

u(m) = lim
m→1+

u(m) · 2m
2 +

√
1 + 3m2

2m2 +
√
1 + 3m2

= lim
m→1+

4m4 − 3m2 − 1

(m2 − 1)(2m2 +
√
1 + 3m2)

=

lim
m→1+

(m2 − 1)(4m2 + 1)

(m2 − 1)(2m2 +
√
1 + 3m2)

=
5

4
.

lim
m→1+

v(m) = lim
m→1+

v(m) · 2m
2 −√

1 + 3m2

2m2 −√
1 + 3m2

= lim
m→1+

4m4 − 3m2 − 1

(m2 − 1)(2m2 −√
1 + 3m2)

=

lim
m→1+

(m2 − 1)(4m2 + 1)

(m2 − 1)(2m2 −√
1 + 3m2)

= lim
m→1+

(4m2 + 1)

(2m2 −√
1 + 3m2)

= ∞.

c. lim
m→∞u(m) = lim

m→∞

2−
√

1
m4 + 3

m2

1− 1
m2

= 2.

lim
m→∞ v(m) = lim

m→∞

2 +
√

1
m4 + 3

m2

1− 1
m2

= 2.

d. The expression limm→∞ A(m) represents the area of the region bounded by the hyperbola and the line

x = 2. It is given by 2

∫ 2

1

√
x2 − 1 dx = 2

(
x

2

√
x2 − 1− 1

2
ln(x+

√
x2 − 1)

)∣∣∣∣2
1

= 2
√
3− ln(2 +

√
3).
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10.4.98

a. The area of the anvil is A = 4
∫ p

0

√
1 + y2 dy = 4

∫ tan−1(p)

0
sec3 t dt = 2p

√
1 + p2 + 2 ln(

√
1 + p2 + p),

where this last integral can be evaluated using the techniques of chapter 7 (or a table of integrals.)

The area of R is equal to the area of S when 2 = p
√

1 + p2+ln(
√

1 + p2+p). Using a CAS, the result
is p ≈ 0.8927.

b. For R to have twice the area of S, we need 4 = p
√
1 + p2+ln(

√
1 + p2+p), which occurs for p ≈ 1.5279.

10.4.99

a. With x2 = a2 cos2 t + 2ab sin t cos t + b2 sin2 t, y2 = c2 cos2 t + 2cd sin t cos t + d2 sin2 t, and xy =
ac cos2 t+(ad+bc) sin t cos t+bd sin2 t, we have Ax2+Bxy+Cy2 = (Aa2+Bac+Cc2) cos2 t+(2Aab+
B(ad+ bc)+ 2Ccd) sin t cos t+(Ab2 +Bbd+Cd2) sin2 t = K. Thus we have an equation of the desired
form as long as there exist A, B, C, and K so that A(a2 − b2) + B(ac − bd) + C(c2 − d2) = 0 and
2Aab+ B(ad+ bc) + 2Ccd = 0. This turns out to be the case when ad− bc �= 0. Note that the value
of K is Aa2 +Bac+ Cc2.

b. Suppose that ad− bc �= 0, but ac+ bd = 0. Then b
a = − c

d , and tan−1(b/a) = tan−1(−c/d).

Note that x =
√
a2 + b2 cos(t + tan−1(−b/a)), y =

√
c2 + d2 sin(t + tan−1(c/d)). This can be seen

by applying the trigonometric identities for the sum of two angles. Then x2

a2+b2 + y2

c2+d2 = cos2(t +

tan1(b/a)) + sin2(tan−1(−c/d)) = 1.

c. Using the work in part b), we see that the equation is x2

a2+b2 + y2

c2+d2 = 1, or x2 + y2 = r2, where

r2 = a2 + b2 = c2 + d2.

Chapter Ten Review

1

a. False. For example, x = r cos t, y = r sin t for 0 ≤ t ≤ 2π and x = r sin t, y = r cos t for 0 ≤ t ≤ 2π
generate the same circle.

b. False. Because et > 0 for all t, this only describes the portion of that line where x > 0.

c. True. They both describe the point whose cartesian coordinates are (3 cos(−3π/4), 3 sin(−3π/4)) =
(−3 cos(π/4),−3 sin(π/4)) = (−3/

√
2,−3/

√
2).

d. False. The given integral counts the inner loop twice.

e. True. This follows because the equation 0− x2/4 = 1 has no real solutions.

f. True. Note that the given equation can be written as (x− 1)2 + 4y2 = 4, or (x−1)2

4 + y2 = 1.

2

a.

x

y

�5

5

10

15

20 40 60 80 100

.

b. x = t2 + 4 = (6− y)2 + 4.

c. The curve is a parabola which opens in the positive
x-direction, with vertex at (4, 6).

d. dy
dx = − 1

2t . At the point (5, 5) we have t = 1, so
dy
dx = − 1

2 .
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3

a. 0.5 1.0 1.5 2.0 2.5 3.0

5

10

0

15

20

x

y

.

b. y = 3(et)−2 = 3
x2 .

c. The curve represents the portion of 3
x2 for x > 0.

d. dy
dx = − 6

x3 , so at (1, 3) we have dy
dx = −6.

4

a.

x

y

�15

�10

�5

5

10

15

�5 5 10�10

.

b.
(

x
10

)2
+
(

y
16

)2
= sin2 2t+ cos2 2t = 1.

c. The curve represents an ellipse traced clockwise.

d. dy
dx = − 32 sin 2t

20 cos 2t , and at t = π/6 this is equal to

− 16
√
3

10 .

5

a. 0.5 1.0 1.5 2.0

5

10

0

15

20

25

30

x

y

.

b. Because ln t2 = 2 ln t for t > 0, we have y = 16x
for 0 ≤ x ≤ 2.

c. The curve represents a line segment from (0, 0) to
(2, 32).

d. dy
dx = 16 for all value of x.
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6 As derived in the last problem in section 10.4, this describes a circle provided ad− bc �= 0, but ac+ bd = 0,
and a2 + b2 = c2 + d2. In this case, the circle has radius r =

√
a2 + b2.

7 Note that
(
x
4

)2
+
(
y
3

)2
= 1. This represents an ellipse generated counterclockwise.

8 Note that
(
x+1
4

)2
+
(
y−2
4

)2
= 1, so (x+1)2 +(y− 2)2 = 16. This is a circle of radius 4 centered at (−1, 2)

generated counterclockwise.

9 Note that (x + 3)2 + (y − 6)2 = 1. This is the right half of a circle of radius 1 centered at (−3, 6). It is
generated clockwise.

10 If we let r = 1 + cos t, then x = r cos t and y = r sin t. The curve r = 1 + cos t is a cardioid.

11 x = 3 sin t, y = 3 cos t, 0 ≤ t ≤ 2π.

12 x = 3 cos t, y = 2 sin t, 0 ≤ t ≤ π.

13 x = 3 cos t, y = 2 sin t, −π/2 ≤ t ≤ π/2.

14 x = t, y = 4t+ 11, −∞ ≤ t ≤ ∞.

15 From P to Q, we use (x(t), y(t)) = tQ + (1 − t)P = (t, t) + (t − 1, 0) = (2t − 1, t). So x(t) = 2t − 1,
y(t) = t, 0 ≤ t ≤ 1.

From Q to P , we use (x(t), y(t)) = tP + (1− t)Q = (−t, 0) + (1− t, 1− t) = (1− 2t, 1− t), for 0 ≤ t ≤ 1.
Thus x(t) = 1− 2t, y(t) = 1− t, 0 ≤ t ≤ 1.

16 x = t, y = t3 + 2t, 0 ≤ t ≤ 2.

17 dy
dx = dy/dt

dx/dt =
sin t

1−cos t . At t = π/6, the slope of the tangent line is 1
2−√

3
= 2+

√
3. So the equation of the

tangent line is y − (1−√
3/2) = (2 +

√
3)(x− (π/6− 1/2)), or y = (2 +

√
3)x+ (2− π

3 − π
√
3

6 ).

At t = 2π/3, the slope of the tangent line is
√
3
3 , so the equation of the tangent line is y − 3

2 =
√
3
3 (x −

( 2π3 −
√
3
2 )), or y = x√

3
+ 2− 2π

3
√
3
.

18

x

y

�3

�2

�1

1

2

3

�1 1 2 3�2�3

19

x

y

�1

�2

�3

�4

0.5 1.0 1.5 2.0

20

a. This matches (F). Note that there are 8 solutions to the equation 3 sin 4θ = 3 for 0 ≤ t ≤ 2π,
corresponding to the tips of the petals.

b. This matches (D). Note that for every value of θ for −π/2 < θ < π/2, there are two symmetric values
for r.

c. This matches (B). Note that this limaçon has its largest value for r at θ = 3π/2.
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d. This matches (E). Note that this limaçon has its largest value for r at θ = 0.

e. This matches (C). Note that there are 3 unique solutions to r = 3 cos θ = 3 for 0 ≤ θ ≤ π that
correspond to the tips of the petals. Note that the curve is generated for 0 ≤ θ ≤ π.

f. This matches (A). Note that r → 0 as θ → ∞, and r → ∞ as θ → −∞.

21 Liz should choose the cardioid, which is r = 1− sin θ.

22 Jake should send r2 = cos 2θ.

23 Letting x = r cos θ, y = r sin θ, and r2 = x2 + y2, we have x2 + y2 + 2y − 6x = 0, which can be written
as x2 − 6x+ 9 + y2 + 2y + 1 = 10, or (x− 3)2 + (y + 1)2 = 10, so this is a circle of radius

√
10 centered at

(3,−1).

24

a. We can write the equation as r sin θ − 6r cos θ = 4, or y − 6x = 4. This is a straight line with slope 6
and y-intercept 4.

b.

u � q

u � 0, p, 2p

2

4

6

8

10

0.2�0.2�0.4�0.6�0.8 0.4 0.6 0.8 1.0 x

y

.

c. Note that sin θ−6 cos θ = 0 for θ = tan−1(6). The
whole curve can be generated for tan−1(6) − π <
θ < tan−1(6) + π.

25 If x = r cos θ and y = r sin θ, then (r cos θ−4)2+r2 sin2 θ = 16, so r2 cos2 θ−8r cos θ+16+r2 sin2 θ = 16,
so r2 = 8r cos θ, and thus r = 8 cos θ. The complete circle can be described by −π/2 ≤ θ ≤ π/2.

26 We have r cos θ = r2 sin2 θ, so r = cot θ csc θ. The whole parabola is described by 0 < θ < π.

27

a.

x

y

�4

�3

�2

�1

1

2

3

4

�1 1�2�3�4�5�6

There are 4 intersection points.

b. Note that 2 − 4 cos θ = 1 for θ = cos−1(1/4) ≈
1.32, and 2 − 4 cos θ = −1 for θ = cos−1(3/4) ≈
.73. The points of intersection (in polar form) are
approximately (1, 1.32), (1, 2π − 1.32) ≈ (1, 4.96),
(−1, .73), and (−1, 2π − .73) ≈ (−1, 5.56).
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28

a.
dy

dx
=

dy/dθ

dx/dθ
=

−4 sin(2θ) sin θ + 2 cos(2θ) cos θ

−4 sin(2θ) cos θ − 2 cos(2θ) sin θ
. This is 0 when −4 sin(2θ) sin θ + 2 cos(2θ) cos θ =

−8 sin2 θ cos θ + 2 cos3 θ − 2 sin2 θ cos θ = 0, which occurs for cos θ = 0, and for 2 cos2 θ − 10 sin2 θ = 0,
or tan2 θ = 1

5 . So there are 6 places with horizontal tangent lines: at θ = ±π/2, θ = ± tan−1(
√
1/5),

and θ = π ± tan−1(
√
1/5).

Vertical tangent lines occur when −4 sin(2θ) cos θ − 2 cos(2θ) sin θ = −8 sin θ cos2 θ − 2 cos2 θ sin θ +
2 sin3 θ = 0. Thus occurs when sin θ = 0, and when −8 cos2 θ − 2 cos2 θ + 2 sin2 θ = 0, which can be
written as tan2 θ = 5. So the vertical tangent lines occur at θ = 0, θ = π and θ = ± tan−1(

√
5) and

θ = π ± tan−1(
√
5).

b. The curve is at the origin for θ = π
4 ,

3π
4 , 5π

4 , and 7π
4 . At these values, dy

dx = ±1, so the tangent lines
have the equation y = x or y = −x.

c.

x

y

�1

1

2

�2

�1 1 2�2

.

29

a.
dy

dx
=

dy/dθ

dx/dθ
=

2 cos θ sin θ + (4 + 2 sin θ) cos θ

2 cos θ cos θ − (4 + 2 sin θ) sin θ
=

4 cos θ + 4 sin θ cos θ

2 cos2 θ − 2 sin2 θ − 4 sin θ
.

This is 0 when cos θ = 0, and when 4 sin θ = −4, so the only solutions are θ = π/2, 3π/2.

The denominator is 0 when 2 − 4 sin2 θ − 4 sin θ = 0 which occurs (using the quadratic formula) for

sin θ = − 1
2 +

√
3
2 , so there are vertical tangent lines at θ = sin−1(− 1

2 +
√
3
2 ) and θ = π−sin−1(− 1

2 +
√
3
2 ).

b. The curve is never at the origin.

c.

x

y

�2

2

4

6

�2 2 4�4

.

30

a.
dy

dx
=

dy/dθ

dx/dθ
=

6 sin θ · sin θ + (3− 6 cos θ) cos θ

6 sin θ cos θ − (3− 6 cos θ) sin θ
=

6− 12 cos2 θ + 3 cos θ

12 sin θ cos θ − 3 sin θ
.
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This is 0 when cos2 θ− 1
4 cos θ− 1

2 = 0, which (by the quadratic formula) occurs where cos θ = 1
8 ±

√
33
8 ,

so for θ ≈ .568, 2.206, 4.078, and 5.715.

The denominator is 0 when sin θ = 0 and when 12 cos θ − 3 = 0, or θ = ± cos−1(1/4).

b. The curve is at the origin for θ = ±π/3, and because tanπ/3 =
√
3, the tangent lines have the equations

y = ±√
3x.

c.

x

y

�2

2

4

6

�4

�6

�2 2�4�6�8�10

.

31

a. Note that the whole curve is generated for −π/4 ≤ θ ≤ π/4, so we restrict ourselves to that domain.
Write the equations as r =

√
2 cos 2θ. Then

dy

dθ
=

√
2 cos 2θ cos θ − sin θ

2 sin 2θ√
2 cos 2θ

=
cos θ√
2 cos 2θ

(
2 cos 2θ − 4 sin2 θ

)
=

cos θ√
2 cos 2θ

(
2− 8 sin2 θ

)
.

Also, dx
dθ = −√

2 cos 2θ sin θ + cos θ 2 sin 2θ√
2 cos 2θ

= sin θ√
2 cos 2θ

(−4 cos2 θ − 2(cos 2θ)
)
= (2−8 cos2 θ) sin θ√

2 cos(2θ)
. Thus

dy
dx = dy/dθ

dx/dθ = cot θ
(

1−4 sin2 θ
1−4 cos2 θ

)
.

This expression is 0 on the given domain only for sin2 θ = 1
4 , so there are horizontal tangent lines at

θ = ±π
6 . There are vertical tangent lines on the given domain only for θ = 0 In cartesian coordinates,

the lines are x = ±√
2.

b. The curve is at the origin for θ = ±π/4, and because tanπ/4 = 1, the tangent lines have the equations
y = ±x.

c.

x

y

�0.2

�0.4

�0.6

0.6

0.4

0.2

�0.5 0.5 1.0 1.5�1.5 �1.0

.
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32

One leaf is traced for 0 ≤ θ ≤ π/4, so A =

8· 12
∫ π/4

0
(3 sin(4θ))2 dθ = 36

∫ π/4

0
sin2 4θ dθ =

36
(− 1

8 sin(4θ) cos(4θ) +
θ
2

) ∣∣∣∣π/4
0

= 36
(
π
8

)
=

9π
2 .

x

y

�2

2

4

6

�4

�6

�2 2 4 6�4�6

.

33

The area is given by A = 1
2

∫ 2π

0
(3 −

cos θ)2 dθ = 1
2

∫ 2π

0
(9 − 6 cos θ + cos2 θ) dθ =

1
2

(
9θ − 6 sin θ + 1

2 (cos θ sin θ + θ)
) ∣∣∣∣2π

0

=

1
2 (18π + π) = 19π

2 .

x

y

�2

�3

�1

1

2

3

�2�3�4 �1 1 2

.

34

The curves intersect at θ = ±π/2. By sym-
metry, the area is twice the area outside
the circle and inside the limaçon between

0 and π/2. We have A = 2 · 1
2

∫ π/2

0
((2 +

cos θ)2 − 22) dθ =
∫ π/2

0
(4 cos θ + cos2 θ) dθ =(

4 sin θ + 1
2 (cos θ sin θ + θ)

) ∣∣∣∣π/2
0

= 4 + π
4 .

x

y

�1

1

2

�2

�1 1 2 3�2

.
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35

The curves intersect at θ = ± 1
2 cos

−1(1/16).
By symmetry the total desired area is

A = 4 · 1
2

∫ cos−1(1/16)/2

0
(4 cos 2θ − 1

4 ) dθ =

2
(
2 sin 2θ − θ

4

) ∣∣∣∣cos
−1(1/16)/2

0

= 1
4

√
255 −

cos−1(1/16)
4 .

x

y

�4
�2

2
4
6

�6

�1 1 2�2

.

36 By symmetry, we can compute the area within the curve r = 1−cos θ for 0 ≤ θ ≤ π/2 and then quadruple
it. We have

4 · 1
2

∫ π/2

0

(1− cos θ)2 dθ = 2

∫ π/2

0

(1− 2 cos θ + (1/2) + (1/2) cos 2θ) dθ

= (3θ − 4 sin θ + (1/2) sin 2θ)

∣∣∣∣π/2
0

=
3π

2
− 4 + 0− (0− 0 + 0) =

3π

2
− 4.

�2 �1 1 2

�1.5

�1.0

�0.5

0.5

1.0

1.5

37 Note that we can compute the area within 1 + cos θ between 0 and π/2 and then subtract 1/4 of the

area from the previous problem, and then double this difference. If we compute 1
2

∫ π/2

0
(1 + cos θ)2 dθ =

1
2

∫ π/2

0
(1 + 2 cos θ + cos2 θ) dθ =

∫ π/2

0
(3/4 + cos θ + (1/4) cos 2θ) dθ = (3θ/4 + sin θ + (1/8) sin 2θ)

∣∣∣∣π/2
0

=

3π/8 + 1 + 0− (0 + 0 + 0) = 3π/8 + 1.
If we subtract 1/4 of the previous result, we have 3π/8 + 1− (3π/8− 1) = 2. Doubling this gives a final

result of 4.

38

a. This represents a parabola.

b. We can write y2 = 1
16x = 4 · 1

64x, so (p, 0) = ( 1
64 , 0) is the focus, and the directrix is x = − 1

64 . The
vertex is (0, 0).

c. e = 1, because that is the case for all parabo-
las.

d.

x

y

�0.1

�0.2

0.2

0.1

�0.1 0.2 0.3 0.4

x � �
1

64

(0, 0)

1
64(    , 0)

.
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39

a. This represents a hyperbola with a = 1 and b =
√
2.

b. The vertices are (±1, 0), the foci are (±c, 0) where c2 = a2 + b2 = 3, so they are (±√
3, 0). The

directrices are x = ±a2

c = ±1√
3
.

c. The eccentricity is e = c
a =

√
3.

d.

321�1�2�3

2

�2

�4

4

x

y

x �      1

�3
x � �     1

�3

(��3, 0) (�3, 0)

(�1, 0) (1, 0)

.

40

a. This represents an ellipse with a = 5 and b = 2.

b. The vertices are (0,±5). The foci are (0,±c) where c2 = a2 − b2 = 25− 4 = 21, so they are (0,±√
21).

The directrices are y = ±a2

c = ±25√
21
.

c. The eccentricity is e = c
a =

√
21
5 .

d.

x

y

�2

2

4

6

�4

�6

�1 1 2 3�2�3

(0, �5)

(0, 5)

(�2, 0) (2, 0)

(0, ��21)

(0, �21)

y � �
25
�21

y � 
25
�21

.

41

a. This can be written as y2

16 − x2

4 = 1. It is a hyperbola with a = 4 and b = 2.

b. The vertices are (0,±4). The foci are (0,±c) where c2 = a2 + b2 = 16+ 4 = 20, so they are (0,±√
20).

The directrices are y = ±a2

c = ±16√
20

= ±8√
5
.
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c. The eccentricity is e = c
a =

√
20
4 =

√
5
2 .

d.

2�2�4 4

2

�2

�4

�6

�8

4

6

8

x

y

(0, �4)

(0, 4)

(0, ��20)

(0, �20)

y � �
8
�5

y � 
8
�5

.

42

a. This can be written in the form y = 8(x+ 1)2, so it is a parabola opening upward.

b. The vertex is (−1, 0), and because 1
8y = (x + 1)2, we have p = 1

32 and the focus is (−1, 1
32 ). The

directrix is y = − 1
32 .

c. The eccentricity is e = 1, as it is for all
parabolas.

d.

x

y

�0.5

0.5

1.0

1.5

2.0

�0.5�1.0�1.5

y � �
1

32

1
32(�1,      )

(�1, 0)

.

43

a. This can be written as x2

4 + y2

2 = 1, so it is an ellipse with a = 2 and b =
√
2.

b. The vertices are (±2, 0). The foci are (±c, 0) where c2 = a2 − b2 = 4 − 2 = 2, so they are (±√
2, 0).

The directrices are x = ±a2

c = ±4√
2
= ±2

√
2.

c. The eccentricity is e = c
a =

√
2
2 .

d.

x

y

�2

�1

1

2

3

�3

�1 1 2 3�2�3

(�2, 0)
(2, 0)

(�2, 0)(��2, 0)

x � �2�2 x � 2�2

.
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44

a. This matches graph (E).

b. This matches graph (D).

c. This matches graph (B).

d. This matches graph (F).

e. This matches graph (C).

f. This matches graph (A).

45
2y dy

dx = −12, so at the point in question, dy
dx =

3/2. So the equation of the tangent line is
y + 4 = 3

2

(
x+ 4

3

)
, or y = 3

2x− 2.

x

y

�2

2

4

�4

�6

�8

�10

�2 2�4�6�8

.

46
2x = 5 dy

dx , so at the given point, we have
dy
dx = − 4

5 . So the equation of the tangent line
is y − 4

5 = − 4
5 (x+ 2), or y = − 4

5x− 4
5 .

x

y

�1

1

2

3

4

�2

�3

�2 2�4�6

.

47

x
50 + y

32 · dy
dx = 0, so at the given point, dy

dx =
− 6

10 = − 3
5 . So the equation of the tangent

line is y+ 32
5 = − 3

5 (x+ 6), or y = − 3
5x− 10.

x

y

�2

2

4

�4

�6

�8

�10

�2�4�6�10 �8

.
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48

x
8 − 2y

9 · dy
dx = 0, so at the given point,

dy
dx = − 15

16 . The equation of the tangent
line is therefore y + 4 = − 15

16

(
x− 20

3

)
, or

y = − 15
16x+ 9

4 .

x

y

�4

�6

�8

�2

2

2 4 6 8 10

.

49 The eccentricity is 1, and the directrix is y =
2. The vertex is (0, 1) and the focus is (0, 0).

x

y

�2

�3

�4

�5

�1

1

�2 2�4�6

y � 2

(0, 1)

(0, 0)

50
The eccentricity is 2, and the directrices are
x = − 3

2 and x = − 5
2 . The vertices are (−1, 0)

and (−3, 0) and the foci are (0, 0) and (−4, 0).

x

y

�2

2

4

6

8

10

�4

�6

�8

�10

�2 4�8

(�3, 0)

(�4, 0)

(�1, 0)

(0, 0)

x � �
5
2

x � �
3
2

51 The eccentricity is 1
2 , and the directrices are x = 4 and x = − 20

3 . The vertices are ( 43 , 0) and (−4, 0) and
the foci are (0, 0) and (− 8

3 , 0).

x

y

�2

�1

1

2

�1 1�2�3�4�5�6�7

(�4, 0) (0, 0)
4
3(  , 0)8

3(�   , 0)

x � 4x � �
20
3
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52 The eccentricity is 2
5 . The vertices are (10/7, 0) and (−10/3, 0), so the center is (−20/21, 0). The foci

are (0, 0) and (−40/21, 0). The directrices are x = − 145
21 and x = 5.

x

y

�1

1

2

�2

�1 1�2�3�4�5�6�7

(0, 0)
10
3(�    , 0) 40

21(�    , 0) 10
7(    , 0)

x � 5x � �
145
21

53

a. Recall that cos 2θ = cos2 θ − sin2 θ, so r2 cos(2θ) = 1 becomes r2(cos2 θ − sin2 θ) = x2 − y2 = 1. The
curve is a hyperbola.

b. With a = b = 1, we have c2 = 2, so the vertices are (±1, 0) and the foci are (±√
2, 0). The directrices

are x = ±a2

c = ± 1√
2
. The eccentricity is e = c

a =
√
2.

c. It does not have the form as in Theorem 11.4
because it does not have a focus at the origin.

x

y

�1

1

2

�2

4�4 (�1, 0) (1, 0)

(��2, 0) (�2, 0)

x � �
1

�2 x � 
1

�2

.

54

Because the center is halfway between the
foci, it is (0, 0). We must have c = 4 and

because a2

c = d = 8, we have a2 = 32. So
b2 = a2 − c2 = 32 − 16 = 16. The ellipse

has equation x2

32 +
y2

16 = 1. The eccentricity is
c
a = 4

4
√
2
=

√
2
2 .

2�2�4�6�8
�2

�4

�6

2

4

6

4 6 8 x

y

(�4, 0) (4, 0) (�32, 0)(��32, 0)

x � 8x � �8
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55

Because the center is halfway between the
vertices, it is (0, 0). We must have a = 4

and because a2

c = d = 10, we have c = 8
5 . So

b2 = a2− c2 = 16− 64
25 = 336

25 . The ellipse has

equation 25x2

336 + y2

16 = 1. The eccentricity is
c
a = 8/5

4 = 2
5 .

x

y

�5

5

�5 5 10�10

y � �10

y � 10

(0, �4)

(0, 4)

8
5(0, �  )

8
5(0,   )

56

Because the center is halfway between the
vertices, it is (0, 0). We must have a = 4

and because a2

c = d = 2, we have c = 8.
So b2 = 64 − 16 = 48. The hyperbola has

equation x2

16 − y2

48 = 1. The eccentricity is
c
a = 8

4 = 2.

�2
�2

2

4

6

8

10

�4

�6

�8

�10

2 4 6 8 10�4�6�8�10 x

y

(�4, 0) (4, 0) (8, 0)(�8, 0)

x � �2 x � 2

57

Because the center is halfway between the
vertices, it is (0, 0). We must have a = 2

and because a2

c = d = 1, we have c = 4. So
b2 = 16−4 = 12. The hyperbola has equation
y2

4 − x2

12 = 1. The eccentricity is c
a = 4

2 = 2.

�2

�4

�2

2

4

2 4 6 8�4�6�8 x

y

(0, �4)

(0, �2)

(0, 2)

(0, 4)

y � 1

y � �1
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58

We have c = 2, e = c
a = 2, so a = 1. Also,

b2 = c2−a2 = 3, so the equation is y2

1 − x2

3 =

1. We have d = a2

c = 1
2 . The vertices are

(0,±1) and the directrices are y = ± 1
2 .

�2

�4

�2

2

4

2 4 6 8�4�6�8 x

y

(0, �2)

(0, 2)

(0, �1)

(0, 1) y � Q

y � �Q

59

We have a = 6, c = 4 and e = c
a = 4

6 = 2
3 .

Also, b2 = a2 − c2 = 36 − 16 = 20, and the

equation is y2

36 + x2

20 = 1. The vertices are

(±2
√
5, 0). The directrices are y = ±a2

c =
±9. �4

�6

�8

�10

�2

2

4

6

8

10

�2 2 4 6 8�4�6�8 x

y

(0, �4)

(0, 4)

(0, 6)

(0, �6)
y � �9

y � 9

60

1 − cos θ = θ, so θ = 0 is a solution. Note
that if f(θ) = 1 − cos θ − θ, then f ′(θ) =
sin θ − 1 ≤ 0 for all θ. Thus this function is
non-decreasing and the only solution is the
one already found.

x

y

�1

1

2

�2

�3

�4

�5

�2 2 4 6�4

61

sin 2θ = θ2 when θ = 0. Graphing the func-
tions reveals a root near θ = 1. A CAS re-
veals the intersection point to be θ ≈ .9669.
In polar coordinates, the intersection points
are (0, 0) and (.9669, .9669).

x

y

�1

1

2

�2

�3

�4

�5

�2 2 4 6�4
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62

sin 2θ = 2 sin θ cos θ, and (1 − 2 sin θ)2 =
1−4 sin θ+4 sin2 θ. The equation 1−4 sin θ+
4 sin2 θ = 2 sin θ cos θ does not lend itself
to an analytic solution, however. A graph-
ing utility shows three points of intersection,
and a CAS reveals the origin as an inter-
section point, as well as the approximate
polar intersection points (.6148, .1938) and
(−.8445, 1.1738).

x

y

�0.5

0.5

1.0

�1.0

�1.5

�2.0

�2.5

�3.0

�0.5 0.5 1.0 1.5 2.0�1.0�1.5�2.0

63

The curves intersect for θ = 0. Note also that
when θ = kπ for k an odd integer, the curve
r = −θ is at the polar point (−kπ, kπ) =
(kπ, 0). And for θ = 2kπ, the curve r = θ

2 is
at the point (kπ, 0). So the curves intersect
at these points.

x

y

�5

�10

�15

15

20

10

5

�5�10�15�20 2015105

64 Note that a = ed and b = a
√
1− e2, so the ellipse given by

r =
ab√

a2 sin2 θ + b2 cos2 θ

has the same area as the original ellipse, but is centered at the origin. We compute the area of this ellipse
instead. Using symmetry, we have

A = 4 · 1
2

∫ π/2

0

ab√
a2 sin2 θ + b2 cos2 θ

dθ = 2

∫ π/2

0

a2b2 sec2 θ

a2 tan2 θ + b2
dθ = 2a2

∫ π/2

0

sec2 θ
a2

b2 tan2 θ + 1
dθ.

Let u = a
b tan θ so that du = a

b sec
2 θ dθ. Then we have A = 2ab

∫∞
0

1
1+u2 du = 2ab · limz→∞ tan−1 z =

2abπ
2 = πab.

65 By symmetry, we can focus on the region in the first quadrant. That area is given by A = xy where

y =
√
b2 − b2

a2x2. So

A(x) = x

√
b2 − b2

a2
x2,

so

A′(x) =

√
b2 − b2

a2
x2 − b2x2

a2
√
b2 − b2

a2x2
.

Setting the derivative equal to 0 and clearing denominators yields
(
b2 − b2

a2x
2
)
a2−b2x2 = 0, and solving

for x gives the critical point x =
√
2
2 a. Because this is the only critical point and it clearly does not give

a minimum (because A(0) = A(a) = 0), it must yield a maximum. The whole rectangle has dimensions√
2a×√

2b, and area 2ab.
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66

We focus on the first quadrant and then use symmetry
for the rest. Consider points within the triangle with
vertices (0, 0), (a, 0) and (a, a). Any point (x, y) within
this triangle is closer to the line x = a than any other
side of the square, so the distance from this point to the
square is a − x. The distance from (x, y) to the origin

is
√

x2 + y2. So we have x2 + y2 = x2 − 2ax + a2, or
the parabola y2 = −2ax+ a2.
In the triangle with vertices (0, 0), (0, a) and (a, a), the
point (x, y) is closer to the line y = a, so the distance
from that point to the line is a − y. Therefore, the
points we are seeking lie along a curve where x2+ y2 =
y2 − 2ay + a2, or the parabola x2 = −2ay + a2. Note
that the two curves mentioned intersect intersect along
the line y = x at the point (a(

√
2 − 1), a(

√
2 − 1)).

The curve desired is thus the union of portions of 4
parabolas.

x

y

�1.0

�0.5

0.5

1.0

�1.0 �0.5 0.5 1.0

67 The area of the ellipse in the first quadrant is πab
4 , so we are seeking θ0 so that

πab

8
=

1

2

∫ θ0

0

a2b2

a2 sin2 θ + b2 cos2 θ
dθ =

a2

2

∫ θ0

0

sec2 θ
a2

b2 tan2 θ + 1
dθ.

Let u = a
b tan θ so that du = a

b sec
2 θ dθ. Then we have πab

8 = ab
2

∫ a
b tan θ0
0

1
1+u2 du = ab

2 tan−1(ab tan(θ0)).

Note that this equation is satisfied when tan(θ0) =
b
a , because then the expression on the right-hand side of

that equation is ab
2 · π

4 = πab
8 . So the desired value of m is tan(θ0) =

b
a .

68

a. The curves are tangent when there is only one point of intersection in the first quadrant. This occurs
when x2 − p2x4 = 1 has only one solution. This quadratic-type equation −p2(x2)2 + (x2)− 1 = 0 has

solution x2 =
1±

√
1−4p2

2p2 , and the discriminant 1− 4p2 is 0 for p = 1/2.

b. The two curves intersect for x2 = 1±0
2p2 = 2, so for x =

√
2. The corresponding value for y is 1

2 (
√
2)2 = 1.

c. Using the same line of reasoning, we seek the value of p so that x2

a2 − p2x4

b2 = 1, which yields the
quadratic-type equation p2a2(x2)2 − b2(x2) + a2b2 = 0. The discriminant is 0 when b4 − 4p2a4b2 = 0,
which occurs when p = b

2a2 . The point of intersection is x =
√
2a. The corresponding value of y is

px2 = b.

69 Note that Q = (a cos θ, a sin θ) and R = (b cos θ, b sin θ), where θ is the angle formed by l and the x-axis.

Then P = (a sin θ, b cos θ) is a point on the ellipse x2

a2 + y2

b2 = 1, because it satisfies that equation.

70 The focal point is at the origin, the directrix is x = − 3
2 , so d = 3

2 , and r = ed
1−e cos θ where e = c

a . Because
c is the distance from the center to the focal point, we have c = 2, and because a is the distance from the
center to a vertex, we have a = 1. Thus e = 2 and r = 3

1−2 cos θ .

71 The focal point is at the origin, the directrix is y = −d, so we have an equation of the form r = ed
1−e sin θ .

Because c is the distance from the center to the focal point, we have c = 3/8, and because a is the distance

from the center to a vertex, we have a = 9/8. Then we have e = c
a = 3/8

9/8 = 1
3 , and d = a2

c − 3
8 = 3. Thus

r = 1
1− 1

3 sin θ
= 3

3−sin θ .
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Chapter 11

Vectors and Vector-Valued Functions

11.1 Vectors in the Plane

11.1.1 The coordinates of a point determine its location, but a given point has no width or breadth, so it
has no size or direction. A nonzero vector has size (magnitude) and direction, but it has no location in the
sense that it can be translated to a different initial point and be considered the same vector.

11.1.2 A position vector is one with its tail at the origin.

11.1.3

x

y

Q

P

x

y

Q

P

11.1.4

x

y

Q

P

11.1.5 Two vectors are equal if they have the same magnitude and direction. Given a position vector, any
translation of that vector to a different initial point yields an equivalent vector. Because there are infinitely
many such translations which don’t change the given vector’s direction or magnitude, there are infinitely
many vectors equivalent to the given one.

11.1.6
To find the sum u+ v, translate v so that its tail is at the head of u. The sum of the two vectors is the

one whose tail is the tail of u and whose head is the head of v.

u � v v

u
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11.1.7 If c > 0 is given, the scalar multiple cv of the vector v is obtained by scaling the magnitude of v by
a factor of c, and keeping the direction the same. If c < 0, then the head and tail of v are interchanged, and
then the vector’s magnitude is scaled by a factor of |c|.

11.1.8 If P (x0, y0) and Q(x1, y1) are given, then the vector ⇀PQ is given by 〈x1 − x0, y1 − y0〉.
11.1.9 u+ v = 〈u1, u2〉+ 〈v1, v2〉 = 〈u1 + v1, u2 + v2〉.
11.1.10 cv = c〈v1, v2〉 = 〈cv1, cv2〉.
11.1.11 |v| = |〈v1, v2〉| =

√
v21 + v22 .

11.1.12 v = 〈v1, v2〉 = v1i+ v2j.

11.1.13 If P (p1, p2) and Q(q1, q2) are given, then
∣∣∣⇀PQ

∣∣∣ = |〈q1 − p1, q2 − p2〉| =
√
(q1 − p1)2 + (q2 − p2)2.

11.1.14 Given a vector v = 〈v1, v2〉, the vectors 1√
v2
1+v2

2

· v = v
|v| and − 1√

v2
1+v2

2

· v = − v
|v| are unit vectors

parallel to v.

11.1.15 The vector 10 · v
|v| = 10 · 1√

9+4
· 〈3,−2〉 = 〈 30√

13
,− 20√

13
〉 has the desired properties.

11.1.16 The unit vector in the desired direction is given by 〈√2/2,−√
2/2〉, so the desired vector is 100 ·

〈√2/2,−√
2/2〉 = 〈50√2,−50

√
2〉.

11.1.17 The vectors in choices a, c, and e are all equal to ⇀CE.

11.1.18 The vectors in choices b, c, and e are equal to ⇀BK.

11.1.19

a. 3v b. 2u c. −3u d. −2u e. v

11.1.20

a. 2v b. −2v c. 3u d. −5v e. −3u

11.1.21

a. 3u+ 3v b. u+ 2v c. 2u+ 5v d. −2u+ 3v e. 3u+ 2v

f. −3u− 2v g. −2u− 4v h. u− 4v i. −u− 6v

11.1.22

a. u+ 3v b. u+ 3v c. 2u+ 2v d. 2u− 3v e. −u− 2v

f. 4u+ 4v g. −u+ 2v h. −u+ 2v i. 2u− 4v

11.1.23

a. ⇀OP

i.

1

2

3

4

5

�1
x

y

�1 54321

P

O

ii. |3i+ 2j| = √
13.
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b. ⇀QP

i.

1

2

3

4

5

�1
x

y

�1 54321

QP ii. |−i+ 0 · j| = 1.

c. ⇀RQ

i.

3

2

1

�1

�2

�3

�4

x

y

�1�2�3�4�5�6 4321

R

Q

ii. |10i+ 3j| = √
109.

11.1.24 ⇀PU = 〈9, 5〉, ⇀TR = 〈−3, 0〉, ⇀SQ = 〈−4,−3〉.

x

y

�2 �1
�1

1

2

3

4

5

6

�2

�3

1 2 3�3�4�5

S(3, 5)

Q(�1, 2)

(�4, �3)

x

y

�2 �1
�1

1

2

3

�2

1 2 3 4�3�4

T(4, 2)
R(1, 2)

(�3, 0)

x

y

�2 �1
�1

1

2

3

4

5

6

�2

1 2 3 4 5 6 7 8 9�3

U(6, 4)

(9, 5)

P(�3, �1)

11.1.25 ⇀QU = 〈7, 2〉, ⇀PT = 〈7, 3〉, ⇀RS = 〈2, 3〉.
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5

4

3

1

2

�1
x

y

�2 �1 1 2 3 4 65 7 8

(7, 2)

U

Q

4

3

2

1 2 3 4 5 6 7

1

�1

�1

x

y

�1�2�3

(7, 3)

P

T

5

4

3

2

5432

1

�1
x

y

�1 1

(2, 3)
R

S

11.1.26 ⇀PQ = 〈2, 3〉, ⇀RS = 〈2, 3〉, and ⇀TU = 〈2, 2〉, so ⇀PQ =⇀RS.

11.1.27 ⇀QT = 〈5, 0〉, while ⇀SU = 〈3,−1〉.
11.1.28 u+ v = 〈4,−2〉+ 〈−4, 6〉 = 〈0, 4〉.
11.1.29 w − u = 〈0, 8〉 − 〈4,−2〉 = 〈−4, 10〉.
11.1.30 2u+ 3v = 2〈4,−2〉+ 3〈−4, 6〉 = 〈−4, 14〉.
11.1.31 w − 3v = 〈0, 8〉 − 3〈−4, 6〉 = 〈12,−10〉.
11.1.32 10u− 3v +w = 10〈4,−2〉 − 3〈−4, 6〉+ 〈0, 8〉 = 〈52,−30〉.
11.1.33 8w + v − 6u = 8〈0, 8〉+ 〈−4, 6〉 − 6〈4,−2〉 = 〈−28, 82〉.
11.1.34 |u+ v| = |〈4,−3〉| = √

16 + 9 = 5.

11.1.35 |−2v| = |〈−2,−2〉| = √
4 + 4 = 2

√
2.

11.1.36 |u+ v +w| = |〈3,−4〉+ 〈1, 1〉+ 〈−1, 0〉| = |〈3,−3〉| = 3
√
2.

11.1.37 |2u+ 3v − 4w| = |2〈3,−4〉+ 3〈1, 1〉 − 4〈−1, 0〉| = |〈13,−5〉| = √
194.

11.1.38 Two vectors parallel to u with magnitude four times that of u are the vectors ±4u = ±4〈3,−4〉 =
±〈12,−16〉. So they are 〈12,−16〉 and 〈−12, 16〉.
11.1.39 The vectors we seek are ±3v, so they are 〈3, 3〉 and 〈−3,−3〉.
11.1.40 |2u| = |〈6,−8〉| = √

36 + 84 = 10. |7v| = |〈7, 7〉| = √
98 = 7

√
2. Because 7

√
2 < 10, 2u has larger

magnitude.

11.1.41 |u− v| = |〈3,−4〉 − 〈1, 1〉| = |〈2,−5〉| = √
29. |w − u| = |〈−1, 0〉 − 〈3,−4〉| = |〈−4, 4〉| = √

32 =
4
√
2. w − u has the greater magnitude.

11.1.42 ⇀PQ = 〈3,−4〉 − 〈−4, 1〉 = 〈7,−5〉 = 7i− 5j.

11.1.43 ⇀QR = 〈2, 6〉 − 〈3,−4〉 = 〈−1, 10〉 = −i+ 10j.

11.1.44 u =
⇀
QR∣∣∣∣
⇀
QR

∣∣∣∣
= 〈−1,10〉√

101
= − 1√

101
i+ 10√

101
j.

11.1.45 u =
⇀
PR∣∣∣∣
⇀
PR

∣∣∣∣
= 〈2,6〉−〈−4,1〉∣∣∣∣

⇀
PR

∣∣∣∣
= 〈6,5〉√

36+25
= 〈6/√61, 5/

√
61〉 is one unit vector, while the other is −u =

〈−6/
√
61,−5/

√
61〉

11.1.46 Using the result of the previous problem, the two vectors are 4〈6/√61, 5/
√
61〉 = 〈24/√61, 20/

√
61〉

and −4〈6/√61, 5/
√
61〉 = 〈−24/

√
61,−20/

√
61〉.
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11.1.47 ⇀QP = 〈−4, 1〉−〈3,−4〉 = 〈−7, 5〉. A unit vector parallel to⇀QP is 1√
74
〈−7, 5〉. So the desired vectors

are 4√
74
〈−7, 5〉 and − 4√

74
〈−7, 5〉.

11.1.48 Let w = 〈0,−10〉 represent the water, and let b = 〈20, 0〉 represent the boat relative to the
shore. Then the vector v which represents the boat relative to the water is given by v + w = b, so
v = b −w = 〈20, 10〉. Note that |〈20, 10〉| = 10

√
5 ≈ 22.4 miles per hour represents the speed of the boat.

The direction is the direction of the vector 〈2, 1〉 which is tan−1(1/2) · 180
π ≈ 26.6 degrees north of east.

11.1.49 Let w = 〈0,−5〉 represent the water, and let vw = 〈40, 0〉 represent the boat relative to the water.
Then relative to the shore we have vs = w + vw = 〈40,−5〉, which has magnitude

√
1625 ≈ 40.3 km/hr.

11.1.50

Let p represent the vector’s terminal velocity vector.
p = 〈10,−40〉, and |p| =

√
100 + 1600 = 10

√
17. θ =

tan−1(10/40) ≈ .245 radians, or 14.037 degrees. Thus,
the speed is 10

√
17 meters per second, and the direction is

about 14.037 degrees east of vertical.

u

40 m /s

10 m /s

11.1.51 The plane’s vector is given by u = −320i+−20
√
2(i+j) = (−320−20

√
2)i−20

√
2j. The magnitude

of u is
√

(−320− 20
√
2)2 + (−20

√
2)2 ≈ 349.43 miles per hour. θ = tan−1

(
20

√
2

320+20
√
2

)
≈ .0810 radians, or

about 4.64 degrees south of west.

11.1.52

The canoe’s vector u is given by u = −4i +
(−√

2i+
√
2j) = −(4 +

√
2)i+

√
2j. The mag-

nitude of u is given by
√
(4 +

√
2)2 + (

√
2)2 ≈

5.5958 miles per hour. θ = tan−1
( √

2
(4+

√
2)

)
≈

0.2555 radians, or about 14.64 degrees. The
canoe has speed about 5.6 miles per hour in
the direction 14.64 degrees north of west.

u

45°

2 mi/hr

4 mi/hr

11.1.53 Let u = i represent the current and v =
√
3 cos(π/6)i +

√
3 sin(π/6)j = 3

2 i +
√
3
2 j represent the

boat relative to land. If w represents the wind, then u + w = v, so w = v − u = 1
2 i +

√
3
2 j. Then

θ = tan−1(
√
3) = π/3, or 60 degrees. The speed of the wind is 1 meter per second in the direction 60 degrees

north of east (or 30 degrees east of north).

11.1.54
F = 150 cos(π/6)i + 150 sin(π/6)j = 75

√
3i + 75j.

The horizontal component of the force is 75
√
3

pounds, and the vertical component is 75 pounds.
30°

f  � 150 lb

11.1.55

a. F = 40 cos(π/3)i + 40 sin(π/3)j = 20i + 20
√
3j, so the horizontal component is 20 and the vertical is

20
√
3.

b. Yes. If it is 45 degrees, the horizontal component would be 40 cos(π/4) = 20
√
2 > 20.

c. No. If it is 45 degrees, the vertical component would be 40 sin(π/4) = 20
√
2 < 20

√
3.
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11.1.56 Let F1 = 100 cos(π/3)i + 100 sin(π/3)j = 50i + 50
√
3j, and let F2 = 60 cos(π/6)i + 60 sin(π/6)j =

30
√
3i+ 30j. Note that F2 has a greater horizontal component, because 30

√
3 ≈ 51.96 > 50.

11.1.57 Let the magnitude of the force on the two chains be f . Let F1 = (−
√
2
2 i +

√
2
2 j)f and let F2 =

(
√
2
2 i+

√
2
2 j)f . Then F1 + F2 − 500j = 0, and solving for f yields f = 250

√
2 pounds.

11.1.58

F = F1 + F2 + F3 =
√
2(−50i+ 50j) + (30

√
3i+

30j) + (−75i − 75
√
3j) = (−50

√
2 + 30

√
3 −

75)i + (50
√
2 + 30 − 75

√
3)j. Thus |F| is about√

(−50
√
2 + 30

√
3− 75)2 + (50

√
2 + 30− 75

√
3)2

which is about 98.19 pounds.

θ = tan−1
(

50
√
2+30−75

√
3

−50
√
2+30

√
3−75

)
≈ 17.3 degrees. The

magnitude of the net force is about 98 pounds in
the direction 17.3 degrees south of west.

30°45°

60°

�F1� � 100 lb

�F3� � 150 lb

�F2� � 60 lb

11.1.59

a. True. This follows because (u+v)+w = (w+u)+v (vector addition is commutative and associative.)

b. True. This is because u+ (−u) = 0.

c. False. For example, if u = 〈3, 4〉 and v = 〈−3,−1〉, then |u+ v| = |〈0, 3〉| = 3, while |u| = 5.

d. False. For example, if u = 〈3, 4〉 and v = 〈−1,−4〉, then |u+ v| = |〈2, 0〉| = 2, while |u|+|v| = 5+
√
17.

e. False. For example, if u = 〈3, 0〉 and v = 〈6, 0〉, then u and v are parallel, but have different lengths.

f. False. For example, given A(0, 0), B(3, 4), C(1, 1) and D(4, 5), we have ⇀AB = 〈3, 4〉 and ⇀CD = 〈3, 4〉,
but A �= C and B �= D.

g. False. For example, u = 〈0, 1〉 and v = 〈−1, 0〉 are perpendicular, but |u+ v| = √
2, while |u|+ |v| = 2.

h. True. Suppose v = ku with k > 0. Then

|u+ v| = |u+ ku| = |(1 + k)u| = (1 + k) |u| = |u|+ k |u| = |u|+ |ku| = |u|+ |v| .

11.1.60

a. ⇀AB = 〈6, 16〉 − 〈−2, 0〉 = 〈8, 16〉.

b. ⇀AC = 〈1, 4〉 − 〈−2, 0〉 = 〈3, 4〉.

c. ⇀EF = 〈3√2,−4
√
2〉 − 〈√2,

√
2〉 = 〈2√2,−5

√
2〉.

d. ⇀CD = 〈5, 4〉 − 〈1, 4〉 = 〈4, 0〉.

11.1.61

a. Because the magnitude of v is
√
36 + 64 = 10, the two desired vectors are 〈6/10,−8/10〉 = 〈3/5,−4/5〉

and 〈−3/5, 4/5〉.

b. If the magnitude of v is 1, then
√

1
9 + b2 = 1, so b2 = 8

9 , so b = ± 2
√
2

3 .

c. If the magnitude of w is 1, then
√
a2 + a2

9 = 1, so 10a2

9 = 1, so a = ± 3√
10
.
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11.1.62 ⇀AB = 〈3, 6〉 and ⇀CD = 〈b − a + 2, a − b − 7〉. The system of linear equations −a + b + 2 = 3,
a− b− 7 = 6 has no solution, so there are no values for a and b which will make these vectors equal.

11.1.63 10〈a, b〉 = 〈2,−3〉, so 10a = 2, and a = 1/5. Also, 10b = −3, so b = −3/10. Thus x = 〈1/5,−3/10〉.
11.1.64 2〈a, b〉+ 〈2,−3〉 = 〈−4, 1〉, so 〈a, b〉 = 〈−3, 2〉 = x.

11.1.65 3〈a, b〉 − 4〈2,−3〉 = 〈−4, 1〉, so 〈a, b〉 = 1
3 〈4,−11〉 = x.

11.1.66 −4〈a, b〉 = 〈2,−3〉 − 8〈−4, 1〉 = 〈34,−11〉, so 〈a, b〉 = 1
4 〈−34, 11〉 = x.

11.1.67 〈4,−8〉 = 4i+−8j.

11.1.68 Suppose 〈4,−8〉 = c1〈1, 1〉 + c2〈−1, 1〉. Then c1 − c2 = 4 and c1 + c2 = −8. Adding these two
equations to each other yields 2c1 = −4, so c1 = −2. And thus c2 = −6. We have 〈4,−8〉 = −2u− 6v.

11.1.69 Let 〈a, b〉 = c1u+ c2v. Then c1 − c2 = a and c1 + c2 = b. Adding these two equations to each other
yields 2c1 = a+ b, so c1 = a+b

2 . And thus c2 = b−a
2 . We have 〈a, b〉 = a+b

2 u+ b−a
2 v.

11.1.70 Because 2u = i and 2(u − 4v) = 2j, we can conclude that 8v = i − 2j (by substracting.) Thus
u = 1

2 i and v = 1
8 i− 1

4 j.

11.1.71 Because 2u+ 3v = i and −2(u− v) = −2j, we can conclude that 3v + 2v = i− 2j (by adding), so
v = 1

5 i− 2
5 j. It then follows that u = v + j = 1

5 i− 2
5 j+ j = 1

5 i+
3
5 j.

11.1.72 u = 3〈3,−5〉 − 9〈6, 0〉 = 〈−45,−15〉.

11.1.73 u = 3 〈5,−12〉√
25+144

= 3
13 〈5,−12〉.

11.1.74 u = − 〈6,−8〉
10 · 10 = 〈−6, 8〉.

11.1.75 u = u1 + u2 = 〈4,−6〉+ 〈5, 9〉 = 〈9, 3〉.

11.1.76

Let u represent the motion of the ant on the
paper, and let v represent the motion of the
paper. u+v = 2i+ (i− j) = 3i− j. |u+ v| =√
9 + 1 =

√
10. θ = tan−1(−1/3) = −18.4

degrees. The ant moves in the direction 18.4
degrees south of east with speed

√
10 miles per

hour.

�18.4°d

�2
�10

u � vv � i � j

u � 2i

11.1.77

a. The sum is 0 because each vector has exactly one additive inverse in the set among the 12 vectors.

b. The 6:00 vector, because the others cancel in pairs, but this vector remains.

c. If we remove the 1:00 through 6:00 vectors, the sum is as large as possible, because all the vectors
are pointing toward the left side of the clock. Removing any 6 consecutive vectors gives a sum whose
magnitude is as large as possible.

d. Let w be the vector that points from 12:00 toward 6:00 but which has length r equal to the radius of
the clock. The sum we are seeking is 12w. The sum of the vectors pointing to 1:00 and 11:00 add up
to (2−√

3)w, the sum of the vectors pointing to 2:00 and 10:00 is w, the vectors pointing to 3:00 and
9:00 add up to 2w, the vectors pointing to 4:00 and 8:00 add up to 3w, and the vectors pointing to
5:00 and 7:00 add up to (

√
3 + 2)w. Finally, the single vector pointing to 6:00 is 2w. The sum of all

of these is 12w.
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11.1.78 Because the ring doesn’t move, F3 is the opposite of F1+F2, so F3 = 〈50√2−30
√
3,−50

√
2−30〉.

Thus |F3| ≈ 102.44 pounds, and the direction is given by α = tan−1
(

50
√
2+30

50
√
2−30

√
3

)
≈ 79.45 degrees south of

east.

11.1.79 The magnitude of the net force is |F| = √
402 + 302 = 50 pounds. α = tan−1( 34 ) ≈ .6435 radians

or 36.87 degrees. The net force has magnitude 50 pounds in the direction 36.87 degrees north of east.

11.1.80

The component parallel to the plane is
mg sin(30◦) = 490 kg · m/s2. The component
perpendicular to the plane is mg cos(30◦) = 848.7
kg ·m/s2.

30°

30°

100 kg

F � mg

11.1.81 u+ v = 〈u1, u2〉+ 〈v1, v2〉 = 〈u1 + v1, u2 + v2〉 = 〈v1 + u1, v2 + u2〉 = 〈v1, v2〉+ 〈u1, u2〉 = v + u.

11.1.82 (u+v)+w = (〈u1, u2〉+ 〈v1, v2〉)+ 〈w1, w2〉 = 〈u1+ v1, u2+ v2〉+ 〈w1, w2〉 = 〈(u1+ v1)+w1, (u2+
v2) + w2〉 = 〈u1 + (v1 + w1), u2 + (v2 + w2)〉 = 〈u1, u2〉+ 〈v1 + w1, v2 + w2〉 = u+ (v +w).

11.1.83 a(cv) = a(c〈v1, v2〉) = a〈cv1, cv2〉 = 〈a(cv1), a(cv2)〉 = 〈(ac)v1, (ac)v2〉 = (ac)〈v1, v2〉 = (ac)v.

11.1.84 a(u+v) = a(〈u1, u2〉+〈v1, v2〉) = a(〈u1+v1, u2+v2〉) = 〈a(u1+v1), a(u2+v2)〉 = 〈au1+av1, au2+
av2〉 = 〈au1, au2〉+ 〈av1, av2〉 = au+ av.

11.1.85 (a+ c)v = (a+ c)〈v1, v2〉 = 〈(a+ c)v1, (a+ c)v2〉 = 〈av1 + cv1, av2 + cv2〉 = 〈av1, av2〉+ 〈cv1, cv2〉 =
av + cv.

11.1.86

Let M(x, y) be the midpoint. Because ⇀OM =
⇀OP+ 1

2
⇀PQ, we have 〈x, y〉 = 〈x1, y1〉+ 1

2 (〈x2, y2〉−
〈x1, y1〉) = 〈x1, y1〉+ 〈 12x2,

1
2y2〉+ 〈− 1

2x1,− 1
2y1〉 =

〈x1+x2

2 , y1+y2

2 〉.

y

0 x

P(x1, y1)

Q(x2, y2)
M(x, y)

11.1.87 |cv| = |c〈v1, v2〉| = |〈cv1, cv2〉| =
√
(cv1)2 + (cv2)2 =

√
c2
√

v21 + v22 = |c| |v|.

11.1.88 Yes. Because ⇀PQ =⇀RS, we have that these two vectors are parallel and have the same magnitude.

Thus the quadrilateral RSQP is a parallelogram. Hence, ⇀PR is parallel to ⇀QS and they have the same
magnitude, and are thus equal.

11.1.89

a. Note that −6u = v, so {u,v} is linearly dependent. But there is no scalar c so that cu = w, nor any
scalar d so that dv = w so {u,w} is linearly independent and {v,w} is linearly independent.
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b. Two nonzero vectors are linearly independent when they are not parallel, and are linearly dependent
when they are parallel.

c. Suppose u and v are linearly independent. Consider the equation c1u+ c2v = w for a given vector w.
We are seeking a solution for the system of linear equatons c1u1+c2v1 = w1 and c1u2+c2v2 = w2. The
solution for this system is given by c1 = 1

u1v2−u2v1
(v2w1 − v1w2) and c2 = 1

u1v2−u2v1
(−u2w1 + u1w2),

provided u1v2 − u2v1 �= 0. This condition is equivalent to saying that v is not a multiple of u. Thus
a solution to the system of linear equations exists exactly when the vectors u and v are linearly
independent.

11.1.90 Suppose that u1v1 + u2v2 = 0. Then u2

u1
· v2
v1

= −1. Let m1 = u2

u1
, and note that this is the slope of

the line containing the vector u. Likewise let m2 = v2
v1
, and note that this is the slope of the line containing

the vector v. Because m1 ·m2 = −1, the vectors are perpendicular.

11.1.91

a. If u and v are parallel, we must have a
2 = 5

6 , so a = 5
3 .

b. If u and v are perpendicular, we must have 2a+ 30 = 0, so a = −15.

11.1.92

a.

The triangle rule states that in any triangle, the
length of one side is less than or equal to the sum
of the lengths of the other two sides. Suppose that

u = ⇀OA and v = ⇀AB. Then u + v = ⇀OB. The
triangle rule applied to triangle OAB assures us

that
∣∣∣⇀OB

∣∣∣ ≤ ∣∣∣⇀OA
∣∣∣+ ∣∣∣⇀AB

∣∣∣, so |u+ v| ≤ |u|+ |v|.

y

0 x

u � v

u

v

A

B

b. Equality occurs when u and v are parallel and in the same direction, so that v = ku where k > 0.
Then |u+ v| = |(1 + k)u| = (1 + k) |u| = |u|+ |ku| = |u|+ |v|.

11.2 Vectors in Three Dimensions

11.2.1 Starting at the origin (0, 0, 0), move 3 units in the positive x-direction, 2 units in the negative
y-direction, and 1 unit in the positive z-direction, to arrive at the point (3,−2, 1).

11.2.2 Every point in the xz-plane has a y-coordinate of 0.

11.2.3 The plane x = 4 is parallel to the yz-plane, but contains all of the points with x-coordinate 4. It is
perpendicular to the x-axis.

11.2.4 u = 〈0− 3,−6− 5, 3− (−2)〉 = 〈−3,−11, 5〉.

11.2.5 u+ v = 〈3 + 6, 5 + (−5),−7 + 1〉 = 〈9, 0,−6〉. 3u− v = 〈9, 15,−21〉 − 〈6,−5, 1〉 = 〈3, 20,−22〉.

11.2.6
∣∣∣⇀PQ

∣∣∣ =√(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

11.2.7 Because
√
32 + (−1)2 + 22 =

√
14 <

√
02 + 02 + (−4)2 = 4, the point (0, 0,−4) is further from the

origin.
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11.2.8 ⇀PQ = 〈1− (−1), 3− (−4),−6− (6)〉 = 〈2, 7,−12〉 = 2i+ 7j− 12k.

11.2.9 A(3, 0, 5), B(3, 4, 0), C(0, 4, 5).

11.2.10 A(5, 0, 10), B(0, 8, 0), C(5, 8, 10).

11.2.11 A(3,−4, 5), B(0,−4, 0), C(0,−4, 5).

11.2.12 A(−3,−3, 0), B(0, 0, 3), C(−3,−3, 3).

11.2.13

a.

y

x

B
P

C

A

z

b.
y

x

B

P
C

A

z

c.

B
PC

A

y

x

z

11.2.14

a.
yx

z

P(�3, 2, 4)

B(�3, 0, 4)

C(0, 2, 4)

A(�3, 2, 0)
b.

y
x

z

A(4, �2, 0)

P(4, �2, �3)
B(4, 0, �3)

C(0, �2, �3)

c.

yx

z

A(�2, �4, 0)

P(�2, �4, �3)
B(�2, 0, �3)

C(0, �4, �3)
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11.2.15

2

x
y

z

11.2.16

yx

z

P(0, 0, 3)

z � 3

11.2.17

4
4

4

x
y

z

11.2.18

�10
�5

0
5

10

�10
�5

0
5

10

�10

�5

0

5

10

11.2.19

4

3

2

x

y

z

11.2.20

4
4

4

x
y

z

11.2.21

4

2

2

x

y

z

(2, 4, 2)

The plane z = 2.

11.2.22

y

x

z

(2, 4, 2)

(2, 0, 0)

The plane x = 2.
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11.2.23 (x− 1)2 + (y − 2)2 + (z − 3)2 = 16.

11.2.24 Note that the radius r of this sphere would be r =
√
(3− 1)2 + (4− 2)2 + 52 =

√
33. The equation

of the sphere is thus (x− 1)2 + (y − 2)2 + z2 = 33.

11.2.25 (x+ 2)2 + y2 + (z − 4)2 ≤ 1.

11.2.26 Note that the radius of the ball is given by r =
√
12 + (4− (−2))2 + (8− 6)2 =

√
41. The ball is

thus described by the inequality x2 + (y + 2)2 + (z − 6)2 ≤ 41.

11.2.27 The midpoint of the line segment PQ is ( 1+2
2 , 0+3

2 , 5+9
2 ) = (3/2, 3/2, 7). The radius of the sphere

is r = 1
2

√
(2− 1)2 + (3− 0)2 + (9− 5)2 =

√
26
2 . The equation of the sphere is therefore (x − 3/2)2 + (y −

3/2)2 + (z − 7)2 = 13
2 .

11.2.28 The midpoint of the line segment PQ is (−4+0
2 , 2+2

2 , 3+7
2 ) = (−2, 2, 5). The radius of the sphere is

r = 1
2

√
(0− (−4))2 + (2− 2)2 + (7− 3)2 =

√
8. The equation of the sphere is therefore (x+2)2+(y− 2)2+

(z − 5)2 = 8.

11.2.29 This is a sphere centered at (1, 0, 0) of radius 3.

11.2.30 Completing the square, we have (x + 1)2 + (y2 − 2y + 1) + z2 = 25, which can be written as
(x+ 1)2 + (y − 1)2 + z2 = 52. This is a sphere centered at (−1, 1, 0) with radius 5.

11.2.31 Completing the squares, we have x2 + (y2 − 2y + 1) + (z2 − 4z + 4) = 4 + 5, so we have x2 + (y −
1)2 + (z − 2)2 = 32, which describes a sphere of radius 3 centered at (0, 1, 2).

11.2.32 Completing the squares, we have (x2−6x+9)+(y2+6y+9)+(z2−8z+16) = 2+9+9+16 = 36,
so we have (x− 3)2 + (y + 3)2 + (z − 4)2 = 62, which describes a sphere of radius 6 centered at (3,−3, 4).

11.2.33 Completing the square, we have x2 + (y2 − 14y + 49) + z2 ≥ −13 + 49 = 36, which can be written
as x2 + (y − 7)2 + z2 ≥ 62. This is the outside of a ball centered at (0, 7, 0) with radius 6. (Including the
sphere itself.)

11.2.34 Completing the square, we have x2 + (y2 − 14y + 49) + z2 ≤ −13 + 49 = 36, which can be written
as x2 + (y − 7)2 + z2 ≤ 62. This is a ball centered at (0, 7, 0) with radius 6.

11.2.35 Completing the squares, we have (x2−8x+16)+(y2−14y+49)+(z2−18z+81) ≤ 79+16+49+81 =
225, which can be written as (x − 4)2 + (y − 7)2 + (z − 9)2 ≤ 152. This is a ball centered at (4, 7, 9) with
radius 15.

11.2.36 Completing the squares, we have (x2−8x+16)+(y2+14y+49)+(z2−18z+81) ≥ 65+16+49+81 =
211, which can be written as (x− 4)2 + (y + 7)2 + (z − 9)2 ≥ 211. This is the outside of a ball centered at
(4,−7, 9) with radius

√
211. (Including the sphere itself.)

11.2.37 Completing the squares, we have (x2 − 2x + 1) + (y2 + 6y + 9) + z2 = −10 + 1 + 9 = 0, or
(x− 1)2 + (y + 3)2 + z2 = 0. This is the single point (1,−3, 0).

11.2.38 Completing the squares, we have (x2 − 4x+ 4) + (y2 + 6y + 9) + z2 = −14 + 4 + 9 = −1. This can
be written as (x− 2)2 + (y + 3)2 + z2 = −1, and no real numbers satisfy this equations.

11.2.39

a. 3〈4,−3, 0〉+ 2〈0, 1, 1〉 = 〈12,−7, 2〉.
b. 4〈4,−3, 0〉 − 〈0, 1, 1〉 = 〈16,−13,−1〉.
c. |〈4,−3, 0〉+ 3〈0, 1, 1〉| = |〈4, 0, 3〉| = √

16 + 0 + 9 = 5.
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11.2.40

a. 3〈−2,−3, 0〉+ 2〈1, 2, 1〉 = 〈−4,−5, 2〉.
b. 4〈−2,−3, 0〉 − 〈1, 2, 1〉 = 〈−9,−14,−1〉.
c. |〈−2,−3, 0〉+ 3〈1, 2, 1〉| = |〈1, 3, 3〉| = √

1 + 9 + 9 =
√
19.

11.2.41

a. 3〈−2, 1,−2〉+ 2〈1, 1, 1〉 = 〈−4, 5,−4〉.
b. 4〈−2, 1,−2〉 − 〈1, 1, 1〉 = 〈−9, 3,−9〉.
c. |〈−2, 1,−2〉+ 3〈1, 1, 1〉| = |〈1, 4, 1〉| = √

1 + 16 + 1 =
√
18 = 3

√
2.

11.2.42

a. 3〈−5, 0, 2〉+ 2〈3, 1, 1〉 = 〈−9, 2, 8〉.
b. 4〈−5, 0, 2〉 − 〈3, 1, 1〉 = 〈−23,−1, 7〉.
c. |〈−5, 0, 2〉+ 3〈3, 1, 1〉| = |〈4, 3, 5〉| = √

16 + 9 + 25 =
√
50 = 5

√
2.

11.2.43

a. 3〈−7, 11, 8〉+ 2〈3,−5,−1〉 = 〈−15, 23, 22〉.
b. 4〈−7, 11, 8〉 − 〈3,−5,−1〉 = 〈−31, 49, 33〉.
c. |〈−7, 11, 8〉+ 3〈3,−5,−1〉| = |〈2,−4, 5〉| = √

4 + 16 + 25 =
√
45 = 3

√
5.

11.2.44

a. 3〈−4,−8
√
3, 2

√
2〉+ 2〈2, 3√3,−√

2〉 = 〈−8,−18
√
3, 4

√
2〉.

b. 4〈−4,−8
√
3, 2

√
2〉 − 〈2, 3√3,−√

2〉 = 〈−18,−35
√
3, 9

√
2〉.

c.
∣∣〈−4,−8

√
3, 2

√
2〉+ 3〈2, 3√3,−√

2〉∣∣ = ∣∣〈2,√3,−√
2〉∣∣ = √

4 + 3 + 2 =
√
9 = 3.

11.2.45

a. ⇀PQ = 〈3− 1, 11− 5, 2− 0〉 = 〈2, 6, 2〉 = 2i+ 6j+ 2k.

b. |〈2, 6, 2〉| = √
4 + 36 + 4 =

√
44 = 2

√
11.

c. 〈1/√11, 3/
√
11, 1/

√
11〉 and 〈−1/

√
11,−3/

√
11,−1/

√
11〉.

11.2.46

a. ⇀PQ = 〈1− 5, 14− 11, 13− 12〉 = 〈−4, 3, 1〉 = −4i+ 3j+ 1k.

b. |〈−4, 3, 1〉| = √
16 + 9 + 1 =

√
26.

c. 〈−4/
√
26, 3/

√
26, 1/

√
26〉 and 〈4/√26,−3/

√
26,−1/

√
26〉.

11.2.47

a. ⇀PQ = 〈−3 + 3,−4− 1, 1− 0〉 = 〈0,−5, 1〉 = −5j+ 1k.

b. |〈0,−5, 1〉| = √
25 + 1 =

√
26.

c. 〈0,−5/
√
26, 1/

√
26〉 and 〈0, 5/√26,−1/

√
26〉.
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11.2.48

a. ⇀PQ = 〈3− 3, 9− 8, 11− 12〉 = 〈0, 1,−1〉 = j− k.

b. |〈0, 1,−1〉| = √
1 + 1 =

√
2.

c. 〈0, 1/√2,−1/
√
2〉 and 〈0,−1/

√
2, 1/

√
2〉.

11.2.49

a. ⇀PQ = 〈−2− 0, 4− 0, 0− 2〉 = 〈−2, 4,−2〉 = −2i+ 4j− 2k.

b. |〈−2, 4,−2〉| = √
4 + 16 + 4 = 2

√
6.

c. 〈−1/
√
6, 2/

√
6,−1/

√
6〉 and 〈1/√6,−2/

√
6, 1/

√
6〉.

11.2.50

a. ⇀PQ = 〈1− a, 1− b,−1− c〉 = (1− a)i+ (1− b)j+ (−1− c)k.

b. |〈(1− a), (1− b), (−1− c)〉| =√(1− a)2 + (1− b)2 + (−1− c)2.

c. ±1√
(1−a)2+(1−b)2+(−1−c)2

〈1− a, 1− b,−1− c〉.

11.2.51

a. The airplane’s velocity vector (without wind) is given by 〈0, 20, 0〉, the wind’s is given by 〈20, 0, 0〉 and
the downdraft’s is 〈0, 0,−10〉. The sum of these is 〈20, 20,−10〉.

b. The speed is |〈20, 20,−10〉| = √
400 + 400 + 100 = 30 mi/hr

11.2.52

a. The airplane’s velocity vector (without wind) is given by 〈10, 0, 0〉, the wind’s is given by 〈0,−5, 0〉 and
the updraft’s is 〈0, 0, 5〉. The sum of these is 〈10,−5, 5〉.

b. The speed is |〈10,−5, 5〉| = √
100 + 25 + 25 = 5

√
6 ≈ 12.2 mi/hr

11.2.53

The airplane’s velocity is v1 = 250i.
The crosswind is blowing v2 =
−25

√
2i − 25

√
2j. The updraft is

v3 = 30k. We have |v1 + v2 + v3| =∣∣〈250− 25
√
2,−25

√
2, 30〉∣∣ ≈ 219.596 miles

per hour. The direction is sketched in the
diagram—it is slightly south of east and
upward.

�50 50

50

x, East

y, North

z

200

11.2.54 F = F1 + F2 + F3 = 〈60, 20, 30〉. |F| = 10
√
36 + 4 + 9 = 70. The direction can be described using

the angles α, β, and γ defined by α = cos−1(6/7) ≈ 31 degrees, β = cos−1(20/70) ≈ 73.4 degrees, and
γ = cos−1(3/7) ≈ 64.62 degrees.

11.2.55 The component in the east direction is (20 cos 30◦)(cos 45◦) = 5
√
6 knots. In the north direction, it

is (20 cos 30◦)(sin 45◦) = 5
√
6 knots. In the vertical direction, it is 20 sin 30◦ = 10 knots.

11.2.56 F1 + F2 = 〈10, 6, 3〉+ 〈0, 4, 9〉 = 〈10, 10, 12〉, so we need F3 = 〈−10,−10,−12〉.
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11.2.57

a. False. For example, let u = 〈1, 0, 0〉, v = 〈0, 1, 0〉 and w = 〈1, 1, 0〉. Then both u and v make a 45
degree angle with w, but u+ v = w makes a zero degree angle with w.

b. False. For example, i and j form a 90 degree angle with k, as does i+ j.

c. False. i+ j+ k = 〈1, 1, 1〉 �= 〈0, 0, 0〉.

d. True. They intersect at the point (1, 1, 1).

11.2.58

This is the set of all points which lie either
on the plane x = −1 or the plane y = 3 or
both.

y
x

z

x � �1 y � 3

11.2.59

This represents all the points in 3-space, ex-
cluding the three axes.

5

5

5

x

y

z

11.2.60

This represents the plane which is perpendic-
ular to the yz-plane, and which intersects the
yz-plane in the line y = z.
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11.2.61

This represents a circle of radius 1 centered
at (0, 0, 0) in the xy-plane.

�1.0

�0.5

0.0

0.5

1.0

x

�1.0

�0.5

0.0

0.5

1.0

y

�1.0

�0.5

0.0

0.5

1.0

z

11.2.62

This represents a parabola in the xz-plane.
�1.0

�0.5
0.0

0.5

1.0
x

�1.0

�0.5

0.0

0.5

1.0

y

0.0

0.5

1.0

z

11.2.63 If z = 1, then x2 + y2 + 1 = 5, so x2 + y2 = 4. We have a circle of radius 2 centered at (0, 0, 1) in
the plane z = 1.

11.2.64 If z = 6 and x2 + y2 + z2 = 36, then x2 + y2 = 0, so x = 0 and y = 0. This consists of the single
point (0, 0, 6).

11.2.65 Planes parallel to the xz-plane have the form y = c for a constant c, so we must have y = 4. Thus,
we must have (x− 2)2 + (z − 1)2 = 9 and y = 4.

11.2.66 The intersection of the planes y = −5 and z = 1 is a line parallel to the x-axis that contains the
given point.

11.2.67 Because the magnitude of v is
√
36 + 64 + 0 = 10, the desired vectors are ±20〈.6,−.8, 0〉 =

±〈12,−16, 0〉.

11.2.68 Because the magnitude of v is
√
9 + 4 + 36 = 7, the desired vectors are ±10〈3/7,−2/7, 6/7〉 =

±〈30/7,−20/7, 60/7〉.

11.2.69 Because the magnitude of v is
√
1 + 1 + 1 =

√
3, the desired vectors are ±3〈−1/

√
3,−1/

√
3, 1/

√
3〉

= ±〈−√
3,−√

3,
√
3〉.

11.2.70 Because the magnitude of v is
√
1 + 1 + 0 =

√
2, the desired vectors are ±3〈1/√2,−1/

√
2, 0〉.

11.2.71

a. Because ⇀PQ = 〈1,−1, 2〉 and ⇀PR = 〈3,−3, 6〉 = 3〈1,−1, 2〉 they are collinear. Q is between P and R.
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b. Because ⇀PQ = 〈4, 8,−8〉 and ⇀PR = 〈−1,−2, 2〉 = − 1
4 〈4, 8,−8〉 they are collinear. P is between Q and

R.

c. Because ⇀PQ = 〈1,−5, 3〉 and ⇀PR = 〈2,−3, 6〉 are not parallel, the given points are not collinear.

d. Because ⇀PQ = 〈2, 13, 3〉 and ⇀PR = 〈−3,−2,−1〉 are not parallel, the given points are not collinear.

11.2.72 In order for the points to be collinear, we would require 〈4− 1, 7− 2, 1− 3〉 = k〈x− 1, y− 2, 2− 3〉.
Thus we seek a solution to the system of equations 3 = k(x− 1), 5 = k(y− 2), −2 = −k. Thus k = 2, x = 5

2
and y = 9

2 .

11.2.73 The diagonal of the box has magnitude
√
22 + 32 + 42 =

√
29, so the longest rod that will fit in the

box has length
√
29 feet.

11.2.74

a. |Wpar| = 100 sin θ = 100 sin(20◦) ≈ 34.2. |Wperp| = 100 cos(20◦) ≈ 93.97.

b. If μ = .65, we have μ · |Wperp| ≈ .65 ∗ 93.97 ≈ 61.08 > |Wpar| ≈ 34.2, so the block does not slide.

c. We seek θ so that μ cos θ = sin θ, so tan θ = μ, so θ = tan−1(μ) ≈ 33 degrees.

11.2.75 Let P (1,−√
3, 0), Q(1,

√
3, 0), R(−2, 0, 0), and S(0, 0,−2

√
3) be the given points. Note that

⇀PS = 〈−1,
√
3,−2

√
3〉, ⇀QS = 〈−1,−√

3,−2
√
3〉, ⇀RS = 〈2, 0,−2

√
3〉. Let x(⇀PS + ⇀QS + ⇀RS) = −500k,

then −6
√
3x = −500, so x = 250

3
√
3
. Then x⇀PS = 250

3
√
3
〈−1,

√
3,−2

√
3〉 = 250

3 〈−1/
√
3, 1,−2〉. x⇀QS =

250
3
√
3
〈−1,−√

3,−2
√
3〉 = 250

3 〈−1/
√
3,−1,−2〉. x⇀RS = 250

3
√
3
〈2, 0,−2

√
3〉 = 250

3 〈2/√3, 0,−2〉.

11.2.76 Let A(2, 0, 0), B(0, 2, 0), C(−2, 0, 0), D(0,−2, 0), and E(0, 0,−4) be the given points. Note that
⇀AE = 〈−2, 0,−4〉, ⇀BE = 〈0,−2,−4〉, ⇀CE = 〈2, 0,−4〉, ⇀DE = 〈0, 2,−4〉. We are seeking x so that x(⇀AE +
⇀BE +⇀CE +⇀DE) = −500k. Thus we require −16x = −500, so x = 125

4 . Then x⇀AE = 125
4 〈−2, 0,−4〉.

x⇀BE = 125
4 〈0,−2,−4〉. x⇀CE = 125

4 〈2, 0,−4〉, and x⇀DE = 125
4 〈0, 2,−4〉.

11.2.77 Let R(x, y, z) be the fourth vertex. Then perhaps ⇀OQ =⇀RP , so 〈2, 4, 3〉 = 〈1− x, 4− y, 6− z〉, so
x = −1, y = 0, and z = 3, so R(−1, 0, 3) is one possible desired vertex. We could also have ⇀RP = −⇀OQ, in

which case 〈−2,−4,−3〉 = 〈1−x, 4−y, 6−z〉, so R(3, 8, 9) is the other vertex. We could also have⇀OP =⇀RQ,
so 〈1, 4, 6〉 = 〈2− x, 4− y, 3− z〉 and R(1, 0,−3) is the desired point.

11.2.78

Suppose that the parallelogram has vertices

RTDS, and u = ⇀RS and v = ⇀RT are two

sides. Then we also have u = ⇀TD, and v =
⇀SD. But then u + v = ⇀RS +⇀SD = ⇀RD is
one diagonal and u− v =⇀TD+⇀DS =⇀TS is
the other diagonal.

w1

w2

v

v

u

u

11.2.79 Let M(x, y, z) be the midpoint. Because ⇀OM = ⇀OP + 1
2
⇀PQ, we have 〈x, y, z〉 = 〈x1, y1, z1〉 +

1
2 (〈x2, y2, z2〉 − 〈x1, y1, z1〉) = 〈x1, y1, z1〉+ 〈 12x2,

1
2y2,

1
2z2〉+ 〈− 1

2x1,− 1
2y1,− 1

2z1〉 = 〈x1+x2

2 , y1+y2

2 , z1+z2
2 〉.

11.2.80 We complete the squares by adding a2 + b2 + c2 to both sides of the given equation, giving

(x2 − 2ax+ a2) + (y2 − 2by + b2) + (z2 − 2cz + c2) = d+ a2 + b2 + c2,

which can be written (x − a)2 + (y − b)2 + (z − c)2 = d + a2 + b2 + c2. This represents the set of points
whose distance from (a, b, c) is

√
d+ a2 + b2 + c2, so it represents a sphere as long as d + a2 + b2 + c2 > 0.

The center is (a, b, c) and the radius is
√
d+ a2 + b2 + c2.
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11.2.81

a. u+ v = −w (by the geometric definition of vector addition), so u+ v +w = 0.

b. Let M1 =⇀EB, M2 =⇀FO, and M3 =⇀GA. Consider triangle EAB. We have ⇀EA+⇀AB +⇀BE = 0, so
1
2u+ v = −⇀BE =⇀EB = M1. Using similar arguments, we have M2 = 1

2v +w and M3 = 1
2w + u.

c. Let a, b, and c be the vectors from O to the points 1/3 of the way along M1, M2 and M3 respectively.
Because −w = u+v, we have u−w

3 = u
3 +

u+v
3 = 2

3u+ 1
3v. Also, a = 1

2u+ 1
3M1 = 1

2u+ 1
3

(
1
2u+ v

)
=

1
2u+ 1

6u+ 1
3v = 2

3u+ 1
3v. Thus a = u−w

3 . Also, b = − 2
3M2 = − 2

3 (
1
2v + (−u− v)) = 2

3u+ 1
3v. We

also have c = − 1
2w + 1

3M3 = − 1
2w + 1

3 (
1
2w + u) = 1

3u+− 1
3 (−u− v) = 2

3u+ 1
3v. Thus a = b = c.

d. Because a = b = c, the medians all meet at a point that divides each median in a 2:1 ratio.

11.2.82

a. The coordinates of M1 are
(
x1+x2

2 , y1+y2

2 , 0
)
, and thus ⇀RM1 = 〈x1+x2

2 − x3,
y1+y2

2 − y3,−z3〉.

b. ⇀OZ1 =⇀OR+ 2
3
⇀RM1 = 〈x3, y3, z3〉+ 〈x1+x2−2x3

3 , y1+y2−2y3

3 ,− 2z3
3 〉 = 〈x1+x2+x3

3 , y1+y2+y3

3 , z3
3 〉.

c. The coordinates of M2 are
(
x2+x3

2 , y2+y3

2 , z3
2

)
. We have⇀PM2 = 〈x2+x3−2x1

2 , y2+y3−2y1

2 , z3
2 〉, and⇀OZ2 =

⇀OP + 2
3
⇀PM2 = 〈x1, y1, 0〉+ 〈x2+x3−2x1

3 , y2+y3−2y1

3 , z3
3 〉 = 〈x1+x2+x3

3 , y1+y2+y3

3 , z3
3 〉.

d. The coordinates of M3 are
(
x1+x3

2 , y1+y3

2 , z3
2

)
. We have⇀QM3 = 〈x1+x3−2x2

2 , y1+y3−2y2

2 , z3
2 〉, and⇀OZ3 =

⇀OQ+ 2
3
⇀QM3 = 〈x2, y2, 0〉+ 〈x1+x3−2x2

3 , y1+y3−2y2

3 , z3
3 〉 = 〈x1+x2+x3

3 , y1+y2+y3

3 , z3
3 〉.

e. The medians all intersect at the point Z1 = Z2 = Z3 =
(
x1+x2+x3

3 , y1+y2+y3

3 , z3
3

)
.

f. The intersection point is
(
2+4+6

3 , 4+1+3
3 , 4

3

)
= (4, 8/3, 4/3).

yx

z

P(x1, y1, 0)
Q(x2, y2, 0)

M3

M1

R(x3, y3, z3)

M2

Z1

x2 � y3

2
y2 � y3

2
z3

2(             ,                ,      )

11.2.83

a. u+ v =⇀PR and w + x = x+w =⇀PR, so u+ v = w + x.

b. 1
2u+ 1

2v = m = 1
2 (u+ v).

c. 1
2x+ 1

2w = n = 1
2 (x+w).

d. We have n = 1
2 (x+w) = 1

2 (u+ v) = m.

e. Because m and n are equal, they are parallel. A similar argument will show that the other two sides
are parallel as well.

11.2.84
The midpoints are A(x1+x2

2 , y1+y2

2 , 0), B(x2+x3

2 , y2+y3

2 , 0), C(x3+x4

2 , y3+y4

2 , z4
2 ), and D(x4+x1

2 , y4+y1

2 , z4
2 ).

So ⇀AB = 〈x3−x1

2 , y3−y1

2 , 0〉 = ⇀DC, and ⇀BC = 〈x4−x2

2 , y4−y2

2 , z4
2 〉 = ⇀AD, so quadrilateral ABCD is a

parallelogram.
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11.3 Dot Products

11.3.1 u · v = |u| |v| cos θ, where θ is the angle between the two vectors.

11.3.2 If u = 〈a, b, c〉 and v = 〈r, s, t〉, then u · v = ar + bs+ ct.

11.3.3 〈2, 3,−6〉 · 〈1,−8, 3〉 = 2 · 1 + 3 · (−8) + (−6) · 3 = −40.

11.3.4 The dot product of two orthogonal vectors is 0.

11.3.5 Given non-zero vectors u and v, the angle between them is cos−1( u·v
|u||v| ).

11.3.6

The projection of u onto v is the vector in the
direction of v whose length is |u| cos θ where θ
is the angle between the vectors. This length
represents the length of the “shadow” that u
casts on v.

u

u

vw0

11.3.7 The scalar component of u in the direction of v is the number |u| cos θ where θ is the angle between
the vectors. This number represents the signed length of the “shadow” that u casts on v. Thus, referring to
the diagram in the previous problem, the scalar projection is the length of the base of the shaded triangle.

11.3.8 The work done by a force F in moving an object along a displacement vector d is w = F · d.

11.3.9 u · v = 4 · 6 · cos(π/2) = 0.

11.3.10
Because these vectors are perpendicular, we
have cos θ = 0 where θ is the angle between
them, so their dot product is zero.

y

x

z

�3

2

u � �3i � 2j

v � 6k

11.3.11 The angle between these vectors is π/4. Thus, their dot product is 10 · 10√2 ·
√
2
2 = 100.

11.3.12
The angle between these vectors is 120◦, so
their dot product is |u| |v| cos(120◦) = 2 · 2 ·
− 1

2 = −2.
30°

120°

30°

vu

y

x

11.3.13 u · v = |u| |v| cos θ = 1 · 1 · cos(π/3) = 1/2.

11.3.14 u · v = |u| |v| cos θ = 1 · 2 · cos(3π/4) = 2 · (−√
2/2) = −√

2.

11.3.15 u · v = 1− 1 = 0, so θ = cos−1(0) = π/2.
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11.3.16 u · v = −50 + 0 = −50, so θ = cos−1
(

−50
10

√
50

)
= cos−1(−√

2/2) = 3π/4.

11.3.17 u · v = 1 + 0 = 1, so θ = cos−1
(
1
2

)
= π/3.

11.3.18 u · v = −2− 2 = −4, so θ = cos−1
(− 4

4

)
= π.

11.3.19 u · v = 4 · 4 + 3 · (−6) = −2. The angle between the vectors is thus

cos−1

(
− 2

|u| |v|
)

= cos−1

(
− 2

5 · 2√13

)
≈ 1.627 radians.

11.3.20 u · v = 3 · 0 + 4 · 4 + 0 · 5 = 16. The angle between the vectors is thus

cos−1

(
16

|u| |v|
)

= cos−1

(
16

5 · √41

)
≈ 1.047 radians.

11.3.21 u · v = −10 + 0 + 12 = 2. The angle between the vectors is thus

cos−1

(
2

|u| |v|
)

= cos−1

(
2√

116 · √14

)
≈ 1.521 radians.

11.3.22 u · v = −27− 25 + 2 = −50. The angle between the vectors is thus

cos−1

(
− 50

|u| |v|
)

= cos−1

(
− 50√

38 · √107

)
≈ 2.472 radians.

11.3.23 u · v = 2 + 0− 6 = −4. The angle between the vectors is thus

cos−1

(
− 4

|u| |v|
)

= cos−1

(
− 4√

13 · √21

)
≈ 1.815 radians.

11.3.24 u · v = 2 + 16− 12 = 6. The angle between the vectors is thus

cos−1

(
6

|u| |v|
)

= cos−1

(
6√

53 · √24

)
≈ 1.402 radians.

11.3.25 projvu = 3i. scalvu = 3.

11.3.26 projvu = −3i. scalvu = −3.

11.3.27 projvu = 3j. scalvu = 3.

11.3.28 projvu = −v = 〈−2,−2〉. scalvu = −2
√
2.

11.3.29 projvu = u·v
v·vv = 12

20 〈−4, 2〉 = 〈−12/5, 6/5〉. scalvu = u·v
|v| = 12√

20
= 6√

5
.

11.3.30 projvu = u·v
v·vv = 50

40 〈2, 6〉 = 〈5/2, 15/2〉. scalvu = u·v
|v| = 50√

40
= 25√

10
.

11.3.31 projvu = u·v
v·vv = − 6

6 〈1,−1, 2〉 = 〈−1, 1, 2〉. scalvu = u·v
|v| = − 6√

6
= −√

6.

11.3.32 projvu = u·v
v·vv = − 26

26 〈4,−1,−3〉 = 〈−4, 1, 3〉. scalvu = u·v
|v| = − 26√

26
= −√

26.

11.3.33 projvu = u·v
v·vv = − 14

19 〈1, 3,−3〉 = 〈−14/19,−42/19, 42/19〉. scalvu = u·v
|v| = − 14√

19
.

11.3.34 projvu = u·v
v·vv = − 30

20 〈0, 4,−2〉 = 〈0,−6, 3〉. scalvu = u·v
|v| = − 30√

20
= −3

√
5.

11.3.35 projvu = u·v
v·vv = 6

6 〈−1, 1,−2〉 = 〈−1, 1,−2〉. scalvu = u·v
|v| = 6√

6
=

√
6.
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11.3.36 projvu = u·v
v·vv = 0

24 〈2,−4, 2〉 = 〈0, 0, 0〉. scalvu = u·v
|v| = 0√

24
= 0.

11.3.37 w = 30 · 50 cosπ/6 = 750
√
3 foot-pounds.

11.3.38 w = 10 · 20 · cos 15◦ ≈ 193.185 J.

11.3.39 w = 10 · 5 · cos 45◦ = 25
√
2 J.

11.3.40 w = 〈4, 3, 2〉 · 〈8, 6, 0〉 = 50 J.

11.3.41 w = (40i+ 30j) · 10i = 400 J.

11.3.42 w = 〈2, 4, 1〉 · 〈2, 4, 6〉 = 4 + 16 + 6 = 26.

11.3.43 Parallel to: use v = 〈√2/2,−√
2/2〉. projvF = F·v

v·vv = 5
√
2〈√2/2,−√

2/2〉 = 〈5,−5〉.
Normal to: N = 〈0,−10〉 − 〈5,−5〉 = 〈−5,−5〉.

11.3.44 Parallel to: use v = 〈√3/2,−1/2〉. projvF = F·v
v·vv = 5〈√3/2,−1/2〉 = 〈5√3/2,−5/2〉.

Normal to: N = 〈0,−10〉 − 〈5√3/2,−5/2〉 = 〈−5
√
3/2,−15/2〉.

11.3.45 Parallel to: use v = 〈1/2,−√
3/2〉. projvF = F·v

v·vv = 5
√
3〈1/2,−√

3/2〉 = 〈5√3/2,−15/2〉.
Normal to: N = 〈0,−10〉 − 〈5√3/2,−15/2〉 = 〈−5

√
3/2,−5/2〉.

11.3.46 Parallel to: use v = 〈5/√41,−4/
√
41〉.

projvF =
F · v
v · v v =

40√
41

〈5/
√
41, 4/

√
41〉 = 〈200/41, 160/41〉.

Normal to: N = 〈0,−10〉 − 〈200/41, 160/41〉 = 〈−200/41,−570/41〉.

11.3.47

a. False. One is a vector in the same direction as u and the other is a vector in the direction of v, so if
these vectors aren’t in the same direction, they can’t be equal.

b. True. This follows because u · (u+ v) = |u|2 + u · v and v · (u+ v) = v · u+ |v|2, and these are equal
if u and v have the same magnitude.

c. True. Let u = 〈a, b, c〉. Then (u · i)2 + (u · j)2 + (u · k)2 = a2 + b2 + c2 = |u|2.
d. False. For example, consider u = 〈1, 0〉, v = 〈0, 1〉, and w = 〈2, 0〉.
e. False. Consider 〈1,−1, 0〉, 〈2,−1,−1〉 and 〈3,−2,−1〉. These are all orthogonal to 〈1, 1, 1〉, but don’t

all lie in the same line.

f. True. If u and v are nonzero vectors, then projvu = u·v
v·vv, and this can’t be zero unless u · v = 0.

11.3.48 Let u = 〈a, b, c〉 be orthogonal to v. Then 3a+ 4b = 0, so b = −3a
4 . So any unit vector of the form

〈a,−3a/4, c〉 has the desired property. These have the form 1√
a2+ 9

16a
2+c2

〈a,−3a/4, c〉 for all numbers a and

c where we don’t have both a = 0 and c = 0.

11.3.49 We must have 4 − 8a + 2b = 0, so b = 4a − 2. These vectors have the form 〈1, a, 4a − 2〉 where a
can be any real number.

11.3.50 Such a vector 〈a, b, c〉 must satisfy a + b + c = 0, so c = −a − b. Thus, it must have the form
1√

a2+b2+(a+b)2
〈a, b,−a− b〉 for real numbers a and b, where a and b aren’t both zero.

11.3.51 Let u = ±〈√2/2,
√
2/2, 0〉, v = ±〈−√

2/2,
√
2/2, 0〉 and w = ±〈0, 0, 1〉.
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11.3.52 The two other vectors could be 〈0, 1,−1〉 and 〈1, 0, 0〉.

11.3.53

a. projku = u·k
k·kk = |u||k| cos θ

k·k k = 1
2k, which is independent of u.

b. Yes, because the scalar projection is the length of the vector projection. In fact, using the above result,
it is equal to 1/2.

11.3.54

projvu = 3
2 〈1, 1〉. Let z = 〈x, y〉. Then

projvz = x+y
2 〈1, 1〉, so we need x + y = 3.

All vectors from the origin whose terminal
point is on the line x + y = 3 will have the
same projection onto v. For example, 〈3, 0〉
will work.

y

0 1

1

2

3

2 3 x

x � y � 3

v

u

11.3.55 Using the idea from the last problem, any vector of the form 〈x, y〉 with x+ y = 3 will work, so any
vector of the form 〈x, 3− x〉.

11.3.56 Note that projvu = 〈1,2,3〉·〈1,1,1〉
3 〈1, 1, 1〉 = 〈2, 2, 2〉. We are seeking 〈x, y, z〉 so that x+y+z

3 〈1, 1, 1〉 =
〈2, 2, 2〉, so we require x+ y + z = 6. For example, the vector 〈3, 2, 1〉 will work.

11.3.57

Note that projvu = 〈1,2,3〉·〈0,0,1〉
1 〈0, 0, 1〉 =

〈0, 0, 3〉. We are seeking 〈x, y, z〉 so that
z
1 〈0, 0, 1〉 = 〈0, 0, 3〉, so we require z = 3. Any
vector of the form 〈x, y, 3〉 will suffice.

yx

z

(0, 0, 3)

11.3.58 Let p = projvu = 7
2 〈1, 1〉. Then let n = u− p = 〈4, 3〉 − 7

2 〈1, 1〉 = 〈1/2,−1/2〉.

11.3.59 Let p = projvu = − 2
5 〈2, 1〉. Then let n = u− p = 〈−2, 2〉 − −2

5 〈2, 1〉 = 〈−6/5, 12/5〉.

11.3.60 Let p = projvu = 7
3 〈1, 1, 1〉. Then let n = u− p = 〈4, 3, 0〉 − 7

3 〈1, 1, 1〉 = 〈5/3, 2/3,−7/3〉.

11.3.61 Let p = projvu = 1
2 〈2, 1, 1〉. Then let n = u− p = 〈−1, 2, 3〉 − 1

2 〈2, 1, 1〉 = 〈−2, 3/2, 5/2〉.

11.3.62

a. v = 〈1, 3〉.
b. u = 〈2,−5〉.
c. projvu = − 13

10 〈1, 3〉.

Copyright c© 2015 Pearson Education, Inc.



11.3. Dot Products 231

d. w = u − projvu = 〈2,−5〉 − − 13
10 〈1, 3〉 = 〈33/10,−11/10〉. Note that w · v = 0, and has length equal

to the distance between P and l.

e. |w| = 1
10

√
(33)2 + (−11)2 = 11

10

√
10. |w| is the component of u orthogonal to v, so it is the distance

from P to l.

11.3.63

a. v = 〈1, 2〉.
b. u = 〈−12, 4〉.
c. projvu = − 4

5 〈1, 2〉.
d. w = u−projvu = 〈−12, 4〉−〈−4/5,−8/5〉 = 〈−56/5, 28/5〉. Note that w ·v = 0, and has length equal

to the distance between P and l.

e. |w| = 1
5

√
(56)2 + (28)2 = 28

√
5

5 . |w| is the component of u orthogonal to v, so it is the distance from
P to l.

11.3.64

a. v = 〈3, 0,−4〉.
b. u = 〈0, 2, 6〉.
c. projvu = − 24

25 〈3, 0,−4〉.
d. w = u − projvu = 〈0, 2, 6〉 − − 24

25 〈3, 0,−4〉 = 〈72/25, 2, 54/25〉. Note that w · v = 0, and has length
equal to the distance between P and l.

e. |w| = 1
25

√
(72)2 + (50)2 + (54)2 = 10

√
106

25 = 2
√
106
5 . |w| is the component of u orthogonal to v, so it is

the distance from P to l.

11.3.65

a. v = 〈−6, 8, 3〉.
b. u = 〈1, 1,−1〉.
c. projvu = − 1

109 〈−6, 8, 3〉.
d. w = u − projvu = 〈1, 1,−1〉 − − 1

109 〈−6, 8, 3〉 = 〈103/109, 117/109,−106/109〉. Note that w · v = 0,
and has length equal to the distance between P and l.

e. |w| = 1
109

√
(103)2 + (117)2 + (−106)2 =

√
326
109 . |w| is the component of u orthogonal to v, so it is the

distance from P to l.

11.3.66 I · J = − 1
2 + 1

2 = 0.

Also, |I| =√1/2 + 1/2 = 1 = |J|.

11.3.67 I = 〈1/√2, 1/
√
2〉 = 1√

2
i + 1√

2
j. J = 〈−1/

√
2, 1/

√
2〉 = − 1√

2
i + 1√

2
j. i = 〈1, 0〉 =

√
2
2 (I − J).

j =
√
2
2 (I+ J).

11.3.68 〈2,−6〉 = 2i− 6j = 2 ·
√
2
2 (I− J)− 6 ·

√
2
2 (I+ J) = −2

√
2I− 4

√
2J.

11.3.69

a. |I| =√1/4 + 1/4 + 1/2 = 1. |J| =√1/2 + 1/2 + 0 = 1. |K| =√1/4 + 1/4 + 1/2 = 1.

b. I · J = −1/2
√
2 + 1/2

√
2 = 0. I ·K = 1/4 + 1/4− 1/2 = 0, and J ·K = −1/2

√
2 + 1/2

√
2 = 0.
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c. Let 〈1, 0, 0〉 = aI+ bJ+ cK. Then 1
2a− 1√

2
b+ 1

2c = 1, 1
2a+

1√
2
b+ 1

2c = 0, and 1√
2
a− 1√

2
c = 0. Solving

this system of linear equations yields a = 1
2 , b = − 1√

2
, and c = 1

2 . Thus, 〈1, 0, 0〉 = 1
2I+− 1√

2
J+ 1

2K.

11.3.70 Note that ⇀PQ = 〈1, 11〉, ⇀QR = 〈−4,−5〉, and ⇀RP = 〈3,−6〉, and these vectors have lengths
√
122,√

41 and
√
45, respectively.

The angle at P measures cos−1( 63√
122

√
45
) ≈ 31.76 degrees. The angle at Q measures cos−1( 59√

122
√
41
) ≈

33.47 degrees, and the angle at R measures cos−1(− 18√
45

√
41
) ≈ 114.78 degrees.

11.3.71 Note that ⇀PQ = 〈2, 3,−2〉, ⇀QR = 〈−4, 0, 3〉, and ⇀RP = 〈2,−3,−1〉, and these have lengths
√
17, 5

and
√
14 respectively.

The angle at P measures cos−1( 3√
17

√
14
) ≈ 78.8 degrees. The angle at Q measures cos−1( 14

5
√
17
) ≈ 47.2

degrees, and the angle at R measures cos−1( 11
5
√
14
) ≈ 54 degrees.

11.3.72

y

0 x

P(x, y)

n

a. The equation of the circle is x2 + y2 = 1, so 2x + 2y dy
dx = 0, and we have dy

dx = −x
y . The slope of the

line through the origin containing the vector 〈x, y〉 is y
x , and

y
x · −x

y = −1. Thus, the vector 〈x, y〉 is
normal to the tangent vector.

b. Let x = cos θ and y = sin θ. Then the previous part shows that n = 〈x, y〉 = 〈cos θ, sin θ〉.
c. The velocity is normal where 〈x, y〉 = k〈1, 2〉. Then k2 + 4k2 = 1, so k = ±1√

5
, and the points are

(±1/
√
5,±2/

√
5).

d. We need 〈1, 2〉 · 〈x, y〉 = 0, so x+ 2y = 0. Because we also have x2 + y2 = 1, we see that 4y2 + y2 = 1,
so y = ±1√

5
, and x = ∓2√

5
. The two points are (2/

√
5,−1/

√
5) and (−2/

√
5, 1/

√
5).

e. The component of v = 〈1, 2〉 normal to C is projnv = x+2y
x2+y2 〈x, y〉 = 〈x2 + 2xy, xy + 2y2〉. In terms of

θ, this is 〈cos2 θ + 2 cos θ sin θ, sin θ cos θ + 2 sin2 θ〉.
f. The net flow is 0, so there is no accumulation inside the circle.

11.3.73

a. The faces on y = 0 and z = 0.

b. The faces on y = 1 and z = 1.

c. The faces on x = 0 and x = 1.

d. Because Q is tangential on this face, the scalar component of Q normal to the face is 0.

e. The scalar component of Q normal to z = 1 is 1. Note that a vector normal to z = 1 is 〈0, 0, 1〉.
f. The scalar component of Q normal to y = 0 is 2. Note that a vector normal to y = 0 is 〈0, 1, 0〉.
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11.3.74

a. r0j = 〈2 cos( (j−1)π
3 ), 2 sin( (j−1)π

3 )〉 for j = 1, 2, . . . , 6.

b. r12 = 〈2 cos(2π/3), 2 sin(2π/3)〉 = 〈−1,
√
3〉.

r34 = 〈2 cos(4π/3), 2 sin(4π/3)〉 = 〈−1,−√
3〉.

r61 = 〈2 cos(π/3), 2 sin(π/3)〉 = 〈1,√3〉.
c. r07 = r01 + r02 = 〈3,√3〉.

r17 = r02 = 〈2 cos(π/3), 2 sin(π/3)〉 = 〈1,√3〉.
r47 = 〈4, 0〉+ r17 = 〈5,√3〉.
r75 = r70 + r05 = −2〈2,√3〉.

11.3.75

a. Let the coordinates of R be (x, y, z). By symmetry, we have y = 0. We must have x2 + y2 + z2 = (x−√
3)2+(y+1)2+z2 = (x−√

3)2+(y−1)2+z2 = 4. The first equality gives x2+z2 = x2−2
√
3x+3+1+z2,

so 2
√
3x = 4, and x = 2√

3
. It then follows that z = 2

√
2√
3
.

b. We have rOP = 〈√3,−1, 0〉, rOQ = 〈√3, 1, 0〉, rPQ = 〈0, 2, 0〉, rOR = 〈2/√3, 0, 2
√
2/
√
3〉, and rPR =

〈−√
3/3, 1, 2

√
2/
√
3〉.

11.3.76 u · v = |u| |v| cos θ, so |u · v| = |u| |v| |cos θ| ≤ |u| |v|, because |cos θ| ≤ 1.

11.3.77 u · v = u1v1 + u2v2 + u3v3 = v1u1 + v2u2 + v3u3 = v · u.
11.3.78 c(u · v) = c(u1v1 + u2v2 + u3v3) = cu1v1 + cu2v2 + cu3v3 = (cu1)v1 + (cu2)v2 + (cu3)v3 = (cu) · v.
Using this result and the previous, we have c(u · v) = c(v · u) = (cv) · u = u · (cv).
11.3.79 u(v +w) = 〈u1, u2, u3〉 · 〈v1 + w1, v2 + w2, v3 + w3〉 = u1(v1 + w1) + u2(v2 + w2) + u3(v3 + w3) =
u1v1 +u1w1 +u2v2 +u2w2 +u3v3 +u3w3 = (u1v1 +u2v2 +u3v3)+ (u1w1 +u2w2 +u3w3) = (u ·v)+ (u ·w).

11.3.80

a. Using the previous results, we have (u+v) ·(u+v) = (u+v) ·u+(u+v) ·v = u ·(u+v)+v ·(u+v) =

u · u+ u · v + v · u+ v · v = |u|2 + 2(u · v) + |v|2.
b. If the two vectors are perpendicular, then u·v = 0, so the above reduces to (u+v)·(u+v) = |u|2+|v|2.
c. Using the previous results, we have (u+v) ·(u−v) = (u+v) ·u−(u+v) ·v = u ·(u+v)−v ·(u+v) =

u · u+ u · v − v · u− v · v = |u|2 − |v|2.

11.3.81 The statement is true. We have proj〈ka,kb〉〈c, d〉 = 〈c,d〉·〈ka,kb〉
(ka)2+(kb)2 〈ka, kb〉 = k(〈a,b〉·〈c,d〉)

k2(a2+b2) · k〈a, b〉 =
〈a,b〉·〈c,d〉
(a2+b2) 〈a, b〉 = proj〈a,b〉〈c, d〉.

11.3.82

Let u be a directional vector for the line y =
mx+b, so u = k1〈b/m, b〉 where k1 �= 0. Let v
be a directional vector for the line y = nx+c,
so v = k2〈c/n, c〉 where k2 �= 0. Then u ·
v = k1k2

(
b
m · c

n + b · c) is zero exactly when
bc
mn + bc = 0, which occurs for 1

mn +1 = 0, or
mn = −1.

y

0 x

(0, b)

(0, c)

c
n(�   , 0)

b
m(�    , 0)

l1

l2
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11.3.83

a. cosα = a√
a2+b2+c2

, cosβ = b√
a2+b2+c2

, and cos γ = c√
a2+b2+c2

. Thus, cos2 α + cos2 β + cos2 γ =

a2

a2+b2+c2 + b2

a2+b2+c2 + c2

a2+b2+c2 = 1.

b. We require cos2 α + cos2 β + cos2 γ = 1
2 + 1

2 + cos2 γ = 1, so γ = 90◦. The vector could be 〈1, 1, 0〉; it
makes a 90 degree angle with k.

c. We require cos2 α+ cos2 β + cos2 γ = 1
4 +

1
4 + cos2 γ = 1, so γ = 45◦. The vector could be 〈1, 1,√2〉; it

makes a 45 degree angle with k.

d. No. If so, we would have cos2 α + cos2 β + cos2 γ = 3
4 + 3

4 + cos2 γ = 1, which would imply that
cos2 γ = − 1

2 , which can’t occur.

e. If α = β = γ, then 3 cos2 α = 1, and α = cos−1(
√
3/3) ≈ 54.7356 degrees. The vector could be 〈1, 1, 1〉.

11.3.84 |u · v| = |u| |v| |cos θ| = |u| |v| if and only if cos θ = ±1, which occurs only when u and v are
parallel, or if either u = 0 or v = 0.

11.3.85 u ·v = −24− 15+6 = −33. |u| =√32 + (−5)2 + 62 =
√
70. |v| =√(−8)2 + 32 + 12 =

√
74. Note

that
33 <

√
70
√
74,

so |u · v| < |u| |v|.
11.3.86 We have |u · v| = √

ab+
√
ab = 2

√
ab ≤ |u| |v| = √

a+ b
√
b+ a = a+ b. Thus,

√
ab ≤ a+ b

2
.

11.3.87

a. We have |u+ v|2 = (u + v) · (u + v) = (u + v) · u + (u + v) · v = u · (u + v) + v · (u + v) =

u · u+ u · v + v · u+ v · v = |u|2 + 2(u · v) + |v|2

b. Note that 2(u · v) ≤ 2 |u · v| ≤ 2 |u| |v|. Thus (using the previous part) we have,

|u+ v|2 = |u|2 + 2(u · v) + |v|2 ≤ |u|2 + 2 |u| |v|+ |v|2 ≤ (|u|+ |v|)2.

c. Taking square roots of the previous result, and using the fact that the square root function is strictly
increasing, we have |u+ v| ≤ |u|+ |v|.

d. Because the vectors u, v and u+ v form a triangle, we can interpret this as meaning that the sum of
the lengths of any two sides of a triangle is greater than or equal to the length of the other side.

11.3.88 Let v = 〈u2, u3, u1〉. Then u · v = u1u2 + u2u3 + u1u3 and |u| |v| = u2
1 + u2

2 + u2
3. So the

Cauchy-Schwarz inequality gives u1u2 + u2u3 + u3u1 ≤ |u|2 . Thus,

(u1 + u2 + u3)
2 = u2

1 + u2
2 + u2

3 + 2(u1u2 + u2u3 + u3u1) ≤ u2
1 + u2

2 + u2
3 + 2 |u|2 = 3 |u|2 .

11.3.89

a. One diagonal consists of the sum of one side (u) and the side opposite the side adjacent to u, but
because it is a parallelogram, the side opposite v is also v. So the diagonal is u + v. The other
diagonal is the difference of two adjacent sides, so it is u− v.

b. The two diagonals are equal when |u+ v| = |u− v|. Squaring both sides, we see that this is equivalent

to requiring |u|2 + 2(u · v) + |v|2 = |u|2 − 2(u · v) + |v|2, which would imply that 2(u · v) = −2(u · v),
or 4(u ·v) = 0. So if the diagonals are equal, the vectors are orthogonal. These steps are reversible, so
the converse is also true.

Copyright c© 2015 Pearson Education, Inc.



11.4. Cross Products 235

c. |u+ v|2 + |u− v|2 = |u|2 + 2(u · v) + |v|2 + |u|2 − 2(u · v) + |v|2 = 2(|u|2 + |v|2).

11.3.90

Note that v = 〈−b, a〉 is a vector in
the direction of the given line. A posi-
tion vector u corresponding to the point
P is u = 〈x0, y0〉. Note that projvu =
−bx0+ay0

a2+b2 〈−b, a〉. Let w = u − projvu =

〈x0, y0〉 − −bx0+ay0

a2+b2 〈−b, a〉 = ax0+by0

a2+b2 〈a, b〉.
Note that the distance between the point and

the line is |w| = |ax0+by0|√
a2+b2

.

y

0 x

u

ax � by � c

11.4 Cross Products

11.4.1 |u× v| = |u| |v| sin θ, where θ is the angle between u and v.

11.4.2 u× v is perpendicular to both u and v, and points in the direction dictated by the right-hand rule.

11.4.3 Two parallel vectors have sin θ = 0 where θ is the angle between them. Thus, |u× v| = |u| |v| sin θ =
0.

11.4.4 Two perpendicular vectors have sin θ = 1 where θ is the angle between them. Thus, |u× v| =
|u| |v| sin θ = |u| |v|.
11.4.5 If u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉, then u×v can be thought of as the determinant of the matrix⎡⎢⎢⎣ i j k

u1 u2 u3

v1 v2 v3

⎤⎥⎥⎦ .
11.4.6 The torque produced by the force F about the head of vector r is τ = r× F.

11.4.7 u× v = 〈3, 0, 0〉 × 〈0, 5, 0〉 = 〈0, 0, 15〉.
11.4.8 u× v = 〈−4, 0, 0〉 × 〈0, 0, 2〉 = 〈0, 8, 0〉.

11.4.9 u× v = 〈0, 0, 0〉, so |u× v| = 0.
�2

2

2

x

u

v

y

z

11.4.10 u× v = 〈−32, 0, 0〉, so |u× v| = 32.

y
x

z

u � v � <�32, 0, 0>

v � <0, 0, �8>

u � <0, 4, 0>
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11.4.11 u× v = 〈9√2,−9
√
2, 0〉, so |u× v| = 18.

�12

12

12

12

x

y

z

u � v u

v

11.4.12 u× v = 〈8, 0, 0〉, so |u× v| = 8.

yx

z

u � v � 8i

v � <0, 2, �2>

u � <0, �2, �2>

11.4.13 |u× v| = |u| |v| sin(π/4) = √
2/2.

11.4.14 |u× v| = |u| |v| sin(2π/3) = 12 · (√3/2) = 6
√
3.

11.4.15 j× k = i.

2

2

2

x

y

z

ji

k

11.4.16 i× k = −j.

yx

z

k

�j

i
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11.4.17 −j× k = −i.
�2 �2

2

2

2

�j
k

�i

x

y

z

11.4.18 3j× i = −3k.

y
x

z

�3k

3j
i

11.4.19 −2i× 3k = 6j.

6

6

6j

z

x

y

�2 i3k

11.4.20 2j×−5i = 10k.

y
x

z

10k

2j

�5i

11.4.21 |u× v| = |〈−2,−6, 9〉| = √
4 + 36 + 81 = 11.

11.4.22 |u× v| = |〈−2, 5,−3〉| = √
4 + 9 + 25 =

√
38.

11.4.23 |u× v| = |〈5,−4, 7〉| = √
25 + 16 + 49 = 3

√
10.

11.4.24 |u× v| = |〈4, 26, 28〉| = √
16 + 676 + 784 =

√
1476 = 6

√
41.
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11.4.25 1
2 ·
∣∣∣⇀AB ×⇀AC

∣∣∣ = 1
2 · |〈3, 0, 1〉 × 〈1, 1, 0〉| = 1

2 · |〈−1, 1, 3〉| =
√
11
2 .

11.4.26 1
2 ·
∣∣∣⇀AB ×⇀AC

∣∣∣ = 1
2 · |〈4,−1, 2〉 × 〈1, 1, 0〉| = 1

2 · |〈−2, 2, 5〉| =
√
33
2 .

11.4.27 1
2 ·
∣∣∣⇀AB ×⇀AC

∣∣∣ = 1
2 · |〈2, 10, 2〉 × 〈1, 1, 1〉| = 1

2 · |〈8, 0,−8〉| = 4
√
2.

11.4.28 1
2 ·
∣∣∣⇀AB ×⇀AC

∣∣∣ = 1
2 · |〈−2, 3, 2〉 × 〈1, 0, 2〉| = 1

2 · |〈6, 6,−3〉| = 9
2 .

11.4.29 u× v =

∣∣∣∣∣∣∣∣
i j k

3 5 0

0 3 −6

∣∣∣∣∣∣∣∣ = 〈−30, 18, 9〉. v × u = 〈30,−18,−9〉.

11.4.30 u× v =

∣∣∣∣∣∣∣∣
i j k

−4 1 1

0 1 −1

∣∣∣∣∣∣∣∣ = 〈−2,−4,−4〉. v × u = 〈2, 4, 4〉.

11.4.31 u× v =

∣∣∣∣∣∣∣∣
i j k

2 3 −9

−1 1 −1

∣∣∣∣∣∣∣∣ = 〈6, 11, 5〉. v × u = 〈−6,−11,−5〉.

11.4.32 u× v =

∣∣∣∣∣∣∣∣
i j k

3 −4 6

1 2 −1

∣∣∣∣∣∣∣∣ = 〈−8, 9, 10〉. v × u = 〈8,−9,−10〉.

11.4.33 u× v =

∣∣∣∣∣∣∣∣
i j k

3 −1 −2

1 3 −2

∣∣∣∣∣∣∣∣ = 〈8, 4, 10〉. v × u = 〈−8,−4,−10〉.

11.4.34 u× v =

∣∣∣∣∣∣∣∣
i j k

2 −10 15

.5 1 −.6

∣∣∣∣∣∣∣∣ = 〈−9, 8.7, 7〉. v × u = 〈9,−8.7,−7〉.

11.4.35 Let u = 〈0, 1, 2〉 and v = 〈−2, 0, 3〉. u × v =

∣∣∣∣∣∣∣∣
i j k

0 1 2

−2 0 3

∣∣∣∣∣∣∣∣ = 〈3,−4, 2〉 is perpendicular to both u

and v.

11.4.36 Let u = 〈1, 2, 3〉 and v = 〈−2, 4,−1〉. u×v =

∣∣∣∣∣∣∣∣
i j k

1 2 3

−2 4 −1

∣∣∣∣∣∣∣∣ = 〈−14,−5, 8〉 is perpendicular to both

u and v.

11.4.37 Let u = 〈8, 0, 4〉 and v = 〈−8, 2, 1〉. u× v =

∣∣∣∣∣∣∣∣
i j k

8 0 4

−8 2 1

∣∣∣∣∣∣∣∣ = 〈−8,−40, 16〉 is perpendicular to both

u and v.
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11.4.38 Let u = 〈6,−2, 4〉 and v = 〈1, 2, 3〉. u× v =

∣∣∣∣∣∣∣∣
i j k

6 −2 4

1 2 3

∣∣∣∣∣∣∣∣ = 〈−14,−14, 14〉 is perpendicular to both

u and v.

11.4.39 |τ | = |r× F| = |r| |F| sin θ = 1
4 · 20 ·

√
2
2 = 5

√
2

2 N ·m.

11.4.40 |τ | = |r× F| = |r| |F| sin θ = 5
6 · 3

2 · sin(π/2) = 1.25 ft · lb.

11.4.41 τ = r× F =

∣∣∣∣∣∣∣∣
i j k

1 1 1

20 0 0

∣∣∣∣∣∣∣∣ = 〈0, 20,−20〉.

11.4.42 τ = r× F =

∣∣∣∣∣∣∣∣
i j k

1 −1 2

10 10 0

∣∣∣∣∣∣∣∣ = 〈−20, 20, 20〉.

11.4.43 τ = r × F =

∣∣∣∣∣∣∣∣
i j k

10 0 0

5 0 −5

∣∣∣∣∣∣∣∣ = 〈0, 50, 0〉 has magntitude 50, while τ = r × F =

∣∣∣∣∣∣∣∣
i j k

10 0 0

4 −3 0

∣∣∣∣∣∣∣∣ =
〈0, 0,−30〉 has magnitude 30, so the first force has greater magnitude.

11.4.44 τ = r × F =

∣∣∣∣∣∣∣∣
i j k

5 0 −5

1 0 −10

∣∣∣∣∣∣∣∣ = 〈0, 45, 0〉. The magnitude is 45 and the direction is in the positive y

direction.

11.4.45

F = 1 · (v ×B) =

∣∣∣∣∣∣∣∣
i j k

0 0 20

1 1 0

∣∣∣∣∣∣∣∣ = 〈−20, 20, 0〉.

The magnitude of F is 20
√
2 and the angle

of the force is 135 degrees with the positive x
axis in the xy-plane.

�20

20

10

10
B

V

F

x

y

z

11.4.46 F = −1 · (v×B) =

∣∣∣∣∣∣∣∣
i j k

1 2 0

0 0 5

∣∣∣∣∣∣∣∣ = 〈−10, 5, 0〉. The magnitude of F is 5
√
5 and the angle of the force

is about 153.435 degrees with the positive x axis in the xy-plane.
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y

x

z

F � <�10, 5, 0>

B � <0, 0, 5>

v � <1, 2, 0>

11.4.47 |F| = |q(v ×B)| = ∣∣−1.6 · 10−19
∣∣ C · 2 · 105 · 2 · sin 45◦ = 4.53 · 10−14 kg ·m/s2.

11.4.48 F = q(v ×B) = 5 · 10−12k, v = 2 · 106j. We must have B = bi for some scalar b. We have

1.6 · 10−19(2 · 106j× bi) = 5 · 10−12k,

so b = − 5·10−12

1.6·10−19·2·106 = − 125
8 . So B = −15.625i.

11.4.49

a. False. For example i× i = 〈0, 0, 0〉, even though i �= 〈0, 0, 0〉.
b. False. For example, 2i× 4j = 8k has magnitude 8, while 2i has magnitude 2 and 4j has magnitude 4.

c. False. If the compass directions are thought to lie in a plane, u×v doesn’t lie in that plane, so it can’t
be a compass direction.

d. True. If both were nonzero, the first statement implies that the vectors are parallel, and the second
that they are perpendicular, which can’t both occur. So at least one of the vectors must be the zero
vector.

e. False. i× 2i = 〈0, 0, 0〉 = i× 3i, but 2i �= 3i.

11.4.50 ⇀AB ×⇀AC = 〈2, 2, 6〉 × 〈6, 6, 18〉 = 〈0, 0, 0〉, so the points are collinear.

11.4.51 ⇀AB ×⇀AC = 〈4, 6, 6〉 × 〈7, 12, 13〉 �= 〈0, 0, 0〉, so the points are not collinear.

11.4.52 Note that 〈a, a, 2〉 × 〈1, a, 3〉 = 〈a, 2− 3a,−a+ a2〉. So a = 2.

11.4.53 Note that 〈a, b, a〉 × 〈b, a, b〉 = 〈−a2 + b2, 0, a2 − b2〉. This is the zero vector when a = ±b, so the
vectors are parallel when a = ±b, a, b �= 0.

11.4.54 The area is 1
2 |u× v| = 1

2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
i j k

0 6 0

4 4 4

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

1
2 |〈24, 0,−24〉| = 12

√
2.

11.4.55 The area is 1
2 |u× v| = 1

2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
i j k

3 3 3

6 0 6

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

1
2 |〈18, 0,−18〉| = 9

√
2.
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11.4.56 Two of the sides are u = 〈2, 4, 6〉 and v = 〈3, 5, 7〉.

The area is 1
2 |u× v| = 1

2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
i j k

2 4 6

3 5 7

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

1
2 |〈−2, 4,−2〉| = √

6.

11.4.57 Two of the sides are u = 〈1, 2, 3〉 and v = 〈6, 5, 4〉.

The area is 1
2 |u× v| = 1

2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
i j k

1 2 3

6 5 4

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

1
2 |〈−7, 14,−7〉| = 7

√
6

2 .

11.4.58 If u and v are perpendicular unit vectors, then |u× v| = |u| |v| sinπ/2 = 1. Or more generally, if
sin θ = 1

|u||v| .

11.4.59 Let u = 〈u1, u2, u3〉. Then we have∣∣∣∣∣∣∣∣
i j k

1 1 1

u1 u2 u3

∣∣∣∣∣∣∣∣ = 〈−1,−1, 2〉,

so u3 − u2 = −1, u1 − u3 = −1, and u2 − u1 = 2. The solutions to this system of linear equation
can be characterized by letting u1 be arbitrary, and by letting u2 = u1 + 2 and u3 = u1 + 1. Thus,
u = 〈u1, u1 + 2, u1 + 1〉 for any real number u1.

11.4.60 Let u = 〈u1, u2, u3〉. Then we have∣∣∣∣∣∣∣∣
i j k

1 1 1

u1 u2 u3

∣∣∣∣∣∣∣∣ = 〈0, 0, 1〉,

so u3 − u2 = 0, u1 − u3 = 0, and u2 − u1 = 1. This system of linear equations has no solutions, so there are
no vectors u which satisfy the given equation.

11.4.61 Two of the sides of the triangle are u = 〈−a, b, 0〉 and v = 〈−a, 0, c〉.

The area is 1
2 |u× v| = 1

2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
i j k

−a b 0

−a 0 c

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

1
2 |〈bc, ac, ab〉| = 1

2

√
b2c2 + a2c2 + a2b2.

11.4.62 u · (v×w) = 〈u1, u2, u3〉 · 〈v2w3 − v3w2, w1v3 − v1w3, v1w2 −w1v2〉 = u1(v2w3 − v3w2) + u2(w1v3 −
v1w3) + u3(v1w2 − w1v2). Note that this is exactly the expression for the determinant of the given matrix,
as can be seen by expanding by cofactors across the top row.

11.4.63 |u · (v ×w)| = |u| |v ×w| |cos θ|. Because |v ×w| represents the area of the base, we just need to
see that the height of the parallelepiped is |u| |cos θ|. Note that the height is given by the scalar projection of
u on v×w, which has value |cos θ| |u|. Thus the given expression represents the volume of the parallelepiped.

11.4.64 Using one of the results above, we see that u · (v × w) =

∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣ and similarly we have

w · (u× v) =

∣∣∣∣∣∣∣∣
w1 w2 w3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣. These two determinants are equal, as can be seen by fact that the underlying

matrices differ by an even number of row transpositions.
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11.4.65 Note that r = .66k, and F = 40j. τ = r × F =

∣∣∣∣∣∣∣∣
i j k

0 0 0.66

0 40 0

∣∣∣∣∣∣∣∣ = 〈−26.4, 0, 0〉. The magnitude of

the torque is 26.4 Newton-meters and the direction is on the negative x axis.

11.4.66

a. The torque of the shoulder has magnitude 2 · 20 = 40 ft lbs and the direction is perpendicular to r and
F, into the page.

b. The torque of the elbow has magnitude 1 · 20 = 20 foot pounds, and the direction is the same as the
torque of the shoulder, into the page.

11.4.67 Because F = q(v ×B), we have |F| = |q| |v| |B| sin θ. Thus, m|v|2
R = |q| |v| |B| sinπ/2. Therefore,

|v| = R |q| |B|
m

=
0.002 · 1.6 · 10−19 · .05

9 · 10−31
≈ 1.758 · 107 m/s.

11.4.68

a. |u× u| = |u|2 sin 0 = 0.

b. u× u =

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

u1 u2 u3

∣∣∣∣∣∣∣∣ = 〈0, 0, 0〉.

c. Because u× u = −(u× u), we must have 2(u× u) = 0, so u× u = 0.

11.4.69 The result is trivial if either a = 0 or b = 0, so assume ab �= 0. Note that the sine of the angle between
au and bv is the same as the sine of the angle between u and v, as is demonstrated in the following diagrams.

v

bv

u au
u

a > 0, b > 0

v

bv

u
au u

u

a < 0, b < 0

v

bv

uau
u

u1

a < 0, b > 0

v

bv

uau
u

u1

a > 0, b < 0

By the definition: |(au)× (bv)| = |au| |bv| sin θ, where θ is the angle between au and bv. But this is equal
to |a| |u| |b| |v| sin θ = |ab| (|u| |v| sin θ) = |ab| (|u× v|). When a and b have the same sign, the directions are
also the same, because they are determined by the right-hand rule (see diagrams above.) When a and b have
opposite signs, the directions are opposite, but then ab < 0.
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Using the determinant formula:

(au)× (bv) =

∣∣∣∣∣∣∣∣
i j k

au1 au2 au3

bv1 bv2 bv3

∣∣∣∣∣∣∣∣ = ab

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣ = ab(u× v).

11.4.70 False. For example, i× (i× j) = i× k = −j �= 0.

11.4.71 True. (u− v)× (u+ v) = u× u+ u× v − (v × u)− (v × v) = 2(u× v) = (2u× v).

11.4.72 This follows from number 64 above, together with the commutativity of the dot product.

11.4.73

u× (v ×w) =

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v2w3 − v3w2 v3w1 − v1w3 v1w2 − v2w1

∣∣∣∣∣∣∣∣
= 〈u2(v1w2 − v2w1)− u3(v3w1 − v1w3), u3(v2w3 − v3w2)

− u1(v1w2 − v2w1), u1(v3w1 − v1w3)− u2(v2w3 − v3w2)〉
= 〈v1(u2w2 + u3w3)− w1(u2v2 + u3v3), v2(u1w1 + u3w3)

− w2(u1v1 + u3v3), v3(u1w1 + u2w2)− w3(u1v1 + u2v2)〉
= 〈v1(u ·w)− w1(u · v), v2(u ·w)− w2(u · v), v3(u ·w)− w3(u ·w)〉
= (u ·w)v − (u ·w)w.

11.4.74 Consider the quantity (w× x) as a single vector. Using the result of exercise 56, we have (u× v) ·
(w×x) = u · (v× (w×x)). Now applying the result of exercise 65, this is equal to u · ((v ·x)w− (v ·w)x) =
(u ·w)(v · x)− (u · x)(v ·w) as desired.

11.4.75

a. Suppose u × z = v. Then v × (u × z) = v × v = 〈0, 0, 0〉. Now v × (u × z) = u(v · z) − z(v · u) by
exercise 65. If u · v = 0, then we have u(v · z) = 〈0, 0, 0〉. Any vector z which is perpendicular to v is
a solution to this equation.

Now suppose that the equation u × z = v has a nonzero solution. Because the cross product of any
two vectors is perpendicular to both of the vectors, we must have that u× z · u = 0. But this means
that v · u = 0, as desired.

b. If there exists a vector z so that u × z = v, then u and v must be perpendicular. If u and v are
perpendicular nonzero vectors, then there must be a plane which contains u and a nonzero vector z so
that u× z = v.

11.5 Lines and Curves in Space

11.5.1 It has one, namely t.

11.5.2 It has three, namely x = f(t), y = g(t), and z = h(t).

11.5.3 For every real number t that is put into the function, the output is a vector r(t).

11.5.4 Subtract componentwise to obtain the vector d = 〈x1 − x0, y1 − y0, z1 − z0〉.
11.5.5 Let d be the direction vector as in the previous problem. Then r(t) = 〈x0, y0, z0〉+ td.

11.5.6 It lies in the xz-plane.
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11.5.7 Compute lim
t→a

f(t) = L1, lim
t→a

g(t) = L2, and lim
t→a

h(t) = L3. Then lim
t→a

r(t) = 〈L1, L2, L3〉.

11.5.8 It is continuous at a exactly when the three component functions x = f(t), y = g(t) and z = h(t)
are continuous at a.

11.5.9 The line is r(t) = 〈0, 0, 1〉+ t〈4, 7, 0〉.

11.5.10 The line is r(t) = 〈−3, 2,−1〉+ t〈1,−2, 0〉.

11.5.11 The direction is 〈0, 1, 0〉, so the line l1 is r(t) = 〈0, 0, 1〉+ t〈0, 1, 0〉.

11.5.12 The direction is 〈1, 0, 0〉 so the line l2 is 〈0, 0, 1〉+ t〈1, 0, 0〉.

11.5.13 The direction is 〈1, 2, 3〉, so the line is r(t) = t〈1, 2, 3〉.

11.5.14 The direction is 〈2,−3, 2〉, so the line is r(t) = 〈1, 0, 1〉+ t〈2,−3, 2〉.

11.5.15 The direction is 〈8,−5,−6〉, so the line is r(t) = 〈−3, 4, 6〉+ t〈8,−5,−6〉.

11.5.16 The direction is 〈10,−9,−12〉, so the line is r(t) = 〈0, 4, 8〉+ t〈10,−9,−12〉.

11.5.17 The direction is 〈−2, 8,−4〉, so the line is r(t) = t〈−2, 8,−4〉.

11.5.18 The direction is 〈4,−1, 0〉, so the line is r(t) = 〈1,−3, 4〉+ t〈4,−1, 0〉.

11.5.19 The direction is 〈1, 0, 2〉 × 〈0, 1, 1〉 = 〈−2,−1, 1〉, so the line is r(t) = t〈−2,−1, 1〉.

11.5.20 The direction is 〈1, 1,−5〉 × 〈0, 4, 0〉 = 〈20, 0, 4〉, so the line is r(t) = 〈−3, 4, 2〉+ t〈20, 0, 4〉.

11.5.21 The direction is 〈1, 1, 2〉 × 〈1, 0, 0〉 = 〈0, 2,−1〉, so the line is r(t) = 〈−2, 5, 3〉+ t〈0, 2,−1〉.

11.5.22 The direction is 〈4, 3,−5〉 × 〈0, 0, 1〉 = 〈3,−4, 0〉, so the line is r(t) = 〈0, 2, 1〉+ t〈3,−4, 0〉.

11.5.23 The direction is 〈−2, 8,−4〉 × 〈−2, 1,−1〉 = 〈−4, 6, 14〉, so the line is r(t) = 〈1, 2, 3〉+ t〈−4, 6, 14〉.

11.5.24 The direction is 〈2, 3,−4〉 × 〈1, 1,−1〉 = 〈1,−2,−1〉, so the line is 〈1, 0,−1〉+ t〈1,−2,−1〉.

11.5.25 The line segment is r(t) = t〈1, 2, 3〉, where 0 ≤ t ≤ 1.

11.5.26 The line segment is r(t) = 〈1, 0, 1〉+ t〈−1,−2, 0〉, where 0 ≤ t ≤ 1.

11.5.27 The line segment is r(t) = 〈2, 4, 8〉+ t〈5, 1,−5〉, where 0 ≤ t ≤ 1.

11.5.28 The line segment is r(t) = 〈−1,−8, 4〉+ t〈−8, 13,−7〉, where 0 ≤ t ≤ 1.

11.5.29

11

1

z

x

y

11.5.30
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11.5.31

�1.0
�0.5

0.0
0.5

1.0

x

0.0
0.5

1.0
1.5

2.0y

�1.0

�0.5

0.0

0.5

1.0

z

11.5.32

�2
�1

0
1

2
x

�2
�1

0

1

2

y

0

1

2

3

4

z

11.5.33

�10

0

10

x�10
0

10
y

0

5

10

15

z

11.5.34

�4

�2

0

2

4

x

�4
�2

0
2

4y

0.0

0.5

1.0

z

11.5.35

�0.5

0.0

0.5

x
�0.5

0.0
0.5

1.0

y

0

20

40

z

11.5.36

0.0

0.5

1.0

x�2
0

2

y

�2

0

2

z
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11.5.37
Note that the curve is closed (the initial point
and the terminal point coincide), and is very
“wavy.”

4

4
4

x
y

z

11.5.38
The projection onto the xy-plane is an ellipse
elongate in the y direction. The curve oscil-
lates in a sinusoidal wave in the z direction.

11.5.39 When viewed from the top, the curve looks
parabolic.

�1.0�0.50.00.51.0

x

0.0

0.5

1.0

y
0.0

0.5

1.0

1.5

2.0

z

11.5.40 When viewed from the top, the curve appears
as a 3-petaled rose.

11.5.41 lim
t→π/2

〈cos 2t,−4 sin t,
2t

π
〉 = 〈cosπ,−4 sinπ/2,

2 · π/2
π

〉 = 〈−1,−4, 1〉.

11.5.42 lim
t→ln 2

〈2et, 6e−t,−4e−2t〉 = 〈2eln 2, 6e− ln 2,−4e−2 ln 2〉 = 〈4, 3,−1〉.

11.5.43 lim
t→∞〈e−t,− 2t

t+ 1
, tan−1 t〉 = 〈0,−2, π/2〉.

Copyright c© 2015 Pearson Education, Inc.



11.5. Lines and Curves in Space 247

11.5.44 lim
t→2

〈 t

t2 + 1
,−4e−t sinπt,

1√
4t+ 1

〉 = 〈2
5
, 0,

1

3
〉.

11.5.45 Using l’Hôpital’s rule (once in the first two components, twice in the third component):

lim
t→0

〈 sin t
t

,−et − t− 1

t
,
cos t+ t2/2− 1

t2
〉 = lim

t→0
〈cos t, 1− et,

− cos t+ 1

2
〉 = 〈1, 0, 0〉 = i.

11.5.46 Using l’Hôpital’s rule (once in the first two components, but not in the 3rd component):

lim
t→0

〈 tan t
t

,
−3t

sin t
,
√
t+ 1〉 = lim

t→0
〈sec2 t, −3

cos t
,
√
t+ 1〉 = 〈1,−3, 1〉 = i− 3j+ k.

11.5.47

a. True. This curve passes through the origin at t = −1/2.

b. False. For example, the x axis is not parallel to the line 〈0, 0, 1〉+t〈0, 1, 0〉, but neither do they intersect.

c. True. The first component function approaches 0 as t → ∞, while the others are periodic. The
parametric equations y = sin t and z = − cos t form a circle in the yz-plane.

d. True. Both have limit 〈0, 0, 0〉.

11.5.48 Setting r(t) = R(s) and solving the resulting system of linear equations gives t = 0 and s = 4,
so the point of intersection of the lines occurs when for r(0) = R(4) = (−2, 0, 0). The direction of the
line perpendicular to both of these is 〈3, 2, 3〉 × 〈1, 2, 3〉 = 〈0,−6, 4〉. The line we are seeking is therefore
〈−2, 0, 0〉+ t〈0,−6, 4〉.

11.5.49 Setting r(t) = R(s) and solving the resulting system of linear equations gives t = 1 and s = 5,
so the point of intersection of the lines occurs when for r(1) = R(5) = (4, 3, 3). The direction of the
line perpendicular to both of these is 〈4, 2, 3〉 × 〈1, 2, 3〉 = 〈0,−9, 6〉. The line we are seeking is therefore
〈4, 3, 3〉+ t〈0,−9, 6〉.

11.5.50 Because the direction vectors are multiples of each other (〈4,−6, 4〉 = −2〈−2, 3− 2〉), the lines are
parallel. (Note also that the lines don’t coincide.)

11.5.51 Setting r(t) = R(s) and solving the resulting system of linear equations gives t = 0 and s = −3, so
the point of intersection of the lines occurs when for r(0) = R(−3) = (1, 3, 2)

11.5.52 Setting r(t) = R(s) and attempting to solve the corresponding system of linear equations yields no
solution. The lines aren’t parallel since 〈5,−2, 3〉 is not a multiple of 〈10, 4, 6〉. Therefore the lines are skew.

11.5.53 Setting r(t) = R(s) and attempting to solve the corresponding system of linear equations yields no
solution. The lines aren’t parallel since 〈0,−1, 1〉 is not a multiple of 〈−7, 4,−1〉. Therefore the lines are
skew.

11.5.54 Because the direction vectors are multiples of each other (〈1,−2, 3〉 = −1
7 〈−7, 14,−21〉), the lines

are parallel. (Note also that the lines don’t coincide.)

11.5.55 These equations represent the same line. (So they are parallel and intersecting.) Note that r(3t−
5) = 〈1 + 2(3t− 5), 7− 3(3t− 5), 6 + (3t− 5)〉 = 〈−9 + 6t, 22− 9t, 1 + 3t〉 = R(t).

11.5.56 The first component function has domain (−∞, 1)∪ (1,∞), and the second has domain (−∞,−2)∪
(−2,∞), so the domain of r(t) is (−∞,−2) ∪ (−2, 1) ∪ (1,∞).

11.5.57 The first component function has domain [−2,∞) and the second has domain (−∞, 2], so the
domain of r(t) is [−2, 2].

11.5.58 The first component function is defined everywhere, the second has domain [0,∞), and the third
has domain (−∞, 0) ∪ (0,∞), so the domain of r(t) is (0,∞).
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11.5.59 The first component function has domain [−2, 2], the second has domain [0,∞), and the third has
domain (−1,∞), so the domain of r(t) is [0, 2].

11.5.60 The line and plane intersect for x = t = 3, so the point of intersection is (3, 3, 3).

11.5.61 The intersection occurs for z = 4 = t− 6, so for t = 10. The point of intesection is (21,−6, 4).

11.5.62 The intersection occurs for y = −2 = −t+ 4, so for t = 6. The point of intersection is (13,−2, 0).

11.5.63 The intersection occurs for z = −8 = −2t+ 4, so for t = 6. The point of intersection is (16, 0,−8).

11.5.64 The intersection occurs for y = 1 = 2 sin t, so for t = π/6 and t = 5π/6. The points of intersection
are (5

√
3, 1, 1) and (−5

√
3, 1, 1).

11.5.65 The intersection occurs for z = 16 = 4 + 3t, so for t = 4. The point of intersection is (4, 8, 16).

11.5.66 The intersection occurs for x+ y = cos t+ sin t = 0, so for t = 3π/4, t = 7π/4, t = 11π/4, and t =
15π/4. The points of intersection are (−√

2/2,
√
2/2, 3π/4), (

√
2/2,−√

2/2, 7π/4), (−√
2/2,

√
2/2, 11π/4),

and (
√
2/2,−√

2/2, 15π/4).

11.5.67

a. This matches graph E. (It is a straight line.)

b. This matches graph D. (It is parabolic-like.)

c. This matches graph F. (It is a circle.)

d. This matches graph C. (It is a circular helix, elongated along the x-axis.)

e. This matches graph A. (It is a closed curve which isn’t a circle.)

f. This matches graph B. (It is a circular helix, elongated along the y-axis.)

11.5.68

a. If they are to intersect, then we must have 2 + 2t = 6+ s, 8 + t = 10− 2s, and 10 + 3t = 16− s. This
system of linear equations has the solution t = 2 and s = 0. So the lines intersect at (6, 10, 16).

b. They do not collide, because they arrive at the intersection point at different times.

11.5.69

a. r(0) = 〈50, 0, 0〉.

b. lim
t→∞

50 cos t

et
= 0 by the squeeze theorem, and likewise lim

t→∞
50 sin t

et
= 0. Also, lim

t→∞

(
5− 5

et

)
= 5.

Thus we have lim
t→∞ r(t) = 〈0, 0, 5〉.

c.

30

50

30

x

y

z

d. Let x = 50e−t cos t and y = 50e−t sin t and z = 5−
5e−t. Note that x2+y2 = 2500e−2t, so r = 50e−t.
We have z = 5− 5e−t = 5− r

10 .
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11.5.70 If x = a cos t+ b sin t and y = c cos t+ d sin t and z = e cos t+ f sin t then x2 + y2 + z2 = (a cos t+
b sin t)2+(c cos t+d sin t)2+(e cos t+f sin t)2 = (a2+c2+e2) cos2 t+(b2+d2+f2) sin2 t+2(ab+cd+ef) sin t cos t.
If ab + cd + ef = 0 and if a2 + c2 + e2 = R2 = b2 + d2 + f2, then we have x2 + y2 + z2 = R2, so all the
points on the curve lie at a distance of R from the origin, so (because the curve lies in a plane) it is a circle
of radius R centered at the origin.

11.5.71

This has the form mentioned in exercise 52,
with a = 1/

√
2, b = 1/

√
3, c = −1/

√
2, d =

1/
√
3, e = 0, and f = 1/

√
3. Note that a2 +

c2 + e2 = 1
2 + 1

2 + 0 = 1 = 1
3 + 1

3 + 1
3 =

b2 + d2 + f2, and ab+ cd+ ef = 0. So this is
a circle of radius 1 centered at the origin.

z

x

y

1

1

2

11.5.72

Using the notation of exercise 52, we have
ab + cd + ef = 0. However, we have a2 +
c2 + e2 = 6 and b2 + d2 + e2 = 12. Thus
x2+y2+z2 = 6 cos2 t+12 sin2 t = 6+6 sin2 t,
The curve is an oval-shaped closed curve.

11.5.73 Note that r(0) = 〈a, c, e〉 and r(π/2) = 〈b, d, f〉, and r(π) = 〈−a,−c,−e〉 have their terminal points
on the curve. So 〈a, c, e〉 − 〈−a,−c,−e〉 = 〈2a, 2c, 2e〉 = 2r(0) lies in the plane containing the curve, which
implies that r(0) lies in the plane containing the curve, and that implies that the point (0, 0, 0) is in the plane
containing the curve. So a normal to the curve is r(0)×r(π/2) = 〈a, c, e〉×〈b, d, f〉 = 〈cf−de, be−af, ad−bc〉.

11.5.74

a.
With a = 0, we have r(t) = 〈0, 75t,−5t2 + 80t〉.
Note that z = 0 when t = 0 and when −5t+80 =
0, or t = 16. At this time, y = 75 · 16 = 1200 feet.
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b.

With a = .2, we have r(t) = 〈.2t, (75−.02)t,−5t2+
80t〉. Note that z = 0 when t = 0 and when
−5t + 80 = 0, or t = 16. At this time, y = (75 −
.02) · 16 = 1199.68 feet.

c. with a = 2.5, the ball travels (75− .25) ∗ 16 = 1196 feet.

11.5.75

First note that x = 1
2 sin 2t = sin t cos t and

y = 1
2 (1 − cos 2t) = sin2 t. Then x2 + y2 +

z2 = sin2 t cos2 t+sin4 t+cos2 t = sin2 t(cos2 t+
sin2 t) + cos2 t = sin2 t · 1 + cos2 t = 1. So all
points on the curve are equidistant from the
origin, so they lie on the sphere of radius one
centered at the origin.

x y

z

1

1

1

11.5.76 Suppose a2 = b2 and c2 = a2 + b2.
We have x2+y2+z2 = a2 sin2 mt ·cos2 nt+b2 sin2 mt ·sin2 nt+c2 cos2 mt = a2(cos2 nt+sin2 nt) sin2 mt+

c2 cos2 mt = a2 sin2 mt+c2 cos2 mt = a2 sin2 mt+a2 cos2 mt+a2 cos2 mt = a2+ z2

2 . Thus we have x2+y2+z2 =

a2 + z2

2 , or x2 + y2 + 1
2z

2 = a2. So the curve lies on an ellipsoid.

11.5.77 In order for sin(mt+mT ) cos(nt+nT ) = sinmt cosnt and sin(mt+mT ) sin(nt+nT ) = sinmt sinnt
and cos(mt +mT ) = cosmt we would need T = 2π

m or a multiple of it, and then it would be necessary for
sin(nt+ nT ) = sinnt, which would require T = 2π

n , or a multiple of it. Thus, the smallest such T would be
2π

(m,n) , where (m,n) represents the greatest common factor of m and n.

11.5.78

a. Assume that lim
t→a

r(t) = L = 〈L1, L2, L3〉. Then for any ε > 0, there exists δ > 0 so that |r(t)− L| =√
(f(t)− L1)2 + (g(t)− L2)2 + (h(t)− L3)2 < ε for |t− a| < δ.

Note that |f(t)− L1| ≤
√
(f(t)− L1)2 + (g(t)− L2)2 + (h(t)− L3)2, and likewise for |g(t)− L2| and

|h(t)− L3|. So given ε > 0, choosing the δ mentioned in the paragraph above guarantees that the
absolute values of the differences of the corresponding coordinate functions and the Li are less than
epsilon whenever |t− a| < δ, as desired.

b. Assume lim
t→a

f(t) = L1, lim
t→a

g(t) = L2, and lim
t→a

h(t) = L3. Then for any ε > 0, there exists δ1 > 0 so

that |f(t)− L1| < ε/
√
3 whenever |t− a| < δ1, and there exists δ2 so that |g(t)− L2| < ε/

√
3 whenever

|t− a| < δ2, and there exists δ3 so that |h(t)− L3| < ε/
√
3 whenever |t− a| < δ3.

Now let ε > 0 be given, and let δ = min{δ1, δ2, δ3}. Then

|r(t)− 〈L1, L2, L3〉| =
√
(f(t)− L1)2 + (g(t)− L2)2 + (h(t)− L3)2 ≤

√
3 · ε2/3 =

√
ε2 = ε,

as desired.
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11.5.79 Consider the vector v placed geometrically so that its tail is at point P , and let the head of v be R

so that the triangle PRQ has one side as u =⇀PQ and one side as v. By Theorem 11.3,
|u× v|
|v| = |u| sin θ

where θ is the angle between u and v. Now Let R′ on r be the foot of the perpendicular dropped from Q as
in ordinary geometry, so that the length of R′Q is the distance from Q to the line. By the trigonometry of
the right triangle PR′Q, we have that the length of R′Q is |u| sin θ where θ is as before. Thus R = R′ and

the distance between Q and r is |u| sin θ =
|u× v|
|v| .

11.5.80 Let the point on the line be P (1, 3, 1), so that u =⇀PQ = 〈4, 3, 0〉. Then

d =
|〈4, 3, 0〉 × 〈3,−4, 1〉|

|〈3,−4, 1〉| =
|〈3,−4, 25〉|
|〈3,−4, 1〉| =

5
√
26√
26

= 5.

11.5.81 Let the point on the line be P (7, 2, 4), so that u =⇀PQ = 〈−12, 0, 5〉. Then

d =
|〈−12, 0, 5〉 × 〈5,−1, 12〉|

|〈5,−1, 12〉| =
|〈5, 169, 12〉|
|〈5,−1, 12〉| =

13
√
170√
170

= 13.

11.5.82 Let the point on the line be P (0, 0, 4), so that u =⇀PQ = 〈6, 6, 3〉. Then

d =
|〈6, 6, 3〉 × 〈3,−3, 0〉|

|〈3,−3, 0〉| =
|〈9, 9,−36〉|
|〈3,−3, 0〉| =

27
√
2

3
√
2

= 9.

11.6 Calculus of Vector-Valued Functions

11.6.1 It is r′(t) = 〈f ′(t), g′(t), h′(t)〉.

11.6.2 r′(t) is a vector tangent to the curve r(t).

11.6.3 Divide the vector by its length, so if the vector is r′(t), form r′(t)
|r′(t)| .

11.6.4 r′(t) = 〈10t9, 8,− sin t〉, so r′′(t) = 〈90t8, 0,− cos t〉.

11.6.5 Compute the indefinite integral of each of the component functions, and then∫
r(t) dt = 〈

∫
f(t) dt,

∫
g(t) dt,

∫
h(t) dt〉.

11.6.6
∫ b

a
r(t) dt = 〈∫ b

a
f(t) dt,

∫ b

a
g(t) dt,

∫ b

a
h(t) dt〉.

11.6.7 r′(t) = 〈− sin t, 2t, cos t〉.

11.6.8 r′(t) = 〈4et, 0, 1/t〉.

11.6.9 r′(t) = 〈6t, 3/√t,−3/t2〉.

11.6.10 r′(t) = 〈0,−6 sin 2t, 6 cos 3t〉.

11.6.11 r′(t) = 〈et,−2e−t,−8e2t〉.

11.6.12 r′(t) = 〈sec2 t, sec t tan t,− sin 2t〉.

11.6.13 r′(t) = 〈e−t(1− t), 1 + ln t, cos t− t sin t〉.

11.6.14 r′(t) = 〈−(t+ 1)−2, (t2 + 1)−1, (t+ 1)−1〉.
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11.6.15 r′(t) = 〈1, 6t, 3t2〉, so r′(1) = 〈1, 6, 3〉.
11.6.16 r′(t) = 〈et, 3e3t, 5e5t〉, so r′(0) = 〈1, 3, 5〉.
11.6.17 r′(t) = 〈1,−2 sin 2t, 2 cos t〉, so r′(π/2) = 〈1, 0, 0〉.
11.6.18 r′(t) = 〈2 cos t,−3 sin t, 1

2 cos(t/2)〉, so r′(π) = 〈−2, 0, 0〉.

11.6.19 r′(t) = 〈8t3, 9√t,−10/t2〉, so r′(1) = 〈8, 9,−10〉.
11.6.20 r′(t) = 〈2et,−2e−2t, 8e2t〉, so r′(ln 3) = 〈6,−2/9, 72〉.
11.6.21 r′(t) = 〈2, 2, 1〉, so

r′(t)
|r′(t)| =

1

3
〈2, 2, 1〉 = 〈2/3, 2/3, 1/3〉.

11.6.22 r′(t) = 〈− sin t, cos t, 0〉, so
r′(t)
|r′(t)| =

1√
sin2 t+ cos2 t+ 0

〈− sin t, cos t, 0〉 = 〈− sin t, cos t, 0〉.

11.6.23 r′(t) = 〈0,−2 sin 2t, 4 cos 2t〉, so
r′(t)
|r′(t)| =

1√
4 sin2 2t+ 16 cos2 2t

〈0,−2 sin 2t, 4 cos 2t〉 = 1√
1 + 3 cos2 2t

〈0,− sin 2t, 2 cos 2t〉.

11.6.24 r′(t) = 〈cos t,− sin t,− sin t〉, so
r′(t)
|r′(t)| =

1√
cos2 t+ sin2 t+ sin2 t

〈cos t,− sin t,− sin t〉 = 1√
1 + sin2 t

〈cos t,− sin t,− sin t〉.

11.6.25 r′(t) = 〈1, 0,−2/t2〉, so
r′(t)
|r′(t)| =

1√
1 + (4/t4)

〈1, 0,−2/t2〉 = 1√
t4 + 4

〈t2, 0,−2〉.

11.6.26 r′(t) = 〈2e2t, 4e2t,−6e−3t〉, so
r′(t)
|r′(t)| =

1√
20e4t + 36e−6t

〈2e2t, 4e2t,−6e−3t〉 = 1√
5e4t + 9e−6t

〈e2t, 2e2t,−3e−3t〉.

11.6.27 r′(t) = 〈−2 sin 2t, 0, 6 cos 2t〉, so at t = π/2, we have r′(π/2) = 〈0, 0,−6〉. Thus, the unit tangent at
π/2 is 〈0, 0,−1〉.
11.6.28 r′(t) = 〈cos t,− sin t,−e−t〉, so at t = 0, we have r′(0) = 〈1, 0,−1〉. Thus, the unit tangent at 0 is
〈1/√2, 0,−1/

√
2〉.

11.6.29 r′(t) = 〈6, 0,−3/t2〉, so at t = 1, we have r′(1) = 〈6, 0,−3〉. Thus, the unit normal at 1 is
〈2/√5, 0,−1/

√
5〉.

11.6.30 r′(t) = 〈√7et, 3et, 3et〉, so at t = ln 2, we have r′(ln 2) = 〈2√7, 6, 6〉. Thus, the unit normal at ln 2
is 〈√7/5, 3/5, 3/5〉.
11.6.31 (t12 + 3t)u′(t) + u(t)(12t11 + 3) = (t12 + 3t)〈6t2, 2t, 0〉 + 〈2t3, (t2 − 1),−8〉(12t11 + 3) = 〈30t14 +
24t3, 14t13 − 12t11 + 9t2 − 3,−96t11 − 24〉.
11.6.32 (4t8 − 6t3)v′(t) + v(t)(32t7 − 18t2) = (4t8 − 6t3)〈et,−2e−t,−2e2t〉+ 〈et, 2e−t,−e2t〉(32t7 − 18t2) =
〈(4t8 + 32t7 − 6t3 − 18t2)et, (64t7 − 36t2 − 8t8 + 12t3)e−t, (−8t8 − 32t7 + 12t3 + 18t2)e2t〉.
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11.6.33 u′(t4−2t)·(4t3−2) = 〈6(t4−2t)2, 2(t4−2t), 0〉(4t3−2) = 〈6(t4−2t)2(4t3−2), 2(t4−2t)(4t3−2), 0〉 =
4t(2t3 − 1)(t3 − 2)〈3t(t3 − 2), 1, 0〉.

11.6.34 v′(
√
t) · 1

2
√
t
= 〈e

√
t,−2e−

√
t,−2e2

√
t〉 · 1

2
√
t
= 〈 e

√
t

2
√
t
,− 1√

te
√

t
,− e2

√
t√
t
〉.

11.6.35 u(t) · v′(t) + v(t) · u′(t) = 〈2t3, (t2 − 1),−8〉 · 〈et,−2e−t,−2e2t〉 + 〈et, 2e−t,−e2t〉 · 〈6t2, 2t, 0〉 =
2t3et − 2(t2 − 1)e−t + 16e2t + 6t2et + 4te−t + 0 = et(2t3 + 6t2)− 2e−t(t2 − 2t− 1) + 16e2t.

11.6.36 u(t)× v′(t) + u′(t)× v(t) = 〈2t3, (t2 − 1),−8〉 × 〈et,−2e−t,−2e2t〉+ 〈6t2, 2t, 0〉 × 〈et, 2e−t,−e2t〉 =
〈−2e2tt2 − 16e−t + 2e2t, 4e2tt3 − 8et,−4e−tt3 − ett2 + et〉+ 〈−2e2tt, 6e2tt2, 12e−tt2 − 2ett〉 =
〈−2e2tt2 − 2e2tt− 16e−t + 2e2t, 4e2tt3 + 6e2tt2 − 8et,−4e−tt3 + 12e−tt2 − ett2 − 2ett+ et〉.
11.6.37 〈t2, 2t2,−2t3〉 · 〈et, 2et, 3e−t〉+ 〈2t, 4t,−6t2〉 · 〈et, 2et,−3e−t〉 = t2et + 4t2et − 6t3e−t + 2tet + 8tet +
18t2e−t = 5t2et + 10tet − 6t3e−t + 18t2e−t.

11.6.38 〈t3,−2t,−2〉×〈1,−2t,−3t2〉+〈3t2,−2, 0〉×〈t,−t2,−t3〉 = 〈6t3−4t, 3t5−2, 2t−2t4〉+〈2t3, 3t5, 2t−
3t4〉 = 〈8t3 − 4t, 6t5 − 2, 4t− 5t4〉.
11.6.39 〈3t2,√t,−2/t〉·〈− sin t, 2 cos 2t,−3〉+〈6t, 1/(2√t), 2/t2〉·〈cos t, sin 2t,−3t〉 = −3t2 sin t+2

√
t cos 2t+

6t cos t+ sin(2t)/(2
√
t).

11.6.40 〈t3, 6,−2
√
t〉 × 〈3,−24t, 12t−3〉+ 〈3t2, 0,−1/

√
t〉 × 〈3t,−12t2,−6t−2〉 =

〈 72t3 − 48t3/2,−6
√
t− 12,−24t4 − 18〉+ 〈−12t3/2, 18− 3

√
t,−36t4〉 = 〈 72t3 − 60t3/2, 6− 9

√
t,−60t4 − 18〉.

11.6.41 r′(t) = 〈2t, 1, 0〉. r′′(t) = 〈2, 0, 0〉. r′′′(t) = 〈0, 0, 0〉.
11.6.42 r′(t) = 〈36t11 − 2t, 8t7 +3t2,−4t−5〉. r′′(t) = 〈396t10 − 2, 56t6 +6t, 20t−6〉. r′′′(t) = 〈3960t9, 336t5 +
6,−120t−7〉.
11.6.43 r′(t) = 〈−3 sin 3t, 4 cos 4t,−6 sin 6t〉. r′′(t) = 〈−9 cos 3t,−16 sin 4t,−36 cos 6t〉.
r′′′(t) = 〈27 sin 3t,−64 cos 4t, 216 sin 6t〉.
11.6.44 r′(t) = 〈4e4t,−8e−4t,−2e−t〉. r′′(t) = 〈16e4t, 32e−4t, 2e−t〉. r′′′(t) = 〈64e4t,−128e−4t,−2e−t〉.

11.6.45 r′(t) = 〈 1
2
√
t+4

, 1
(t+1)2 , 2e

−t2t〉. r′′(t) = 〈− 1
4(t+4)3/2

,− 2
(t+1)3 , e

−t2
(
2− 4t2

)〉.
r′′′(t) = 〈 3

8(t+4)5/2
, 6
(t+1)4 , 4e

−t2t
(
2t2 − 3

)〉.
11.6.46 r′(t) = 〈sec2(t), 1− 1

t2 ,− 1
t+1 〉. r′′(t) = 〈2 tan(t) sec2(t), 2

t3 ,
1

(t+1)2 〉.
r′′′(t) = 〈2 sec4(t) + 4 tan2(t) sec2(t),− 6

t4 ,− 2
(t+1)3 〉.

11.6.47

∫
〈t4 − 3t, 2t− 1, 10〉 dt = 〈t5/5− 3t2/2, t2 − t, 10t〉+C.

11.6.48

∫
〈5t−4 − t2, t6 − 4t3, 2/t〉 dt = 〈(−5/3)t−3 − t3/3, t7/7− t4, 2 ln |t|〉+C.

11.6.49

∫
〈2 cos t, 2 sin 3t, 4 cos 8t〉 dt = 〈2 sin t, (−2/3) cos 3t, (1/2) sin 8t〉+C.

11.6.50

∫
〈tet, t sin t2,− 2t√

t2 + 4
〉 dt = 〈(t− 1)et,−1

2
cos t2,−2

√
t2 + 4〉+C.

11.6.51

∫
〈e3t, 1

1 + t2
,
−1√
2t
〉 dt = 〈e3t/3, tan−1 t,−

√
2t〉+C.

11.6.52

∫
〈2t, 1

1 + 2t
, ln t〉 dt = 〈2t/(ln 2), 1

2
ln |1 + 2t|, t ln t− t〉+C.
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11.6.53

∫
〈et, sin t, sec2 t〉 dt = 〈et,− cos t, tan t〉 + C. Because r(0) = 〈2, 2, 2〉 = 〈1,−1, 0〉 + C, we have

C = 〈1, 3, 2〉. Thus, r(t) = 〈et,− cos t, tan t〉+ 〈1, 3, 2〉 = 〈1 + et, 3− cos t, 2 + tan t〉.

11.6.54

∫
〈0, 2, 2t〉 dt = 〈0, 2t, t2〉 +C. Because r(1) = 〈4, 3,−5〉, we have r(1) = 〈0, 2, 1〉 + C = 〈4, 3,−5〉,

so C = 〈4, 1,−6〉. Thus, r(t) = 〈4, 2t+ 1, t2 − 6〉.

11.6.55

∫
〈1, 2t, 3t2〉 dt = 〈t, t2, t3〉 + C. Because r(1) = 〈4, 3,−5〉, we have 〈1, 1, 1〉 + C = 〈4, 3,−5〉, so

C = 〈3, 2,−6〉, and r(t) = 〈t+ 3, t2 + 2, t3 − 6〉.

11.6.56

∫
〈√t, cosπt, 4/t〉 dt = 〈(2/3)t3/2, (sinπt)/π, 4 ln |t|〉+C. Because r(1) = 〈2, 3, 4〉, we have 〈2/3, 0, 0〉

+C = 〈2, 3, 4〉, so C = 〈4/3, 3, 4〉, and r(t) = 〈(2/3)t4/2 + 1/3, (sinπt)/π + 3, 4 ln |t|+ 4〉.

11.6.57

∫
〈e2t, 1 − 2e−t, 1 − 2et〉 dt = 〈e2t/2, t + 2e−t, t − 2et〉 + C. Because r(0) = 〈1, 1, 1〉, we have

〈1/2, 2,−2〉+C = 〈1, 1, 1〉, so C = 〈1/2,−1, 3〉, and r(t) = 〈e2t/2 + 1/2, t+ 2e−t − 1, t− 2et + 3〉.

11.6.58

∫
〈t/(t2 + 1), te−t2 ,− 2t√

t2 + 4
〉 dt = 〈1

2
ln(t2 + 1),−e−t2/2,−2

√
t2 + 4〉+C. Because

r(0) = 〈1, 3/2,−3〉, we have 〈0,−1/2,−4〉 + C = 〈1, 3/2,−3〉, so C = 〈1, 2, 1〉, and r(t) = 〈12 ln(t2 + 1) +

1,−e−t2/2 + 2,−2
√
t2 + 4 + 1〉.

11.6.59

∫ 1

−1

〈1, t, 3t2〉 dt = 〈t, t2/2, t3〉
∣∣∣∣1
−1

= 〈2, 0, 2〉.

11.6.60

∫ 4

1

〈6t2, 8t3, 9t2〉 dt = 〈2t3, 2t4, 3t3〉
∣∣∣∣4
1

= 〈128, 512, 192〉 − 〈2, 2, 3〉 = 〈126, 510, 189〉.

11.6.61

∫ ln 2

0

〈et, et cosπet〉 dt = 〈et, sinπe
t

π
〉
∣∣∣∣ln 2

0

= 〈2, 0〉 − 〈1, 0〉 = 〈1, 0〉 = i.

11.6.62∫ 1

1/2

〈 3

1 + 2t
, 0,−π csc2(πt/2)〉 dt = 〈3

2
ln(1 + 2t), 0, 2 cot(πt/2)〉

∣∣∣∣1
1/2

= 〈(3/2) ln 3, 0, 0〉 − 〈(3/2) ln 2, 0, 2〉 = 〈(3/2) ln(3/2), 0,−2〉.

11.6.63

∫ π

−π

〈sin t, cos t, 2t〉 dt = 〈− cos t, sin t, t2〉
∣∣∣∣π
−π

= 〈0, 0, 0〉.

11.6.64

∫ ln 2

0

〈e−t, 2e2t,−4et〉 dt = 〈−e−t, e2t,−4et〉
∣∣∣∣ln 2

0

= 〈1/2, 3,−4〉.

11.6.65

∫ 2

0

〈tet, 2tet,−tet〉 dt = 〈(t− 1)et, 2(t− 1)et,−(t− 1)et〉
∣∣∣∣2
0

= 〈e2 + 1, 2e2 + 2,−e2 − 1〉 = (e2 +

1)〈1, 2,−1〉.

11.6.66

∫ π/4

0

〈sec2 t,−2 cos t,−1〉 dt = 〈tan t,−2 sin t,−t〉
∣∣∣∣π/4
0

= 〈1,−
√
2,−π/4〉.
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11.6.67

a. False. For example, if r(t) = 〈cos t, sin t〉, then r′(t) = 〈− sin t, cos t〉 is not parallel to r(t), and is in
fact perpendicular to it.

b. True. r′(t) = 〈1, 2t − 2,−π sinπt〉 �= 〈0, 0, 0〉. Each component function is differentiable, and the
derivative is never 〈0, 0, 0〉, so the function is smooth by definition.

c. True. This follows because
∫ a

−a
o(x) dx = 0 for any odd function o(x).

11.6.68 r′(t) = 〈et, 2e2t, 3e3t〉, so r′(0) = 〈1, 2, 3〉. We have r(0) = 〈1, 1, 1〉, so the tangent line is given by
〈1 + t, 1 + 2t, 1 + 3t〉.

11.6.69 r′(t) = 〈− sin t, 2 cos 2t, 1〉, so r′(π/2) = 〈−1,−2, 1〉. We have r(π/2) = 〈2, 3, π/2〉, so the tangent
line is given by 〈2− t, 3− 2t, π/2 + t〉.

11.6.70 r′(t) = 〈 1√
2t+1

, π cosπt, 0〉, so r′(4) = 〈1/3, π, 0〉. We have r(4) = 〈3, 0, 4〉, so the tangent line is

given by 〈3 + (1/3)t, πt, 4〉.

11.6.71 r′(t) = 〈3, 7, 2t〉, so r′(1) = 〈3, 7, 2〉. We have r(1) = 〈2, 9, 1〉, so the tangent line is given by
〈2 + 3t, 9 + 7t, 1 + 2t〉.

11.6.72 u′(t3) · 3t2 = 3t2〈0, 1, 2t3〉 = 〈0, 3t2, 6t5〉.

11.6.73 v′(et) · et = et〈2et,−2, 0〉 = 〈2e2t,−2et, 0〉.

11.6.74 g(t)v′(t) + v(t)g′(t) = (2
√
t)〈2t,−2, 0〉+ 〈t2,−2t, 1〉

(
1√
t

)
= 〈5t3/2,−6

√
t, t−1/2〉.

11.6.75 v′(g(t))g′(t) = 〈4√t,−2, 0〉
(

1√
t

)
= 〈4,−2/

√
t, 0〉.

11.6.76 u(t) ·v′(t)+u′(t) ·v(t) = 〈1, t, t2〉 · 〈2t,−2, 0〉+ 〈0, 1, 2t〉 · 〈t2,−2t, 1〉 = (2t−2t+0)+0−2t+2t = 0.

11.6.77 u(t) × v′(t) + u′(t) × v(t) = 〈1, t, t2〉 × 〈2t,−2, 0〉 + 〈0, 1, 2t〉 × 〈t2,−2t, 1〉 = 〈2t2, 2t3,−2t2 − 2〉 +
〈4t2 + 1, 2t3,−t2〉 = 〈6t2 + 1, 4t3,−3t2 − 2〉

11.6.78 r′(t) = 〈−a sin t, a cos t〉, and r(t) · r′(t) = 〈a cos t, a sin t〉 · 〈−a sin t, a cos t〉 = −a2 cos t sin t +
a2 sin t cos t = 0. So r(t) and r′(t) are orthogonal for all t.

11.6.79 r′(t) = 〈2at, 1〉. We have r(t) · r′(t) = 0 when (2at)(at2 + 1) + t(1) = 0, which occurs only for t = 0
because 2a2t2 + 2a+ 1 > 0 for all t. The corresponding point on the parabola is (1, 0).

11.6.80 r′(t) = 〈1/(2√t), 0, 1〉. We have r(t) · r′(t) = 0 when 1/2 + 0 + t = 0, so for t = −1/2, which isn’t
in the domain. So the vectors r and r′ are never orthogonal.

11.6.81 r′(t) = 〈− sin t, cos t, 1〉. We have r(t) · r′(t) = 0 when − sin t cos t+ sin t cos t+ t = 0, which occurs
only for t = 0. So the only point on the helix where these vectors are orthogonal is at t = 0. This corresponds
to the point (1, 0, 0).

11.6.82 r′(t) = 〈−2 sin t, 8 cos t, 0〉. We have r(t) · r′(t) = 0 when −4 sin t cos t+ 64 sin t cos t+ 0 = 0, which
occurs when 60 sin t cos t = 0, or t = 0, t = π/2, t = π, t = 3π/2, and t = 2π.

The corresponding points are (2, 0, 0), (0, 8, 0), (−2, 0, 0), and (0,−8, 0).

11.6.83 Note that r(t) = 〈a1t, a2t, a3t〉 = t〈a1, a2, a3〉 where the ai’s are real numbers has this property
because r′(t) = 〈a1, a2, a3〉, and r(t) is a multiple of r′(t).

Also, r(t) = 〈a1ekt, a2ekt, a3ekt〉 where k is a real number has this property, as its derivative is k times
itself.
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11.6.84

a. This is equal to u(0) · v′(0) + u′(0) · v(0) = 〈0, 1, 1〉 · 〈1, 1, 2〉+ 〈0, 7, 1〉 · 〈0, 1, 1〉 = 1 + 2 + 7 + 1 = 11.

b. This is equal to u(0)×v′(0)+u′(0)×v(0) = 〈0, 1, 1〉×〈1, 1, 2〉+〈0, 7, 1〉×〈0, 1, 1〉 = 〈1, 1,−1〉+〈6, 0, 0〉 =
〈7, 1,−1〉.

c. This is equal to − sin(0) · u(0) + cos(0) · u′(0) = 〈0, 7, 1〉.
11.6.85

a. r(t) · r′(t) = (a2 + b2 + c2)t = |r(t)| |r′(t)| cos θ, so cos θ = (a2+b2+c2)t√
a2+b2+c2t·√a2+b2+c2

= 1, so θ = 0.

b. r(t) · r′(t) = ax0 + by0 + cz0 + (a2 + b2 + c2)t = |r(t)| |r′(t)| cos θ, so

cos θ =
ax0 + by0 + cz0 + (a2 + b2 + c2)t√

(x0 + at)2 + (y0 + bt)2 + (z0 + ct)2 · √a2 + b2 + c2
.

Because x0, y0, and z0 are not all 0, cos θ depends on t.

c. In part a, the curve is a straight line through the origin, so the position vector and the tangent vector
are parallel for all t. In part b, the line is not through the origin, so the tangent vector (which is the
direction vector for the line) is not parallel to the position vector.

11.6.86
d

dt
(u(t)+v(t)) =

d

dt
〈u1(t)+ v1(t), u2(t)+ v2(t), u3(t)+ v3(t)〉 = 〈u′

1(t)+ v′1(t), u
′
2(t)+ v′2(t), u

′
3(t)+

v′3(t)〉 = u′(t) + v′(t).

11.6.87

d

dt
(f(t)u(t)) =

d

dt
〈f(t)u1(t), f(t)u2(t), f(t)u3(t)〉

= 〈f ′(t)u1(t) + f(t)u′
1(t)+, f ′(t)u2(t) + f(t)u′

2(t), f
′(t)u3(t) + f(t)u′

3(t)〉
= f ′(t)u(t) + f(t)u′(t).

11.6.88

d

dt
(u× v) =

d

dt
〈u2v3 − v2u3, u3v1 − v3u1, u1v2 − u2v1〉

= 〈u′
2v3 + u2v

′
3 − (v′2u3 + v2u

′
3), u

′
3v1 + u3v

′
1 − (u′

1v3 + u1v
′
3), u

′
1v2 + u1v

′
2 − (v′1u2 + v1u

′
2)〉

= 〈u′
2v3 − v2u

′
3 + u2v

′
3 − v′2u3, u3v

′
1 − u1v

′
3 + u′

3v1 − u′
1v3, u

′
1v2 − v1u

′
2 + u1v

′
2 − v′1u2〉

= 〈(u′
2v3 − v2u

′
3), (u3v

′
1 − u1v

′
3), (u

′
1v2 − v1u

′
2)〉+ 〈(u2v

′
3 − v′2u3), (u

′
3v1 − u′

1v3), (u1v
′
2 − v′1u2〉

= (u′(t)× v(t)) + (u(t)× v′(t))

11.6.89

a.
r′(t) = 〈3t2, 3t2〉, so r′(0) = 〈0, 0〉. There is

no cusp because limt→0
dy
dx = dy/dt

dx/dt =
3t2

3t2 = 1
exists.

x

y

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0
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b.
r′(t) = 〈3t2, 2t〉, so r′(0) = 〈0, 0〉. There is

a cusp because limt→0
dy
dx = limt→0

dy/dt
dx/dt =

limt→0
2t
3t2 = limt→0

2
3t does not exist.

x

y

�1.0 �0.5 0.5 1.0

1.0

0.2

0.4

0.6

0.8

c. The curve r(t) for −∞ < t < ∞ traces out the whole curve y = x2, while the curve p(t) only traces
out the part in the first quadrant, because x = t2 > 0 for all t.

d. r′(t) = 〈mtm−1, ntn−1〉, so r′(0) = 〈0, 0〉.
Assume m > n. There is a cusp because

lim
t→0

dy

dx
= lim

t→0

dy/dt

dx/dt
= lim

t→0

ntn−1

mtm−1
= lim

t→0
(n/m)

1

tm−n
,

which does not exist.

Now assume m < n. There is a cusp because

lim
t→0

dx

dy
= lim

t→0

dx/dt

dy/dt
= lim

t→0

mtm−1

ntn−1
= lim

t→0
(m/n)

1

tn−m
,

which does not exist.

11.6.90 If r(t) = 〈x(t), y(t), z(t)〉 lies on the sphere x2 + y2 + z2 = a2, then (differentiating with respect to
t) we have 2xdx

dt + 2y dy
dt + 2z dz

dt = 0, so 〈x, y, z〉 · 〈x′, y′, z′〉 = 0, so r(t) is orthogonal to r′(t).
If r(t) · r′(t) = 0, then xdx

dt + y dy
dt + z dz

dt = 0, so 2xdx
dt + 2y dy

dt + 2z dz
dt = 0, so by integrating both sides

with respect to t, we have x2 + y2 + z2 = K for some constant K > 0, so the curve lies on a sphere.

11.7 Motion in Space

11.7.1 The velocity is the derivative of position, the speed is the magnitude of velocity, and the acceleration
is the derivative of velocity.

11.7.2 For the circle r(t) = 〈a cos t, a sin t〉 for a > 0, the two vectors are orthogonal, with the velocity vector
tangent to the circle.

11.7.3 ma(t) = F(t).

11.7.4 ma(t) = 〈mx′′(t),my′′(t),mz′′(t)〉 = F(t) = 〈0, 0,−mg〉.

11.7.5 Integrate the acceleration to find an expression for the velocity plus a constant, and then use the
initial velocity condition to find the constant.

11.7.6 Integrate the velocity to find an expression for the position plus a constant, and then use the initial
position condition to find the constant.

11.7.7

a. v(t) = 〈6t, 8t〉, so the speed is
√
36t2 + 64t2 =

√
100t2 = 10t.

b. a(t) = 〈6, 8〉.
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11.7.8

a. v(t) = 〈5t, 12t〉, so the speed is
√
25t2 + 144t2 =

√
169t2 = 13t.

b. a(t) = 〈5, 12〉.
11.7.9

a. v(t) = r′(t) = 〈2,−4〉, so the speed is |r′(t)| = √
20 = 2

√
5.

b. a(t) = r′′(t) = 〈0, 0〉.
11.7.10

a. v(t) = r′(t) = 〈−2t, 6t2〉, so the speed is |r′(t)| = √
4t2 + 36t4 = 2 |t| √1 + 9t2.

b. a(t) = r′′(t) = 〈−2, 12t〉.
11.7.11

a. v(t) = r′(t) = 〈8 cos t,−8 sin t〉, so the speed is |r′(t)| = 8.

b. a(t) = r′′(t) = 〈−8 sin t,−8 cos t〉.
11.7.12

a. v(t) = r′(t) = 〈−3 sin t, 4 cos t〉, so the speed is |r′(t)| =
√
9 sin2 t+ 16 cos2 t =

√
9 + 7 cos2 t.

b. a(t) = r′′(t) = 〈−3 cos t,−4 sin t〉.
11.7.13

a. v(t) = 〈2t, 2t, t〉, so the speed is
√
4t2 + 4t2 + t2 = 3t.

b. a(t) = 〈2, 2, 1〉.
11.7.14

a. v(t) = 〈4e2t, 2e2t, 4e2t〉, so the speed is
√
16e4t + 4e4t + 16e4t = 6e2t.

b. a(t) = 〈8e2t, 4e2t, 8e2t〉.
11.7.15

a. v(t) = r′(t) = 〈1,−4, 6〉, so the speed is |r′(t)| = √
1 + 16 + 36 =

√
53.

b. a(t) = r′′(t) = 〈0, 0, 0〉.
11.7.16

a. v(t) = r′(t) = 〈3 cos t,−5 sin t, 4 cos t〉, so the speed is |r′(t)| =
√
25 cos2 t+ 25 sin2 t = 5.

b. a(t) = r′′(t) = 〈−3 sin t,−5 cos t,−4 sin t〉.
11.7.17

a. v(t) = r′(t) = 〈0, 2t,−e−t〉, so the speed is |r′(t)| = √
4t2 + e−2t.

b. a(t) = r′′(t) = 〈0, 2, e−t〉.
11.7.18

a. v(t) = r′(t) = 〈−26 sin 2t, 24 cos 2t, 10 cos 2t〉, so the speed is

|r′(t)| =
√
676 sin2 2t+ 576 cos2 2t+ 100 cos2 2t = 26.
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b. a(t) = r′′(t) = 〈−52 cos 2t,−48 sin 2t,−20 sin 2t〉.

11.7.19

a. The interval must be shrunk by a factor
of 2, so [c, d] = [0, 1].

b. r′(t) = 〈1, 2t〉, and R′(t) = 〈2, 8t〉.
c. |r′(t)| =

√
1 + 4t2 and |R′(t)| =

2
√
1 + 16t2.

0.5 1.0 1.5 2.0 t

1

2

3

4

The speed of r(t).

0.2 0.4 0.6 0.8 1.0 t

2

4

6

8

The speed of R(t).

11.7.20

a. The interval must be shrunk by a factor
of 3, so [c, d] = [0, 2].

b. r′(t) = 〈3, 4〉, and R′(t) = 〈9, 12〉.
c. |r′(t)| =

√
9 + 16 = 5 and |R′(t)| =√

81 + 144 = 15.

1 2 3 4 5 6 t

2

4

6

8

10

The speed of r(t).

0.5 1.0 1.5 2.0 t

5

10

15

20

25

30

The speed of R(t).
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11.7.21

a. The interval must be shrunk by a factor
of 1/3, so [c, d] = [0, 2π/3].

b. r′(t) = 〈− sin t, 4 cos t〉, and R′(t) =
〈−3 sin 3t, 12 cos 3t〉.

c. |r′(t)| =
√
sin2 t+ 16 cos2 t and

|R′(t)| = 3
√

sin2 3t+ 16 cos2 3t.

0 1 2 3 4 5 6
t

2

4

6

8

10

12

The speed of r(t).

0.5 1.0 1.5 2.0
t

2

4

6

8

10

12

The speed of R(t).

11.7.22

a. Because e0 = 1 and eln 10 = 10, we have
[c, d] = [1, 10].

b. r′(t) = 〈−e−t, e−t〉, and R′(t) =
〈−1, 1/t2〉.

c. |r′(t)| =
√
e2t + e−2t =

√
2 cosh(2t)

and |R′(t)| =√1 + 1/t4.
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11.7.23

a. Because e0
2

= 1 and e6
2

= e36, we have
[c, d] = [1, e36].

b. r′(t) = 〈2t,−8t3, 18t5〉, and R′(t) =
〈1/t, (−4 ln t)/t, (9 ln2 t)/t〉.

c. |r′(t)| = 2t
√
1 + 16t4 + 81t8 and

|R′(t)| = 1
t

√
1 + 16 ln2 t+ 81 ln4 t.
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11.7.24

a. The interval must be shrunk by a factor
of 1/2 so [c, d] = [0, π/2].

b. r′(t) =
〈−4 sin 2t, 2

√
2 cos 2t, 2

√
2 cos 2t〉,

R′(t) =
〈−8 sin 4t, 4

√
2 cos 4t, 4

√
2 cos 4t〉.

c. |r′(t)| =√
16 sin2 2t+ 8 cos2 2t+ 8 cos2 2t =√
16 = 4, while we have |R′(t)| =√
64 sin2 4t+ 32 cos2 4t+ 32 cos2 4t =

8.

y

0 `
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8

t

�Vr�

The speed of r(t).
y

0 q

4

8

t

�VR�

The speed of R(t).

11.7.25 Note that x2 + y2 = 64, so the trajectory lies on a circle centered at the origin of radius 8.
r(t) · r′(t) = 〈8 cos 2t, 8 sin 2t〉 · 〈−16 sin 2t, 16 cos 2t〉 = −128 sin 2t cos 2t+ 128 sin 2t cos 2t = 0.

11.7.26 Note that x2+ y2 = 16 sin2 t+4 cos2 t = 4+12 sin2 t which is not a constant, so the trajectory does
not lie on a circle centered at the origin.

11.7.27 Note that x2 + y2 = (sin t +
√
3 cos t)2 + (

√
3 sin t − cos t)2 = (sin2 t + 2 sin t

√
3 cos t + 3 cos2 t) +

(3 sin2 t − 2 cos t
√
3 sin t + cos2 t) = 4, so the trajectory lies on a circle centered at the origin of radius 2.

r(t) · r′(t) = 〈sin t + √
3 cos t,

√
3 sin t − cos t〉 · 〈cos t − √

3 sin t,
√
3 cos t + sin t〉 = (sin t cos t − √

3 sin2 t +√
3 cos2 t− 3 sin t cos t) + (3 sin t cos t+

√
3 sin2 t−√

3 cos2 t− sin t cos t) = 0.

11.7.28 x2 + y2 + z2 = 9 sin2 t+ 25 cos2 t+ 16 sin2 t = 25, so the trajectory lies on a sphere centered at the
origin of radius 5. r(t) · r′(t) = 〈3 sin t, 5 cos t, 4 sin t〉 · 〈3 cos t,−5 sin t, 4 cos t〉 = 9 sin t cos t − 25 sin t cos t +
16 sin t cos t = 0.

11.7.29 x2 + y2 + z2 = sin2 t + cos2 t + cos2 t = 1 + cos2 t, which is not a constant, so the trajectory does
not lie on a sphere centered at the origin.

11.7.30 x2+y2+z2 = (
√
3 cos t+

√
2 sin t)2+(−√

3 cos t+
√
2 sin t)2+(

√
2 sin t)2 = (3 cos2 t+2

√
6 sin t cos t+

2 sin2 t) + (3 cos2 t − 2
√
6 sin t cos t + 2 sin2 t) + 2 sin2 t = 6, so the trajectory lies on a sphere centered

at the origin of radius
√
6. r(t) · r′(t) = 〈√3 cos t +

√
2 sin t,−√

3 cos t +
√
2 sin t,

√
2 sin t〉 · 〈−√

3 sin t +√
2 cos t,

√
3 sin t +

√
2 cos t,

√
2 cos t〉 = (−3 sin t cos t +

√
6 cos2 t −√

6 sin2 t + 2 sin t cos t) + (−3 sin t cos t −√
6 cos2 t+

√
6 sin2 t+ 2 sin t cos t) + (2 sin t cos t) = 0.

11.7.31 v(t) =

∫
a(t) dt =

∫
〈0, 1〉 dt = 〈0, t〉 + C. Because v(0) = 〈2, 3〉, we have C = 〈2, 3〉. Thus,

v(t) = 〈2, t+ 3〉.
r(t) =

∫
v(t) dt =

∫
〈2, t + 3〉 dt = 〈2t, t2/2 + 3t〉 + D. Because r(0) = 〈0, 0〉, we have D = 〈0, 0〉.

Therefore, r(t) = 〈2t, t2/2 + 3t〉.

11.7.32 v(t) =

∫
a(t) dt =

∫
〈1, 2〉 dt = 〈t, 2t〉 + C. Because v(0) = 〈1, 1〉, we have C = 〈1, 1〉. Thus,

v(t) = 〈t+ 1, 2t+ 1〉.
r(t) =

∫
v(t) dt =

∫
〈t+ 1, 2t+ 1〉 dt = 〈t2/2 + t, t2 + t〉+D. Because r(0) = 〈2, 3〉, we have D = 〈2, 3〉.

Therefore, r(t) = 〈t2/2 + t+ 2, t2 + t+ 3〉.
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11.7.33 v(t) =

∫
a(t) dt =

∫
〈0, 10〉 dt = 〈0, 10t〉+C. Because v(0) = 〈0, 5〉, we have v(t) = 〈0, 10t+ 5〉.

Also, r(t) =

∫
v(t) dt =

∫
〈0, 10t + 5〉 dt = 〈0, 5t2 + 5t〉 + D, and because r(0) = 〈1,−1〉, we have

r(t) = 〈1, 5t2 + 5t− 1〉.

11.7.34 v(t) =

∫
a(t) dt =

∫
〈1, t〉 dt = 〈t, t2/2〉+C. Because v(0) = 〈2,−1〉, we have v(t) = 〈t+2, t2/2−1〉.

Also, r(t) =

∫
v(t) dt =

∫
〈t + 2, t2/2 − 1〉 dt = 〈t2/2 + 2t, t3/6 − t〉 +D, and because r(0) = 〈0, 8〉, we

have r(t) = 〈t2/2 + 2t, t3/6− t+ 8〉.

11.7.35 v(t) =

∫
a(t) dt =

∫
〈cos t, 2 sin t〉 dt = 〈sin t,−2 cos t〉 + C. Because v(0) = 〈0, 1〉, we have

v(t) = 〈sin t, 3− 2 cos t〉.
Also, r(t) =

∫
v(t) dt =

∫
〈sin t, 3− 2 cos t〉 dt = 〈− cos t, 3t− 2 sin t〉+D, and because r(0) = 〈1, 0〉, we

have r(t) = 〈2− cos t, 3t− 2 sin t〉.

11.7.36 v(t) =

∫
a(t) dt =

∫
〈e−t, 1〉 dt = 〈−e−t, t〉+C. Because v(0) = 〈1, 0〉, we have v(t) = 〈2− e−t, t〉.

Also, r(t) =

∫
v(t) dt =

∫
〈2 − e−t, t〉 dt = 〈2t + e−t, t2/2〉 + D, and because r(0) = 〈0, 0〉, we have

r(t) = 〈2t+ e−t − 1, t2/2〉.
11.7.37

a. v(t) =

∫
〈0,−9.8〉 dt = 〈0,−9.8t〉+C, and because v(0) = 〈30, 6〉, we have v(t) = 〈30, 6− 9.8t〉.

Also, r(t) =

∫
v(t) dt =

∫
〈30, 6− 9.8t〉 dt = 〈30t, 6t− 4.9t2〉+D, and because r(0) = 〈0, 0〉, we have

r(t) = 〈30t, 6t− 4.9t2〉.

b.

1

2

10 20 30 400

y

x

c. The ball hits the ground when 6t−4.9t2 = 0, which
occurs for t = 6/4.9 ≈ 1.22 seconds. The range of
the ball is approximately 30 · 1.22 ≈ 36.7 meters.

d. The maximum height occurs at time T ≈ 1.22/2 =
.61 seconds, and is 6T − 4.9T 2 ≈ 1.84 meters.

11.7.38

a. v(t) =

∫
〈0,−32〉 dt = 〈0,−32t〉 + C, and because v(0) = 150〈√3/2, 1/2〉 = 〈75√3, 75〉, we have

v(t) = 〈75√3,−32t+ 75〉.
Also, r(t) =

∫
v(t) dt =

∫
〈75

√
3,−32t+75〉 dt = 〈75

√
3t,−16t2+75t〉+D, and because r(0) = 〈0, 0〉,

we have r(t) = 〈75√3t,−16t2 + 75t〉.

b. 0 100 200 300 400 500 600x0
20
40
60
80

100
y

c. The ball hits the ground when −16t2 + 75t = 0,
which occurs for t = 75/16 = 4.6875 seconds. The
range of the ball is approximately 75

√
3(4.6875) ≈

608.9 feet.

d. The maximum height occurs at time T ≈
4.6875/2 ≈ 2.344, and is −16(2.344)2 +
75(2.344) ≈ 87.89 feet.
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11.7.39

a. v(t) =

∫
〈0,−32〉 dt = 〈0,−32t〉+C, and because v(0) = 〈80, 10〉, we have v(t) = 〈80, 10− 32t〉.

Also, r(t) =

∫
v(t) dt =

∫
〈80, 10− 32t〉 dt = 〈80t, 10t− 16t2〉+D, and because r(0) = 〈0, 6〉, we have

r(t) = 〈80t, 6 + 10t− 16t2〉.

b. 0 20 40 60 80 x
2
6

10
y

c. The ball hits the ground when −16t2 + 10t+ 6 =
−2(t − 1)(8t + 3) = 0, which occurs for t = 1
second. The range of the ball is 80 · 1 = 80 feet.

d. The maximum height occurs at time T ≈ 10/32 ≈
.3125, and is −16(.3125)2 + 10(.3125) + 6 ≈ 7.56
feet.

11.7.40

a. v(t) =

∫
〈0,−32〉 dt = 〈0,−32t〉+C, and because v(0) = 132〈1, 0〉, we have v(t) = 〈132,−32t〉.

Also, r(t) =

∫
v(t) dt =

∫
〈132,−32t〉 dt = 〈132t,−16t2〉 + D, and because r(0) = 〈0, 10〉, we have

r(t) = 〈132t,−16t2 + 10〉.

b. 0 20 40 60 80 100 x
4
8

12

y

c. The ball hits the ground when −16t2 + 10 = 0,
which occurs for t =

√
10/16 ≈ .79 second. The

range of the ball is approximately 132(.79) ≈
104.36 feet.

d. The maximum height occurs at time T = 0, and
is 10 feet.

11.7.41

a. v(t) =

∫
〈0,−32〉 dt = 〈0,−32t〉 + C, and because v(0) = 250〈1/2,√3/2〉 = 〈125, 125√3〉, we have

v(t) = 〈125, 125√3− 32t〉.

Also, r(t) =

∫
v(t) dt =

∫
〈125, 125

√
3−32t〉 dt = 〈125t, 125

√
3t−16t2〉+D, and because r(0) = 〈0, 20〉,

we have r(t) = 〈125t, 20 + 125
√
3t− 16t2〉.

b.
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c. The ball hits the ground when 20+125
√
3t−16t2 =

0, which occurs for t ≈ 13.62 seconds. The range
of the ball is approximately 125·13.62 ≈ 1702 feet.

d. The maximum height occurs when 125
√
3− 32t =

0, which is when t ≈ 6.77 and it is about 20 +
125

√
3(6.77)− 16(6.77)2 ≈ 752.4 feet.
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11.7.42

a. v(t) =

∫
〈0,−9.8〉 dt = 〈0,−9.8t〉 + C, and because v(0) = 10

√
2〈√2/2,

√
2/2〉 = 〈10, 10〉, we have

v(t) = 〈10, 10− 9.8t〉.

Also, r(t) =

∫
v(t) dt =

∫
〈10, 10 − 9.8t〉 dt = 〈10t, 10t − 4.9t2〉 + D, and because r(0) = 〈0, 40〉, we

have r(t) = 〈10t, 40 + 10t− 4.9t2〉.

b. 0 10 20 30 40 x

10

20

30

40

50
y

c. The ball hits the ground when 40+10t−4.9t2 = 0,
which occurs when t ≈ 4.06 seconds. The range of
the ball is approximately 10 · 4.06 = 40.6 meters.

d. The maximum height occurs at the time when 10−
9.8t = 0, which is when t = 10/9.8 ≈ 1.02. The
height at this time is about 45.1 meters.

11.7.43 v(t) =

∫
a(t) dt =

∫
〈0, 0, 10〉 dt = 〈0, 0, 10t〉 + C. Because v(0) = 〈1, 5, 0〉, we have v(t) =

〈1, 5, 10t〉.
Also, r(t) =

∫
v(t) dt =

∫
〈1, 5, 10t〉 dt = 〈t, 5t, 5t2〉 + D, and because r(0) = 〈0, 5, 0〉, we have r(t) =

〈t, 5t+ 5, 5t2〉.

11.7.44 v(t) =

∫
a(t) dt =

∫
〈1, t, 4t〉 dt = 〈t, t2/2, 2t2〉 + C. Because v(0) = 〈20, 0, 0〉, we have v(t) =

〈t+ 20, t2/2, 2t2〉.
Also, r(t) =

∫
v(t) dt =

∫
〈t+20, t2/2, 2t2〉 dt = 〈t2/2+20t, t3/6, 2t3/3〉+D, and because r(0) = 〈0, 0, 0〉,

we have r(t) = 〈t2/2 + 20t, t3/6, 2t3/3〉.

11.7.45 v(t) =

∫
a(t) dt =

∫
〈sin t, cos t, 1〉 dt = 〈− cos t, sin t, t〉 + C. Because v(0) = 〈0, 2, 0〉, we have

v(t) = 〈1− cos t, sin t+ 2, t〉.
Also, r(t) =

∫
v(t) dt =

∫
〈1 − cos t, sin t + 2, t〉 dt = 〈t − sin t,− cos t + 2t, t2/2〉 + D, and because

r(0) = 〈0, 0, 0〉, we have r(t) = 〈t− sin t, 1− cos t+ 2t, t2/2〉.

11.7.46 v(t) =

∫
a(t) dt =

∫
〈t, e−t, 1〉 dt = 〈t2/2,−e−t, t〉 + C. Because v(0) = 〈0, 0, 1〉, we have v(t) =

〈t2/2, 1− e−t, t+ 1〉.
Also, r(t) =

∫
v(t) dt =

∫
〈t2/2, 1−e−t, t+1〉 dt = 〈t3/6, t+e−t, t2/2+t〉+D, and because r(0) = 〈4, 0, 0〉,

we have r(t) = 〈t3/6 + 4, t+ e−t − 1, t2/2 + t〉.
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11.7.47

a. v(t) =

∫
a(t) dt =

∫
〈0, 0,−9.8〉 dt =

〈0, 0,−9.8t〉 + C. Because v(0) =
〈200, 200, 0〉, we have v(t) =
〈200, 200,−9.8t〉.
Also, r(t) =

∫
v(t) dt =∫

〈200, 200,−9.8t〉 dt = 〈200t, 200t,−4.9t2〉+
D, and because r(0) = 〈0, 0, 1〉, we have
r(t) = 〈200t, 200t,−4.9t2 + 1〉.

b.

50

50

1

x

y

z

c. The bullet hits the ground when −4.9t2 + 1 = 0, which occurs for t ≈ .452 seconds. At this time,
the bullet is approximately at the point (200 · 0.452, 200 · 0.452, 0) ≈ (90.35, 90.35, 0). So its range is
approximately

√
90.352 + 90.352 ≈ 127.8 meters.

d. The maximum height of the bullet is its initial height of 1 meter.

11.7.48

a. v(t) =

∫
a(t) dt =

∫
〈0,−.8,−9.8〉 dt =

〈0,−.8t,−9.8t〉 + C. Because v(0) =
〈50, 0, 30〉, we have v(t) = 〈50,−.8t,−9.8t +
30〉.
Also, r(t) =

∫
v(t) dt =

∫
〈50,−.8t,−9.8t+

30〉 dt = 〈50t,−.4t2,−4.9t2 + 30t〉 + D, and
because r(0) = 〈0, 0, 0〉, we have r(t) =
〈50t,−.4t2,−4.9t2 + 30t〉. b.

c. The ball hits the ground when −4.9t2 + 30t = 0, which occurs for t ≈ 30/4.9 ≈ 6.12 seconds. At this
time, the ball is at the point ((50)(6.12),−.4(6.12)2, 0) ≈ (306,−14.98, 0). So its range is approximately√
3062 + 14.982 ≈ 306.4 meters.

d. The maximum height of the ball occurs when −9.8t+ 30 = 0, or when t = 30/9.8 ≈ 3.06 seconds. At
this time the ball’s height is about 30(3.06)− 4.9(3.06)2 ≈ 45.92 meters.

11.7.49

a. v(t) =

∫
a(t) dt =

∫
〈10, 0,−32〉 dt =

〈10t, 0,−32t〉 + C. Because v(0) =
〈60, 80, 80〉, we have v(t) = 〈10t +
60, 80,−32t+ 80〉.
Also, r(t) =

∫
v(t) dt =

∫
〈10t +

60, 80,−32t+80〉 dt = 〈5t2+60t, 80t,−16t2+
80t〉+D, and because r(0) = 〈0, 0, 3〉, we have
r(t) = 〈5t2 + 60t, 80t,−16t2 + 80t+ 3〉. b.

0

100

200

300

400

x 0 100 200 300 400

y

0

50

100

z

Copyright c© 2015 Pearson Education, Inc.



266 Chapter 11. Vectors and Vector-Valued Functions

c. The ball hits the ground when −16t2+80t+3 = 0, which occurs for t ≈ 5.04 seconds. At this time, the
ball is at the point (5(5.04)2 + 60(5.04), 80(5.04), 0) ≈ (429.4, 403.2, 0). So its range is approximately√
429.42 + 403.22 ≈ 589 feet.

d. The maximum height of the ball occurs when −32t + 80 = 0, or when t = 80/32 = 2.5 seconds. At
this time the ball’s height is about −16(2.5)2 + 80(2.5) + 3 = 103 feet.

11.7.50

a. v(t) =

∫
a(t) dt =

∫
〈0, 5,−32〉 dt =

〈0, 5t,−32t〉+C. Because v(0) = 〈30, 30, 80〉,
we have v(t) = 〈30, 5t+ 30,−32t+ 80〉.
Also, r(t) =

∫
v(t) dt =

∫
〈30, 5t +

30,−32t+80〉 dt = 〈30t, 5t2/2+ 30t,−16t2 +
80t〉+D, and because r(0) = 〈0, 0, 3〉, we have
r(t) = 〈30t, 5t2/2 + 30t,−16t2 + 80t+ 3〉.

b.
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c. The ball hits the ground when −16t2+80t+3 = 0, which occurs for t ≈ 5.04 seconds. At this time, the
ball is at the point (30(5.04), 5(5.04)2/2+30(5.04), 0) ≈ (151.2, 214.7, 0). So its range is approximately√
151.22 + 214.72 ≈ 263 feet.

d. The maximum height of the ball occurs when −32t + 80 = 0, or when t = 80/32 = 2.5 seconds. At
this time the ball’s height is about −16(2.5)2 + 80(2.5) + 3 = 103 feet.

11.7.51

a. v(t) =

∫
a(t) dt =

∫
〈0, 2.5,−9.8〉 dt =

〈0, 2.5t,−9.8t〉 + C. Because v(0) =
〈300, 400, 500〉, we have v(t) = 〈300, 2.5t +
400, 500− 9.8t〉.
Also, r(t) =

∫
v(t) dt =

∫
〈300, 2.5t +

400, 500 − 9.8t〉 dt = 〈300t, 1.25t2 +
400t, 500t − 4.9t2〉 + D, and be-
cause r(0) = 〈0, 0, 10〉, we have
r(t) = 〈300t, 1.25t2 +400t, 10+ 500t− 4.9t2〉.

b.
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c. The rocket hits the ground when −4.9t2 + 500t+ 10 = 0, which occurs for t ≈ 102.1 seconds. At this
time, the rocket is at the point (30630, 53870.5, 0). So its range is approximately

√
306302 + 53870.52 ≈

61969.6 meters.

d. The maximum height of the rocket occurs when −9.8t+500 = 0, or when t = 500/9.8 ≈ 51.02 seconds.
At this time the rocket’s height is about 10 + 500(51.02)− 4.9(51.02)2 ≈ 12, 765 meters.
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11.7.52

a. v(t) =

∫
a(t) dt =

∫
〈1.2, 0,−32〉 dt =

〈1.2t, 0,−32t〉 + C. Because v(0) =
〈0, 80, 80〉, we have v(t) = 〈1.2t, 80, 80−32t〉.
Also, r(t) =

∫
v(t) dt =

∫
〈1.2t, 80, 80 −

32t〉 dt = 〈.6t2, 80t, 80t − 16t2〉 + D, and
because r(0) = 〈0, 0, 0〉, we have r(t) =
〈.6t2, 80t, 80t− 16t2〉.

b.

c. The ball hits the ground when −16t2 +80t = 0, which occurs for t = 80/16 = 5 seconds. At this time,
the ball is at the point (15, 400, 0). So its range is approximately

√
152 + 4002 ≈ 400.28 feet.

d. The maximum height of the ball occurs when −32t + 80 = 0, or when t = 80/32 = 2.5 seconds. At
this time the ball’s height is about −16(2.5)2 + 80 · 2.5 = 100 feet.

11.7.53

a. False. For example, if v(t) = 〈cos t, sin t〉, then its speed is constantly 1 even though its components
aren’t constant.

b. True. They both generate {(x, y) |x2 + y2 = 1}.
c. False. For example, 〈t, t, t〉 has variable magnitude but constant direction.

d. True. If a(t) = 〈0, 0, 0〉, then v(t) = 〈0, 0, 0〉+C for a constant vector C.

e. False. Recall that for two-dimensional motion the range is given by |v0|2 sin 2α
g , so doubling the speed

should quadruple the range.

f. True. The time of flight is given by T = 2|v0| sinα
g , so doubling the speed doubles the time of flight.

g. True. For example, if v(t) = 〈et, et, et〉, then a(t) = 〈et, et, et〉 as well.

11.7.54 The time of flight is T = 2|v0| sinα
g = 2·20

32 = 1.25 seconds.

The range of the flight is |v0|22 sinα cosα
g = 400

32 = 12.5 feet.

The maximum height is given by (|v0| sinα)2

2g = 400
64 = 6.25 feet.

11.7.55 Note that 〈u0, v0〉 = 75〈√3, 1〉
The time of flight is T = 2|v0| sinα

g = 2·75
9.8 ≈ 15.3 seconds.

The range of the flight is |v0|22 sinα cosα
g = 11250

√
3

9.8 ≈ 1988.3 meters.

The maximum height is given by (|v0| sinα)2

2g = 752

19.6 ≈ 287 meters.

11.7.56 The time of flight is T = 2|v0| sinα
g = 2·80

9.8 ≈ 16.33 seconds.

The range of the flight is |v0|22 sinα cosα
g = 6400

9.8 ≈ 653 meters.

The maximum height is given by (|v0| sinα)2

2g = 802

19.6 ≈ 326.5 meters.

11.7.57 Note that 〈u0, v0〉 = 200〈1,√3〉 The time of flight is T = 2|v0| sinα
g = 2·200√3

32 = 21.65 seconds.

The range of the flight is |v0|22 sinα cosα
g = 80,000

√
3

32 = 4330.13 feet.

The maximum height is given by (|v0| sinα)2

2g = (200
√
3)2

64 = 1875 feet.
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11.7.58 Each of these values on the moon would be 6 times the corresponding value on the earth, because
the factor of g in the denominator would result in an extra factor of 6 if g were replaced by g/6.

11.7.59 We desire |v0|22 sinα cosα
g = 300 meters, so we require sin 2α = 300 · 9.8

602 ≈ .81666. So 2α =

sin−1(.81666), and α ≈ 27.4 degrees or α ≈ 62.62 degrees.

11.7.60

a.
Let V stand for the initial speed. The range is

given by V 2 sin 2α
g , so we require 9800

sin 2α = V 2,

so V =
√
9800 csc 2α.

0 Π

8

Π

4

3 Π

8
Π

2

Α

50

100

150

200

250

300

V

b. The speed is minimized when dV
dα = −9800 csc 2α cot 2α√

9800 csc 2α
= 0, which occurs when cos 2α = 0, or α = π/4.

At this value of α, the value of V is about 99 meters per second.

c. The flight time is given by T = 2|V | sinα
g , so if V =

√
9800 csc 2α, this would be T = 2

√
9800 csc 2α sinα

9.8 =

c
√
tanα. for a positive constant c. Thus T is an increasing function on (0, π/2), so smaller angles give

a shorter flight time, but no minimum exists on (0, π/2).

11.7.61

a. If t1 > t0 are two values of t, we have r(t1) − r(t0) = (f(t1) − f(t0))〈a, b, c〉, which is always a vector
in the same direction, regardless of the values of t1 and t0.

b. r′(t) = f ′(t)〈a, b, c〉 is a multiple of 〈a, b, c〉, so the tangent vector is always a multiple of the vector
〈a, b, c〉, so the motion of the object doesn’t vary in direction, although it might vary in speed.

11.7.62

a.

2

�2
�2 2

�6

�8

�10

�12

�14

�16

y

t

(4, 0)

PQ

(0, �16)

r(t)

R(t)

(�4, 0)

b. 2

2

0

4

6

8

4 6 8

y

t

�VR�

�Vr� � q

(8, �64)(0, �64)

(4, 1)

c. Both travelers arrive at t = 8.
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11.7.63

a. The object traverses the circle once over the interval [0, 2π/ω].

b. The velocity is v(t) = 〈−Aω sin(ωt), Aω cos(ωt)〉. The velocity is not constant in direction, but it is
constant in speed, because the speed is |Aω|.

c. The acceleration is a(t) =
−Aω2〈cosωt, sinωt〉.

d. The position and velocity are orthogonal.
The position and acceleration are in opposite
directions.

(0, 1)

(0, �1)

(1, 0)(�1, 0)

v(0)

v (�)

v(q)

v (w)

r (�)
� a (0)

r (0)
� a (�)

a (q)
� r (w)

a (w)
� r (q)

11.7.64

a. Note that r(t) = 〈(−7/5)t+ 1, (6/5)t+ 2, (6/5)t+ 4〉 has r(0) = 〈1, 2, 4〉 and r(5) = 〈−6, 8, 10〉.
b. Consider r(t) = et〈− 7

11 ,
6
11 ,

6
11 〉+ 〈 136 , 1, 3〉 for ln(11/6) ≤ t ≤ ln(77/6). Note that

r(ln(11/6)) =
11

6
〈−7/11, 6/11, 6/11〉+ 〈13/6, 1, 3〉 = 〈−7/6, 1, 1〉+ 〈13/6, 1, 3〉 = 〈1, 2, 4〉

and

r(ln(77/6)) =
77

6
〈−7/11, 6/11, 6/11〉+ 〈13/6, 1, 3〉 = 〈−49/6, 7, 7〉+ 〈13/6, 1, 3〉 = 〈−6, 8, 10〉.

Also |r′(t)| = |〈et(−7/11), et(6/11), et(6/11)〉| = et
√

49+36+36
112 = et. The fact that r(t) traverses a

straight line follows from exercise 49.

11.7.65

a. Consider r(t) = 〈5 sin(πt/6), 5 cos(πt/6)〉 for 0 ≤ t ≤ 12. Note that the speed is the constant 5π/6,
and that r(0) = (0, 5) = r(12).

b. Consider r(t) = 〈5 sin((1−e−t)/5), 5 cos((1−e−t)/5)〉 for − ln(10π+1) ≤ t ≤ 0. Note that r(− ln(10π+
1)) = (0, 5) = r(0). Also note that the speed is |r′(t)| = |e−t〈cos((1− e−t)/5),− sin((1− e−t)/5)〉| =
e−t.

11.7.66

a. Let r(t) = 〈cos 6t, sin 6t, 8t〉. Then r moves along the circular helix, but the speed is

|〈−6 sin 6t, 6 cos 6t, 8〉| =
√

36 sin2 6t+ 36 cos2 6t+ 64 = 10.

b. Let r(t) = 〈cos(t2/(2√2)), sin(t2/(2
√
2)), t2/(2

√
2)〉. Then r moves along the circular helix, but the

speed is∣∣∣∣〈− t√
2
sin(t2/(2

√
2)),

t√
2
cos(t2/(2

√
2)), t/

√
2〉
∣∣∣∣ =
√

t2

2
sin2(t2/(2

√
2)) +

t2

2
cos2(t2/(2

√
2)) +

t2

2
= t

for t ≥ 0.
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11.7.67

a. The velocity is v(t) = 〈−a sin t, b cos t〉 and

the speed is
√
a2 sin2 t+ b2 cos2 t.

b.

1

2

3

4

5

6

7

x

y

2��

c.

6

�6

x

y

max speed
(1, 0)

min speed
(0, 6)

(0, �6)
min speed

max speed
(�1, 0)

2 4 6�6 �4 �2 Yes, as the diagram indicates.

d. Assume a > b > 0. Then the maximum speed occurs at π/2 and is equal to a, while the minimum
speed occurs at π and is equal to b. So the ratio is a

b . In the case b > a > 0, the ratio is b
a .

11.7.68

a. Π 2 Π 3 Π 4 Π
x

0.5
1.0
1.5
2.0

y b. The velocity is 〈1 − cos t, sin t〉 and

the speed is
√
(1− cos t)2 + sin2 t =√

1− 2 cos t+ cos2 t+ sin2 t =
√
2− 2 cos t.

The speed is maximal when t = π, 3π and
minimal when t = 0, 2π, 4π.

c. The acceleration is 〈sin t, cos t〉 and |a(t)| =
√
sin2 t+ cos2 t = 1.

d. At t = 2π, dy
dx = dy/dt

dx/dt = sin t
1−cos t doesn’t exist, and the limit as t → 2π+ > 0 while the limit as

t → 2π− < 0.

11.7.69

a. The initial point is r(0) = 〈50, 0, 0〉, and the “terminal” point is 〈0, 0, 5〉 because lim
t→∞ e−t = 0, while

sin t and cos t are bounded between −1 and 1 as t → ∞.

b. The speed is given by

5e−t |〈−10(cos t+ sin t), 10(cos t− sin t), 1〉| ,

which can be written as 5e−t
√
201.

c. x

y

z

30
30

10

11.7.70 Let the angle be α. Then v(t) = 〈150 cosα, 150 sinα−32t〉, and r(t) = 〈150t cosα, 150t sinα−16t2〉.
Because we require the ball to land in the hole, we need the point (390, 40) to be on the curve. So 150t cosα =
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390 and 150t sinα − 16t2 = 40. Thus t = 390
150 cosα , and therefore 150 · 390·sinα

150 cosα − 16
(

390
150 cosα

)2
= 40. This

can be written 390 tanα− 2704
25 sec2 α− 40 = 0, or

390 tanα− 2704

25
(1 + tan2 α)− 40 = −2704

25
tan2 α+ 390 tanα− 3704

25
= 0.

By the quadratic formula, we have

tanα =
1

208

(
375−

√
81361

)
and tanα =

1

208

(
375 +

√
81361

)
.

Applying the inverse tangent and then writing the answer in degrees, we obtain α = 72.51 degrees and
α = 23.34 degrees

11.7.71 Let the angle be α. Then v(t) = 〈120 cosα, 120 sinα−32t〉, and r(t) = 〈120t cosα, 120t sinα−16t2〉.
Because we require the ball to land in the hole, we need the point (420,−50) to be on the curve. So

120t cosα = 420 and 120t sinα−16t2 = −50. Thus t = 420
120 cosα , and therefore 120 · 420·sinα

120 cosα −16
(

420
120 cosα

)2
=

−50. This can be written 420 tanα− 196 sec2 α+50 = −196 tan2 α+420 tanα− 146 = 0. By the quadratic
formula, we have

tanα =
1

14

(
15−

√
79
)

and tanα =
1

14

(
15 +

√
79
)
.

Applying the inverse tangent and then writing the answer in degrees, we obtain α = 59.63 degrees and
α = 23.58 degrees.

11.7.72 Let s be the initial speed of the ball. Note that v(t) = 〈s√2/2, s
√
2/2− 32t〉 and r(t) =

〈st√2/2, st
√
2/2− 16t2〉. Because we want the second coordinate to be 40 when the first coordinate is 390,

we have st
√
2/2 = 390 and st

√
2/2− 16t2 = 40. Solving the first equation for t yields t = 780√

2s
. Putting this

value into the second equation yields s · 780√
2s

·
√
2
2 − 16

(
780√
2s

)2
= 40. Solving this last equation for s yields

s =
√
8·780√
350

≈ 117.9.

11.7.73 Let s be the initial speed of the ball. Note that v(t) = 〈s√3/2, s/2−32t〉 and r(t) = 〈st√3/2, st/2−
16t2〉. Because we want the second coordinate to be −50 when the first coordinate is 420, we have st

√
3/2 =

420 and st/2−16t2 = −50. Solving the first equation for t yields t = 840√
3s
. Putting this value into the second

equation yields s · 840√
3s

· 1
2 − 16

(
840√
3s

)2
= −50. Solving this last equation for s yields s ≈ 113.4.

11.7.74

a. v(t) = 〈40,−9.8t〉 and r(t) = 〈40t, 8 − 4.9t2〉. Let x = 40t and y = 8 − 4.9t2. Then the equation of

trajectory is y = 8−4.9
(

x
40

)2
. The equation of the outrun surface is y = − 1√

3
x. These curves intersect

when 8 − 4.9
(

x
40

)2
= − 1√

3
x, which when solved for x yields 201.487, and then y = −116.329. The

distance from the origin to the landing points is
√
201.4872 + (−116.329)2 ≈ 232.657 meters.

b. In this scenario, v(t) = 〈40− .15t,−9.8t〉 and r(t) = 〈40t− .075t2, 8− 4.9t2〉. Let x = 40t− .075t2 and

y = 8− 4.9t2. Then 8−y
4.9 = t2, so x = 40

√
8−y
4.9 − .075( 8−y

4.9 ). Because we also have x = −√
3y, we are

looking for the solution to the equation −√
3y = 40

√
8−y
4.9 − .075( 8−y

4.9 ). This results in y = −114.29

and so x = 197.95. Then the length of the jump is
√

(−114.29)2 + 197.952 ≈ 228.575 meters.

c. v = 〈40 cos θ, 40 sin θ − 9.8t〉, and r(t) = 〈40t cos θ, 8 + 40t sin θ − 4.9t2〉. Let x = 40t cos θ and y =

8 + 40t sin θ − 4.9t2. Then the equation of trajectory is y = 8 + x tan θ − 4.9
(

x
40 cos θ

)2
. The equation

of the outrun surface is y = − 1√
3
x. These intersect when 8 + x tan θ − 4.9

(
x

40 cos θ

)2
= − 1√

3
x. Solving

for x in terms of θ (using a computer algebra system) gives

x =
0.5
(
1.04785

√
tan2 θ + 1.05164 tan θ + 0.392835 + tan θ + 0.57735

)
0.0030625 tan2 θ + 0.0030625

.

This is maximized for θ ≈ 29.41 degrees.
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11.7.75

a. v = 〈130, 0,−3− 32t〉 and r(t) = 〈130t, 0, 6− 3t− 16t2〉. When x = 60, t = 6/13, so z = 6− 3(6/13)−
16(6/13)2 ≈ 1.207 feet. The flight lasts t = 6/13 seconds.

b. Suppose that the initial velocity is 〈130, 0, b〉, so that v(t) = 〈130t, 0, 6 + bt − 16t2〉. So z = 3 =
6 + b(6/13)− 16(6/13)2, which when solved for b gives b = .8846.

c. In this scenario, we have v(t) = 〈130, 8t,−3− 32t〉 and r(t)〈130t, 4t2, 6− 3t− 16t2〉. As before, x = 60
when t = 6/13, and at that time y = 4(6/13)2 ≈ .8521 feet.

d. It moves more in the second half, because of the factor of t2. This makes life more difficult for the
batter!

e. In this case v(t) = 〈130, ct,−3 − 32t〉 and r(t) = 〈130t,−3 + ct2/2, 6 − 3t − 16t2〉. Again, we have

t = 6/13, and so we require −3 + c
(

6
13

)2 · 1
2 = 0, so c ≈ 28.17.

11.7.76

a. Let |v0| = v0. We have v(t) = 〈v0 cosα, v0 sinα − gt〉 and r(t) = 〈v0t cosα, v0t sinα − (1/2)gt2〉.
Let the point where the object strikes the ground be (a,−a tan θ). If T is the time of the flight, we
have a = v0T cosα and −a tan θ = v0T sinα − 1

2gT
2. Eliminating a from these two equations gives

T = 2v0

g (cosα tan θ + sinα). Eliminating T gives a =
2v2

0 cosα
g (cosα tan θ + sinα). The maximum

height occurs when v0 sinα − gt = 0, or t = v0 sinα
g . The value of the maximum height is y =

v2
0 sin2 α

g − g
2
v2
0 sin2 α
g2 =

v2
0 sin2 α
2g .

b. Again we have v(t) = 〈v0 cosα, v0 sinα− gt〉 and r(t) = 〈v0t cosα, v0t sinα− (1/2)gt2〉. Let the point
where the object strikes the ground be (a, a tan θ). If T is the time of the flight, we have a = v0T cosα
and a tan θ = v0T sinα− 1

2gT
2. Eliminating a from these two equations gives T = 2v0

g (− cosα tan θ +

sinα). Eliminating T gives a =
2v2

0 cosα
g (− cosα tan θ + sinα). The maximum height occurs when

v0 sinα−gt = 0, or t = v0 sinα
g . The value of the maximum height is y =

v2
0 sin2 α

g − g
2
v2
0 sin2 α
g2 =

v2
0 sin2 α
2g .

11.7.77 We have v(t) = 〈v0 cosα, v0 sinα − gt〉, and r(t) = 〈v0t cosα, y0 + v0t sinα − 1
2gt

2〉. Suppose
that object hits the ground at (a, 0). Then a = v0T cosα and 0 = y0 + v0T sinα − 1

2gT
2 where T is

the time of the flight. So by the quadratic formula, T =
v0 sinα+

√
v2
0 sin2 α+2gy0

g . Thus a = v0T cosα =

v0(cosα)

(
v0 sinα+

√
v2
0 sin2 α+2gy0

g

)
is the range. Because the maximum height when y0 = 0 is

v2
0 sin2 α
2g , the

maximum height in this scenario is y0 +
v2
0 sin2 α
2g .

11.7.78 We have x = u0t + x0, and y = − gt2

2 + v0t + y0. Eliminating t gives y = − g
2 ((x − x0)/u0)

2 +
v0((x− x0)/u0) + y0, which is a segment of a parabola. If y(T ) = 0, then we have − g

2T
2 + v0T + y0 = 0, so

T 2 − 2v0

g T − 2y0

g = 0, so by the quadratic formula we have T = v0
g +

√(
v0
g

)2
+ 2y0

g =
v0+

√
v2
0+2gy0

g .

11.7.79 Note that x2 + y2 = cos2 t+ sin2 t = 1, and z = cy, so this curve is the intersection of the cylinder
x2 + y2 = 1 with the plane z = cy, which results in an ellipse in that plane.

11.7.80

a. In right triangle ABO, we have tan θ = AB
OB =

b sin t
a cos t =

b
a tan t.

y

0 x
u

B

A (acos t, b sin t)
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b. θ = tan−1((b/a) tan t), so θ′(t) = 1
1+((b/a) tan t)2 · b

a sec2 t = ab
a2 cos2 t+b2 sin2 t

.

c. dA
dt = dA

dθ · dθ
dt = 1

2 |r(θ(t))|2 · ab
a2 cos2 t+b2 sin2 t

= 1
2ab.

d. Because dA
dt is a constant, the object sweeps out equal areas in equal times as it moves about the ellipse.

11.7.81 r(t) can be written 〈R cosφ cos t, R sinφ cos t, R sin t〉 where R is the radius of the sphere and φ is a
real constant. Note that

v(t) = 〈−R cosφ sin t,−R sinφ sin t, R cos t〉
and a(t) = 〈−R cosφ cos t,−R sinφ cos t,−R sin t〉, and that r(t) ·a(t) = −R2 cos2 φ cos2 t−R2 sin2 φ cos2 t−
R2 sin2 t = −R2(cos2 φ+ sin2 φ) cos2 t−R2 sin2 t = −R2(cos2 t+ sin2 t) = −R2 = − |v(t)|2.
11.7.82

a. |r(t)|2 = (a cos t+ b sin t)2 +(c cos t+ d sin t)2 = (a2 + c2) cos2 t+(2ab+2cd) sin t cos t+(b2 + d2) sin2 t.
In order for the path to be a circle, it would be sufficient that a2 + c2 = b2 + d2 and that ab+ cd = 0.

b. In order for the path to be an ellipse, it would be sufficient that ab+ cd = 0.

11.7.83

a. Consider the vector r(0) = 〈a, c, e〉. For any t so that 0 < t < 2π, consider the vector r(t). We will
show that all such vectors lie in the same plane by showing that when crossed with r(0), we always get
a multiple of the same vector.

Computing r(t)× 〈a, c, e〉 we obtain

〈de sin(t)− cf sin(t), af sin(t)− be sin(t), bc sin(t)− ad sin(t)〉 = sin t〈de− cf, af − be, bc− ad〉.
So for any t ∈ (0, 2π), we have that r(t) × 〈a, c, e〉 is a multiple of the constant vector 〈de − cf, af −
be, bc− ad〉. This can only happen if all the vectors r(t) lie in the same plane.

b. |r(t)|2 = (a cos t+ b sin t)2 + (c cos t+ d sin t)2 + (e cos t+ f sin t)2 = (a2 + c2 + e2) cos2 t+ (2ab+2cd+
2ef) sin t cos t + (b2 + d2 + f2) sin2 t In order for the path to be a circle, it would be sufficient that
a2 + c2 + e2 = b2 + d2 + f2 and that ab+ cd+ ef = 0. In order for the path to be an ellipse, it would
be sufficient that ab+ cd+ ef = 0.

11.8 Lengths of Curves

11.8.1 L =
∫ b

a

√
x′(t)2 + y′(t)2 dt =

∫ b

a

√
1 + 4 dt =

√
5(b− a).

11.8.2 To compute the length of the curve, compute L =
∫ b

a

√
f ′(t)2 + g′(t)2 + h′(t)2 dt.

11.8.3 The arc length is L =
∫ b

a
|r′(t)| dt = ∫ b

a
|v(t)| dt.

11.8.4 It travels a distance equal to the length of the path it traces in space:
∫ b

a
|r′(t)| dt = ∫ b

a
|v(t)| dt.

11.8.5 L =
∫ π

0
|〈−20 sin(2t), 20 cos(2t)〉| dt = 20π.

11.8.6 L =
∫ β

α

√
f(θ)2 + f ′(θ)2 dθ.

11.8.7 If the parameter t used to describe a trajectory also measures the arc length s of the curve that is
generated, then we say that the curve is parametrized by its arc length. This occurs when |v(t)| = 1.

11.8.8 Note that |v(t)| =
√
sin2 t+ cos2 t = 1, so it is parametrized by arc length.

The arc length is s =
∫ t

0
|v(t)| dt = ∫ t

0
1 dt = t.
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11.8.9 L =
∫ 1

0

√
36t2 + 64t2 dt =

∫ 1

0
10t dt = 5t2

∣∣∣∣1
0

= 5.

11.8.10 L =
∫ 1

0

√
9 + 16 + 1 dt =

√
26t

∣∣∣∣1
0

=
√
26.

11.8.11 L =
∫ π

0

√
(−3 sin t)2 + (3 cos t)2 dt =

∫ π

0
3 dt = 3π.

11.8.12 L =
∫ 2π/3

0

√
(−12 sin(3t))2 + (12 cos(3t))2 dt = 12(2π/3) = 8π.

11.8.13 Note that (cos t+t sin t)′ = − sin t+sin t+t cos t = t cos t, and (sin t−t cos t)′ = cos t−(cos t−t sin t) =

t sin t. L =
∫ π/2

0

√
(t cos t)2 + (t sin t)2 dt =

∫ π/2

0
t dt = t2

2

∣∣∣∣π/2
0

= π2

8 .

11.8.14 Note that (cos t+ sin t)′ = − sin t+ cos t, and (cos t− sin t)′ = − sin t− cos t.

L =

∫ 2π

0

√
(− sin t+ cos t)2 + (− sin t− cos t)2 dt =

∫ 2π

0

√
2− 2 cos t sin t+ 2 cos t sin t dt =

√
2(2π).

11.8.15 L =
∫ 6

1

√
32 + (−4)2 + 32 dt =

√
34(6− 1) = 5

√
34.

11.8.16 L =
∫ 6π

0

√
16 sin2 t+ 16 cos2 t+ 9 dt = 5(6π) = 30π.

11.8.17 L =
∫ 4π

0

√
1 + 64 cos2 t+ 64 sin2 t dt =

√
65(4π).

11.8.18 L =
∫ 2

0

√
t2 + (2t+ 1) dt =

∫ 2

0
(t+ 1) dt =

(
t2

2 + t
) ∣∣∣∣2

0

= 4.

11.8.19 L =
∫ ln 2

0

√
4e4t + 16e4t + 16e4t dt =

∫ ln 2

0
6e2t dt = 3e2t

∣∣∣∣ln 2

0

= 12− 3 = 9.

11.8.20 L =
∫ 4

0

√
4t2 + 9t4 dt =

∫ 4

0
t
√
4 + 9t2 dt. Let u = 4 + 9t2 so that du = 18t dt. Then L =

1
18

∫ 148

4

√
u du = 1

27 u3/2

∣∣∣∣148
4

= 8
27 (37

√
37− 1).

11.8.21 L =
∫ π/2

0

√
9 cos4 t sin2 t+ 9 sin4 t cos2 t dt =

∫ π/2

0
3 sin t cos t dt = 3

2 sin2 t

∣∣∣∣π/2
0

= 3
2 .

11.8.22 L =
∫ 2π

0

√
9 sin2 t+ 16 sin2 t+ 25 cos2 t dt = 5(2π) = 10π.

11.8.23 The speed is
√
36t4 + 9t4 + 225t4 =

√
270 t2. The length is thus L =

∫ 4

0

√
270 t2 dt =

√
270 t3

3

∣∣∣∣4
0

=
√
30(64− 0) = 64

√
30.

11.8.24 The speed is
√
100t2 sin2 t2 + 100t2 cos2 t2 + 242t2 dt =

√
100t2 + 576t2 = 26t. The length is thus

L =
∫ 2

0
26t dt = 13t2

∣∣∣∣2
0

= 52.

11.8.25 The speed is 2
√

(13 cos 2t)2 + (−12 sin 2t)2 + (−5 sin 2t)2 = 2 · √169 = 26. The length is thus
L =

∫ π

0
26 dt = 26π.

11.8.26 The speed is et
√
(sin t+ cos t)2 + (cos t− sin t)2 + 12 = et

√
3. The length is thus L =

∫ ln 2

0

√
3et dt

=
√
3 et

∣∣∣∣ln 2

0

=
√
3(2− 1) =

√
3.
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11.8.27 L =
∫ 2π

0

√
4 sin2 t+ 16 cos2 t dt =

∫ 2π

0

√
4 + 12 cos2 t dt = 2

∫ 2π

0

√
1 + 3 cos2 t dt ≈ 19.38.

11.8.28 L =
∫ 2π

0

√
4 sin2 t+ 16 cos2 t+ 36 sin2 t dt =

∫ 2π

0

√
16 sin2 t+ 16 cos2 t+ 24 sin2 t dt =

2
∫ 2π

0

√
4 + 6 sin2 t dt ≈ 32.85.

11.8.29 L =
∫ 2

−2

√
1 + 64t2 dt ≈ 32.5.

11.8.30 L =
∫ ln 3

0

√
e2t + 4e−2t + 1 dt ≈ 2.73.

11.8.31 Note that the diameter of the circle is a, and that the complete circle is traversed for 0 ≤ t ≤ π.
L =

∫ π

0

√
(a sin θ)2 + (a cos θ)2 dθ =

∫ π

0
a dθ = πa.

11.8.32 L =
∫ 2π

0

√
(2− 2 sin θ)2 + 4 cos2 θ dθ =

∫ 2π

0

√
8− 8 sin θ dθ. By symmetry, this is

2
√
8

∫ π/2

−π/2

√
1− sin θ ·

√
1 + sin θ√
1 + sin θ

dθ = 2
√
8

∫ π/2

−π/2

cos θ√
1 + sin θ

dθ.

Let u = 1 + sin θ so that du = cos θ dθ. Then we have L = 2
√
8
∫ 2

0
u−1/2 du = 4

√
8 · √u

∣∣∣∣2
0

= 4
√
8 · √2 = 16.

11.8.33 L =
∫ 2π

0

√
θ4 + 4θ2 dθ =

∫ 2π

0
θ
√
θ2 + 4 dθ. Let u = θ2 + 4, so that du = 2θ dθ. Substituting gives

1
2

∫ 4π2+4

4

√
u du = 1

2 · 2
3

(
u3/2

) ∣∣∣∣4π
2+4

4

= 1
3

(
8(π2 + 1)3/2 − 8

)
= 8

3

(
(π2 + 1)3/2 − 1

)
.

11.8.34 L =
∫ 2πn

0

√
e2θ + e2θ dθ =

√
2
∫ 2πn

0
eθ dθ =

√
2 · eθ

∣∣∣∣2πn
0

=
√
2(e2πn − 1).

11.8.35 Using symmetry, L = 8
∫ π

0

√
(1 + cos θ)2 + (− sin θ)2 dθ = 8

∫ π

0

√
2 + 2 cos θ dθ =

8
√
2
∫ π

0

√
1 + cos θ ·

√
1−cos θ√
1−cos θ

dθ = 8
√
2
∫ π

0
sin θ√
1−cos θ

dθ. Let u = 1 − cos θ so that du = sin θ dθ. Then L =

8
√
2
∫ 2

0
1√
u
du = 16

√
2 · √u

∣∣∣∣2
0

= 32.

11.8.36 L =
∫ 6

0

√
(4θ2)2 + 64θ2 dθ =

∫ 6

0
4θ
√
θ2 + 4 dθ. Let u = θ2 + 4 so that du = 2θ dθ. Then L =

2
∫ 40

4
u1/2 du = 4

3 · u3/2

∣∣∣∣40
4

= 4
3 (40

3/2 − 8) = 32
3 (10

√
10− 1).

11.8.37 L =
∫ ln 8

0

√
4e4θ + 16e4θ dθ = 2

√
5
∫ ln 8

0
e2θ dθ =

√
5 · e2θ

∣∣∣∣ln 8

0

=
√
5(64− 1) = 63

√
5.

11.8.38 L =
∫ π

0

√
sin4(θ/2) + sin2(θ/2) cos2(θ/2) dθ =

∫ π

0

√
sin2(θ/2) dθ = −2 cos(θ/2)

∣∣∣∣π
0

= 2.

11.8.39 L =
∫ π/2

0

√
sin6(θ/3) + sin4(θ/3) cos2(θ/3) dθ =

∫ π/2

0
sin2(θ/3) dθ = 1

2

∫ π/2

0
1 − cos(2θ/3) dθ =

1
2

(
θ − 3

2 sin(2θ/3)
) ∣∣∣∣π/2

0

= 1
2

(
π
2 − 3

√
3

4

)
= 2π−3

√
3

8 .

11.8.40

L =

∫ π/2

0

√√√√ 2

(1 + cos θ)2
+

( √
2 sin θ

(1 + cos θ)2

)2

dθ =

∫ π/2

0

√
2(1 + cos θ)2 + 2 sin2 θ

(1 + cos θ)4
dθ

=

∫ π/2

0

√
4 + 4 cos θ

(1 + cos θ)4
dθ = 2

∫ π/2

0

(1 + cos θ)−3/2 dθ.
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Now note that (
√
1 + cos θ)−3 = (

√
2 cos(θ/2))−3, so L = 2

2
√
2

∫ π/2

0
sec3(θ/2) dθ = 2√

2

∫ π/4

0
sec3 u du =

1√
2
( secu tanu+ ln |secu+ tanu|)

∣∣∣∣π/4
0

=
√
2
2

(√
2 + ln(

√
2 + 1)

)
= 1 +

√
2
2 ln(

√
2 + 1).

11.8.41 Note that |v| =
√
0 + cos2 t+ sin2 t = 1, so it does use arc length as its parameter.

11.8.42 Note that |v| =√1/3 + 1/3 + 1/3 = 1, so it does use arc length as its parameter.

11.8.43 Note that |v| = √
1 + 4 �= 1, so it doesn’t use arc length as a parameter.

Consider r(s) = 〈s/√5, 2s/
√
5〉 for 0 ≤ s ≤ 3

√
5. This has |r′(s)| = 1√

5

√
1 + 4 = 1, so it does use arc

length as its parameter.

11.8.44 Note that |v| = √
1 + 4 + 36 �= 1, so it doesn’t use arc length as a parameter.

Consider r(s) = 〈(s/√41) + 1, (2s/
√
41)− 3, 6s/

√
41〉 for 0 ≤ s ≤ 10

√
41. This has |r′(s)| =

1√
41

√
1 + 4 + 36 = 1, so it does use arc length as its parameter.

11.8.45 Note that |v| =
√
4 sin2 t+ 4 cos2 t �= 1, so it doesn’t use arc length as a parameter.

Consider r(s) = 〈2 cos(s/2), 2 sin(s/2)〉 for 0 ≤ s ≤ 4π. This has |r′(s)| =
√
sin2(s/2) + cos2(s/2) = 1, so

it does use arc length as its parameter.

11.8.46 Note that |v| =
√
25 sin2 t+ 9 sin2 t+ 16 sin2 t =

√
25 �= 1, so it doesn’t use arc length as a param-

eter.
Consider r(s) = 〈5 cos(s/5), 3 sin(s/5), 4 sin(s/5)〉 for 0 ≤ s ≤ 5π. This has

|r′(s)| =
√
sin2(s/5) + (9/25) cos2(s/5) + (16/25) cos2(s/5) = 1,

so it does use arc length as its parameter.

11.8.47 Note that |v| =
√
4t2 sin2(t2) + 4t2 cos2(t2) = 2t �= 1, so it doesn’t use arc length as a parameter.

Consider r(s) = 〈cos s, sin s〉 for 0 ≤ s ≤ π. This has |r′(s)| =
√
sin2 s+ cos2 s = 1, so it does use arc

length as its parameter.

11.8.48 Note that |v| =
√
4t2 + 16t2 + 64t2 =

√
84t = 2

√
21t �= 1, so it doesn’t use arc length as a

parameter.
Consider r(s) = 〈(1/√21)s, (2/

√
21)s, (4/

√
21)s〉 for √21 ≤ s ≤ 16

√
21. This has |r′(s)| =

1√
21

√
1 + 4 + 16 = 1, so it does use arc length as its parameter.

11.8.49 Note that |v| = √
e2t + e2t + e2t =

√
3et �= 1, so it doesn’t use arc length as its parameter.

Consider r(s) = 〈 s√
3
+ 1, s√

3
+ 1, s√

3
+ 1〉 for s ≥ 0. This has |r′(s)| = 1, so it does use arc length as its

parameter.

11.8.50 Note that |v| =
√
(1/2) sin2 t+ (1/2) sin2 /2 + cos2 t = 1, so it does use arc length as its parameter.

11.8.51

a. True. L =
∫ b

a
S dt = S(b− a).

b. True. Both have length L =
∫ b

a

√
f ′(t)2 + g′(t)2 dt =

∫ b

a

√
g′(t)2 + f ′(t)2 dt.

c. True. Both have length L =
∫ b

a

√
f ′(t)2 + g′(t)2 dt =

∫√
b√
a

√
(f ′(u2)(2u))2 + (g′(u2)(2u))2 du. The

equality can be seen via the substitution u2 = t.

d. False. It is not the case that |r′(t)| = 1 for all t, because |r′(t)| = √
1 + 40t2.
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11.8.52

a. x = x0 + t(x1 − x0), y = y0 + t(y1 − y0), z = z0 + t(z1 − z0), where 0 ≤ t ≤ 1.

b. L =
∫ 1

0

√
x′2 + y′2 + z′2 dt =

∫ 1

0

√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 dt. This is equal to√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2.

c. The distance formula also gives the length of this line segment to be√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2.

11.8.53

a. Let x = a cos t, y = b sin t and z = c sin t. Then x2 + y2 + z2 = a2 cos2 t + b2 sin2 t + c2 sin2 t =
a2 cos2 t+(b2 + c2) sin2 t = a2, assuming a2 = b2 + c2. So the curve lies on a sphere, but also note that
cy = bz, so the curve also lies in the plane cy − bz = 0. So the curve is a circle centered at the origin.

b. The circle has arc length L =
∫ 2π

0

√
a2 sin2 t+ b2 cos2 t+ c2 cos2 t dt =

√
a2
∫ 2π

0

√
sin2 t+ cos2 t dt =

2aπ.

c. As in exercise 69a from section 11.7, the curve describes a circle when a2+ c2+ e2 = b2+ d2+ f2 = R2

and ab+ cd+ ef = 0. Note that |r(t)|2 = (a cos t+ b sin t)2 + (c cos t+ d sin t)2 + (e cos t+ f sin t)2 =
(a2 + c2 + e2) cos2 t + (2ab + 2cd + 2ef) sin t cos t + (b2 + d2 + f2) sin2 t, so if the conditions are met,

then the curve describes a circle of radius R and L =
∫ 2π

0

√
R2 dt = 2πR.

11.8.54 Assume m �= 0. r′(t) = 〈mtm−1,mtm−1, (3m/2)t(3m/2−1)〉, so |r′(t)| = 3|m|tm−1

2

√
4
9 + 4

9 + tm. So

L =
3 |m|
2

∫ b

a

tm−1
√
(8/9) + tm dt.

Let u = 8
9 + tm, so that ±du = |m| tm−1 dt. Then if m > 0 we have L = 3

2

∫ (8/9)+bm

(8/9)+am

√
u du = (8/9+ bm)3/2−

(8/9 + am)3/2, and if m < 0, we have L = 3
2

∫ (8/9)+am

(8/9)+bm

√
u du = (8/9 + am)3/2 − (8/9 + bm)3/2. Note that in

the case m = 0, the curve is the constant r(t) = 〈1, 1, 1〉, so L = 0.

11.8.55

a. r′(t) = h′(t)〈A,B〉, so |r′(t)| = |h′(t)| √A2 +B2. Thus, L =
√
A2 +B2

∫ b

a
|h′(t)| dt

b. L =
√
22 + 52

∫ 4

0
3t2 dt =

√
29 t3

∣∣∣∣4
0

= 64
√
29.

c. L =
√
42 + 102

∫ 8

1

∣∣−1/t2
∣∣ dt = √

116 1
t

∣∣∣∣1
8

= 7
√
29
4 .

11.8.56

a. L =
∫√

8

0

√
16θ2 + 16 dθ = 4

∫√
8

0

√
θ2 + 1 dθ ≈ 20.5.

b. L(θ) = 4
∫ θ

0

√
θ2 + 1 dθ = 2(θ

√
1 + θ2 + ln(θ +

√
θ2 + 1)).

c. By the Fundamental Theorem of Calculus, L′(θ) = 4
√
θ2 + 1 > 0. L′′(θ) = 4θ√

1+θ2
≥ 0 if θ ≥ 0. The

arc length is increasing at an increasing rate.
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11.8.57 r′(θ) = −ae−aθ. Thus,

L =

∫ ∞

0

√
e−2aθ + a2e−2aθ dθ =

√
1 + a2

∫ ∞

0

e−aθ dθ

= lim
b→∞

√
1 + a2

∫ b

0

e−aθ dθ =

√
1 + a2

−a
lim
b→∞

e−aθ

∣∣∣∣b
0

=

√
1 + a2

−a
(0− 1) =

√
1 + a2

a
.

11.8.58

∫ π

0

√
4 cos2(3θ) + 36 sin2(3θ) dθ =

∫ π

0

2
√
1 + 8 sin2 θ dθ ≈ 13.36.

11.8.59 Using symmetry, we are seeking 4 times the curve traversed for 0 ≤ θ ≤ π/4. Thus, L =

4

∫ π/4

0

√
6 sin 2θ + 6 cot 2θ cos 2θ dθ = 12.85.

11.8.60 L =

∫ 2π

0

√
(2− 4 sin θ)2 + 16 cos2 θ dθ =

∫ 2π

0

√
20− 16 sin θ dθ = 26.73.

11.8.61 L =

∫ 2π

0

√
(4− 2 cos θ)2 + 4 sin2 θ dθ =

∫ 2π

0

√
20− 16 cos θ dθ = 26.73.

11.8.62 x′(t) = a(1 − cos t) and y′(t) = a sin t. So
√

x′(t)2 + y′(t)2 = a
√
2− 2 cos t = 2a |sin(t/2)|. Thus,

L =
∫ 2π

0
2a sin(t/2) dt = 2a (−2 cos(t/2))

∣∣∣∣2π
0

= 8a.

11.8.63

a. y = −4.9t2 + 25t is 0 for t > 0 when −4.9t+ 25 = 0, or t = 25/4.9 ≈ 5.102 seconds.

b. L ≈ ∫ 5.102

0

√
400 + (25− 9.8t)2 dt.

c. Let u = −9.8t+ 25 so that du = −9.8dt. Then L ≈ 1
−9.8

∫ −24.9996

25

√
400 + u2 du ≈ 124.43 meters.

d. x = u0(5.102) = 20(5.102) = 102.04 meters.

11.8.64

a. Because x2 + y2 = 1, the path is the unit circle. The particle is at (0, 1) at x = 0, and returns there
at t =

√
2π.

b. The length of the path is 2π =
∫√

2π

0

√
(2t cos t2)2 + (2t sin t2)2 dt =

∫√
2π

0
2t dt.

c. This particle traces out the same circle as that one, but it does it faster, completing the circle in
√
2π

time units rather than 2π time units. Note that the speed of this particle is 2t rather than the constant
1 which is the speed of the other particle.

d. This also traces out the same circle, over the time interval [0, n
√
2π].

e. It is also 2π because the arc is the same circle.

f. The second runner would win the race. The runners occupy the same position at t = 1 (namely the
point (sin(1), cos(1))), so that is when one passes the other.

11.8.65 Recall that a curve is parametrized by arc length exactly when |v| = 1. We have v = 〈a, b, c〉, so
|v| = √

a2 + b2 + c2, which is equal to one if and only if a2 + b2 + c2 = 1.
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11.8.66 Suppose a2 = b2 + c2. Recall that a curve is parametrized by arc length exactly when |v| = 1. We
have v = 〈−a sin t, b cos t, c cos t〉, so

|v| =
√
a2 cos2 t+ b2 sin2 t+ c2 sin2 t =

√
a2 cos2 t+ a2 sin2 t =

√
a2,

which is equal to one if and only if a2 = b2 + c2 = 1.

11.8.67
∫ b

a
|r′(t)| dt = ∫ b

a

√
(cf ′(t))2 + (cg′(t))2 dt = |c| ∫ b

a

√
f ′(t)2 + g′(t)2 dt = |c|L.

11.8.68 If r = f(θ), then parametrically we have x = r cos θ = f(θ) cos θ and y = r sin θ = f(θ) sin θ. Note
that dx

dθ = f ′(θ) cos θ − f(θ) sin θ and dy
dθ = f ′(θ) sin θ + f(θ) cos θ. Thus√

x′(θ)2 + y′(θ)2 =
√
(f ′(θ) cos θ − f(θ) sin θ)2 + (f ′(θ) sin θ + f(θ) cos θ)2,

which can be written√
(f ′(θ) cos θ)2 + (f ′(θ) sin θ)2 + (f(θ) sin θ)2 + (f(θ) cos θ)2 =

√
(f ′(θ))2 + (f(θ))2.

Thus L =
∫ β

α

√
(f ′(θ))2 + (f(θ))2 dθ as desired.

11.8.69 The curve can be parametrized by x = t and y = f(t). Then r′(t) = 〈1, f ′(t)〉, so

|v(t)| =
√
1 + f ′(t)2.

Then

L =

∫ b

a

√
1 + f ′(t)2 dt =

∫ b

a

√
1 + f ′(x)2 dx.

11.8.70

a. Let t0 be a number on [a, b], so that r(t0) = 〈f(t0), g(t0), h(t0)〉 is a point on r. Then u−1(t0) = u0 is a
number between u−1(a) and u−1(b). Note that R(u0) = 〈f(u(u−1(t0))), g(u(u

−1(t0))), h(u(u
−1(t0)))〉

= 〈f(t0), g(t0), h(t0)〉 = r(t0). So for every point on r there is a corresponding point on R.

Now suppose that z0 is a number between u−1(a) and u−1(b), so that R(z0) =
〈f(u(z0)), g(u(z0)), h(u(z0))〉 is a point on R. Then u(z0) = s0 is a number between a and b, and
r(s0) = 〈f(s0), g(s0), h(s0)〉 = 〈f(u(z0)), g(u(z0)), h(u(z0))〉 = R(z0). So for every point on R there is
a corresponding point on r.

Thus the two curves represent the same sets of points.

b. Assume u′(t) > 0. The case u′(t) < 0 is similar. The length of R is

L =

∫ u−1(b)

u−1(a)

√
(f ′(u)u′(t))2 + (g′(u)u′(t))2 + (h′(u)u′(t))2 dt.

Let s = u(t) so that ds = u′(t) dt. Then we have L =
∫ b

a

√
f ′(s)2 + g′(s)2 + h′(s)2 ds, which is the

length of r.

11.9 Curvature and Normal Vectors

11.9.1 A straight line has zero curvature.

11.9.2 The curvature is a measure of the magnitude of the rate of change of the unit tangent vector with
respect to arc length. It is a scalar function.

11.9.3 κ = 1
|v|
∣∣dT
dt

∣∣ or κ = |a×v|
|v|3 .
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11.9.4 The principal unit normal vector of a curve is a vector function whose value for any point on the
curve is the vector perpendicular to the tangent to the curve, having unit length, and pointing to the inside
of the curve.

11.9.5 N = dT/dt
|dT/dt| .

11.9.6 a = aNN+ aTT, where aN = κ |v|2 = |a×v|
|v| and aT = d2s

dt2 = a·v
|v| .

11.9.7 B is a length one vector mutually perpendicular to T and N. The three vectors T, N, and B form
a right-handed coordinate system.

11.9.8 B = T×N.

11.9.9 The torsion is the rate at which the curve moves out of the osculating lane.

11.9.10 τ = (v×a)·a′

|v×a|r .

11.9.11 r′(t) = 〈2, 4, 6〉, so T = 1
2
√
14
〈2, 4, 6〉 = 1√

14
〈1, 2, 3〉.

So dT
dt = 〈0, 0, 0〉, and κ = 0.

11.9.12 r′(t) = 〈−2 sin t,−2 cos t〉, so T(t) = 〈− sin t,− cos t〉. So

κ =
|a× v|
|v|3 =

1

8
|〈−2 cos t, 2 sin t, 0〉 × 〈−2 sin t,−2 cos t, 0〉| = 1

2
.

11.9.13 r′(t) = 〈2, 4 cos t,−4 sin t〉, so T(t) = 1√
5
〈1, 2 cos t,−2 sin t〉. So

κ =
1

|v|
∣∣∣∣dTdt

∣∣∣∣ = 1

2
√
5

∣∣∣∣ 1√
5
〈0,−2 sin t,−2 cos t〉

∣∣∣∣ = 1

5
.

11.9.14 r′(t) = 〈−2t sin t2, 2t cos t2〉, so T(t) = 〈− sin t2, cos t2〉. So

κ =
1

|v|
∣∣∣∣dTdt

∣∣∣∣ = 1

2t

∣∣〈−2t cos(t2),−2t sin(t2)〉∣∣ = 1.

11.9.15 r′(t) = 〈√3 cos t, cos t,−2 sin t〉, so |v(t)| =
√
3 cos2 t+ cos2 t+ 4 sin2 t = 2.

Thus, T(t) = 1
2 〈
√
3 cos t, cos t,−2 sin t〉. So

κ =
1

|v|
∣∣∣∣dTdt

∣∣∣∣ = 1

2

∣∣∣∣12 〈−√
3 sin t,− sin t,−2 cos t〉

∣∣∣∣ = 1

2
· 1
2
· 2 =

1

2
.

11.9.16 r′(t) = 〈1,− tan t〉, so |v(t)| =
√
1 + tan2 t = sec t. So T(t) = 〈cos t,− sin t〉.

κ =
1

|v|
∣∣∣∣dTdt

∣∣∣∣ = cos t |〈− sin t,− cos t〉| = cos t.

11.9.17 r′(t) = 〈1, 4t〉, so |v(t)| = √
16t2 + 1. Thus, T(t) = 1√

16t2+1
〈1, 4t〉.

κ =
|a× v|
|v|3 =

1

(16t2 + 1)3/2
|〈0, 4, 0〉 × 〈1, 4t, 0〉| = 1

(16t2 + 1)3/2
|〈0, 0,−4〉| = 4

(16t2 + 1)3/2
.

11.9.18 r′(t) = 〈−3 cos2 t sin t, 3 sin2 t cos t〉, so |v(t)| = 3
√
cos4 t sin2 t+ sin4 t cos2 t = 3

√
cos2 t sin2 t =

3 |cos t sin t|. Thus T(t) = 〈− cos t, sin t〉.

κ =
1

|v|
∣∣∣∣dTdt

∣∣∣∣ = 1

3 |sin t cos t| |〈sin t, cos t〉| =
1

3
|sec t csc t|
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11.9.19 r′(t) = 〈cos(πt2/2), sin(πt2/2)〉, so |v(t)| = 1. So T(t) = v(t) = 〈cos(πt2/2), sin(πt2/2)〉.

κ =
1

|v|
∣∣∣∣dTdt

∣∣∣∣ = 1 · ∣∣〈−πt sin(πt/22), πt cos(πt2/2)〉∣∣ = πt.

11.9.20 r′(t) = 〈cos(t2), sin(t2)〉, so |v(t)| = 1. So T(t) = v(t) = 〈cos(t2), sin(t2)〉.

κ =
1

|v|
∣∣∣∣dTdt

∣∣∣∣ = 1 · ∣∣〈−2t sin(t2), 2t cos(t2)〉∣∣ = 2t.

11.9.21 r′(t) = 〈3 sin t, 3 cos t〉 and r′′(t) = 〈3 cos t,−3 sin t〉. So

κ =
|a× v|
|v|3 =

1

27
|〈3 cos t,−3 sin t, 0〉 × 〈3 sin t, 3 cos t, 0〉| = 1

27
|〈0, 0, 9〉| = 1

3
.

11.9.22 r′(t) = 〈4, 3 cos t,−3 sin t〉 and r′′(t) = 〈0,−3 sin t,−3 cos t〉.

κ =
|a× v|
|v|3 =

1

125
|〈0,−3 sin t,−3 cos t〉 × 〈4, 3 cos t,−3 sin t〉| = 1

125
|〈−9, 12 cos t, 12 sin t〉| = 15

125
=

3

25
.

11.9.23 r′(t) = 〈2t, 1〉 and r′′(t) = 〈2, 0〉. So

κ =
|a× v|
|v|3 =

1

(4t2 + 1)3/2
|〈2, 0, 0〉 × 〈2t, 1, 0〉| = 1

(4t2 + 1)3/2
|〈0, 0, 2〉| = 2

(4t2 + 1)3/2
.

11.9.24 r′(t) = 〈√3 cos t, cos t,−2 sin t〉 and r′′(t) = 〈−√
3 sin t,− sin t,−2 cos t〉. So

κ =
|a× v|
|v|3 =

1

8

∣∣∣〈−√
3 sin t,− sin t,−2 cos t〉 × 〈

√
3 cos t, cos t,−2 sin t〉

∣∣∣ = 1

8

∣∣∣〈2,−2
√
3, 0〉

∣∣∣ = 4

8
=

1

2
.

11.9.25 r′(t) = 〈−4 sin t, cos t,−2 sin t〉 and r′′(t) = 〈−4 cos t,− sin t,−2 cos t〉.

κ =
|a× v|
|v|3 =

|〈2, 0,−4〉|(√
20 sin2(t) + cos2(t)

)3 =
2
√
5(

20 sin2(t) + cos2(t)
)3/2 .

11.9.26 r′(t) = 〈et(cos t− sin t), et(cos t+ sin t), et〉 and r′′(t) = 〈−2et sin t, 2et cos t, et〉. |v(t)| = √
3et. So

κ =
|a× v|
|v|3 =

1

3
√
3e3t

∣∣〈−2et sin t, 2et cos t, et〉 × 〈et(cos t− sin t), et(cos t+ sin t), et〉∣∣
=

1

3
√
3e3t

∣∣e2t〈cos t− sin t, cos t+ sin t,−2〉∣∣ = √
6e2t

3
√
3e3t

=

√
2

3et
.

11.9.27 r′(t) = 〈2 cos t,−2 sin t〉, so T = 〈cos t,− sin t〉 and |T| = 1. N(t) = 〈− sin t,− cos t〉. Note that
|N| = 1 and T ·N = − sin t cos t+ sin t cos t = 0.

11.9.28 r′(t) = 〈4 cos t, 4 sin t, 10〉, and |r′(t)| = 2
√
29, so T = 1√

29
〈2 cos t,−2 sin t, 5〉 and |T| = 1. N(t) =

〈− sin t,− cos t, 0〉. Note that |N| = 1 and T ·N = 0.

11.9.29 r′(t) = 〈t,−3, 0〉, and |r′(t)| = √
t2 + 9, so T = 1√

t2+9
〈t,−3, 0〉 and |T| = 1. We have T′(t) =

〈 9
(
√
t2+9)3

, 3t
(
√
t2+9)3

, 0〉, so N(t) = 1√
t2+9

〈3, t, 0〉. Note that |N| = 1 and T ·N = 0.

11.9.30 r′(t) = 〈t, t2〉, and |r′(t)| = |t| √t2 + 1, so T = 1√
t2+1

〈1, t〉 and |T| = 1.

T′(t) = 〈− t
(
√
t2+1)3

, 1
(
√
t2+1)3

〉, so N(t) = 1√
t2+1

〈−t, 1〉. Note that |N| = 1 and T ·N = 0.
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11.9.31 r′(t) = 〈−2t sin t2, 2t cos t2〉, and |r′(t)| = 2t, so T = 〈− sin t2, cos t2〉 and |T| = 1. T′(t) =
〈−2t cos t2,−2t sin t2〉, so N(t) = 〈− cos t2,− sin t2〉. Note that |N| = 1 and T ·N = 0.

11.9.32 r′(t) = 〈−3 cos2 t sin t, 3 sin2 t cos t〉, and |r′(t)| = 3 |sin t cos t|, so T = 〈− cos t, sin t〉 and |T| = 1.
T′(t) = 〈sin t, cos t〉, so N(t) = 〈sin t, cos t〉. Note that |N| = 1 and T ·N = 0.

11.9.33 r′(t) = 〈2t, 1〉, and |r′(t)| = √
4t2 + 1, so T = 1√

4t2+1
〈2t, 1〉 and |T| = 1.

T′(t) = 〈 2
(
√
4t2+1)3

,− 4t
(
√
4t2+1)3

〉, so N(t) = 1√
4t2+1

〈1,−2t〉. Note that |N| = 1 and T ·N = 0.

11.9.34 r′(t) = 〈1,− tan t〉, and |r′(t)| = sec t, so T = 〈cos t,− sin t〉 and |T| = 1. T′(t) = 〈− sin t,− cos t〉,
so N(t) = 〈− sin t,− cos t〉. Note that |N| = 1 and T ·N = 0.

11.9.35 r′(t) = 〈1, 4,−6〉 and r′′(t) = 〈0, 0, 0〉. So κ = 0 and thus aN = 0. Also, aT = 0. We have
a = 0 ·T+ 0 ·N = 〈0, 0, 0〉.
11.9.36 r′(t) = 〈−10 sin t,−10 cos t〉 and r′′(t) = 〈−10 cos t, 10 sin t〉. Note that a · v = 0, so aT = 0.
a× v = 〈0, 0, 100〉, so aN = 100

10 = 10. We have a = 〈−10 cos t, 10 sin t〉 = 0 ·T+ 10N.

11.9.37 In problem 26 above, we computed |v(t)| = √
3et and κ =

√
2

3et . Also, v(t) · a(t) = 3e2t. Thus

aT = 3e2t√
3et

=
√
3et and aN =

√
2

3et · 3e2t =
√
2et.

11.9.38 r′(t) = 〈1, 2t〉 and r′′(t) = 〈0, 2〉. Note that a · v = 4t, so aT = 4t√
4t2+1

. a × v = 〈0, 0,−2〉, so
aN = 2√

4t2+1
. We have a = 〈0, 2〉 = 4t√

4t2+1
·T+ 2√

4t2+1
·N.

11.9.39 r′(t) = 〈3t2, 2t〉 and r′′(t) = 〈6t, 2〉. Note that a · v = 18t3 + 4t, so aT = 18t3+4t√
9t4+4t2

= 18t2+4√
9t2+4

.

a× v = 〈0, 0, 6t2〉, so aN = 6t2

t
√
9t2+4

= 6t√
9t2+4

. We have a = 〈6t, 2〉 = 18t2+4√
9t2+4

·T+ 6t√
9t2+4

·N.

11.9.40 r′(t) = 〈−20 sin t, 20 cos t, 30〉 and r′′(t) = 〈−20 cos t,−20 sin t, 0〉. Note that a · v = 0,so aT = 0.

a×v = 〈−600 sin t, 600 cos t,−400〉, so aN = 200
√
13

10
√
13

= 20. We have a = 〈−20 cos t,−20 sin t, 0〉 = 0·T+20N.

11.9.41 B = T×N = 〈cos t,− sin t, 0〉 × 〈− sin t,− cos t, 0〉 = 〈0, 0,−1〉. Because B is constant, τ = 0.

11.9.42 B = T × N = 〈 2 cos(t)√
29

, −2 sin(t)√
29

, 5√
29
〉 × 〈− sin t,− cos t, 0〉 = 1√

29
〈5 cos t,−5 sin t,−2〉. Also, τ =

−dB/dt
ds/dt ·N = 〈 5 sin(t)

58 , 5 cos(t)
58 , 0〉 · 〈− sin t,− cos t, 0〉 = − 5

58 .

11.9.43 B = T×N = 〈 t√
t2+9

,− 3√
t2+9

, 0〉 × 〈 3√
t2+9

, t√
t2+9

, 0〉 = 〈0, 0, 1〉. Because B is constant, τ = 0.

11.9.44 B = T×N = 〈 1√
t2+1

, t√
t2+1

, 0〉 × 〈− t√
t2+1

, 1√
t2+1

, 0〉 = 〈0, 0, 1〉. Because B is constant, τ = 0.

11.9.45 r′(t) = 〈−2 sin t, 2 cos t,−1〉, so T = 〈(−2/
√
5) sin t, (2/

√
5) cos t,−1/

√
5〉.

r′′(t) = 〈−2 cos t,−2 sin t, 0〉, so N = 〈− cos t,− sin t, 0〉. Thus, B = T ×N = 1√
5
〈− sin t, cos t, 2〉. Also,

τ = −dB/dt
ds/dt ·N = − 1√

5
· 1√

5
(〈− cos t,− sin t, 0〉 · 〈− cos t,− sin t, 0〉 = − 1

5 .

11.9.46 r′(t) = 〈1, sinh t,− cosh t〉, so r′′(t) = 〈0, cosh t,− sinh t〉. r′(t)×r′′(t) = 〈1, sinh t, cosh t〉. Note that

|r′(t)× r′′(t)| =
√
1 + sinh2 t+ cosh2 t =

√
2 cosh t. Therefore, B = 1√

2
〈sech t, tanh t, 1〉.

Now r′′′(t) = 〈0, sinh t,− cosh t〉 so (r′(t) × r′′(t)) · r′′′(t) = 〈1, sinh t, cosh t〉 · 〈0, sinh t,− cosh t〉 = −1.

Thus τ = (r′×r′′)·r′′′
|r′×r′′|2 = − 1

2 cosh2 t
= − 1

2 sech
2 t.

11.9.47 r′(t) = 〈12,−5 sin t, 5 cos t〉, so r′′(t) = 〈0,−5 cos t,−5 sin t〉. Thus, T =
〈12/13, (−5/13) sin t, (5/13) cos t〉 and N = 〈0,− cos t,− sin t〉.
So B = T×N = 〈(5/13), (12/13) sin t, (−12/13) cos t〉.

Also, τ = −dB/dt
ds/dt ·N = − 1

13 · 1
13 (〈0, 12 cos t, 12 sin t〉 · 〈0,− cos t,− sin t〉 = − 1

169 · (−12) = 12
169 .

11.9.48 r′(t) = 〈t sin t, t cos t, 1〉, and r′′(t) = 〈sin t + t cos t, cos t − t sin t, 0〉. Then r′(t) × r′′(t) = 〈t sin t −
cos t, sin t+ t cos t,−t2〉. We then have B = 1√

1+t2+t4
〈t sin t− cos t, sin t+ t cos t,−t2〉.

Note that r′′′(t) = 〈2 cos t− t sin t,−2 sin t− t cos t, 0〉. Then we have τ = (r′×r′′)·r′′′
|r′×r′′|2 = − (2+t2)

1+t2+t4 .
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11.9.49

a. False. For example, consider r(t) = 〈cos t, sin t, 1〉. Then T = 〈− sin t, cos t, 0〉 and also N =
〈− cos t,− sin t, 0〉. Note that T and N lie in the xy-plane, but r doesn’t.

b. False. T does depend on the orientation, but N doesn’t. Reversing the orientation changes T to −T,
but leaves N alone.

c. False. Note that |T| is independent of orientation, so ∣∣dTds ∣∣ is too.
d. True. As we have already seen for the circle, v ·a = 0. Thus a = aTT+aNN = 0 ·T+κ |v|2 N = 1

RN.

e. False. For example, if the car’s motion is given by r(t) = 〈60 cos t, 60 sin t〉, then the speed is a constant
60, but a = 〈−60 cos t,−60 sin t〉 �= 〈0, 0〉.

f. False. If it lies in the xy-plane, it will have zero torsion.

g. False. If it lies in the xy-plane, it might have very large curvature but zero torsion.

11.9.50 Let r(t) = 〈t, f(t), 0〉. Then r′(t) = 〈1, f ′(t), 0〉 and r′′(t) = 〈0, f ′′(t), 0〉. Note that |v(t)| =√
1 + f ′(t)2, and a× v = 〈0, 0,−f ′′(t)〉, so κ =

|f ′′(t)|
(1+f ′(t)2)3/2 .

11.9.51 f ′(x) = 2x and f ′′(x) = 2, so

κ =
|f ′′(x)|

(1 + f ′(x)2)3/2
=

2

(1 + 4x2)3/2

11.9.52 f ′(x) = − x√
a2−x2

and f ′′(x) = − a2

(a2−x2)3/2
, so

κ =
|f ′′(x)|

(1 + f ′(x)2)3/2
=

∣∣∣− a2

(a2−x2)3/2

∣∣∣(
1 +
(
− x√

a2−x2

)2)3/2
=

a2

a3
=

1

a
.

11.9.53 f ′(x) = 1/x and f ′′(x) = −1/x2, so

κ =
|f ′′(x)|

(1 + f ′(x)2)3/2
=

1/x2

(1 + (1/x)2)3/2
=

x

(x2 + 1)3/2
.

11.9.54 f ′(x) = − tanx and f ′′(x) = − sec2 x, so

κ =
|f ′′(x)|

(1 + f ′(x)2)3/2
=

sec2 x

(1 + tan2 x)3/2
=

sec2 x

sec3 x
= cosx.

11.9.55 r′(t) = 〈f ′(t), g′(t)〉 and r′′(t) = 〈f ′′(t), g′′(t)〉. So a × v = 〈f ′′(t), g′′(t), 0〉 × 〈f ′(t), g′(t), 0〉 =
〈0, 0, g′(t)f ′′(t)− f ′(t)g′′(t)〉. Because |v| =√(f ′(t))2 + (g′(t))2, we have

κ =
|a× v|
|v|3 =

|f ′g′′ − g′f ′′|
((f ′)2 + (g′)2)3/2

.

11.9.56 f ′(t) = a cos t and f ′′(t) = −a sin t, while g′(t) = −a sin t and g′′(t) = −a cos t. So

κ =
|a× v|
|v|3 =

|f ′g′′ − g′f ′′|
((f ′)2 + (g′)2)3/2

=

∣∣−a2 cos2 t− a2 sin2 t
∣∣

(a2 cos2 t+ a2 sin2 t)3/2
=

∣∣∣∣a2a3
∣∣∣∣ = 1

|a| .

11.9.57 f ′(t) = a cos t and f ′′(t) = −a sin t, while g′(t) = −b sin t and g′′(t) = −b cos t. So

κ =
|a× v|
|v|3 =

|f ′g′′ − g′f ′′|
((f ′)2 + (g′)2)3/2

=

∣∣−ab cos2 t− ab sin2 t
∣∣

(a2 cos2 t+ b2 sin2 t)3/2
=

|ab|
(a2 cos2 t+ b2 sin2 t)3/2

.
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11.9.58 f ′(t) = −3a cos2 t sin t and f ′′(t) = 3a cos t(3 sin2 t − 1), while g′(t) = 3a sin2 t cos t and g′′(t) =
3a sin t(3 cos2 t− 1). So

κ =
|f ′g′′ − g′f ′′|

((f ′)2 + (g′)2)3/2
=

∣∣9a2 cos2 t sin2 t(3 cos2 t− 1 + 3 sin2 t− 1)
∣∣

27a3
∣∣cos3 t sin3 t∣∣ =

1

3a |cos t sin t| .

11.9.59 f ′(t) = 1 and f ′′(t) = 0, while g′(t) = 2at and g′′(t) = 2a. So

κ =
|f ′g′′ − g′f ′′|

((f ′)2 + (g′)2)3/2
=

|2a− 0|
(1 + 4a2t2)3/2

=
2 |a|

(1 + 4a2t2)3/2
.

11.9.60

a.

y
x

z

(3, �1, 0)

(3, �1, 4)

(1, 2, 0)

b. For line A: v(t) = 〈2,−3, 4〉 and a(t) = 〈0, 0, 0〉.
For line B: v(t) = 〈6,−9, 12〉 and a(t) = 〈0, 0, 0〉.
B has 3 times the velocity of A, but the same ac-
celeration.

c. For both lines, we have aN = 0 and aT = 0. a =
〈0, 0, 0〉 = 0 ·T = 0 ·N.

11.9.61

a.

yx

z

(1, 2, 3)

b. For line A: v(t) = 〈1, 2, 3〉 and a(t) = 〈0, 0, 0〉.
For line B: v(t) = 〈2t, 4t, 6t〉 and a(t) = 〈2, 4, 6〉.
A has constant velocity and zero acceleration,
while B has linearly increasing velocity and con-
stant acceleration.

c. For A, we have aT = aN = 0. For B, we have
aT = 56t√

56t
= 2

√
14 and aN = 0 (because v and a

are in the same direction).
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11.9.62

a.

y

0 1�1

1

�1

x

b. For curve A: v(t) = 〈− sin t, cos t〉 and a(t) =
〈− cos t,− sin t〉.
For curve B: v(t) = 〈−3 sin 3t, 3 cos 3t〉 and a(t) =
〈−9 cos 3t,−9 sin 3t〉.
A has constant velocity 1 while B has constant
velocity 3. The magnitude of the acceleration on
B is 9 times that on A.

c. For A, we have a = N, so aT = 0 and aN = 1.
For B, we have a = 9N, so aT = 0 and aN = 9.

11.9.63

a.

y

0 1�1

1

�1

x

b. For curve A: v(t) = 〈− sin t, cos t〉 and a(t) =
〈− cos t,− sin t〉.
For curve B: v(t) = 2t〈− sin t2, cos t2〉 and a(t) =
〈−4t2 cos t2 − 2 sin t2,−4t2 sin t2 + 2 cos t2〉.
A has constant velocity 1 while B does not have
constant velocity.

c. For A, we have a = N, so aT = 0 and aN = 1.
For B, we have aT = 2 and aN = 4t2.

11.9.64

a.

y

x

(2, 4)(�2, 4)

�1

�1

�2

�3

�4

1 2�2

b. κ =
|f ′′(x)|

(1+f ′(x)2)3/2 = 2
(1+4x2)3/2

.

c.

0.5

1.0

1.5

2.0

1�1�2�3 2 3 x

y

d. κ′(x) = − 24x
(1+4x2)5/2

. κ has a maximum at 0.

κ′′(x) = 24(16x2−1)
(1+4x2)7/2

. κ has inflection points at

x = ±1/4.

e. Symmetry of y = x2 implies symmetry in κ, which does occur. The parabola appears to have greater
curvature near 0 and less near the endpoints, which is consistent with the graph of κ.
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11.9.65

a. 1 2 3 4 5 6
x

0.5

1.0

1.5

2.0
y

b. κ =
|f ′g′′−f ′′g′|

(f ′(x)2+g′(x)2)3/2 = |(1−cos t) cos t−sin t sin t|
((1−cos t)2+sin2 t)3/2

=
1−cos t

2
√
2(1−cos t)3/2

= 1
2
√
2
√
1−cos t

.

c.

1

2

3

4

x

y

2��

d. κ′(t) = − sin t
4
√
2(1−cos t)3/2

. κ has a minimum at π.

κ′′(t) =
sin2( t

2 )(cos t+3)

4
√
2(1−cos(t))5/2

. κ has no inflection points

on the given interval.

e. Symmetry of the given curve about π (on the interval (0, 2π) implies symmetry in κ, which does occur.
The curve is flatter near π and more curved near 0 and 2π.

11.9.66

a. 0 Π

4

Π

2

3 Π

4
Π

2

x

0.2

0.4

0.6

0.8

1.0
y

b. κ =
|f ′′(x)|

(1+f ′(x)2)3/2 = sin x
(1+cos2 x)3/2

.

c. 0 Π

4

Π

2

3 Π

4
Π

2

t

0.2

0.4

0.6

0.8

1.0
k

d. κ′(x) = − cos(x)(cos(2x)−3)

(cos2(x)+1)5/2
. κ has a maximum at

π/2.

κ′′(x) = −2
√
2(−4 sin(x)− 19 sin(3x) + sin(5x))

(cos(2x) + 3)7/2
.

κ has inflection points at approximately 1.122 and
π − 1.122.

e. Symmetry of the given curve about π/2 (on the interval (0, π) implies symmetry in κ, which does
occur. The curve is flatter near 0 and π and more curved near π/2.
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11.9.67

a. 0.1 0.2 0.3 0.4 0.5
x

0.05

0.10

0.15

0.20

0.25

0.30

y

b. κ =
|f ′g′′−f ′′g′|

(f ′(x)2+g′(x)2)3/2 =
|t·2t−1·t2|
(t2+t4)3/2

= 1
t(1+t2)3/2

.

c. 0.2 0.4 0.6 0.8 1.0
t

2

4

6

8

10

12

k

d. κ′(t) = −4t2−1
t2(t2+1)5/2

. κ has no extrema. κ′′(t) =

20t4+7t2+2
t3(t2+1)7/2

. κ has no inflection points.

e. The curve gets flatter as t → ∞.

11.9.68 y′(x) = 1/x and y′′(x) = −1/x2. So κ =
|f ′′(x)|

(1+f ′(x)2)3/2 = 1/x2

(1+(1/x2))3/2
= x

(x2+1)3/2
.

κ′(x) = 1−2x2

(x2+1)5/2
, which is 0 for x > 0 only for x =

√
2/2. The first derivative test shows that this is

where the maximum curvature exists, and the value of the maximum curvature is κ(
√
2/2) = 2

√
3/9.

11.9.69 y′(x) = ex and y′′(x) = ex. So κ =
|f ′′(x)|

(1+f ′(x)2)3/2 = ex

(1+(e2x))3/2
.

κ′(x) = ex−2e3x

(e2x+1)5/2
, which is 0 for x = − ln 2

2 . The first derivative test shows that this is where the

maximum curvature exists, and the value of the maximum curvature is κ((− ln 2)/2) = 2
√
3/9.

11.9.70 By example 3, the curvature of a circle centered at the origin is the reciprocal of the radius of the
circle. Because curvature is independent of the coordinate system, the curvature of the circle of curvature is
the reciprocal of its radius, but by definition, its curvature is κ, so its radius is 1

κ .

11.9.71 r′(t) = 〈1, 2t〉 and r′′(t) = 〈0, 2〉. Thus κ = 2
(1+4t2)3/2

. At t = 0, we have κ = 2. So we are seeking

a circle of radius 1/2. The center of the osculating circle is the point along the normal line to the curve
at (0, 0) which is 1/2 unit from (0, 0) and is on the inside of the curve, so it is (0, 1/2). The equation is
x2 + (y − (1/2))2 = 1

4 .

11.9.72 y′ = 1/x and y′′ = −1/x2, so κ(x) =
|1/x2|

(1+(1/x)2)3/2
= x

(x2+1)3/2
. At x = 1 we have κ = 1

2
√
2
, so the

radius of the osculating circle is 2
√
2. The center of the osculating circle is the point along the the normal

line to the curve at (1, 0) which is 2
√
2 units from (1, 0) and is on the inside of the curve, so it is (3,−2).

The equation of the osculating circle is (x− 3)2 + (y + 2)2 = 8.

11.9.73 r′(t) = 〈1− cos t, sin t〉 and r′′(t) = 〈sin t,− cos t〉. Thus κ(π) = (2−0)
(22+02)3/2

= 2
8 = 1

4 , so the radius of

the osculating circle is 4. The center of the osculating circle is the point along the normal line to the curve
at (π, 2) which is 4 units from (π, 2) and is on the inside of the curve, so it is (π,−2). The equation of the
osculating circle is (x− π)2 + (y + 2)2 = 16.

11.9.74 y′ = cosx and y′′ = − sinx, so κ(π/2) = |− sin(π/2)|
(1+(cos(π/2))2)3/2

= 1. Thus the radius of the osculating

circle is 1. The center of the osculating circle is the point along the the normal line to the curve at (π/2, 1)
which is 1 unit from (π/2, 1) and is on the inside of the curve, so it is (π/2, 0). The equation of the osculating
circle is (x− π/2)2 + y2 = 1.
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11.9.75 y′ = n cosnx and y′′ = −n2 sinnx, so κ(π/2n) =
|−n2 sin(π/2)|

(1+(n2 cos2(π/2))3/2
= n2

(1+0)3/2
= n2. This increases

as n increases.

11.9.76 Note that r′(t) = 〈1, 2t〉, so T = 1√
1+4t2

〈1, 2t〉. So T′(t) = 〈− 4t
(4t2+1)3/2

, 2
(4t2+1)3/2

〉, so N =
1√

4t2+1
〈−2t, 1〉. Then

a =
2√

1 + 4t2

(
〈− 2t√

1 + 4t2
,

1√
1 + 4t2

〉+ 2t〈 1√
1 + 4t2

,
2t√

1 + 4t2
〉
)

= 〈0, 2〉.

11.9.77

a.

r′(t) = 〈V0 cosα, V0 sinα − gt〉, so the speed
is√

V 2
0 cos2 α+ V 2

0 sin2 α− 2gtV0 sinα+ g2t2,

which can be written√
V 2
0 − 2gtV0 sinα+ g2t2.

The graph shown is for V0 = 1, g = 32, and
α = 45 degrees.

0.01 0.02 0.03 0.04
t

0.2

0.4

0.6

0.8

1.0

speed

b.

a = 〈0,−g〉. We have a×v = 〈0, 0, gV0 cosα〉.
So κ = |gV0 cosα|

(V 2
0 −2gtV0 sinα+g2t2)3/2

. The graph

shown is for V0 = 1, g = 32, and α = 45
degrees.

0.01 0.02 0.03 0.04
t

10

20

30

40

50

60

k

c. The speed has a minimum and the curvature has a maximum at the halfway time of the flight, namely
at V0 sinα

g .

11.9.78

Suppose d2s
dt2 > 0. Recall that a = aTT +

aNN, and that aT = d2s
dt2 > 0. Also aN =

κ |v|2 > 0. So a is a linear combination of
�T and N with positive coefficients, so it lies
between the two of them.

T

N a

d 2s
dt 2 � 0

Suppose d2s
dt2 < 0. Recall that a = aTT +

aNN, and that aT = d2s
dt2 < 0. Also aN =

κ |v|2 > 0. So a is a linear combination of T
and N with a negative coefficient on T and
a positive coefficient on N, so it does not lie
between the two of them.

T

N
a

d 2s
dt 2 � 0

11.9.79 r′(t) = 〈pbtp−1, pdtp−1, pftp−1〉 = ptp−1〈b, d, f〉. r′′(t) = p(p − 1)tp−2〈b, d, f〉. Because for any t,
r′′(t) and r′(t) are multiples of 〈b, d, f〉, their cross product is 〈0, 0, 0〉. Thus κ = 0

|v|3 = 0. The given curve

represents a straight line, which has zero curvature.
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11.9.80 dT
dt = dT

ds
ds
dt = dT

ds |r′(t)|. So
dT
dt∣∣dT
dt

∣∣ = dT
ds |r′(t)|∣∣dT
ds |r′(t)|∣∣ = N.

11.9.81

a. f ′
n(x) = 2nx2n−1 and f ′′

n (x) = (2n)(2n − 1)x2n−2. κ =
|2n(2n−1)x2n−2|
(1+4n2x4n−2)3/2

. So κ1(x) = 2
(1+4x2)3/2

,

κ2(x) =
12x2

(1+16x6)3/2
, and κ3(x) =

30x4

(1+36x10)3/2
.

b.
1

2

3

4

x

y

�2 �1 21

κ1(x)

1

2

3

4

x

y

�2 �1 21

κ2(x)

1

2

3

4

x

y

�2 �1 21

κ3(x)

Note that the curves are symmetric about the y-axis.

c. κ′(x) = − 4n(2n−1)x2n−1(2n2(4n−1)x4n−(n−1)x2)
(4n2x4n+x2)2

√
4n2x4n−2+1

. By symmetry, we can concentrate on the critical points

for x > 0. We have κ′(x) = 0 for x > 0 and n > 1, when x = 2
1

2−4n

(√
n2(4n−1)√

n−1

) 1
1−2n

. For n = 1, the

maximum occurs at 0. For n = 2, it occurs at 1√
2·71/6 . For n = 3, it occurs at 1

31/5111/10
.

d. If the maximum curvature for fn occurs at ±zn, then limn→∞ zn = 1.

11.9.82

a. Write a = aTT+aNN. Then T×a = T× (aTT+aNN) = at(T×T)+aN (T×N) = 0+aNB. Then

we have v
|v| × a = κ |v|2 B, so v × a = κ |v|3 B.

b. Taking norms of the last equation in part a, we have |v × a| = κ |v|3 · 1, so κ = |v×a|
|v|3 .

11.9.83 We have that B = v×a
κ|v|3 and κ = |v×a|

|v|3 , so B = v×a
|v×a| .

11.9.84 τ = −dB
ds ·N = −dB/dt

ds/dt ·N = −dB/dt
|v| ·N.

Chapter Eleven Review

1

a. True. Addition of vectors is commutative.

b. False. For example, the vector in the direction of i with the length of j is i, but the vector in the
direction of j with the length of i is j, and i �= j.

c. True, because it then follows that u = −v, so the two are parallel.

d. True. This follows because
∫
r′(t) dt =

∫ 〈0, 0, 0〉 dt = 〈0, 0, 0〉 +C = 〈a, b, c〉 for some real numbers a,
b, and c.
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e. False. Its length is
√

169 sin2 t+ 169 cos2 t = 13 �= 1.

f. False. For example, for the curve r(t) = 〈t2, t〉, we have N = 1√
1+4t2

〈1,−2t〉. So if, for example, t = 2,

we have r(2) = 〈4, 2〉 and N = 1√
17
〈1,−4〉, which aren’t parallel.

2

y

0

x

�1

�2

�3

�4

�5

�6

1 2 3 4

u � v

3

1

�1

�2

�3

�4

�5

�6

�7

x

y

�3 �2 �1 54321

�3v

4

y

0 x1

1

5

2

1

3

4

5

6

7

8

9

�1
x

y

�7 �6 �5 �4 �3 �2 �1 321

2v � u 

6 u− 3v = 〈2, 4,−5〉 − 〈−18, 30, 6〉 = 〈20,−26,−11〉.

7 |u+ v| = |〈−4, 14,−3〉| = √
16 + 196 + 9 =

√
221.

8 u
|u| =

1√
4+16+25

〈2, 4,−5〉 = 1√
45
〈2, 4,−5〉.

9 |v| =
√
36 + 100 + 4 =

√
140. So the desired vector is 20√

140
〈−6, 10, 2〉 = 20√

35
〈−3, 5, 1〉. The vector

− 20√
35
〈−3, 5, 1〉 also has the desired property.

10 u · v = −12 + 40− 10 = 18. cos θ = 18√
45

√
140

, so θ = cos−1 18√
6300

= 76.9 degrees.

11 u× v = 〈2, 4,−5〉 × 〈−6, 10, 2〉 = 2〈29, 13, 22〉. Thus, v × u = −2〈29, 13, 22〉. The area of the indicated
triangle is 1

2 · 2√292 + 132 + 222 ≈ 38.65.

12 We must have a+ c = 2, a+ b = 2, and b+ c = 2. Thus a = b = c = 1.

13

a. v = 550〈−√
2/2,

√
2/2〉 = 〈−275

√
2, 275

√
2〉.

b. v = 550〈−√
2/2,

√
2/2〉+ 〈0, 40〉 = 〈−275

√
2, 275

√
2 + 40〉.
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14

a. This is equal to 〈2,−8, 5〉 − 〈2, 0, 6〉 = 〈0,−8,−1〉.

b. The midpoint is
(
2+2
2 , −8+0

2 , 5+6
2

)
= (2,−4, 5.5). The magnitude of ⇀PM is 1

2 |〈0,−8,−1〉| =
1
2

√
64 + 1 = 1

2

√
65.

c. − 8√
65
〈0,−8,−1〉 = 8√

65
〈0, 8, 1〉.

15 {(x, y, z) | (x− 1)2 + y2 + (z + 1)2 = 16}.

16 {(x, y, z) | (x− 2)2 + (y − 4)2 + (z + 3)2 < 100}.

17 {(x, y, z) |x2 + (y − 1)2 + z2 > 4}.

18 Completing the square gives (x2 − 6x + 9) + (y2 + 8y + 16) + (z2 − 2z + 1) = 23 + 9 + 16 + 1 = 49, or
(x− 3)2 + (y + 4)2 + (z − 1)2 = 72. This is a sphere of radius 7 centered at (3,−4, 1).

19 Completing the square gives (x2 − x+ 1/4) + (y2 + 4y + 4) + (z2 − 6z + 9) < −11 + 1/4 + 4 + 9 = 9
4 , or

(x− 1/2)2 + (y + 2)2 + (z − 3)2 < (3/2)2. This is a ball centered at (1/2,−2, 3) of radius 3/2.

20 Completing the square gives x2+(y2−10y+25)+(z2−6z+9) = −34+25+9, or x2+(y−5)2+(z−3)2 = 0.
This consists of the single point (0, 5, 3).

21 Completing the square gives (x2−6x+9)+y2+(z2−20z+100) > −9+9+100, or (x−3)2+y2+(z−10)2 >
102. These are the points outside of a sphere of radius 10 centered at (3, 0, 10).

22 F = F1+F2+F3 = 〈−60, 60, 30〉.
|F| = 30

√
4 + 4 + 1 = 90.

y

x

z

10

10
�10

�20
�30

�40
�50

�6020

30

40

50

20
30

40
50

60

F1

F2

F3

F � <�60, 60, 30>

23 The magnitude of 〈0, 4,−50〉 is√2516 ≈ 50.16 meters per second. The direction is cos−1(4/
√
2516) ≈ 85.4

degrees below the horizontal in the northerly horizontal direction.

24 The plane’s original velocity vector is 250〈1, 0, 0〉, the crosswind’s is 40〈√2/2,
√
2/2, 0〉 and the down-

draft’s is 25〈0, 0,−1〉. The resulting velocity vector is 〈250 + 20
√
2, 20

√
2,−25〉. The speed is therefore√

(250 + 20
√
2)2 + (20

√
2)2 + (−25)2 ≈ 280.8 mph.

25 This is a circle of radius one centered at (0, 2, 0) and sitting in the plane y = 2.

26

a. u·v = 0−3+20 = 17. |u| = 5 and |v| = √
42. Thus the angle between the vectors is cos−1( 17

5
√
42
) ≈ 1.02

radians.
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b. projvu = 17
42 〈−4, 1, 5〉, and scalvu = 17√

42
.

c. projuv = 17
25 〈0,−3, 4〉, and scaluv = 17

5 .

27

a. u · v = −3 + 12 + 12 = 21, |u| = 3 and |v| = 9, so θ = cos−1
(
21
27

) ≈ .68 radian.

b. projvu = 21
81 〈3, 6, 6〉 = 〈7/9, 14/9, 14/9〉, and scalvu = 21

9 = 7
3 .

c. projuv = 21
9 〈−1, 2, 2〉 = 〈−7/3, 14/3, 14/3〉, and scaluv = 21

3 = 7.

28

a. |Fpar| = 180 sin 30◦ = 90. |Fperp| = 180 cos 30◦ = 90
√
3.

b. Work = 90 · 10 = 90 foot-lbs.

29 〈2,−6, 9〉× 〈−1, 0, 6〉 = 〈−36,−21,−6〉. The length of this vector is 3
√
122 + 72 + 22 = 3

√
197. Thus the

unit normals are ±1√
197

〈12, 7, 2〉.
30

a. The angle is given by cos−1( 〈2,0,−2〉·〈2,2,0〉
2
√
2·2√2

) = cos−1(1/2) = π/3.

b. The angle is also given by sin−1( |〈2,0,−2〉×〈2,2,0〉|
2
√
2·2√2

) = sin−1( |〈4,−4,4〉|
8 ) = sin−1(4

√
3/8) = π/3.

31 T (θ) = (.4) · 98 · sin θ ≈ 39.2 sin θ Newton-meters. This has a maximum of 39.2 when sin θ = 1 (at
θ = π/2) and a minimum of 0 at θ = 0. The direction of the torque does not change as the knee is lifted.

32 The direction is 〈−6− 2, 4− 6, 0− (−1)〉 = 〈−8,−2, 1〉. So the line is described by 〈x, y, z〉 = 〈2, 6,−1〉+
t〈8, 2,−1〉, ∞ < t < ∞.

33 The direction of the line segment is 〈2− 0,−8− (−3), 1− 9〉 = 〈2,−5,−8〉. The line segment is described
by 〈x, y, z〉 = 〈0,−3, 9〉+ t〈2,−5,−8〉, 0 ≤ t ≤ 1.

34 The direction is 〈2,−5, 6〉, so the line is given by 〈0, 1, 1〉+ t〈2,−5, 6〉 = 〈2t, 1− 5t, 1 + 6t〉.
35 The direction is given by 〈0,−1, 3〉 × 〈2,−1, 2〉 = 〈1, 6, 2〉. Thus the line is given by 〈0, 1, 1〉+ t〈1, 6, 2〉 =
〈t, 1 + 6t, 1 + 2t〉.
36 The direction is given by 〈−2, 1, 7〉 × 〈0, 1, 0〉 = 〈−7, 0,−2〉. Thus the line is given by 〈0, 1, 4〉 +
t〈−7, 0,−2〉 = 〈−7t, 1, 4− 2t〉.
37 Two adjacent sides of the parallelogram are given by 〈0,−2, 3〉 and 〈3, 0, 1〉, so the area is

|〈0,−2, 3〉 × 〈3, 0, 1〉| = |〈−2, 9, 6〉| = 11.

38 Two adjacent sides of the triangle are given by 〈4, 0,−4〉 and 〈−1, 2,−5〉, so the area is

1

2
|〈4, 0,−4〉 × 〈−1, 2,−5〉| = 1

2
|〈8, 24, 8〉| = 4

√
11.

39

The curve is a circle of radius 4 with center
(0, 1, 0) sitting in the plane y = 1. It is the in-
tersection of the plane y = 1 and the cylinder
x2 + z2 = 16.

3
3

3

x

y

z
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40

Note that if 〈x, y, z〉 = 〈et, 2et, 1〉, then y =
2x and z = 1. So this is a line in the plane
z = 1.

y
x

z

(0, 0, 1)

41

Note that x2 + y2 + z2 = 2, so this curve lies
on a sphere of radius 2. Also, every point
satisfies z = x, so it is a circle centered at the
origin of radius 2, sitting in the plane z = x.

1

2
2

x

y

z

42

a. limt→0 r(t) = 〈1,−3〉 and limt→∞ r(t) does not exist.

b. r′(t) = 〈1, 2t〉 so r′(0) = 〈1, 0〉.
c. r′′(t) = 〈0, 2〉.
d.
∫
r(t) dt = 〈t2/2 + t, t3 − 3t〉+ 〈C1, C2〉.

43

a. limt→0 r(t) = 〈1, 0〉 and limt→∞ r(t) = 〈0, 1〉.
b. r′(t) = 〈 −2

(2t+1)2 ,
1

(1+t)2 〉 so r′(0) = 〈−2, 1〉.

c. r′′(t) = 〈 8
(2t+1)3 ,

−2
(1+t)3 〉.

d.
∫
r(t) dt = 〈 12 ln |2t+ 1|, t− ln |t+ 1|〉+ 〈C1, C2〉.

44

a. limt→0 r(t) = 〈1, 0, 0〉 and limt→∞ r(t) = 〈0, 0, π
2 〉.

b. r′(t) = 〈−2e−2t, e−t − te−t, 1
1+t2 〉 so r′(0) = 〈−2, 1, 1〉.

c. r′′(t) = 〈4e−2t, te−t − 2e−t, 2t
(1+t2)2 〉.

d.
∫
r(t) dt = 〈− 1

2e
−2t, (1 + t)e−t, t tan−1(t)− 1

2 ln
(
t2 + 1

)〉+ 〈C1, C2〉.
45

a. limt→0 r(t) = 〈0, 3, 0〉 and limt→∞ r(t) does not exist.

b. r′(t) = 〈2 cos 2t,−12 sin 4t, 1〉 so r′(0) = 〈2, 0, 1〉.
c. r′′(t) = 〈−4 sin 2t,−48 cos 4t, 0〉.
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d.
∫
r(t) dt = 〈− 1

2cos2t,
3
4 sin 4t,

1
2 t

2〉+ 〈C1, C2〉.
46 r′(t) = 〈0, 8 cos t,− sin t〉. The vectors r′(t) and r(t) are orthogonal when r · r′ = 0 + 64 sin t cos t −
sin t cos t = 63 sin t cos t is zero. This occurs when either sin t = 0 or cos t = 0, so at t = 0, t = π/2, t = 3π/2
and t = 2π, which correspond to the points (1, 0, 1), (1, 8, 0), (1, 0,−1) and (1,−8, 0).

47

a. The trajectory is given by r(t) = 〈50t, 50t−16t2〉. The projectile is at y = 30 when −16t2+50t−30 = 0,
which occurs at t = 1

16

(
25±√

145
) ≈ .81 and 2.32. At these times, x = 50t ≈ 40.5 and 116. The first

time represents when the projectile has not yet reached the cliff, while the second time represents when
the projectile lands on the cliff, so the coordinates of the landing spot are approximately (116, 30).

b. The maximum height occurs where y′ = 0, which occurs for 50− 32t = 0, or t = 25/16. The maximum

height is 50 · 25
16 − 16

(
25
16

)2
= 625

16 ≈ 39.06 feet.

c. As mentioned above, the flight ends at t ≈ 2.32 seconds.

d. The length of the trajectory is
∫ 2.32

0

√
x′(t)2 + y′(t)2 dt =

∫ 2.32

0

√
2500 + (50− 32t)2 dt.

e. L ≈ 129 feet.

f. Suppose the launch angle is α. Then r(t) = 〈50√2t cosα, 50
√
2t sinα − 16t2〉. We want y ≥ 30 when

x = 50. We know that x = 50 when t = secα√
2
. At this time, we have y = 50 tanα − 8 sec2 α. This

expression is greater than or equal to 30 for approximately 41.5 ≤ α ≤ 79.4.

48 The initial velocity of the ball is given by 〈s√3/2, s/2〉 where s is the initial speed of the ball. We have
r(t) = 〈(s√3/2)t,−16t2 + (s/2)t+ 2〉. We know that (s

√
3/2)t = 10 when −16t2 + (s/2)t+ 2 = 0. Solving

the first equation for t gives t = 20/(s
√
3). Putting this into the second equation gives −16(20/(s

√
3))2 +

(s/2)(20/(s
√
3)) = −2. Solving for s gives s ≈ 16.6 feet per second.

49 The initial velocity of the ball is given by s〈√2/2,
√
2/2〉 where s is the initial speed.

We have r(t) = 〈(s√2/2)t,−16t2+(s
√
2/2)t+6〉. We know that (s

√
2/2)t = 15 when −16t2+(s

√
2/2)t+

6 = 10. Solving the first equation for t gives t = 30/(s
√
2). Putting this into the second equation gives

−16(30/(s
√
2))2 + (s

√
2/2)(30/(s

√
2)) = 4. Solving for s gives s ≈ 25.6 feet per second.

50 L =
∫ 2

0

√
81t7 + 9t4 dt =

∫ 2

0
3t2

√
9t3 + 1 dt. Let u = 9t3 + 1 so that du = 27t2 dt. We have L =

1
9

∫ 73

1
u1/2 du = 2

27

(
u3/2

) ∣∣∣∣73
1

= 2
27 (73

√
73− 1).

51 L =
∫ 3

1

√
4t2 + 8t+ 4 dt = 2

∫ 3

1

√
(t+ 1)2 dt = 2

∫ 3

1
(t+ 1) dt = 2

(
t2/2 + t

) ∣∣∣∣3
1

= 2(9/2 + 3− (1/2 + 1)) =

9 + 6− 1− 2 = 12.

52 L =
∫ π/4

0

√
1 + tan2 t+ sec2 t dt =

∫ π/4

0

√
2 sec t dt =

√
2 (ln |sec t+ tan t|)

∣∣∣∣π/4
0

=
√
2(ln(

√
2 + 1)− ln(1 +

0)) =
√
2 ln(

√
2 + 1).

53

a. v(t) =
∫ 〈0,√2, 2t〉 dt = 〈0,√2t, t2〉 + C. Because v(0) = 〈1, 0, 0〉, we have C = 〈1, 0, 0〉, so v(t) =

〈1,√2t, t2〉.

b. L =
∫ 3

0

√
1 + 2t2 + t4 dt =

∫ 3

0
(t2 + 1) dt =

(
t3/3 + t

) ∣∣∣∣3
0

= 9 + 3 = 12.

54 L =
∫ 2π

0

√
(3 + 2 cos θ)2 + (−2 sin θ)2 dθ =

∫ 2π

0

√
13 + 12 cos θ dθ ≈ 21.01.
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55 L =
∫ 2π

0

√
(3− 6 cos θ)2 + (6 sin θ)2 dθ =

∫ 2π

0
3
√
5− 4 cos(θ) dθ ≈ 40.09.

56 |r′(t)| = |〈4,−3〉| = 5. Let s =
∫ t

1
5 du = 5t − 5. Solving for t gives t = s+5

5 . Thus, r(s) = 〈1 + 4(s +

5)/5,−3(s+ 5)/5〉 = 〈5 + 4s
5 ,−3− 3s

5 〉 for s ≥ 0.

57 |r′(t)| =
∣∣〈2t, 2√2t1/2, 2〉∣∣ =

√
4t2 + 8t+ 4 = 2

√
(t+ 1)2 = 2(t + 1). Let s =

∫ t

0
2(u + 1) du =(

u2 + 2u
) ∣∣∣∣t

0

= t2 +2t. Then s+1 = (t+1)2, so t =
√
s+ 1− 1. Thus, r(s) = 〈(√s+ 1− 1)2, 4

√
2

3 (
√
s+ 1−

1)3/2, 2(
√
s+ 1− 1)〉 for s ≥ 0.

58

a. r′(t) = 〈−3 sin t, 4 cos t〉, so T = 1√
9+7 cos2 t

〈−3 sin t, 4 cos t〉. Because N is a unit vector perpendicular

to T pointing toward the inside of the ellipse, it is N = 1√
9+7 cos2 t

〈−4 cos t,−3 sin t〉. All of these are

valid for 0 ≤ t ≤ 2π.

b. |r′(t)| = √
9 + 7 cos2 t. The derivative of this is − 7 cos t sin t√

9+7 cos2 t
, which is 0 at t = 0, t = π/2, t = π, and

t = 3π/2. The speed is maximal at t = 0 and t = π and minimal at t = π/2 and t = 3π/2.

c. κ =
|r′′(t)×r′(t)|
(9+7 cos2 t)3/2

= |〈0,0,−12〉|
(9+7 cos2 t)3/2

= 12
(9+7 cos2 t)3/2

. The curvature is maximal at t = π/2 and t = 3π/2

where the denominator is minimized, and is minimal at t = 0 and t = π where the denominator is
maximized. Note that the velocity is maximized where the curvature is minimal, and vice versa.

d. In order for r and N to be parallel , we require 3 cos t = m · − 4 cos t√
9+7 cos2 t

and 4 sin t = m · − 3 sin t√
9+7 cos2 t

for some constant m. This only occurs when either sin t = 0 or cos t = 0. (If sin t = 0, then m = −3
and if cos t = 0 then m = −4.) So the corresponding points on r are (3, 0), (0, 4), (−3, 0), and (0,−4).

59

a. r′(t) = 〈−6 sin t, 3 cos t〉, so T = 1√
1+3 sin2 t

〈−2 sin t, cos t〉.

b. κ =
|r′′(t)×r′(t)|

(3
√

1+3 sin2 t)3
= |〈0,0,−18〉|

(3
√

1+3 sin2 t)3
= 2

3(
√

1+3 sin2 t)3
.

c. Note that 1√
1+3 sin2 t

〈− cos t,−2 sin t〉 has length one, and is perpendicular to T (see part [d]), and

points to the inside of the curve, so it is N.

d.

∣∣∣∣ 1√
1+3 sin2 t

〈− cos t,−2 sin t〉
∣∣∣∣ = √

1+3 sin2 t√
1+3 sin2 t

= 1 and T ·N = 1√
1+3 sin2 t

(2 sin t cos t− 2 sin t cos t) = 0.

e.

2

4

�2

�4

y

�2�4 2 4

(0, �3)

(6, 0)(�6, 0)

(0, 3)

x

T(0) � �0, 1�  

N(0) � ��1, 0�  

T (q) � ��1, 0� 

N(q) � �0, �1�
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60

a. r′(t) = 〈− sin t, 2 cos t, 0〉, so T =
1√

1+3 cos2 t
〈− sin t, 2 cos t, 0〉.

b. κ =
|r′′(t)×r′(t)|
(
√
1+3 cos2 t)3

= |〈0,0,−2〉|
(
√
1+3 cos2 t)3

=
2

(
√
1+3 cos2 t)3

.

c. Note that 1√
1+3 cos2 t

〈−2 cos t,− sin t, 0〉 has

length one, and is perpendicular to T (see
part [d]), and points to the inside of the curve,
so it is N.

d.
∣∣∣ 1√

1+3 cos2 t
〈−2 cos t,− sin t〉

∣∣∣ = √
1+3 cos2 t√
1+3 cos2 t

=

1 and T · N = 1√
1+3 cos2 t

(2 sin t cos t −
2 sin t cos t) = 0.

e. y

z

N(0)

T(0)
T(q)

N(q)
1

x

61

a. r′(t) = 〈− sin t,−2 sin t,
√
5 cos t〉, so

T =
1√
5
〈− sin t,−2 sin t,

√
5 cos t〉.

b. κ =
|r′′(t)×r′(t)|

(
√
5)3

=
|〈−2

√
5,
√
5,0〉|

(
√
5)3

= 1√
5
.

c. dT
dt = 1√

5
〈− cos t,−2 cos t,−√

5 sin t〉 = N.

d.
∣∣∣ 1√

5
〈− cos t,−2 cos t,−√

5 sin t〉
∣∣∣ =

√
5√
5

= 1

and T · N = 1√
5
(sin t cos t + 4 sin t cos t −

5 sin t cos t) = 0.

e.

3

3
3

x

y

z

T(0) � �0, 0, 1�

N (q) � �0, 0, �1�

N (0) � 

T (q) � , , 01
�5

2
�5� � � �

, , 01
�5

2
�5� � � �

62

a. r′(t) = 〈1,−2 sin t, 2 cos t〉, so

T =
1√
5
〈1,−2 sin t, 2 cos t〉.

b. κ =
|r′′(t)×r′(t)|

(
√
5)3

= |〈−4,−2 sin(t),2 cos(t)〉|
(
√
5)3

= 2
5 .

c. dT
dt = 1√

5
〈0,−2 cos t,−2 sin t〉, so

N = 〈0,− cos t,− sin t〉.

d. |N| =
√
cos2 t+ sin2 t = 1 and T · N =

1√
5
(0 + 2 sin t cos t− 2 sin t cos t) = 0.

e.

63

a. v(t) = 〈−2 sin t, 2 cos t〉, and a(t) = 〈−2 cos t,−2 sin t〉. Because v · a = 0, we have aT = 0. Note
that a × v = 〈−2 cos t,−2 sin t, 0〉 × 〈−2 sin t, 2 cos t, 0〉 = 〈0, 0,−4〉, so aN = 4

2 = 2. We have a =
〈−2 cos t,−2 sin t〉 = 2N+ 0 ·T.
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b.

Note that at t = 0 we have a = 〈−2, 0〉 =
2〈−1, 0〉 = 2N, and at t = π/2 we have a =
〈0,−2〉 = 2〈0,−1〉 = 2N. x

y

N

a

a N (2, 0)

(0, 2)

64

a. v(t) = 〈3,−1, 1〉, and a(t) = 〈0, 0, 0〉. Because v · a = 0, we have aT = 0. Note that a× v = 〈0, 0, 0〉,
so aN = 0. We have a = 〈0, 0, 0〉 = 0 ·N+ 0 ·T.

b. For all t, we have a = 〈0, 0, 0〉 = 0 ·N+0 ·T.

65

a. v(t) = 〈2t, 2〉, and a(t) = 〈2, 0〉. Because v · a = 4t, we have aT = 4t
2
√
t2+1

= 2t√
t2+1

. Note that

a× v = 〈0, 0, 4〉, so aN = 4
2
√
t2+1

= 2√
t2+1

. We have that a = 〈2, 0〉 = 2√
t2+1

N+ 2t√
t2+1

T.

b.

At t = 1, we have a = 〈2, 0〉 = 2√
2
T+ 2√

2
N =

2√
2
〈√2/2,

√
2/2〉+ 2√

2
〈√2/2,−√

2/2〉.
At t = 2, we have a = 〈2, 0〉 =
4√
5
〈2/√5, 1/

√
5〉+ 2√

5
〈1/√5,−2/

√
5〉. 1

2

3

4

5

x

y

87654321

aNN

aNN

aTT

aTT

a � �2, 0� 

a � �2, 0� 

66

a. v(t) = 〈−2 sin t, 2 cos t, 10〉, and a(t) = 〈−2 cos t,−2 sin t, 0〉. Because v · a = 0, we have aT = 0. Note

that a× v = 〈−20 sin(t), 20 cos(t),−4〉, so aN = 4
√
26

2
√
26

= 2.
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b.

At t = π/2, we have a = 〈0,−2, 0〉 = 0 ·T+
2N = 2〈0,−1, 0〉.
At t = 3π/2, we have a = 〈0, 2, 0〉 = 0 · T +
2N = 2〈0, 1, 0〉.

67

a. We are looking for points (x, y) so that 〈x − x0, y − y0〉 · 〈a, b〉 = 0, so a(x − x0) + b(y − y0) = 0, or
ax+ by = ax0 + by0.

b. Note that 〈a, b, 0〉 × 〈x− x0, y − y0, 0〉 = 〈0, 0, a(y − y0)− b(x− x0)〉. This is equal to the zero vector
when ay − ay0 = bx− bx0, or ay − bx = ay0 − bx0. So the equation of a line passing through (x0, y0)
and parallel to 〈a, b〉 is given by ay − bx = ay0 − bx0.

68

a.

The curve makes “one loop” for every 2π ra-
dians, so for 0 ≤ θ ≤ 2πN , it makes N loops.
When θ = 2πN , we have that the radius of
the whole spiral is R = tN .

r

t

�1�2�3

�3

�2

�1

1

2

3

321

b. L =
∫ 2πN

0

√
f(θ)2 + f ′(θ)2 dθ =

∫ 2πN

0

√(
tθ
2π

)2
+
(

t
2π

)2
dθ = t

2π

∫ 2πN

0

√
θ2 + 1 dθ.

c. Note that limθ→∞ θ2+1
θ2 = 1, so when θ is large θ2 ≈ θ2 + 1. So L ≈ t

2π

∫ 2πN

0
θ dθ = t

2π · (2πN)2 · 1
2 =

tπN2. Because N = R
t , we have L ≈ πR2

t .

d. Let tθ1/(2π) = r and tθ2/(2π) = R. We have θ1 = 2πr
t = 2π·.025

1.5·10−6 = π
3 · 105, and θ2 = 2πR

t = 2π·0.059
1.5·10−6 ≈

2.36 · π
3 · 105.

e. L ≈ 1.5·10−6

2π

∫ (2.36π/3)·105
(π/3)·105 θ dθ ≈ 5981.6 meters. This is about 598,160 centimeters, and about 3.7 miles.

69 We have r′(t) = 〈1, 2t, 3t2〉, so r′(1) = 〈1, 2, 3〉. Thus, T(1) = 1√
3
〈1, 1, 1〉.

Then N(1) = 〈− 11√
266

,−4
√

2
133 ,

9√
266

〉, so B = T×N = 〈 3√
19
,− 3√

19
, 1√

19
〉. Also, τ = (r′×r′′)·r′′′

|r′×r′′|2 = 3
19 .

70

a. r′(t) = 〈3 cos t, 4 cos t,−5 sin t〉, and |r′(t)| = 5, so T(t) = 1
5 〈3 cos t, 4 cos t,−5 sin t〉.
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b. T′(t) = 1
5 〈−3 sin t,−4 sin t,−5 cos t〉, which has length one, so N(t) = 1

5 〈−3 sin t,−4 sin t,−5 cos t〉.

c. At t = 0 we have T = 〈3/5, 4/5, 0〉 and N = 〈0, 0,−1/5〉. At t = π/2 we have T = 〈0, 0,−1〉 and
N = 〈−3/5,−4/5, 0〉.

�2
0

2
�4 �2 0 2 4

�5

0

5

d. Yes.

e. B(t) = T(t)×N(t) = 〈− 4
5 ,

3
5 , 0〉.

f.

g. One should check that T, N, and B are all of unit length and are mutually orthogonal.

h. Because B is constant, τ = 0.

71

a. r′(t) = 〈3 cos t,−3 sin t, 4〉, and |r′(t)| = 5, so T(t) = 1
5 〈3 cos t,−3 sin t, 4〉.

b. T′(t) = 1
5 〈−3 sin t,−3 cos t, 0〉, so N(t) = 〈− sin t,− cos t, 0〉.

c. At t = 0 we have T = 〈3/5, 0, 4/5〉 and N = 〈0,−1, 0〉. At t = π/2 we have T = 〈0,−3/5, 4/5〉 and
N = 〈−1, 0, 0〉.
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�2

0

2
x

�2

0

2

y

0

10

20

z

d. Yes.

e. B(t) = T(t)×N(t) = 1
5 〈4 cos t,−4 sin t,−3〉.

f.

g. One should check that T, N, and B are all of unit length and are mutually orthogonal.

h. τ = −dB/dt
ds/dt ·N = 1

25 〈−4 sin t,−4 cos t, 0〉 · 〈− sin t,− cos t, 0〉 = − 4
25 .

72

a. v(t) = 〈2a1t+ b1, 2a2t+ b2, 2a3t+ b3〉 and a(t) = 〈2a1, 2a2, 2a3〉. Thus v × a = 2〈a3b2 − a2b3, a1b3 −
a3b1, a2b1 − a1b2〉, which is constant. Thus B = v×a

|v×a| is a constant, so τ = 0.

b. a′(t) = 〈0, 0, 0〉, so τ = (v×a)·a′

|v×a|2 = 0.

73

a. First consider the case where a3 = b3 = c3 = 0. Let t �= s be in the interval I, and consider r(t)× r(s).
We will show that this vector is always a multiple of the same constant vector. We have

r(t)× r(s)

= 〈a1f(t) + a2g(t), b1f(t) + b2g(t), c1f(t) + c2g(t)〉 × 〈a1f(s) + a2g(s), b1f(s) + b2g(s), c1f(s) + c2g(s)〉
= (f(t)g(s)− f(s)g(t))〈c2b1 − b2c1, a2c1 − a1c2, a1b2 − a2b1〉,

where this last computation admittedly requires patience. Because r(t)× r(s) is always orthogonal to
the same vector, the vectors r(t) must all lie in the same plane.
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Now consider the case where a3, b3, and c3 are not necessarily 0, and consider p(t) = r(t)−〈a3, b3, c3〉.
Note that p(t) has the form required in the argument in the previous paragraph. Using the result
above, the curve p(t) lies in a plane, which implies that r(t) = p(t)+ 〈a3, b3, c3〉 lies in a plane as well,
because we are just translating all the vectors p(t) by the same constant vector.

b. If the curve lies in a plane, the B is always normal to the plane with length 1. Hence B is constant, so
τ = −dB

ds ·N = 0.
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Chapter 12

Functions of Several Variables

12.1 Planes and Surfaces

12.1.1 One point and a normal vector determine a plane

12.1.2 The vector n = 〈−2,−3, 4〉 is normal to this plane.

12.1.3 The point (x, y, z) where this plane intersects the x-axis has y = z = 0; substituting in the equation
of the plane gives x = −6. Similarly, we see that the plane meets the y-axis at y = −4 and the z-axis at
z = 3.

12.1.4 Substituting in the general equation for a plane gives (x− 1)+(y − 0)+(z − 0) = 0, which simplifies
to x+ y + z = 1.

12.1.5 Since z is absent from the equation x2 + 2y2 = 8, this cylinder is parallel to the z-axis. Similarly,
z2 + 2y2 = 8 is parallel to the x-axis and x2 + 2z2 = 8 is parallel to the y-axis.

12.1.6 This is a cylinder consisting of all lines parallel to the y-axis that pass through the parabola x = z2

in the xz-plane.

12.1.7 The traces of a surface are the sets of points at which the surface intersects a plane that is parallel
to one of the coordinate planes.

12.1.8 This is an elliptic paraboloid.

12.1.9 This is an ellipsoid.

12.1.10 This is a hyperboloid of two sheets.

12.1.11 Substituting in the general equation for a plane gives (x− 0) + (y − 2) − (z − (−2)) = 0, which
simplifies to x+ y − z = 4.

12.1.12 Substituting in the general equation for a plane gives (x− 1) − (y − 0) + 2 (z − (−3)) = 0, which
simplifies to x− y + 2z = −5.

12.1.13 Substituting in the general equation for a plane gives −1 (x− 2) + 2 (y − 3)− 3 (z − 0) = 0, which
simplifies to −x+ 2y − 3z = 4.

12.1.14 Substituting in the general equation for a plane gives −1 (x− 1) + 4 (y − 2) − 3 (z − (−3)) = 0,
which simplifies to −x+ 4y − 3z = 16.
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12.1.15 A vector normal to the plane is given by

∣∣∣∣∣∣∣∣
i j k

1 0 1

0 2 1

∣∣∣∣∣∣∣∣ = 〈−2,−1, 2〉. Substituting in the general

equation for a plane gives −2(x− 1)− 1(y − 2) + 2(z − 3) = 0, which simplifies to 2x+ y − 2z = −2.

12.1.16 A vector normal to the plane is given by

∣∣∣∣∣∣∣∣
i j k

1 −3 1

4 2 0

∣∣∣∣∣∣∣∣ = 〈−2, 4, 14〉. Substituting in the general

equation for a plane gives −2(x− 3) + 4(y − 0) + 2(z + 2) = 0, which simplifies to x− 2y − 7z = 17.

12.1.17 Let P = (1, 0, 3), Q = (0, 4, 2) and R = (1, 1, 1). Then the vectors
−−→
PQ = 〈−1, 4,−1〉 and

−→
PR =

〈0, 1,−2〉 lie in the plane, so n =
−−→
PQ × −→

PR =

∣∣∣∣∣∣∣∣
i j k

−1 4 −1

0 1 −2

∣∣∣∣∣∣∣∣ = −7i − 2j − k is normal to the plane. The

plane has equation 7 (x− 1) + 2 (y − 0) + 1 (z − 3) = 0, which simplifies to 7x+ 2y + z = 10.

12.1.18 Let P = (−1, 1, 1), Q = (0, 0, 2) and R = (3,−1,−2). Then the vectors
−−→
PQ = 〈1,−1, 1〉 and

−→
PR = 〈4,−2,−3〉 lie in the plane, so n =

−−→
PQ×−→

PR =

∣∣∣∣∣∣∣∣
i j k

1 −1 1

4 −2 −3

∣∣∣∣∣∣∣∣ = 5i+ 7j+ 2k is normal to the plane.

The plane has equation 5 (x− (−1)) + 7 (y − 1) + 2 (z − 1) = 0, which simplifies to 5x+ 7y + 2z = 4.

12.1.19 Let P = (2,−1, 4), Q = (1, 1,−1) and R = (−4, 1, 1). Then the vectors
−−→
PQ = 〈−1, 2,−5〉 and

−→
PR = 〈−6, 2,−3〉 lie in the plane, so n =

−−→
PQ×−→

PR =

∣∣∣∣∣∣∣∣
i j k

−1 2 −5

−6 2 −3

∣∣∣∣∣∣∣∣ = 4i+27j+10k is normal to the plane.

The plane has equation 4 (x− 2) + 27 (y − (−1)) + 10 (z − 4) = 0, which simplifies to 4x+ 27y + 10z = 21.

12.1.20 Let P = (5, 3, 1), Q = (1, 3,−5) and R = (−1, 3, 1). Then the vectors
−−→
PQ = 〈−4, 0,−6〉 and

−→
PR = 〈−6, 0, 0〉 lie in the plane, s0 n =

−−→
PQ×−→

PR =

∣∣∣∣∣∣∣∣
i j k

−4 0 −6

−6 0 0

∣∣∣∣∣∣∣∣ = 36j is normal to the plane. The plane

has equation 36 (y − 3) = 0, which simplifies to y = 3.

12.1.21 The x-intercept is found by setting y = z = 0 and solving 3x = 6 to get x = 2. Similarly, we see
that the y-intercept is −3 and the z-intercept is 6. The xy-trace is found by setting z = 0, which gives
3x− 2y = 6. Similarly, the xz-trace is 3x+ z = 6 and the yz-trace is −2y + z = 6.
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12.1.22 The x-intercept is found by setting y = z = 0 and solving −4x = 16 to get x = −4. Similarly, we
see that the z-intercept is 2. Setting x = z = 0 gives 0 = 16, so this plane does not intersect the y-axis. The
xy-trace is found by setting z = 0, which gives −4x = 16 or x = −4. Similarly, the xz-trace is −4x+8z = 16
or x− 2z = −4 and the yz-trace is z = 2.

12.1.23 The x-intercept is found by setting y = z = 0 which gives x = 30. Similarly, we see that the
y-intercept is 10 and the z-intercept is −6. The xy-trace is found by setting z = 0, which gives x+ 3y = 30.
Similarly, the xz-trace is x− 5z = 30 and the yz-trace is 3y − 5z = 30.

12.1.24 The x-intercept is found by setting y = z = 0 and solving 12x + 72 = 0 to get x = −6. Similarly,
we see that the y-intercept is 8 and the z-intercept is −18. The xy-trace is found by setting z = 0, which
gives 12x− 9y = −72 or 4x− 3y = −24. Similarly, the xz-trace is 12x+ 4z = −72 or 3x+ z = −18 and the
yz-trace is 9y − 4z = 72.

12.1.25 The normal vectors to the planes are 〈1, 1, 4〉 and 〈−1,−3, 1〉, and the dot product of these vectors
is −1− 3 + 4 = 0, so the planes are orthogonal.

12.1.26 The normal vectors to the planes are 〈2, 2,−3〉 and 〈−10,−10, 15〉, and these are parallel because
〈−10,−10, 15〉 = −5〈2, 2,−3〉. Thus, the planes are parallel.

12.1.27 The normal vectors to the planes are 〈3, 2,−3〉 and 〈−6,−10, 1〉. These are neither parallel nor
perpendicular, because one is not a multiple of the other and because their dot product is not 0. Thus, the
planes are neither parallel nor perpendicular.
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12.1.28 The normal vectors to the planes are 〈3, 2, 2〉 and 〈−6,−10, 19〉, and the dot product of these vectors
is −18− 20 + 38 = 0, so the planes are orthogonal.

12.1.29 Rewrite R and T so we have Q : 3x− 2y + z = 12, R : 3x− 2y + z = 0, T : 3x− 2y + z = 12. This
shows that Q and T are identical, and Q, R and T are parallel. Note that 〈3,−2, 1〉 · 〈−1, 2, 7〉 = 0 so S is
orthogonal to Q, R and T .

12.1.30 The planes Q, R, S and T have normal vectors 〈1, 1,−1〉, 〈0, 1, 1〉, 〈1,−1, 0〉 and 〈1, 1, 1〉 respectively.
None of these vectors are scalar multiples of each other, so no two of these planes are parallel (or identical).
Observe that 〈1, 1,−1〉 · 〈0, 1, 1〉 = 〈1, 1,−1〉 · 〈1,−1, 0〉 = 0; therefore Q is orthogonal to R and S. We also
have 〈1,−1, 0〉 · 〈1, 1, 1〉 = 0, so S and T are orthogonal. All other pairs have non-zero dot products, so no
other pairs are orthogonal.

12.1.31 The plane Q has normal vector 〈−1, 2,−4〉; therefore the parallel plane passing through the point
P0 (1, 0, 4) has equation −1 (x− 1) + 2 (y − 0)− 4 (z − 4) = 0, which simplifies to −x+ 2y − 4z = −17.

12.1.32 The plane Q has normal vector 〈2, 1,−1〉; therefore the parallel plane passing through the point
P0 (0, 2,−2) has equation 2 (x− 0) + 1 (y − 2)− 1 (z − (−2)) = 0, which simplifies to 2x+ y − z = 4.

12.1.33 The plane Q has normal vector 〈4, 3,−2〉; therefore the parallel plane passing through the point
P0 (1,−1, 3) has equation 4 (x− 1) + 3 (y − (−1))− 2 (z − 3) = 0, which simplifies to 4x+ 3y − 2z = −5.

12.1.34 12.1.28 The plane Q has normal vector 〈1,−5,−2〉; therefore the parallel plane passing through the
point P0 (1, 2, 0) has equation 1 (x− 1)− 5 (y − 2)− 2 (z − 0) = 0, which simplifies to x− 5y − 2z = −9.

12.1.35 First, note that the vectors normal to the planes, nQ = 〈−1, 2, 1〉 and nR = 〈1, 1, 1〉, are not
multiples of each other; therefore these planes are not parallel and they intersect in a line �. We need to
find a point on � and a vector in the direction of �. Setting x = 0 in the equations of the planes gives
equations of the lines in which the planes intersect the yz-plane: 2y + z = 1, y + z = 0. Solving these
equations simultaneously gives y = 1 and z = −1, so (0, 1,−1) is a point on �. A vector in the direction of �

is nQ×nR =

∣∣∣∣∣∣∣∣
i j k

−1 2 1

1 1 1

∣∣∣∣∣∣∣∣ = i+2j−3k = 〈1, 2,−3〉. Therefore � has equation r (t) = 〈0, 1,−1〉+ t〈1, 2,−3〉 =

〈t, 1 + 2t,−1− 3t〉, or x = t, y = 1 + 2t, z = −1− 3t.

12.1.36 First, note that the vectors normal to the planes, nQ = 〈1, 2,−1〉 and nR = 〈1, 1, 1〉, are not
multiples of each other; therefore these planes are not parallel and they intersect in a line �. We need to
find a point on � and a vector in the direction of �. Setting z = 0 in the equations of the planes gives
equations of the lines in which the planes intersect the xy-plane: x + 2y = 1, x + y = 1. Solving these
equations simultaneously gives x = 1 and y = 0, so (1, 0, 0) is a point on �. A vector in the direction of � is

nQ×nR =

∣∣∣∣∣∣∣∣
i j k

1 2 −1

1 1 1

∣∣∣∣∣∣∣∣ = 3i−2j−k = 〈3,−2,−1〉. Therefore � has equation r (t) = 〈1, 0, 0〉+ t〈3,−2,−1〉 =

〈1 + 3t,−2t,−t〉, or x = 1 + 3t, y = −2t, z = −t.

12.1.37 First, note that the vectors normal to the planes, nQ = 〈2,−1, 3〉 and nR = 〈−1, 3, 1〉, are not
multiples of each other; therefore these planes are not parallel and they intersect in a line �. We need to
find a point on � and a vector in the direction of �. Setting z = 0 in the equations of the planes gives
equations of the lines in which the planes intersect the xy-plane: 2x − y = 1, −x + 3y = 4. Solving
these equations simultaneously gives x = 7

5 and y = 9
5 , so

(
7
5 ,

9
5 , 0
)
is a point on �. A vector in the

direction of � is nQ × nR =

∣∣∣∣∣∣∣∣
i j k

2 −1 3

−1 3 1

∣∣∣∣∣∣∣∣ = −10i − 5j + 5k = −5〈2, 1,−1〉. Therefore � has equation

r (t) = 〈 75 , 9
5 , 0〉+ t〈2, 1,−1〉 = 〈75 + 2t, 9

5 + t,−t〉, or x = 7
5 + 2t, y = 9

5 + t, z = −t.
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12.1.38 First, note that the vectors normal to the planes, nQ = 〈1,−1,−2〉 and nR = 〈1, 1, 1〉, are not
multiples of each other; therefore these planes are not parallel and they intersect in a line �. We need to find
a point on � and a vector in the direction of �. Setting z = 0 in the equations of the planes gives equations
of the lines in which the planes intersect the xy-plane: x − y = 1, x + y = −1. Solving these equations
simultaneously gives x = 0 and y = −1, so (0,−1, 0) is a point on �. A vector in the direction of � is

nQ×nR =

∣∣∣∣∣∣∣∣
i j k

1 −1 −2

1 1 1

∣∣∣∣∣∣∣∣ = i−3j+2k = 〈1,−3, 2〉. Therefore � has equation r (t) = 〈0,−1, 0〉+ t〈1,−3, 2〉 =

〈t,−1− 3t, 2t〉, or x = t, y = −1− 3t, z = 2t.

12.1.39

a. The cylinder is parallel to the x-axis.

b.

�5
0

5

�2 �1 0 1 2

�2

�1

0

1

2

12.1.40

a. The cylinder is parallel to the z-axis.

b.

�2
0

2

�2�1012

�2

0

2

12.1.41

a. The cylinder is parallel to the y-axis.

b.

�2 �1 0 1 2
�2�1012

�2

�1

0

1

2
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12.1.42

a. The cylinder is parallel to the y-axis.

b.

�4
�2

0
0.0 0.5 1.0 1.5 2.0

�2

�1

0

1

2

12.1.43

a. The cylinder is parallel to the z-axis.

b.

12.1.44

a. The cylinder is parallel to the y-axis.

b.

12.1.45

a. The cylinder is parallel to the x-axis.

b.
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12.1.46

a. The cylinder is parallel to the z-axis.

b.

12.1.47

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x2 = 1, so
the x-intercepts are x = ±1. Similarly we see that the y-intercepts are y = ±2 and the z-intercepts
are z = ±3.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives x2 + y2

4 = 1, x2 + z2

9 = 1, y2

4 + z2

9 = 1.

c.

12.1.48

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives 4x2 = 1, so
the x-intercepts are x = ± 1

2 . Similarly we see that the y-intercepts are y = ±1 and the z-intercepts

are z = ±√
2.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives 4x2 + y2 = 1, 4x2 + z2

2 = 1, y2 + z2

2 = 1.
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c.

12.1.49

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x2 = 9, so
the x-intercepts are x = ±3. Similarly we see that the y-intercepts are y = ±1 and the z-intercepts
are z = ±6.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives x2

3 + 3y2 = 3,, x2

3 + z2

12 = 3, 3y2 + z2

12 = 3.

c.

12.1.50

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x2 = 36, so
the x-intercepts are x = ±6. Similarly we see that the y-intercepts are y = ± 1

2 and the z-intercepts
are z = ±12.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives x2

6 + 24y2 = 6, x2

6 + z2

24 = 6, 24y2 + z2

24 = 6.
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c.

12.1.51

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively
in the equation of the surface, which gives x = y2, x = z2, and y2 + z2 = 0 (which implies that
x = y = z = 0).

c.

12.1.52

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives 0 = x2

4 + y2

9 (which implies that x = y = z = 0), z = x2

4 ,

z = y2

9 .
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c.

12.1.53

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives x− 9y2 = 0, 9x− z2

4 = 0, 81y2 + z2

4 = 0 (which implies that
x = y = z = 0).

c.

12.1.54

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives y− x2

16 = 0, x2

8 + z2

18 = 0 (which implies that x = y = z = 0),

y − z2

36 = 0.

c.
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12.1.55

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x2 = 25,
so the x-intercepts are x = ±5. Similarly we see that the y-intercepts are y = ±3 and there are no
z-intercepts.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives x2

25 + y2

9 = 1, x2

25 − z2 = 1, y2

9 − z2 = 1.

c.

12.1.56

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which results in no
intercepts. Similarly we see that the y-intercepts are y = ±2 and the z-intercepts are z = ±3.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives y2

4 − x2

16 = 1, z2

9 − x2

16 = 1, y2

4 + z2

9 = 1.

c.

12.1.57

a. The y-intercept is found by setting x = z = 0 in the equation of this surface, which gives y2 = 144,
so the y-intercepts are y = ±12. Similarly we see that the z-intercepts are z = ± 1

2 and there are no
x-intercepts.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives −x2

4 + y2

16 − 9 = 0, −x2

4 + 36z2 − 9 = 0, y2

16 + 36z2 − 9 = 0.
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c.

12.1.58

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x2 = 1,
so the x-intercepts are x = ±1. Similarly we see that the z-intercepts are z = ± 1

3 and there are no
y-intercepts.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives x2 − y2

3 − 1 = 0, 9z2 + x2 − 1 = 0, 9z2 − y2

3 − 1 = 0.

c.

12.1.59

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives x2

9 − y2 = 0, z = x2

9 , z = −y2.

c.
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12.1.60

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives y = x2

16 ,
x2

16 − 4z2 = 0, y = −4z2.

c.

12.1.61

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives 5x− y2

5 = 0, 5x+ z2

20 = 0, −y2

25 + z2

20 = 0.

c.

12.1.62

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives 6y + x2

6 = 0, x2

6 − z2

24 = 0, 6y − z2

24 = 0.
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c.

12.1.63

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives x2 + y2

4 = 0 (which implies that x = y = z = 0), x2 = z2,
y2

4 = z2.

c.

12.1.64

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively
in the equation of the surface, which gives 4y2 = x2, x2 = z2, 4y2 + z2 = 0 (which implies that
x = y = z = 0).
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c.

12.1.65

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives y2

18 = 2x2, z2

32 = 2x2, z2

32 + y2

18 = 0 (which implies that
x = y = z = 0).

c.

12.1.66

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives x = 0.
Similarly we see that the y-intercept is y = 0 and the z-intercept is z = 0.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives x2

3 = 3y2, x2

3 + z2

12 = 0, (which implies that x = y = z = 0),
z2

12 = 3y2.

Copyright c© 2015 Pearson Education, Inc.



318 Chapter 12. Functions of Several Variables

c.

12.1.67

a. The y-intercept is found by setting x = z = 0 in the equation of this surface, which gives y2 = 4, so
the y-intercepts are y = ±2. There are no x or z-intercepts.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives −x2 + y2

4 = 1, −x2 − z2

9 = 1 (no xz-trace), y2

4 − z2

9 = 1.

c.

12.1.68

a. The x-intercept is found by setting y = z = 0 in the equation of this surface, which gives 4x2 = 1, so
the x-intercepts are x = ± 1

2 . There are no y or z-intercepts.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively in

the equation of the surface, which gives 1−4x2+y2 = 0, 1−4x2+ z2

2 = 0, 1+y2+ z2

2 = 0 (no yz-trace).
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c.

12.1.69

a. The y-intercept is found by setting x = z = 0 in the equation of this surface, which gives 3 y2 = 1, so

the y-intercepts are y = ±
√
3
3 . There are no x or z-intercepts.

b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives −x2

3 + 3y2 = 1, −x2

3 − z2

12 = 1 (no xz-trace), 3y2 − z2

12 = 1.

c.

12.1.70

a. The z-intercept is found by setting x = y = 0 in the equation of this surface, which gives z2 = 24 · 6,
so the z-intercepts are x = ±12. There are no x or y-intercepts.

b. b. The equations for the xy-, xz- and yz-traces are found by setting z = 0, y = 0 and x = 0 respectively

in the equation of the surface, which gives −x2

6 − 24y2 − 6 = 0 (no xy-trace), −x2

6 + z2

24 − 6 = 0,

−24y2 + z2

24 − 6 = 0.
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c.

12.1.71

a. True. Observe first that these two planes are parallel since their normal vectors are parallel. The first
plane has equation 1 · (x− 1) + 2 (y − 1)− 3 (z − 1) = 0, which implies that x+2y− 3z = 0; the point
(3, 0, 1) is on this plane, so the two planes are identical.

b. False. The point (1, 0, 0) is on the first plane but not the second.

c. False. There are infinite planes orthogonal to the plane Q.

d. True. Any two points on the line � together with P0 determine the same plane.

e. False. For example, the xz- and yz-coordinate planes both contain the point (0, 0, 1) and are orthogonal
to the xy-coordinate plane.

f. False. Two distinct lines determine a plane only if the lines are parallel or if they intersect.

g. False. Either plane S is plane P or plane S is parallel to plane P .

12.1.72

a. Observe that the points P = (0, 0, 0) and Q = (1,−1, 2) lie on the line �. Therefore the vectors

−−→
PP0 = 〈1,−2, 3〉 and −−→

PQ = 〈1,−1, 2〉 lie in the plane, so n =
−−→
PP0 × −−→

PQ =

∣∣∣∣∣∣∣∣
i j k

1 −2 3

1 −1 2

∣∣∣∣∣∣∣∣ = −i + j + k

is normal to the plane. The plane has equation −1 (x− 0) + 1 (y − 0) + 1 (z − 0) = 0, which simplifies
to x− y − z = 0.

b. Observe that the points P = (0, 0, 0) and Q = (1,−1,−2) lie on the line �. Therefore the vectors

−−→
PP0 = 〈−4, 1, 2〉 and −−→

PQ = 〈1,−1,−2〉 lie in the plane, so n =
−−→
PP0×−−→

PQ =

∣∣∣∣∣∣∣∣
i j k

−4 1 2

1 −1 −2

∣∣∣∣∣∣∣∣ = −6j+3k

is normal to the plane. The plane has equation 0 (x− 0) − 6 (y − 0) + 3 (z − 0) = 0, which simplifies
to 2y − z = 0.

12.1.73 The direction of the line is 〈2,−4, 1〉, so the line is given by 〈2, 1, 3〉+t〈2,−4, 1〉 = 〈2+2t, 1−4t, 3+t〉.
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12.1.74 The direction of the line is 〈1, 0, 4〉, so the line is given by 〈0,−10,−3〉+t〈1, 0, 4〉 = 〈t,−10,−3+4t〉.
12.1.75 These planes have normal 〈2, 3, 0〉 × 〈−1,−1, 2〉 = 〈6,−4, 1〉, so the planes all have an equation of
the form 6x− 4y + z = d for some real number d.

12.1.76 The normal to the plane we are seeking is 〈2, 5,−3〉 × 〈−1, 5, 2〉 = 〈25,−1, 15〉. The equation of
the plane has the form 25x− y + 15z = d for some d. Because the point (0,−2, 4) is on the plane, we have
0− (−2) + 60 = d, so the plane is given by 25x− y + 15z = 62.

12.1.77 First we find the line of intersection of the first two planes. The direction of the line of intersection
is 〈1, 0, 3〉 × 〈0, 1, 4〉 = 〈−3,−4, 1〉, and by inspection, a point on both planes is (0, 2, 1). Thus the line of
intersection is given by 〈−3t, 2−4t, 1+t〉. This intersects the plane x+y+6z = 9 when−3t+(2−4t)+6(1+t) =
9, or 8− t = 9, so t = −1. Thus, the intersection is the single point (3, 6, 0).

12.1.78 First we find the line of intersection of the first two planes. The direction of the line of intersection
is 〈1, 2, 2〉 × 〈0, 1, 4〉 = 〈6,−4, 1〉, and by inspection, a point on both planes is (3,−2, 2). Thus the line of
intersection is given by 〈3+6t,−2−4t, 2+ t〉. This intersects the plane x+2y+8z = 9 when 3+6t+2(−2−
4t) + 8(2 + t) = 9, or 6t+ 15 = 9, so t = −1. Thus, the intersection is the single point (−3, 2, 1).

12.1.79

a. D. This surface is a cylinder parallel to the parabola y = z2 in the yz-plane.

b. A. This surface is a plane.

c. E. This surface is an ellipsoid.

d. F. This surface is a hyperboloid of one sheet.

e. B. This surface is an elliptic cone.

f. C. This surface is a cylinder parallel to the graph y = |x| in the xy-plane.

12.1.80 This surface is a hyperboloid of one sheet with axis the x-axis.

12.1.81 This surface is a hyperbolic paraboloid with saddle point at the origin.

12.1.82 This surface is a hyperboloid of two sheets with axis the x-axis.

12.1.83 This surface is an elliptic paraboloid with axis the y-axis.

12.1.84 Completing the square and rewriting the equation of the surface as (x+ 1)
2
+ y2 + 4z2 = 1 shows

that this surface is an ellipsoid centered at the point (−1, 0, 0).

12.1.85 Completing the square and rewriting the equation of the surface as 9x2 + (y + 1)
2 − 4z2 = 1 shows

that this surface is a hyperboloid of one sheet with axis the line �: r = 〈0,−1, t〉.
12.1.86 This surface is an elliptic cylinder (the xy-trace is an ellipse).

12.1.87 This surface is a hyperbolic cylinder (the yz-trace is a hyperbola).

12.1.88 Completing the square and rewriting the equation of the surface as − (x− 3)
2 − (y + 4)

2
+ z2

9 = 1
shows that this surface is a hyperboloid of two sheets with axis the line �: r = 〈3,−4, t〉.

12.1.89 Completing the square and rewriting the equation of the surface as z2 = (x−4)2

4 + (y − 5)
2
+ 12

shows that this surface is a hyperboloid of two sheets.

12.1.90 The point (x, 2x+ 1, 1) lies on this curve r (t) exactly when x satisfies the equation
(

x
10

)2
+
(
2x+1

2

)2
=

1, which simplifies to 101x2 + 100x − 75 = 0. This equation has roots x ≈ 0.4988,−1.4889; therefore the
intersection points are (0.4988, 1.9976, 1) and (−1.4889,−1.9778, 1).
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12.1.91 The point
(
t, t2, 3t2

)
lies on the plane 8x+y+ z = 60 exactly when 8t+ t2+3t2 = 60, which can be

written as t2 + 2t− 15 = 0, which has solutions t = −5, 3. Therefore the intersection points are (−5, 25, 75)
and (3, 9, 27).

12.1.92 The point
(
1,
√
t,−t

)
lies on the plane 8x+ 15y + 3z = 20 exactly when 8 + 15

√
t− 3t = 20 which

can be written as t− 5
√
t+ 4 = 0.

Let s =
√
t; then s satisfies s2−5s+4 = 0 which has roots s = 1, 4; therefore t = 1, 16 and the intersection

points are (1, 1,−1) and (1, 4,−16).

12.1.93 Suppose the point (x, y, z) lies on both the curve and the plane; then z = x
4 , and substituting this

in the equation 2x+ 3y − 12z = 0 gives y = x
3 . We also have x = cos t and x

3 = 4 sin t for some t; therefore(
x
4

)2
+
(

x
12

)2
= 1, which can be written as 10x2 = 144, which gives x = ± 6

√
10
5 , so the intersection points

are
(

6
√
10
5 , 2

√
10
5 , 3

√
10

10

)
and

(
− 6

√
10
5 ,− 2

√
10
5 ,− 3

√
10

10

)
.

12.1.94 The x-intercept is found by setting y = z = 0 and solving for x, which gives the point
(
d
a , 0, 0

)
,

assuming a �= 0. If a = 0, then all points on the x-axis lie on this plane when d = 0, and no points on
the x-axis lie on the plane when d �= 0. Similarly, the intersection of the plane with the y-axis is the point(
0, d

b , 0
)
when b �= 0, the entire y-axis when b = d = 0 and empty when b = 0, d �= 0; and the intersection

of the plane with the z-axis is the point
(
0, 0, d

c

)
when c �= 0, the entire z-axis when c = d = 0 and empty

when c = 0, d �= 0.

12.1.95 The angle θ between the vectors n1 = 〈5, 2,−1〉 and n2 = 〈−3, 1, 2〉 satisfies cos θ = n1·n2

|n1||n2| =

− 15√
30

√
14

= −
√
105
14 , so θ = cos−1

(
−

√
105
14

)
≈ 2.392 rad ≈ 137◦.

12.1.96

a. The ellipsoid has equal y- and z-intercepts, so the equation is x2 + 4y2 + 4z2 = 1.

b. The ellipsoid has equal x- and z-intercepts, so the equation is x2 + 4y2 + z2 = 1.

12.1.97 All of the quadric surfaces in Table 12.1 except the hyperbolic paraboloid can have circular cross-
sections around a coordinate axis, and so can be generated by revolving a curve in one of the coordinate
planes about a coordinate axis.

12.1.98

a. The light cone consists of all points (x, y, t) such that the distance from (x, y) to the origin is c|t|,
where c is the speed of light; hence in these units an equation of the light cone is x2 + y2 = t2.

b. The light cone consists of all points (x, y, t) such that the distance from (x, y) to the origin is c|t|,
where c is the speed of light; hence in these units the equation of the light cone is x2+ y2 = 9× 1016t2.

12.1.99

a.
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b. The profit is z = 10 · 20 + 5 · 10− 200 = $50 which is positive.

c. The profit is 0 when x and y lie on the line 2x+ y = 40.

12.1.100 The line does not meet the plane exactly when the line’s direction is parallel to the plane, which
is equivalent to the condition v · 〈a, b, c〉 = 0.

12.1.101

a. Observe that any point (x, y, z) on this curve satisfies z = cy, so this gives the equation of the plane
P .

b. Plane P has normal vector n = 〈0,−c, 1〉, so the angle θ that P makes with the xy-plane (which has
normal vector k) satisfies cos θ = n·k

|n||k| =
1√

1+c2
; hence θ = tan−1 c.

c. The curve can be described as the intersection of the ellipsoid given by x2 + y2

4 + z2

4c2 = 1 with the
plane P , which is an ellipse in P .

12.1.102

a. Let P (x, y, z) be the point on the plane ax + by + cz = d that is closest to the origin O; then the

vector
−−→
OP is parallel to the normal n = 〈a, b, c〉, so we can express (x, y, z) = λ (a, b, c) for some scalar

λ. Substituting in the equation of the plane gives λ = d
a2+b2+c2 = d

D2 , where D2 = a2 + b2 + c2, so the

distance from P to the origin is |λ| = |d|
D .

b. Let P (x, y, z) be the point on the plane ax + by + cz = d that is closest to P0 (x0, y0, z0); then the

vector
−−→
P0P is parallel to the normal n = 〈a, b, c〉, so we can express (x, y, z) = (x0, y0, z0) + λ (a, b, c)

for some scalar λ. Substituting in the equation of the plane gives λ = d−ax0−by0−cz0
D2 , so the distance

from P to P0 is |−−→P0P | = |λ|D = |ax0+by0+cz0−d|
D .

12.1.103

a. The length of the orthogonal projection of
−−→
PQ onto the normal vector n is the magnitude of the scalar

component of
−−→
PQ in the direction of n which is

∣∣∣−−→PQ·n
∣∣∣

|n| .

b. Let P = (0,−1, 0) be a point on the plane.

∣∣∣−−→PQ·n
∣∣∣

|n| = |〈1,3,−4〉·〈2,−1,3〉|√
4+1+9

= |2−3−12|√
14

= 13√
14
.

12.1.104

a. Yes. The ellipsoid E is centered at the origin which is on the plane P , so the intersection of E and P
is an ellipse in the plane P .

b. In this case one of the axes of symmetry for the ellipse C is the x-axis.

c. Because z = Ax + By, any point (x, y, z) on C satisfies x2

9 + y2

4 + (Ax+By)
2
= 1, which gives the

equation of the projection of C on the xy-plane.

d. The equation x2

9 + y2

4 +
(
x
6 + y

2

)2
= 1, can be transformed as follows: express x2

9 + y2

4 =
(
x
3 + y

2

)2− xy
3

and
(
x
6 + y

2

)2
=
(
x
6 − y

2

)2
+ xy

3 . Then the equation becomes
(
x
3 + y

2

)2
+
(
x
6 − y

2

)2
= 1. We can

parameterize this curve by setting x
3 + y

2 = cos t and x
6 − y

2 = sin t, which gives x = 2 cos t + 2 sin t,
y = 2

3 cos t− 4
3 sin t and z = x

6 + y
2 = 2

3 cos t− 1
3 sin t.
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12.2 Graphs and Level Curves

12.2.1 The independent variables are x and y and the dependent variable is z.

12.2.2 The domain of f is R2 .

12.2.3 The domain of g is {(x, y) : x �= 0 or y �= 0}.
12.2.4 The domain of h is {(x, y) : x− y ≥ 0}.
12.2.5 We need three dimensions to plot points (x, y, f (x, y)).

12.2.6 Sketch the curves f (x, y) = z0 in R
2 for several values of z0.

12.2.7 The level curves x2 + y2 = z0 are circles centered at (0, 0) in R
2.

12.2.8 We need three dimensions to graph the level surfaces f (x, y, z) = w0.

12.2.9 The function f has 6 independent variables, so n = 6.

12.2.10 We can sketch level surfaces in R
3, or use colors to code thevalues of the function at points in R

3.

12.2.11 The domain of f is R2 .

12.2.12 The domain of f is R2

12.2.13 The domain of f is {(x, y) : x2 + y2 ≤ 25}, which is the set of all points on or within the circle of
radius 5 centered at the origin.

12.2.14 The domain of f is {(x, y) : x2 + y2 > 25}, which is the set of all points outside the circle of radius
5 centered at the origin.

12.2.15 The domain of f is {(x, y) : y �= 0}.
12.2.16 The domain of f is {(x, y) : x �= ±y}.
12.2.17 The domain of g is {(x, y) : y < x2}.
12.2.18 The domain of f is {(x, y) : −1 ≤ y − x2 ≤ 1}; which is the set of points lying between or on the
parabolas y = x2 − 1 and y = x2 + 1.

12.2.19 The domain of g is {(x, y) : x y ≥ 0, (x, y) �= (0, 0)}.
12.2.20 The domain of h is {(x, y) : x− 2y + 4 ≥ 0}.
12.2.21 This surface is a plane; the function’s domain is R2 and its range is R.
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12.2.22 This surface is an elliptic paraboloid; the function’s domain is R2 and its range is the interval [0, ∞).

12.2.23 This surface is a hyperbolic paraboloid; the function’s domain is R2 and its range is R.

12.2.24 This surface is a hemisphere; the function’s domain is {(x, y) : x2 + y2 ≤ 1} and its range is the
interval [0, 1].

12.2.25 This surface is the lower part of a hyperboloid of two sheets; the function’s domain is R
2 and its

range is the interval (−∞, −1].

12.2.26 This surface is the upper part of a circular cone; the function’s domain is R
2 and its range is the

interval [0, ∞).
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12.2.27 This surface is the upper part of a hyperboloid of one sheet; the function’s domain is {(x, y) :
x2 + y2 ≥ 1} and its range is the interval [0, ∞).

12.2.28 This surface is the cylinder parallel to the x-axis through the curve z = y3 +1 in the yz-plane ; the
function’s domain is R2 and its range is R.

12.2.29

a. A. Notice that the range of the function in (A) is [−1, 1].

b. D. Notice that the function in (D) becomes large and negative for(x, y) near (0, 0).

c. B. Notice that the function in (B) becomes large as you get close to y = x.

d. C. Notice that the function in (C) is everywhere positive.

12.2.30

�4 �2 2 4 x

�4

�2

2

4

y
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12.2.31

1 2 3 4 x

�2

�1

1

2

y

12.2.32

12.2.33

12.2.34
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12.2.35

12.2.36

12.2.37

12.2.38

a. B. Notice that the level curves for the function consist of lines parallel to the x-axis.

b. E. Notice that the level curves for the function are hyperbolas.

c. C. Notice that the level curves are oval and are elongated along the y-axis; therefore the level sets
match (C).

d. D. Notice that the level curves for the function are circles.

e. A. Notice that the level curves are oval and are elongated along the x-axis ; therefore the level sets
match (A).

f. F. Notice that the level curves for the function are ellipses.
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12.2.39

a.

b. The domain is D = {(r, h) : r > 0, h > 0}.
c. We have πr2h = 300, so h = 300

πr2 .

12.2.40

a. His ERA was A (24, 224) = 9·24
224 = 0.9643.

b. His ERA is A
(
4, 1

3

)
= 9·4

1/3 = 108.

c. The relationship is e = i
3 , so a pitcher with an ERA of 3 gives up one run every three innings.

12.2.41

a.

b. The potential function is defined for all (x, y) in R
2 except (0, 1) and (0, −1).

c. We have φ (2, 3) ≈ 0.93 > φ (3, 2) ≈ 0.87.

Copyright c© 2015 Pearson Education, Inc.



330 Chapter 12. Functions of Several Variables

d.

12.2.42

a.

b. We have Q = cLaKb = 40 · (10)1/3 K2/3.

c. We have Q = cLaKb = 40 · (15)2/3 L1/3.

12.2.43

a.

b. The maximum resistance is R (10, 10) = 5 ohms.

c. This means R (x, y) = R (y, x).
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12.2.44

a.

b. The domain of this function is R2 .

c. The maximum and minimum water heights are ±10.

d. The maximum and minimum heights occur along the lines 2x− 3y = π
2 + kπ, where k is any integer.

A vector orthogonal to these lines is v = 〈2,−3
〉
.

12.2.45

a.

b. The peaks occur near the points (0, 0), (−5, 3) and (4, −1).

c. We have f (0, 0) ≈ 10.17, f (−5, 3) ≈ 5.00, f (4, −1) ≈ 4.00.

12.2.46 The domain of f is R3.

12.2.47 The domain of g is {(x, y, z) : x �= z}, which is all points in R
3 not on the plane given by x = z.

12.2.48 The domain of p is {(x, y, z) : x2 + y2 + z2 ≥ 9}, which is all points in R
3 on or outside the sphere

of radius 3 centered at the origin.

12.2.49 The domain of f is {(x, y, z) : y ≥ z}, which is all points in R
3 on or below the plane given by

z = y.

12.2.50 The domain of Q is R3.

12.2.51 The domain of F is {(x, y, z) : x2 ≤ y}, which is all points on the side of the vertical cylinder
y = x2 that contains the positive y-axis.

12.2.52 The domain of f is {(w, x, y, z) : w2 + x2 + y2 + z2 ≤ 1}, which is all points in R4 on or inside the
hypersphere of radius 1 centered at the origin.
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12.2.53

a. False. This function has domain R
2 .

b. False. The domain of a function of 4 variables is a region in R
4.

c. True. The level curves for the function defined by z = 2x − 3y are lines of the form 2x − 3y = c for
any constant c.

12.2.54

a. The domain is R2 and the range is the interval (0, ∞).

b.

12.2.55

a. The domain is R2 and the range is the interval [0, ∞).

b.

12.2.56

a. The domain is R2 and the range is R.

b.
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12.2.57

a. The domain is {(x, y) : x �= y} and the range is R.

b.

12.2.58

a. The domain is R2 and the range is the interval [0, ln 3].

b.

12.2.59

a. The domain is {(x, y) : y �= x+ π
2 + nπ for any integer n} and the range is the interval [0, ∞).

b.

12.2.60

a. The domain is R2 and the range is the interval [−1, 1].

b.

12.2.61 This function has a peak at the origin.

12.2.62 This function has a peak at the point
(
1
2 , −1

)
.
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12.2.63 This function has a depression at the point (1, 0).

12.2.64 This function has a depression at the point (1, 1).

12.2.65 The level curves are the lines given by ax+ by = d− cz0, where z0 is a constant; these lines all have
slope −a

b (in the case b = 0 the lines are all vertical).

12.2.66 If 1
x2+y2+z2 = K, then x2 + y2 + z2 = 1

K = C for a constant C. Thus, the level surfaces are spheres
centered at the origin.

12.2.67 If x2+y2−z = C, then z = x2+y2−C, so the level surfaces are paraboloids with vertices (0, 0,−C).

12.2.68 If x2 − y2 − z = C, then z = x2 − y2 − C, so the level surfaces are hyperbolic paraboloids with a
saddle point at (0, 0,−C).

12.2.69 If
√
x2 + 2z2 = K, then x2 + 2z2 = C where C = K2, so the level surfaces are elliptic cylinders

parallel to the y-axis.

12.2.70

a. The set of points (P, t) with B = 2000 is given by Pe0.04t = 2000; solving for P gives P = 2000e−0.04t.

b. The level curves are given by P = Be0.04t with B = 500, 1000, 1500 and 2000.

c. As t increases along a level curve, P decreases and vice versa.

12.2.71

a. Solving for P in the equation B (P, r, t) = 20, 000 with t = 20 years gives P = 20,000r
(1+r)240−1

.

b. The level curves are given by P = Br
(1+r)240−1

,with B = 5000, 10, 000, 15, 000 and 25, 000.

12.2.72

a. His quarterback rating is R = 50+20·67.21+80·7.07−100·1.45+100·7.78
24 = 108.033.
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b. If c, t and y are fixed then R is a decreasing linear function of t. This makes sense since a quarterback’s
rating should decrease if his interception percentage increases.

12.2.73

a. b. c.

12.2.74 Factor the equation x2 − (y + z)x+ yz = (x− y) (x− z); hence the domain of g is {(x, y, z) : x �=
y and x �= z}. The domain consists of all points not on the planes given by x = y and x = z.

12.2.75 The domain of f is {(x, y) : x − 1 ≤ y ≤ x + 1}. This is the region between the two parallel lines
given by y = x− 1 and y = x+ 1.

12.2.76 The domain of f is {(x, y, z) : z > x2 + y2 − 2x − 3}, which is equivalent to {(x, y, z) : z >

(x− 1)
2
+ y2 − 4}. This region consists of all points inside a circular paraboloid with vertex at (1, 0, −4).

12.2.77 Factor the equation z2 − xz + yz − xy = (z − x) (z + y); hence the domain of h is {(x, y, z) :
(z − x) (z + y) ≥ 0}, which is equivalent to D = {(x, y, z) : (x ≤ z and y ≥ −z) or (x ≥ z and y ≤ −z)}.
The domain consists of all points above or below both the planes given by z = x and z = −y as well as the
points on either one of these planes.

12.2.78

a. This “ball” is the solid octahedron with vertices (±1, 0, 0), (0, ±1, 0) and (0, 0, ±1).

b. This “ball” is the solid cube with vertices (x, y, z) where x, y, z = ±1.

12.3 Limits and Continuity

12.3.1 The values of |f (x, y)− L| can be made arbitrarily small if (x, y) is sufficiently close to (a, b).

12.3.2 If f (x, y) has a different limit as(x, y) approaches (a, b) along two different paths, then
lim(x, y)→(a, b)f (x, y) does not exist.

12.3.3 If f (x, y) is a polynomial, then lim(x, y)→(a, b) f (x, y) = f (a, b); in other words, the limit can be
found by plugging in x = a, y = b in f (x, y).

12.3.4 We evaluate lim(x, y)→(a, b)f (x, y) along all paths that approach (a, b) from within the domain of f .

12.3.5 If the limits along different paths do not agree, then the limit does not exist.

12.3.6 Evaluating lim(x, y)→(a, b)f (x, y) along a finite number of paths does not establish that the limit is
the same along all paths that approach (a, b).

12.3.7 The function f must be defined at (a, b), lim(x, y)→(a, b)f (x, y) must exist, and the limit must equal
f (a, b).
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12.3.8 Yes, (0, 0) is a boundary point for R becauseevery disc centered at (0, 0) contains points in R and
points not in R (namely (0, 0)). The set R is neither open nor closed because it contains some of its boundary
points (namely points on the unit circle) but not all of them (namely (0, 0)).

12.3.9 A rational function is continuous at all points where its denominator is nonzero.

12.3.10 Since xy2z3 is a polynomial, lim(x, y, z)→(1, 1,−1) xy
2z3 = 1 · 12 · (−1)

3
= −1.

12.3.11 lim(x, y)→(2, 9) 101 = 101.

12.3.12 lim(x, y)→(1,−3) (3x+ 4y − 2) = 3 · 1 + 4 (−3)− 2 = −11.

12.3.13 lim(x, y)→(−3, 3)

(
4x2 − y2

)
= 4 · (−3)

2 − (3)
2
= 27.

12.3.14 lim(x, y)→(2,−1)

(
xy8 − 3x2y3

)
= 2 (−1)

8 − 3 · 22 (−1)
3
= 14.

12.3.15 lim(x, y)→(0, π)
cos xy+sin xy

2y = cos 0+sin 0
2π = 1

2π .

12.3.16 lim(x, y)→(e2, 4) ln
√
xy = ln

√
4e2 = ln 2e = 1 + ln 2.

12.3.17 lim(x, y)→(2, 0)
x2−3xy2

x+y = 22−3·2·02
2+0 = 2.

12.3.18 lim(u, v)→(1,−1)
10uv−2v2

u2+v2 = 10·1(−1)−2(−1)2

12+(−1)2
= −6.

12.3.19 lim(x, y)→(6, 2)
x2−3xy
x−3y = lim(x, y)→(6, 2)

x(x−3y)
x−3y = lim(x, y)→(6, 2) x = 6.

12.3.20 lim(x, y)→(1,−2)
y2+2xy
y+2x = lim(x, y)→(1,−2)

y(y+2x)
y+2x = lim(x, y)→(1,−2) y = −2.

12.3.21 lim(x,y)→(3,1)
x2−7xy+12y2

x−3y = lim(x,y)→(3,1)
(x−3y)(x−4y)

x−3y = lim(x,y)→(3,1)(x− 4y) = 3− 4 = −1.

12.3.22 lim(x,y)→(−1,1)
2x2−xy−3y2

x+y = lim(x,y)→(−1,1)
(x+y)(2x−3y)

x+y = lim(x,y)→(−1,1)(2x− 3y) = −5.

12.3.23 lim(x, y)→(2, 2)
y2−4
xy−2x = lim(x, y)→(2, 2)

(y+2)(y−2)
x(y−2) = lim(x, y)→(2, 2)

y+2
x = 2+2

2 = 2.

12.3.24 lim(x, y)→(4, 5)

√
x+y−3
x+y−9 = lim(x, y)→(4, 5)

(
√
x+y−3)(

√
x+y+3)

(x+y−9)(
√
x+y+3)

= lim(x, y)→(4, 5)
x+y−9

(x+y−9)(
√
x+y+3)

=

lim(x, y)→(4, 5)
1√

x+y+3
= 1√

4+5+3
= 1

6 .

12.3.25 lim(x, y)→(1, 2)

√
y−√

x+1

y−x−1 = lim(x, y)→(1, 2)
(
√
y−√

x+1)(
√
y+

√
x+1)

(y−x−1)(
√
y+

√
x+1)

=

lim(x, y)→(1, 2)
y−x−1

(y−x−1)(
√
y+

√
x+1)

= lim(x, y)→(1, 2)
1√

y+
√
x+1

= 1√
2+

√
2
= 1

2
√
2
.

12.3.26 lim(u, v)→(8, 8)
u1/3−v1/3

u2/3−v2/3 = lim(u, v)→(8, 8)
u1/3−v1/3

(u1/3−v1/3)(u1/3+v1/3)
= lim(u, v)→(8, 8)

1
u1/3+v1/3 =

1
2+2 = 1

4 .

12.3.27 Observe that along the line y = 0, lim(x, y)→(0, 0)
x+2y
x−2y = limx→0

x
x = 1, whereas along the line

x = 0, lim(x, y)→(0, 0)
x+2y
x−2y = limy→0

2y
−2y = −1.

12.3.28 Observe that along the line y = x, lim(x, y)→(0, 0)
4x y

3x2+y2 = limx→0
4x2

4x2 = 1, whereas along the line

y = −x, lim(x, y)→(0, 0)
4xy

3x2+y2 = limx→0 − 4x2

4x2 = −1.

12.3.29 Observe that along the line x = 0, lim(x, y)→(0, 0)
y4−2x2

y4+x2 = limy→0
y4

y4 = 1, whereas along the line

y = 0, lim(x, y)→(0, 0)
y4−2x2

y4+x2 = limx→0 − 2x2

x2 = −2.
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12.3.30 Observe that along the line y = 0, lim(x, y)→(0, 0)
x3−y2

x3+y2 = limx→0
x3

x3 = 1, whereas along the line

x = 0, lim(x, y)→(0, 0)
x3−y2

x3+y2 = limy→0 −y2

y2 = −1.

12.3.31 Observe that along the line y = x, lim(x, y)→(0, 0)
y3+x3

xy2 = limx→0
2x3

x3 = 2, whereas along the line

y = −x, lim(x, y)→(0, 0)
y3+x3

xy2 = limx→0
0

−x3 = 0.

12.3.32 Observe that along the line y = 0, lim(x, y)→(0, 0)
y√

x2−y2
= limx→0

0
|x| = 0, whereas along the ray

x = 2y, y > 0, lim(x, y)→(0, 0)
y√

x2−y2
= limx→0

y√
3y

= 1√
3
.

12.3.33 The function f is continuous on R
2 .

12.3.34 The function f is continuous on R
2 (the denominator of this rational function is always positive).

12.3.35 The function p is continuous at all points except the origin, where it is undefined.

12.3.36 The function S is continuous at all points except where x2 = y2, which is along the lines x = y and
x = −y.

12.3.37 The function f is continuous on R
2 except where x = 0.

12.3.38 The function f is continuous on R
2 except where x = 0 or y = ±1.

12.3.39 The function f is continuous on R
2 except the origin. Note that along the line y = x,

lim(x,y)→(0,0)
xy

x2+y2 = lim(x,y)→(0,0)
x2

x2+x2 = 1
2 �= 0.

12.3.40 The function f is continuous on R
2 except the origin. Note that along the line x = 0,

lim(x,y)→(0,0)
y4−2x2

y4+x2 = lim(x,y)→(0,0)
y4

y4 = 1 �= 0.

12.3.41 The function f is continuous on R
2.

12.3.42 The function f is continuous on R
2.

12.3.43 The function f is continuous on R
2.

12.3.44 The function g is continuous on its domain, which is D = {(x, y) : x > y}.
12.3.45 The function h is continuous on R

2 .

12.3.46 The function p is continuous on R
2 .

12.3.47 The function f is continuous on its domain, which is D = {(x, y) : (x, y) �= (0, 0)}.
12.3.48 The function f is continuous on its domain, which is D = {(x, y) : x2 + y2 ≤ 4}.
12.3.49 The function g is continuous on R

2 .

12.3.50 The function h is continuous on its domain, which is D = {(x, y) : x ≥ y}.
12.3.51 The function f is continuous on R

2 .

12.3.52 The function f is continuous on R
2 .

12.3.53 lim(x, y, z)→(1, ln 2, 3) z e
xy = 3 e1·ln 2 = 6.

12.3.54 lim(x, y, z)→(0, 1, 0) ln (1 + y) ex z = (ln 2) e0 = ln 2.

12.3.55 lim(x, y, z)→(1, 1, 1)
yz−xy−xz−x2

yz+xy+xz−y2 = 1−1−1−1
1+1+1−1 = −1.
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12.3.56 lim(x, y, z)→(1, 1, 1)
x−√

xz−√
xy+

√
yz

x−√
xz+

√
xy−√

yz
= lim(x, y, z)→(1, 1, 1)

(
√
x−√

y)(
√
x−√

z)
(
√
x+

√
y)(

√
x−√

z)
=

lim(x, y, z)→(1, 1, 1)
(
√
x−√

y)
(
√
x+

√
y)

= 1−1
1+1 = 0.

12.3.57 lim(x,y,z)→(1,1,1)
x2+xy−xz−yz

x−z = lim(x,y,z)→(1,1,1)
(x−z)(x+y)

x−z = lim(x,y,z)→(1,1,1)(x+ y) = 2.

12.3.58 lim(x,y,z)→(1,−1,1)
xz+5x+yz+5y

x+y = lim(x,y,z)→(1,−1,1)
(x+y)(z+5)

x+y = lim(x,y,z)→(1,−1,1)(z + 5) = 6.

12.3.59

a. False. The limit may be different or not exist along other paths approaching (0, 0).

b. False. We may have f (a, b) undefined, or f (a, b) �= L.

c. True. The limit must exist for f to be continuous at (a, b).

d. False. For example, take P = (0, 0) and the domain of f to be {(x, y) : (x, y) �= (0, 0)}.

12.3.60 Observe that along the line y = 0, lim(x, y)→(0, 0)
y2

x8+y2 = limx→0
0
x8 = 0, whereas along the curve

y = x4, lim(x, y)→(0, 0)
y2

x8+y2 = limx→0
x8

2x8 = 1
2 , therefore this limit does not exist.

12.3.61 lim(x, y)→(0, 1)
y sin x
x(y+1) =

(
limx→0

sin x
x

) (
limy→1

y
y+1

)
= 1 · 1

2 = 1
2 .

12.3.62 lim(x, y)→(1, 1)
x2+x y−2y2

2x2−x y−y2 = lim(x, y)→(1, 1)
(x+2y)(x−y)
(2x+y)(x−y) = lim(x, y)→(1, 1)

x+2y
2x+y = 1+2

2+1 = 1.

12.3.63 lim(x, y)→(1, 0)
y ln y
x =

(
limx→1

1
x

)
(limy→0 ln y

y) = 1 · ln 1 = 0

12.3.64 Observe that along the line y = x, lim(x, y)→(0, 0)
| xy |
xy = limx→0

x2

x2 = 1, whereas along the line

y = −x, lim(x, y)→(0, 0)
| xy |
xy = limx→0

x2

−x2 = −1, therefore this limit does not exist.

12.3.65 Observe that along the line y = x, lim(x, y)→(0, 0)
| x−y |
| x+y | = limx→0

0
2|x| = 0, whereas along the line

y = 2x, lim(x, y)→(0, 0)
| x−y |
| x+y | = limx→0

|x|
3|x| =

1
3 , therefore this limit does not exist.

12.3.66 lim(u, v)→(−1, 0)
uv e−v

u2+v2 = (−1)·0·eo
(−1)2+02

= 0.

12.3.67 Observe that lim(x, y)→(2, 0)
1−cos y
xy2 =

(
limx→2

1
x

) (
limy→0

1−cos y
y2

)
= 1

2 · 1
2 = 1

4 where the y-limit is

evaluated by two applications of L′Hôpital′s rule.

12.3.68 lim(x, y)→(0, 0)
x−y√
x2+y2

= limr→0
r cos θ−r sin θ

r = limr→0 (cos θ − sin θ), which does not exist.

12.3.69 lim(x,y)→(0,0)
x2y

x2+y2 = limr→0
r3 cos2 θ sin θ

r2 = limr→0 r cos
2 θ sin θ = 0.

12.3.70 Note that 2 + (x+ y)2 + (x− y)2 = 2 + 2x2 + 2y2. Making the polar substitution yields

lim
r→0

tan−1

(
2 + 2r2

2er2

)
= tan−1(1) =

π

4
.

12.3.71 lim(x,y)→(0,0)
x2+y2+x2y2

x2+y2 = limr→0
r2+r4 cos2 θ sin2 θ

r2 = limr→0(1 + r2 cos2 θ sin2 θ) = 1.

12.3.72

a. Let z = x+ y; then z → 0 as (x, y) → (0, 0) so lim(x, y)→(0, 0)
sin(x+y)

x+y = limz→0
sin z
z = 1.
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b. Let z = x+ y, then sin x+sin y
x+y = sin x+sin(z−x)

z = sin x+sin z cos x−cos z sin x
z = sinx

(
1−cos z

z

)
+ cosx

(
sin z
z

)
.

As (x, y) → (0, 0) we have z → 0; limx→0
sin x
x = 1 and limx→0

1−cos x
x = 0, so lim(x, y)→(0, 0)

sin x+sin y
x+y =

0 · 0 + 1 · 1 = 1.

12.3.73 Let u = x2 + y1 − 1. Then as x2 + y2 → 1, u → 0. Because limu→0
sinu
u = 1, we must have b = 1

in order for f to be continuous everywhere.

12.3.74 Let u = xy. Note that as xy → 0, u → 0. Also, limxy→0
1+2xy−cos(xy)

xy = limu→0
1+2u−cosu

u =

limu→0
2+sinu

1 = 2 by L’Hôpital’s rule. Thus, we must have a = 2 in order for f to be continuous everywhere.

12.3.75 The limit is 0 along the lines x = 0 or y = 0. However, along the line x = y we have

lim(x,y)→(0,0)
a xmyn

b xm+n+c ym+n = limx→0
axm+n

bxn+m+cxm+n = a
b+c �= 0 because a �= 0. Therefore this limit does not

exist.

12.3.76 The limit is 0 along the line y = 0. However, along the curve y = x2 we have lim(x,y)→(0,0)
a x2(p−n)yn

b x2p+c yp

= limx→0
ayp

(b+c)yp = a
b+c �= 0 because a �= 0. Therefore this limit does not exist.

12.3.77 Let u = xy; then u → 0 as (x, y) → (1, 0), so lim(x, y)→(1, 0)
sin xy
xy = limu→0

sinu
u = 1.

12.3.78 Let u = xy; then u → 0 as (x, y) → (4, 0), so lim(x, y)→(4, 0) x
2y lnxy = lim(x, y)→(4, 0) x · xy lnxy =

4 limu→0 u lnu = 4 limu→0 lnu
u = 4 · 0 = 0.

12.3.79 Let u = xy; then u → 0 as (x, y) → (0, 2), so lim(x, y)→(0, 2) (2xy)
xy

= limu→0 2
uuu = 1.

12.3.80 Let u = xy; then u → 0 as (x, y) → (
0, π

2

)
, so lim(x, y)→(0, π/2)

1−cos xy
4x2y3 =

lim(x, y)→(0, π/2)

(
1
4y · 1−cos xy

x2y2

)
= 1

2π limu→0
1−cosu

u2 = 1
4π . (Use L’Hôpital’s rule twice to see that

limu→0 (1− cosu) /u2 = 1/2).

12.3.81 Because lim(x, y)→(0, 0) e
−1/(x2+y2) = 0, we should define f (0, 0) = 0.

12.3.82 For any ε > 0, let δ = ε; then 0 <

√
(x− a)

2
+ (y − b)

2
< δ =⇒ | y − b | < ε because | y − b | ≤√

(x− a)
2

+ (y − b)
2
.

12.3.83 For any ε > 0, let δ = ε
2 . Then |x− a |, | y − b | ≤

√
(x− a)

2
+ (y − b)

2
, so

0 <

√
(x− a)

2
+ (y − b)

2
< δ which implies that |x+ y − (a+ b) | ≤ |x− a |+| y − b | < ε

2 + ε
2 = ε .

12.3.84 Suppose lim(x, y)→(a, b) f (x, y) = L, lim(x, y)→(a, b) g (x, y) = M. Let ε > 0. Then there exist

δ1, δ2 > 0 such that 0 <

√
(x− a)

2
+ (y − b)

2
< δ1 =⇒ | f (x, y)− L | < ε

2 and 0 <

√
(x− a)

2
+ (y − b)

2
<

δ2 =⇒ | g (x, y)−M | < ε
2 . Let δ = min (δ1, δ2). Then 0 <

√
(x− a)

2
+ (y − b)

2
< δ =⇒

| f (x, y) + g (x, y)− (L+M) | ≤ | f (x, y)− L |+| g (x, y)−M | < ε
2 + ε

2 = ε.

12.3.85 Observe first that this is trivial when c = 0, so assume c �= 0 and let ε > 0. Then there exists δ > 0

such that 0 <

√
(x− a)

2

+ (y − b)
2
< δ =⇒ | f (x, y) − L | < ε

|c| . Therefore 0 <

√
(x− a)

2

+ (y − b)
2
<

δ =⇒ | c f (x, y)− c L | = |c|| f (x, y)− L | < |c| · ε
|c| = ε.
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12.4 Partial Derivatives

12.4.1 The slope parallel to the x-axis is fx (a, b), and the slope parallel to the y-axis is fy (a, b).

12.4.2 fx (x, y) = 6xy + y3, fy (x, y) = 3x2 + 3xy2.

12.4.3 fx (x, y) = cos (xy)+x (−sin (xy)) y = cos (xy)−xysin (xy), fy (x, y) = x (−sin (xy))x = −x2sin (xy).

12.4.4 We have fx (x, y) = 6xy + y3, fy (x, y) = 3x2 + 3xy2; therefore fxx (x, y) = 6y, fyy (x, y) =
6xy, fxy (x, y) = fyx (x, y) = 6x+ 3y2

12.4.5 Think of x and y as being fixed, and differentiate with respect to the variable z.

12.4.6 Note that∂V∂r = 2πrh > 0, so the volume is an increasing function of the radius r if the height h is
fixed.

12.4.7 fx = lim
h→0

f(x+ h, y)− f(x, y)

h
= lim

h→0

5(x+ h)y − 5xy

h
= lim

h→0

5hy

h
= lim

h→0
5y = 5y.

fy = lim
h→0

f(x, y + h)− f(x, y)

h
= lim

h→0

5x(y + h)− 5xy

h
= lim

h→0

5xh

h
= lim

h→0
5x = 5x.

12.4.8 fx = lim
h→0

f(x+ h, y)− f(x, y)

h
= lim

h→0

x+ h+ y2 + 4− (x+ y2 + 4)

h
= lim

h→0

h

h
= lim

h→0
1 = 1.

fy = lim
h→0

f(x, y + h)− f(x, y)

h
= lim

h→0

x+ (y + h)2 + 4− (x+ y2 + 4)

h
= lim

h→0

y2 + 2hy + h2 − y2

h
=

lim
h→0

2y + h = 2y.

12.4.9 fx = lim
h→0

f(x+ h, y)− f(x, y)

h
= lim

h→0

x+h
y − x

y

h
= lim

h→0

h

hy
= lim

h→0

1

y
=

1

y
.

fy = lim
h→0

f(x, y + h)− f(x, y)

h
= lim

h→0

x
y+h − x

y

h
= lim

h→0

xy − x(y + h)

y(y + h)h
= lim

h→0

−x

y(y + h)
= − x

y2
.

12.4.10

fx = lim
h→0

f(x+ h, y)− f(x, y)

h
= lim

h→0

√
(x+ h)y −√

xy

h

= lim
h→0

√
(x+ h)y −√

xy

h
·
√
(x+ h)y +

√
xy√

(x+ h)y +
√
xy

= lim
h→0

xy + hy − xy

h(
√

(x+ h)y +
√
xy)

=
y

2
√
xy

.

fy = lim
h→0

f(x, y + h)− f(x, y)

h
= lim

h→0

√
x(y + h)−√

xy

h

= lim
h→0

√
x(y + h)−√

xy

h
·
√
x(y + h) +

√
xy√

x(y + h) +
√
xy

= lim
h→0

xy + xh− xy

h(
√

x(y + h) +
√
xy)

=
x

2
√
xy

.

12.4.11 fx(x, y) = 6x, fy(x, y) = 12y2.

12.4.12 fx(x, y) = 2xy, fy(x, y) = x2.

12.4.13 fx (x, y) = 6xy, fy (x, y) = 3x2.

12.4.14 fx (x, y) = 12x5 + 2y, fy (x, y) = 8y7 + 2x.
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12.4.15 fx(x, y) = ey, fy(x, y) = xey.

12.4.16 fx(x, y) = (y/x) · (1/y) = 1/x, fy(x, y) = (y/x) · (−x/y2) = −1/y.

12.4.17 gx (x, y) = (−sin (2xy)) 2y = −2ysin (2xy), gy (x, y) = (−sin (2xy)) 2x = −2xsin (2xy).

12.4.18 hx (x, y) =
(
y2 + 1

)
ex, hy (x, y) = 2yex.

12.4.19 fx(x, y) = 2xyex
2y, fy(x, y) = x2ex

2y.

12.4.20 fs(s, t) =
(s+t)(1)−(s−t)(1)

(s+t)2 = 2t
(s+t)2 . ft(s, t) =

(s+t)(−1)−(s−t)(1)
(s+t)2 = −2s

(s+t)2 .

12.4.21 fw (w, z) =
(w2+z2)·1−w·2w

(w2+z2)2
= z2−w2

(w2+z2)2
, fz (w, z) = −w

(
w2 + z2

)−2 · 2z = − 2wz
(w2+z2)2

.

12.4.22 gx (x, z) = 1 · ln (z2 + x2
)
+ x · 2x

z2+x2 = ln
(
z2 + x2

)
+ 2x2

z2+x2 , gz (x, z) = x · 2z
z2+x2 = 2xz

z2+x2 .

12.4.23 sy (y, z) = z2
(
sec2 yz

)
z = z3 sec2 yz, sz (y, z) = 2ztanyz + z2

(
sec2 yz

)
y = 2ztanyz + yz2 sec2 yz

12.4.24 Fp (p, q) =
1
2

(
p2 + pq + q2

)−1/2
(2p+ q) = 2p+q

2
√

p2+pq+q2
, Fq (p, q) =

1
2

(
p2 + pq + q2

)−1/2
(p+ 2q) =

p+2q

2
√

p2+pq+q2
.

12.4.25 Gs (s, t) = t
2
√
st

· 1
s+t +

√
st · − 1

(s+t)2
=

√
st(s+t)−2s

√
st

2s(s+t)2
=

√
st(t−s)

2s(s+t)2
, Gt (s, t) = s

2
√
st

· 1
s+t +

√
st ·

− 1
(s+t)2

=
√
st(s+t)−2t

√
st

2t(s+t)2
=

√
st(s−t)

2t(s+t)2
.

12.4.26 hu (u, v) =
1
2

(
uv
u−v

)−1/2 (
(u−v)v−uv·1

(u−v)2

)
= − 1

2u
−1/2v3/2 (u− v)

−3/2
,

hv (u, v) =
1
2

(
uv
u−v

)−1/2 (
(u−v)u−uv·(−1)

(u−v)2

)
= 1

2u
3/2v−1/2 (u− v)

−3/2

12.4.27 fx(x, y) = 2yx2y−1, fy(x, y) = 2x2y lnx.

12.4.28 fx(x, y) =
1
2 · (x2y3)−1/2(2xy3) = xy3√

x2y3
, fy(x, y) =

1
2 · (x2y3)−1/2(3x2y2) = 3x2y2

2
√

x2y3
.

12.4.29 We have hx (x, y) = 3x2+y2, hy (x, y) = 2xy; therefore hxx (x, y) = 6x, hyy (x, y) = 2x, hxy (x, y) =
hyx (y, x) = 2y.

12.4.30 We have fx (x, y) = 10x4y2 + 2xy, fy (x, y) = 4x5y + x2; therefore fxx (x, y) = 40x3y2 + 2y,
fyy (x, y) = 4x5, fxy (x, y) = fyx (y, x) = 20x4y + 2x.

12.4.31 We have fx(x, y) = 2xy3, fy(x, y) = 3x2y2; therefore fxx(x, y) = 2y3, fyy(x, y) = 6x2y, fxy(x, y) =
fyx(x, y) = 6xy2.

12.4.32 We have fx(x, y) = 2(x + 3y), fy(x, y) = 6(x + 3y); therefore fxx(x, y) = 2, fyy(x, y) = 18,
fxy(x, y) = fyx(x, y) = 6.

12.4.33 We have fx (x, y) = 4y3cos4x, fy (x, y) = 3y2sin4x; therefore fxx (x, y) = −16y3sin4x, fyy (x, y) =
6ysin4x, fxy (x, y) = fyx (y, x) = 12y2cos4x.

12.4.34 We have fx (x, y) = −ysinxy, fy (x, y) = −xsinxy; therefore fxx (x, y) = −y2cosxy, fyy (x, y) =
−x2cosxy, fxy (x, y) = fyx (y, x) = −sinxy − xycosxy.

12.4.35 We have pu (u, v) = 2u
u2+v2+4 , pv (u, v) = 2v

u2+v2+4 ; therefore puu (u, v) =
(u2+v2+4)·2−2u·2u

(u2+v2+4)2
=

−2u2+2v2+8
(u2+v2+4)2

, pvv (u, v) =
(u2+v2+4)·2−2v·2v

(u2+v2+4)2
= 2u2−2v2+8

(u2+v2+4)2
, puv (u, v) = pvu (u, v) = −2u

(
u2 + v2 + 4

)−2 ·2v =

− 4uv
(u2+v2+4)2

.

Copyright c© 2015 Pearson Education, Inc.



342 Chapter 12. Functions of Several Variables

12.4.36 We have Qr (r, s) = 1
s , Qs (r, s) = − r

s2 ; therefore Qrr (r, s) = 0, Qss (r, s) = 2r
s3 , Qrs (r, s) =

Qsr (r, s) = − 1
s2 .

12.4.37 We have Fr (r, s) = es, Fs (r, s) = res; therefore Frr (r, s) = 0, Fss (r, s) = res, Frs (r, s) =
Fsr (r, s) = es.

12.4.38 We have Hx (x, y) =
x√

4+x2+y2
, Hy (x, y) =

y√
4+x2+y2

; therefore

Hxx (x, y) =

(√
4+x2+y2

)
·1−x x√

4+x2+y2

4+x2+y2 = 4+y2

(4+x2+y2)3/2
, Hyy (x, y) =

(√
4+x2+y2

)
·1−y y√

4+x2+y2

4+x2+y2 = 4+x2

(4+x2+y2)3/2
,

Hxy (x, y) = Hyx (x, y) = − 1
2x
(
4 + x2 + y2

)−3/2 · 2y = − xy

(4+x2+y2)3/2

12.4.39 Observe that fx (x, y) = 6x2, so fxy (x, y) = 0; and fy (x, y) = 6y, so fyx (x, y) = 0.

12.4.40 Observe that fx (x, y) = ey, so fxy (x, y) = ey; and fy (x, y) = xey, so fyx (x, y) = ey.

12.4.41 Observe that fx (x, y) = −y sinxy, so fxy (x, y) = −sinxy − xy cosxy; and fy (x, y) = −x sinxy,
so fyx (x, y) = −sinxy − xy cosxy.

12.4.42 Observe that fx (x, y) = 6xy−1 + 2x−2y2, so fxy (x, y) = −6xy−2 + 4x−2y; and fy (x, y) =
−3x2y−2 − 4x−1y, so fyx (x, y) = −6xy−2 + 4x−2y.

12.4.43 Observe that fx (x, y) = ex+y, so fxy (x, y) = ex+y; and fy (x, y) = ex+y, so fyx (x, y) = ex+y.

12.4.44 Observe that fx (x, y) = 1
2x

−1/2y1/2, so fxy (x, y) = 1
4x

−1/2y−1/2 = 1√
4xy

; and fy (x, y) =
1
2x

1/2y−1/2, so fyx (x, y) =
1
4x

−1/2y−1/2 = 1√
4xy

.

12.4.45 fx (x, y, z) = y + z; fy (x, y, z) = x+ z; fz (x, y, z) = x+ y.

12.4.46 gx (x, y, z) = 4xy − 3z4; fy (x, y, z) = 2x2 + 20yz2; fz (x, y, z) = −12xz3 + 20y2z.

12.4.47 hx (x, y, z) = hy (x, y, z) = hz (x, y, z) = −sin (x+ y + z).

12.4.48 Qx (x, y, z) = yz sec2xyz; Qy (x, y, z) = xz sec2xyz; Qz (x, y, z) = xy sec2xyz.

12.4.49 Fu (u, v, w) =
1

v+w ; Fv (u, v, w) = − u
(v+w)2

; Fw (u, v, w) = − u
(v+w)2

.

12.4.50 Gr (r, s, t) =
s+t

2
√
rs+rt+st

; Gs (r, s, t) =
r+t

2
√
rs+rt+st

; Gt (r, s, t) =
r+s

2
√
rs+rt+st

.

12.4.51 fw (w, x, y, z) = 2w xy2; fx (w, x, y, z) = w2y2 + y3z2; fy (w, x, y, z) = 2w 2x y + 3x y2z2;
fz (w, x, y, z) = 2x y3z.

12.4.52 gw (w, x, y, z) = gx (w, x, y, z) = − sin (w + x) sin (y − z); gy (w, x, y, z) = cos (w + x) cos (y − z);
gz (w, x, y, z) = − cos (w + x) cos (y − z).

12.4.53 hw (w, x, y, z) = z
xy ; hx (w, x, y, z) = − wz

x2y ; hy (w, x, y, z) = − wz
xy2 ; hz (w, x, y, z) =

w
xy .

12.4.54 Fw (w, x, y, z) =
√
x+ 2y + 3z; Fx (w, x, y, z) =

w
2
√
x+2y+3z

; Fy (w, x, y, z) =
w√

x+2y+3z
;

Fz (w, x, y, z) =
3w

2
√
x+2y+3z

.

12.4.55

a. We have V = k T
P , so ∂V

∂P = −k T
P 2 . Because this partial derivative is negative, the volume decreases as

the pressure increases at a fixed temperature.

b. We have ∂V
∂T = k

P . Because this partial derivative is positive, the volume increases as the temperature
increases at a fixed pressure.
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c.

12.4.56

a. Vx = 2xh, Vh = x2.

b. �V ≈ 2xh�x = 2 · 0.5 · 1.5 · 0.01 = 0.015m3.

c. �V = x2�h = (0.5)
2
(−0.01) = −0.0025m3 (notice that because V is a linear function of h, the linear

approximation is exact).

d. Notice that for fixed height h, 
V
V ≈ 2xh
x

x2h = 2
x
x . Therefore a 10% change in x will produce

(approximately) a 20% change in V .

e. Notice that for fixed base x, 
V
V = 
h

h , so a 10% change in h will produce a 10% change in V .

12.4.57

a. Observe that as f (x, y) = 0 along either coordinate axis but on the line y = x, f (x, y) = − x2

2x2 = − 1
2 ,

so lim(x, y)→(0, 0)f (x, y) does not exist, and hence f is not continuous at (0, 0).

b. By Theorem 12.6, f is not differentiable at (0, 0).

c. Because f is identically 0 on the coordinate axes, fx (0, 0) = fy (0, 0) = 0.

d. We have fx (x, y) = −
(
(x2+y2)y−xy·2x

(x2+y2)2

)
=

(x2−y2)y
(x2+y2)2

. Along the line x = 2y, fx (x, y) =
3y3

25y4 = 3
25 · 1

y ,

which does not converge to 0 as y → 0. Hence fx is not continuous at (0, 0). A similar argument shows
that fy is also not continuous at (0, 0).

e. Theorem 12.5 does not apply because the partials fx and fy are not continuous at (0, 0), and Theorem
12.6 does not apply because f is not differentiable at (0, 0).

12.4.58

a. Observe that as f (x, y) = 0 along either coordinate axis but on the curve x = y2, f (x, y) = 2y4

2y4 = 1,

so lim(x, y)→(0, 0)f (x, y) does not exist, and hence f is not continuous at (0, 0).

b. By Theorem 12.6, f is not differentiable at (0, 0).

c. Because f is identically 0 on the coordinate axes, fx (0, 0) = fy (0, 0) = 0.

d. We have fx (x, y) =
(x2+y4)2y2−2xy2(2x)

(x2+y4)2
=

2y2(y4−x2)
(x2+y4)2

. Along the curve x = 2y2, fx (x, y) = − 6y6

25y8 =

− 6
25 · 1

y2 , which does not converge to 0 as y → 0. Hence fx is not continuous at (0, 0). We also have

fy (x, y) =
(x2+y4)4xy−2xy2(4y3)

(x2+y4)2
=

4xy(x2−y4)
(x2+y4)2

. Along the curve x = 2y2, fy (x, y) = − 24y7

25y8 = − 24
25 · 1

y ,

which does not converge to 0 as y → 0. Hence fy is not continuous at (0, 0).
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e. Theorem 12.5 does not apply because the partials fx and fy are not continuous at (0, 0), and Theorem
12.6 does not apply because f is not differentiable at (0, 0).

12.4.59

a. False. ∂
∂xy

10 = 0 because x and y are independent variables.

b. False. ∂2

∂x ∂y (xy)
1/2

= 1
2 · x−1/2 · 1

2y
−1/2 = 1

4
√
xy .

c. True. If f has continuous partial derivatives of all orders, then the order of differentiation for mixed
partials can be exchanged.

12.4.60 fx(2, 3) ≈ f(2.1,3)−f(2,3)
.1 = 4.347−4.243

.1 = 1.04.

12.4.61 fy(2, 3) ≈ f(2,3.1)−f(2,3)
.1 = 4.384−4.243

.1 = 1.41.

12.4.62 fx(2.2, 3.4) ≈ f(2.3,3.4)−f(2.2,3.4)
.1 = 5.156−5.043

.1 = 1.13. Answers may vary.

12.4.63 fy(2.4, 3.3) =≈ f(2.4,3.4)−f(2.4,3.3)
.1 = 5.267−5.112

.1 = 1.55. Answers may vary.

12.4.64 We have fx (x, y) = − y e−xy

1+e−xy and fy (x, y) = − x e−xy

1+e−xy .

12.4.65 We have fx (x, y) = − 2x
1+(x2+y2)2

and fy (x, y) = − 2y
1+(x2+y2)2

.

12.4.66 We have fx (x, y) = fy (x, y) = 2sin (2 (x+ y))− 2cos (x+ y) sin (x+ y).

12.4.67 We have hx (x, y, z) = z (1 + x+ 2y)
z−1

, hy (x, y, z) = 2z (1 + x+ 2y)
z−1

, and hx (x, y, z) =
(1 + x+ 2y)

z
ln (1 + x+ 2y).

12.4.68 Observe that for any rational function of the form R (t) = at+b
ct+d we have R′ (t) = ad−bc

(ct+d)2
; therefore

gx (x, y, z) =
4(3y−3z)−(−2y−2z)(−6)

(3y−6x−3z)2
= − 24z

(3y−6x−3z)2
= − 8z

3(y−2x−z)2
; gy (x, y, z) =

(−2)(−6x−3z)−(4x−2z)3

(3y−6x−3z)2
=

12z
(3y−6x−3z)2

= 4z
3(y−2x−z)2

; gz (x, y, z) =
(−2)(3y−6x)−(4x−2y)(−3)

(3y−6x−3z)2
= 24x−12y

(3y−6x−3z)2
= 8x−4y

3(y−2x−z)2
.

12.4.69

a. We have zx = 1
y2 and zy = − 2x

y3 .

b.

c. We observe that z increases at the same rate as x, which makes sense because zx = 1 along this line.

d. We observe that z increases when y < 0, is undefined when y = 0 and decreases when y > 0, which is
consistent with zy = − 2

y3 along this line.
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12.4.70

a. We have Vh = π
3

(
3r · 2h− 3h2

)
= π

(
2rh− h2

)
and Vr = πh2.

b. Because Vr = πh2, Vr is greater when h = 0.8r.

c. Solve Vr = πh2 = 1 to obtain h = π−1/2.

d. The maximum value of 2rh− h2 as a function of h occurs when 2r − 2h = 0, which gives h = r.

12.4.71

a. Because cos
(
π
3

)
= 1

2 we have c =
(
a2 + b2 − ab

)1/2
, and therefore ∂c

∂a = 2a−b
2
√
a2+b2−ab

and ∂c
∂b =

2b−a
2
√
a2+b2−ab

.

b. Implicit differentiation gives 2c ∂c
∂a = 2a− b, so ∂c

∂a = 2a−b
2c and 2c∂c∂b = 2b− a, so ∂c

∂b = 2b−a
2c .

c. The necessary relationship is 2a− b > 0 or a > b
2 .

12.4.72

a. We have Bw = 1
h2 .

b. The partial derivative Bw > 0 so B is an increasing function of w.

c. We have Bh = − 2w
h3 .

d. The partial derivative Bh < 0 so B is a decreasing function of h.

12.4.73

a. We have ϕx (x, y) = − 2x

(x2+(y−1)2)
3/2 − x

(x2+(y+1)2)
3/2 and ϕy (x, y) = − 2(y−1)

(x2+(y−1)2)
3/2 − y+1

(x2+(y+1)2)
3/2 .

b. Observe that |ϕx (x, y) | ≤ 2|x|
|x|3/2 + |x|

|x|3/2 = 3
|x|1/2 and similarly |ϕy (x, y) | ≤ 2|y−1|

|y−1|3/2 + |y+1|
|y+1|3/2 =

2
|y−1|1/2 + 1

|y+1|1/2 , which both converge to 0 as x, y → ∞.

c. We see that ϕx (0, y) = 0 as long as y �= ±1. This is consistent with the observation that along
horizontal lines y = y0 the potential function takes its maximum at x = 0.

d. We see that ϕy (x, 0) =
1

(x2+1)3/2
. This implies that if we cross the x-axis at any point from below to

above, the potential function is increasing.

12.4.74

a. We have QL = 1
3L

−2/3K2/3 and QK = 2
3L

1/3K−1/3.

b. We have �Q ≈ QK (10, 20)�K = 2
3 (10)

1/3
(20)

−1/3 · 0.5 ≈ 0.2646.

c. We have �Q ≈ QL (10, 20)�L = 1
3 (10)

−2/3
(20)

2/3 · (−0.5) ≈ −0.2646.

d.
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e. As we move along the vertical line L = 2 in the positive K-direction, Q increases, which is consistent
with QK > 0.

f. As we move along the horizontal line K = 2 in the positive L-direction, Q increases, which is consistent
with QL > 0.

12.4.75

a. Solving for R gives R =
(
R−1

1 +R−1
2

)−1
, so ∂R

∂R1
= − (R−1

1 +R−1
2

)−2 (−R−2
1

)
=

R2
2

(R1+R2)
2 and similarly

∂R
∂R2

=
R2

1

(R1+R2)
2 .

b. We have −R−2 ∂R
∂R1

= −R−2
1 =⇒ ∂R

∂R1
= R2

R2
1
and similarly ∂R

∂R2
= R2

R2
2
.

c. Because ∂R
∂R1

> 0, an increase in R1 causes an increase in R.

d. Because ∂R
∂R2

> 0, a decrease in R2 causes a decrease in R.

12.4.76

a. The period T is found by solving πt
2 = 2π, so t = 4.

b. We have ut = 2sin (πx) cos
(
πt
2

) · π
2 = π sin (πx) cos

(
πt
2

)
.

c. For fixed t, the quantity ut is largest when sin (πx) = ±1, which occurs at x = 1
2 (the middle of the

string).

d. For fixed x, the quantity ut is largest when cos
(
πt
2

)
= ±1, which occurs at t = 2k for any integer k.

At these times the string is in its rest position (no displacement).

e. We have ux = 2πcos (πx) cos
(
πt
2

)
.

f. For fixed t, the slope is greatest when cos (πx) = ±1, which occurs at the endpoints of the string
(x = 0, 1).

12.4.77 Observe that ∂2u
∂t2 = −4c2cos (2 (x+ ct)) = c2 ∂2u

∂x2 .

12.4.78 Observe that ∂2u
∂t2 = −20c2cos (2 (x+ ct))− 3c2sin (x− ct) = c2 ∂2u

∂x2 .

12.4.79 Observe that ∂2u
∂t2 = Ac2f ′′ (x+ ct) +Bc2g ′′ (x− ct) = c2 ∂2u

∂x2 .

12.4.80 Observe that uxx + uyy = e−xsin y + e−x (−sin y) = 0.

12.4.81 Observe that uxx + uyy = 6x− 6x = 0.

12.4.82 Observe that uxx + uyy = a2eaxcos ay + eax
(−a2cos ay

)
= 0

12.4.83 Observe that uxx = 2(x−1)y[
(x−1)2+y2

]2 − 2(x+1)y[
(x+1)2+y2

]2 , and uyy = − 2(x−1)y[
(x−1)2+y2

]2 + 2(x+1)y[
(x+1)2+y2

]2 ; so uxx +

uyy = 0.

12.4.84 We see that ut = −10e−tsinx = uxx.

12.4.85 We see that ut = −16e−4tcos 2x = uxx.

12.4.86 We see that ut = −e−t (2sinx+ 3cosx) = uxx.

12.4.87 We see that ut = −a2Ae−a2tcos ax = uxx.
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12.4.88 We have f (0, 0) = 0, fx (0, 0) = fy (0, 0) = 1, and f (�x, �y) = 1 · �x + 1 · �y, so we can take
ε1 = ε2 = 0.

12.4.89 We have f (0, 0) = 0, fx (0, 0) = fy (0, 0) = 0, and f (�x, �y) = �x ·�y, so we can take ε1 = �y,
ε2 = 0 or ε1 = 0, ε2 = �x.

12.4.90

a. Observe that lim(x, y)→(0, 0) (1− |xy |) = 1 = f (0, 0), so f is continuous at (0, 0).

b. Let (a, b) = (0, 0); then f (a+�x, b+�y) − f (a, b) = −|�x ||�y | = ε1�x where ε1 = ±�y
(depending on the sign of x). Because ε1 → 0 as �y → 0, we see that f is differentiable at (0, 0).

c. Because f is identically equal to 1 on the coordinate axes, fx (0, 0) = fy (0, 0) = 0.

d. The partial derivative fx (0, y) does not exist for y �= 0, because the function |x | is not differentiable
at x = 0. Similarly, the partial derivative fy (x, 0) does not exist for x �= 0. Hence the partials fx and
fy are not continuous at(0, 0).

e. Theorem 12.5 does not apply because the partials fx and fy are notcontinuous at (0, 0). Theorem 12.6
implies that f is continuous at (0, 0), which we saw in part (a).

12.4.91

a. Observe that lim(x, y)→(0, 0)

√|xy| = 0 = f (0, 0), so f is continuous at (0, 0).

b. Let (a, b) = (0, 0), and suppose that f (a+�x, b+�y)− f (a, b) =
√|�x�y| = ε1�x+ ε2�y. Let

�x = �y; then we obtain
√|�x|2 = |�x| = (ε1 + ε2)�x which implies that ε1 + ε2 = ±1, and so we

cannot have ε1, ε2 → 0, as �x, �y → 0. Therefore f is not differentiable at (0, 0).

c. Because f is identically equal to 0 on the coordinate axes, fx (0, 0) = fy (0, 0) = 0.

d. The partial derivative fx (0, y) does not exist for y �= 0 because the function
√|x| is not differentiable

at x = 0. Similarly, the partial derivative fy (x, 0) does not exist for x �= 0. Hence the partials fx and
fy are not continuous at (0, 0).

e. Theorem 12.5 does not apply because the partials fx and fy are not continuous at (0, 0), and Theorem
12.6 does not apply because f is not differentiable at (0, 0).

12.4.92

a. There are 3 choices for each of the variables we differentiate with respect to, so there are 9 possible
second partial derivatives: wxx, wyy, wzz, wxy, wyx, wxz, wzx, wyz, wzy.

b. This function has continuous partial derivatives of all orders, so wxy = wyx, wxz = wzx and wyz = wzy.

c. There are 4 choices for each of the variables we differentiate with respect to, so there are 16 possible
second partial derivatives.

12.4.93

a. By the fundamental theorem of calculus, fx (x, y) = − ∂
∂x

∫ y

x
h (s) ds = −h (x) and similarly fy (x, y) =

h (y).

b. Let H (s) be an antiderivative of h (s); then f (x, y) = H (xy) − H (1), so fx (x, y) = y h (xy) ,
fy (x, y) = xh (xy).

12.4.94 Observe that fx (x, y) =
(cx+dy)a−(ax+by)c

(cx+dy)2
= y(ad−bc)

(cx+dy)2
= 0; similarly, fy (x, y) = 0. Suppose a �= 0

(other cases can be handled similarly). Then ad = bc implies d = bc
a ; this also shows that c �= 0, otherwise

both c and d = 0 and the function is undefined. Hence ax+ by = a
c

(
cx+ bc

a y
)
= a

c (cx+ dy), so f (x, y) = a
c

is a constant function which implies fx = fy = 0.
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12.4.95

a. Observe that ux = 2x = vy and uy = −2y = −vx.

b. Observe that ux = 3x2 − 3y2 = vy and uy = −6xy = −vx.

c. We have uxx = vyx = vxy = −uyy, so uxx + uyy = 0. The proof that vxx + vyy = 0 is similar.

12.5 The Chain Rule

12.5.1 There is one dependent variable (z), two intermediate variables (x and y) and one independent
variable (t).

12.5.2 Multiply each of the partial derivatives of z by the t-derivative of the corresponding function, and
add all these expressions.

12.5.3 Multiply each of the partial derivatives of w by the t-derivative of the corresponding function, and
add all these expressions.

12.5.4 Multiply each of the partial derivatives of z by the t-partial derivative of the corresponding function,
and add all these expressions.

12.5.5

12.5.6 Use Theorem 12.9: dy
dx = −Fx

Fy
.

12.5.7 We have dz
dt = ∂z

∂x
dx
dt + ∂z

∂y
dy
dt = 2x(2t) + 3y2(1) = 4t3 + 3t2.

12.5.8 We have dz
dt = ∂z

∂x
dx
dt + ∂z

∂y
dy
dt = y2(2t) + 2xy(1) = 2t3 + 2t3 = 4t3.

12.5.9 We have dz
dt = ∂z

∂x
dx
dt + ∂z

∂y
dy
dt = (sin y) 2t+ (x cos y) 12t2 = 2t sin

(
4t3
)
+ 12t4 cos

(
4t3
)
.

12.5.10 We have dz
dt = ∂z

∂x
dx
dt +

∂z
∂y

dy
dt =

(
2xy − y3

)
2t+
(
x2 − 3xy2

) (−2t−3
)
= 2t

(
2− t−6

)−2t−3
(
t4 − 3t−2

)
= 2t+ 4t−5.

12.5.11 We have dw
dt = ∂w

∂x
dx
dt + ∂w

∂y
dy
dt = (−2 sin 2x sin 3y)

(
1
2

)
+ (3 cos 2x cos 3y) 4t3 = − sin t sin 3t4 +

12t3 cos t cos 3t4.

12.5.12 We have dz
dt = ∂z

∂r
dr
dt +

∂z
∂s

ds
dt = r√

r2+s2
(−2 sin 2t) + s√

r2+s2
(2 cos 2t) = −2 cos 2t sin 2t+2 sin 2t cos 2t

1 = 0.

12.5.13 We have dw
dt = ∂w

∂x
dx
dt +

∂w
∂y

dy
dt+

∂w
∂z

dz
dt = (y sin z) 2t+(x sin z) 12t2+(xy cos z)·1 =

(
2ty + 12t2x

)
sin z+

xy cos z = 20t4 sin (t+ 1) + 4t5 cos (t+ 1) .

12.5.14 We have dQ
dt = ∂Q

∂x
dx
dt +

∂Q
∂y

dy
dt+

∂Q
∂z

dz
dt = x√

x2+y2+z2
cos t+ y√

x2+y2+z2
(− sin t)+ z√

x2+y2+z2
(− sin t) =

− cos t sin t√
1+cos2 t

.

12.5.15 We have dU
dt = ∂U

∂x
dx
dt + ∂U

∂y
dy
dt +

∂U
∂z

dz
dt = 1

x+y+z · 1 + 1
x+y+z · 2t+ 1

x+y+z · 3t2 = 1+2t+3t2

t+t2+t3 .
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12.5.16 We have dV
dt = ∂V

∂x
dx
dt +

∂V
∂y

dy
dt +

∂V
∂z

dz
dt = 1

y+z ·1+
(

−x−z
(y+z)2

)
·2+ y−x

(y+z)2
·3 = −5x+4y−z

(y+z)2
= −5t+8t−3t

25t2 = 0.

12.5.17

a. By the chain rule, V ′ (t) = 2π r (t)h (t) r′ (t) + π[r (t)]2h′ (t).

b. Substituting r (t) = et and h (t) = e−2t gives V ′ (t) = 2π ete−2tet + π e2t
(−2e−2t

)
= 0.

c. Because V ′ (t) = 0, the volume remains constant.

12.5.18

a. By the chain rule, V ′ (t) = 2
3x (t) h (t) x

′ (t) + 1
3 [x (t)]

2 h′ (t).

b. Substituting x (t) = t
t+1 and h (t) = 1

t+1 gives V ′ (t) = 2
3

t
t+1

1
t+1

1
(t+1)2

+ 1
3

(
t

t+1

)2 (
− 1

(t+1)2

)
= 1

3
t(2−t)

(t+1)4
.

c. The volume increases for 0 ≤ t ≤ 2 and decreases for t ≥ 2.

12.5.19 zs =
∂z
∂x

∂x
∂s +

∂z
∂y

∂y
∂s = 2x sin y+x2 cos y · 0 = 2(s− t) sin t2 and zt =

∂z
∂x

∂x
∂t +

∂z
∂y

∂y
∂t = (2x sin y)(−1)+

x2 cos y(2t) = 2(t− s) sin t2 + 2t(s− t)2 cos t2.

12.5.20 zs =
∂z
∂x

∂x
∂s +

∂z
∂y

∂y
∂s = 2 cos(2x+ y)(2s)+cos(2x+ y)(2s) = 6s cos(3s2− t2) and zt =

∂z
∂x

∂x
∂t +

∂z
∂y

∂y
∂t =

2 cos(2x+ y)(−2t) + cos(2x+ y)(2t) = −2t cos(2(s2 − t2) + s2 + t2) = −2t cos(3s2 − t2).

12.5.21 zs = ∂z
∂x

∂x
∂s + ∂z

∂y
∂y
∂s = (y − 2xy) · 1 +

(
x− x2

) · 1 = s − t − 2
(
s2 − t2

)
+ (s+ t) − (s+ t)

2
=

2s−3s2−2st+t2 and zt =
∂z
∂x

∂x
∂t +

∂z
∂y

∂y
∂t = (y − 2xy)·1+(x− x2

)·(−1) = s−t−2
(
s2 − t2

)−(s+ t)+(s+ t)
2
=

−s2 − 2t+ 2st+ 3t2.

12.5.22 zs =
∂z
∂x

∂x
∂s +

∂z
∂y

∂y
∂s = cosx cos 2y−2 sinx sin 2y = cos (s+ t) cos[2 (s− t)]−2 sin (s+ t) sin[2 (s− t)]

and zt =
∂z
∂x

∂x
∂t +

∂z
∂y

∂y
∂t = cosx cos 2y−2 sinx sin 2y ·(−1) = cos (s+ t) cos[2 (s− t)]+2 sin (s+ t) sin[2 (s− t)]

12.5.23 zs =
∂z
∂x

∂x
∂s +

∂z
∂y

∂y
∂s = ex+y · t+ex+y ·1 = (t+ 1) est+s+t and zt =

∂z
∂x

∂x
∂t +

∂z
∂y

∂y
∂t = ex+y ·s+ex+y ·1 =

(s+ 1) est+s+t.

12.5.24 zs = ∂z
∂x

∂x
∂s + ∂z

∂y
∂y
∂s = (y − 2) (− sin s) + (x+ 3) · 0 = sin s (2− sin t) and zt = ∂z

∂x
∂x
∂t + ∂z

∂y
∂y
∂t =

(y − 2) · 0 + (x+ 3) · cos t = (3 + cos t) cos t.

12.5.25 ws = ∂w
∂x

∂x
∂s + ∂w

∂y
∂y
∂s + ∂w

∂z
∂z
∂s = 1

y+z · 1 + z−x
(y+z)2

· t − x+y
(y+z)2

· 1 = (1+t)(z−x)

(y+z)2
= − 2t(1+t)

(st+s−t)2
and

wt =
∂w
∂x

∂x
∂t + ∂w

∂y
∂y
∂t +

∂w
∂z

∂z
∂t = 1

y+z · 1 + z−x
(y+z)2

· s− x+y
(y+z)2

· (−1) = (1−s)x+2y+(1+s)z

(y+z)2
= 2s

(st+s−t)2
.

12.5.26 wr = ∂w
∂x

∂x
∂r + ∂w

∂y
∂y
∂r + ∂w

∂z
∂z
∂r = x√

x2+y2+z2
· 0 + y√

x2+y2+z2
· s + z√

x2+y2+z2
· t = r(s2+t2)√

r2s2+r2t2+s2t2
.

Similarly, ws =
s(r2+t2)√

r2s2+r2t2+s2t2
and wt =

t(r2+s2)√
r2s2+r2t2+s2t2

.

12.5.27 dw
dt = dw

dz

(
∂z
∂x

dx
dt + ∂z

∂y
dy
dt

)
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12.5.28 ∂w
∂t = ∂w

∂x
dx
dt + ∂w

∂y
dy
dt +

∂w
∂z

dz
dt

12.5.29 ∂u
∂z = du

dv

(
∂v
∂w

dw
dz + ∂v

∂x
∂x
∂z + ∂v

∂y
∂y
∂z

)

12.5.30 du
dz =

(
∂u
∂v

dv
dr + ∂u

∂w
dw
dr + ∂u

∂x
dx
dr

)
dr
dz

12.5.31 Let F (x, y) = x2 − 2y2 − 1; then by Theorem 12.9, we have dy
dx = −Fx

Fy
= − 2x

−4y = x
2y .

12.5.32 Let F (x, y) = x3 + 3xy2 − y5; then by Theorem 12.9, we have dy
dx = −Fx

Fy
= − 3x2+3y2

6xy−5y4 = 3x2+3y2

5y4−6xy .

12.5.33 Let F (x, y) = 2 sin (xy)− 1; then by Theorem 12.9, we have dy
dx = −Fx

Fy
= − 2y cos(xy)

2x cos(xy) = − y
x .

12.5.34 Let F (x, y) = yexy − 2; then by Theorem 12.9, we have dy
dx = −Fx

Fy
= − y2exy

exy+xy exy = − y2

1+xy .

12.5.35 Note that we can simplify this equation to x2 + 2xy + y4 = 9, so let F (x, y) = x2 + 2xy + y4 − 9;
then by Theorem 12.9, we have dy

dx = −Fx

Fy
= − 2x+2y

2x+4y3 = − x+y
x+2y3 .

12.5.36 Let F (x, y) = y ln
(
x2 + y2 + 4

)− 3; then by Theorem 12.9, we have dy
dx = −Fx

Fy
=

−
(

2xy

x2+y2+4

)
(
ln(x2+y2+4)+ 2y2

x2+y2+4

) = − 2xy
2y2+(x2+y2+4) ln(x2+y2+4) .

12.5.37 The chain rule gives ∂s
∂x = ∂s

∂u
∂u
∂x + ∂s

∂v
∂v
∂x = u√

u2+v2
· 0 + v√

u2+v2
· (−2) = 4x√

4(x2+y2)
= 2x√

x2+y2
and

∂s
∂y = ∂s

∂u
∂u
∂y + ∂s

∂v
∂v
∂y = u√

u2+v2
· 2 + v√

u2+v2
· 0 = 4y√

4(x2+y2)
= 2y√

x2+y2
.
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12.5.38 The chain rule gives ∂s
∂x = ∂s

∂u
∂u
∂x + ∂s

∂v
∂v
∂x = u√

u2+v2
· (1− 2x) (1− 2y) + v√

u2+v2
· y (y − 1) (−2) =

x(1−x)(1−2x)(1−2y)2−2y2(1−2x)(y−1)2√
x2(1−x)2(1−2y)2+y2(y−1)2(1−2x)2

and

∂s
∂y = ∂s

∂u
∂u
∂y+

∂s
∂v

∂v
∂y = u√

u2+v2
·x (1− x) (−2)+ v√

u2+v2
·(2y − 1) (1− 2x) = y(1−y)(1−2y)(1−2x)2−2x2(1−2y)(1−x)2√

x2(1−x)2(1−2y)2+y2(1−y)2(1−2x)2
.

12.5.39

a. False. The correct equation is ∂z
∂s = ∂z

∂x
dx
ds + ∂z

∂y
dy
ds .

b. False. w is a function of both s and t, so the rate of change of w with respect to t is the partial
derivative ∂w

∂t .

12.5.40

a. We have z = ln (tet + et) = ln et + ln (t+ 1) = t+ ln (t+ 1), so z′(t) = 1 + 1
t+1 = 2+t

1+t .

b. Using the chain rule, dz
dt = ∂z

∂x
dx
dt + ∂z

∂y
dy
dt = 1

x+y (1 + t) et + 1
x+y e

t = (2+t)et

(1+t)et = 2+t
1+t .

12.5.41

a. We have z =
(
t2 + 2t

)−1
+
(
t3 − 2

)−1
, so z′(t) = − (2t+2)

(t2+2t)2
− 3t2

(t3−2)2
.

b. Using the chain rule, dz
dt = ∂z

∂x
dx
dt + ∂z

∂y
dy
dt = − (2t+2)

x2 − 3t2

y2 = − (2t+2)

(t2+2t)2
− 3t2

(t3−2)2
.

12.5.42 The chain rule gives ∂z
∂p = ∂z

∂x
∂x
∂p + ∂z

∂y
∂y
∂p = 1

y · 1− x
y2 · 1 = y−x

y2 = − 2q
(p−q)2

.

12.5.43 The chain rule gives dw
dt = ∂w

∂x
dx
dt +

∂w
∂y

dy
dt +

∂w
∂z

dz
dt = yz · 8t3 +xz

(−3t−2
)
+xy

(−12t−4
)
= 12

t4 · 8t3 +
8t
(− 3

t2

)
+ 6t3

(− 12
t4

)
= 0.This can also be seen by expressing w in terms of t: w = 2t43t−14t−3 = 24, so

dw
dt = 0.

12.5.44 Observe that w = cos (x+ y)− (cosx cos y − sinx sin y) = 0, ∂w
∂x = 0.

12.5.45 The chain rule gives − 1
x2 − 1

z2
∂z
∂x = 0, so ∂z

∂x = − z2

x2 .

12.5.46 Observe that z = xy − 1, so ∂z
∂x = y.

12.5.47

a. The chain rule gives w′ (t) = awx + bwy + cwz.

b. Using part (a), w′ (t) = ayz + bxz + cxy = 3abct2.

c. Using part (a), w′ (t) = ax√
x2+y2+z2

+ by√
x2+y2+z2

+ cz√
x2+y2+z2

= ax+by+cz√
x2+y2+z2

=
√
a2 + b2 + c2 t

|t|

d. Differentiate the result from part (a) one more time:
w′′(t) = a (awxx + bwxy + cwxz)+ b (awyx + bwyy + cwyz)+c (awzx + bwzy + cwzz) which simplifies to
w′′(t) = a2wxx + b2wyy + c2wzz + 2abwxy + 2acwxz + 2bcwyz.

12.5.48 Differentiate F (x, y, z (x, y)) = 0 using the chain rule: Fx · 1 + Fy · 0 + Fz · ∂z
∂x = 0, so ∂z

∂x = −Fx

Fz
.

The proof that ∂z
∂y = −Fy

Fz
is similar.

12.5.49 Let F (x, y, z) = xy+ xz + yz − 3; then the result from Exercise 48 gives ∂z
∂x = −Fx

Fz
= − y+z

x+y ,
∂z
∂y =

−Fy

Fz
= −x+z

x+y .

12.5.50 Let F (x, y, z) = x2 + 2y2 − 3z2 − 1; then the result from Exercise 48 gives ∂z
∂x = −Fx

Fz
= − 2x

−6z =
x
3z ,

∂z
∂y = −Fy

Fz
= − 4y

−6z = 2y
3z .
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12.5.51 Let F (x, y, z) = xyz+ x+ y− z; then the result from Exercise 48 gives ∂z
∂x = −Fx

Fz
= − yz+1

xy−1 ,
∂z
∂y =

−Fy

Fz
= −xz+1

xy−1 .

12.5.52

a. Let F (x, y, z) = exyz − 2; then the result from Exercise 48 gives ∂z
∂x = −Fx

Fz
= − yzexyz

xyexyz = − z
x ,

∂z
∂y =

−Fy

Fz
= −xzexyz

xyexyz = − z
y .

b. Take logarithms of both sides to obtain xyz − ln 2 = 0; then the result from Exercise 48 applied to
F (x, y, z) = xyz − ln 2 gives ∂z

∂x = −Fx

Fz
= − yz

xy = − z
x ,

∂z
∂y = −Fy

Fz
= −xz

xy = − z
y .

c. Solve for z to obtain z = ln 2
xy ; therefore ∂z

∂x = − ln 2
x2y = − z

x ,
∂z
∂y = − ln 2

xy2 = − z
y .

12.5.53

a. The chain rule gives z′(t) = 2x (− sin t) + 8y cos t = 6 sin t cos t = 3 sin 2t.

b. Observe that for 0 ≤ t ≤ 2π, z′(t) = 3 sin 2t > 0 when 0 < t < π
2 or π < t < 3π

2 .

12.5.54

a. The chain rule gives z′(t) = 8x (− sin t)− 2y cos t = −10 sin t cos t = −5 sin 2t.

b. Observe that for 0 ≤ t ≤ 2π, z′(t) = −5 sin 2t > 0 when π
2 < t < π or 3π

2 < t < 2π.

12.5.55

a. The chain rule gives z′(t) = − x√
1−x2−y2

(−e−t) +− y√
1−x2−y2

(−e−t) = 2e−2t√
1−e−2t

.

b. Observe that z′(t) > 0 for all t where defined, so the function z (t) is increasingfor all t ≥ 1
2 ln 2.

12.5.56

a. The chain rule gives z′(t) = 4x (− sin t)+2y cos t = −4 (1 + cos t) sin t+2 sin t cos t = −2 sin t (2 + cos t).

b. Observe that 2+ cos t > 0 for all t, so for 0 ≤ t ≤ 2π, so z′(t) > 0 if and only if sin t < 0, which occurs
when π < t < 2π.

12.5.57 The chain rule gives E′ (t) = m (uu′ + vv′) +mgy′ = m (x′x′′ + y′y′′ + gy′) =
m (u0 · 0 + y′ (y′′ + g)) = 0. Therefore, the energy of the projectile remains constant during the motion.

12.5.58

a. The marginal utilities are ∂U
∂x = axa−1y1−a, ∂U

∂y = (1− a)xay−a.

b. Using Theorem 12.9, we find that the slope of the indifference curve U (x, y)−c = 0 is MRS = −Ux

Uy
=

− a
1−a

y
x .

c. The result from part (b) above gives MRS = − 0.4
0.6

12
8 = −1.

12.5.59

a. If r and R increase at the same rate then R− r is a constant C, so V = C2π2

4 (R+ r) is increasing.

b. Similarly, if r and R decrease at the same rate then V is decreasing.

12.5.60

a. The chain rule gives S′ (t) = 1
60

(
w

2
√
hw

h ′ (t) + h
2
√
hw

w′ (t)
)
= wh′(t)+hw′(t)

120
√
hw

.

b. From part (a), the condition that S (t) is constant is w h′ (t) + hw′ (t) = 0.
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c. If S is constant then we must have hw constant, so h and w are inversely proportional.

12.5.61

a. Consider P as a function of T and V and differentiate with respect to V : ∂P
∂V V +P ·1 = 0, so ∂P

∂V = −P
V .

Next, consider T as a function of P and V and differentiate with respect to P : 1·V = k ∂T
∂P , so ∂T

∂P = V
k .

Lastly, consider V as a function of T and P and differentiate with respect to T : P ∂V
∂T = k, so ∂V

∂T = k
P .

b. Observe that ∂P
∂V

∂T
∂P

∂V
∂T = −P

V
V
k

k
P = −1.

12.5.62

a. The chain rule gives dρ
dt = y (−2 sin t) + x · 2 cos t = 4

(
cos2 t− sin2 t

)
= 4 cos 2t.

b. The density as a function of t is given by ρ (t) = 4+4 cos t sin t = 4+2 sin 2t, which attains its maximum
at t = π

4 ,
5π
4 . (This also follows from part (a) and the second derivative test.) The corresponding points

on the plate are ± (√2,
√
2
)
.

12.5.63

a. The chain rule gives w′ (t) = yz
z2+1 (− sin t) + xz

z2+1 (cos t) +
xy(1−z2)
(z2+1)2

· 1 = − (sin t)t
t2+1 sin t+ (cos t)t

t2+1 cos t+

(cos t)(sin t)(1−t2)
(t2+1)2

.

b. The function w (t) = t cos t sin t
1+t2 takes its maximum value on [0, ∞) approximately at t = 0.838, which

gives the point (0.669, 0.743, 0.838) on the spiral.

12.5.64

a. We have xr = cos θ, yr = sin θ, xθ = −r sin θ, yθ = r cos θ.

b. We have r =
(
x2 + y2

)1/2
and θ = tan−1

(
y
x

)
, so rx = x√

x2+y2
, ry = y√

x2+y2
, and θx = − y

x2+y2 ,

θy = x
x2+y2 .

c. The chain rule gives zr = fx cos θ + fy sin θ, zθ = −rfx sin θ + rfy cos θ.

d. The chain rule gives zx = gr
x√

x2+y2
− gθ

y
x2+y2 , zy = gr

y√
x2+y2

+ gθ
x

x2+y2 .

e. Observe that z2x + z2y = g2r

(
x2

x2+y2 + y2

x2+y2

)
+ g2θ

(
x2

(x2+y2)2
+ y2

(x2+y2)2

)
= g2r +

1
r2 g

2
θ = z2r + 1

r2 z
2
θ .

12.5.65

a. From problem 64 part (d) we have zx = x
r zr − y

r2 zθ, zy = y
r zr +

x
r2 zθ

b. Differentiating the equation for zx in part (a) with respect to x gives zxx = 1
r zr+x

(− 1
r2

)
rxzr+

x
r (zr)x+

2y
r3 rxzθ− y

r2 (zθ)x = x
r (zr)x− y

r2 (zθ)x+
(

r2

r3 − x2

r3

)
zr+

2xy
r4 zθ = x

r

(
x
r zrr − y

r2 zrθ
)− y

r2

(
x
r zθr − y

r2 zθθ
)
+

y2

r3 zr +
2xy
r4 zθ = x2

r2 zrr +
y2

r4 zθθ − 2xy
r3 zrθ +

y2

r3 zr +
2xy
r4 zθ.

c. Differentiating the equation for zy in part (a) with respect to y gives zyy = 1
r zr+y

(− 1
r2

)
ryzr+

y
r (zr)y−

2x
r3 ryzθ+

x
r2 (zθ)y = y

r (zr)y +
x
r2 (zθ)y +

(
r2

r3 − y2

r3

)
zr− 2xy

r4 zθ = y
r

(
y
r zrr +

x
r2 zrθ

)
+ x

r2

(
y
r zθr +

x
r2 zθθ

)
+

x2

r3 zr − 2xy
r4 zθ = y2

r2 zrr +
x2

r4 zθθ +
2xy
r3 zrθ +

x2

r3 zr − 2xy
r4 zθ.

d. Adding the results from (b) and (c) gives zxx + zyy = zrr +
1
r zr +

1
r2 zθθ.

12.5.66

a. The tangent plane to the surface z = F (x, y) has normal vector n =
〈
Fx, Fy, −1

〉
, so we see that the

projection of n into the xy-plane is orthogonal to the curve F (x, y) = 0.

Copyright c© 2015 Pearson Education, Inc.



354 Chapter 12. Functions of Several Variables

b. The curve F (x, y) = 0 has a vertical tangent at a point where Fy (x, y) = 0.

12.5.67

a. Assuming y is fixed, the chain rule gives Fx · 1 + Fy · 0 + Fz ·
(
∂z
∂x

)
y
= 0, so

(
∂z
∂x

)
y
= −Fx

Fz
.

b. Similarly we find that
(
∂y
∂z

)
x
= −Fz

Fy
and

(
∂x
∂y

)
z
= −Fy

Fx

c. From (a) and (b) we see that
(
∂z
∂x

)
y

(
∂y
∂z

)
x

(
∂x
∂y

)
z
= −1.

d. Let
(
∂w
∂x

)
y,z

denote the partial derivative of w with respect to x holding y and z constant, with similar

notation for the other possible pairs of variables. A similar derivation as in part (a) and (b) above for

F (w, x, y, z) = 0 shows that
(
∂w
∂x

)
y,z

(
∂x
∂y

)
w,z

(
∂y
∂z

)
w,x

(
∂z
∂w

)
x,y

=
(− Fx

Fw

)(− Fy

Fx

)(− Fz

Fy

)(− Fw

Fz

)
= 1.

12.5.68

a. We know that y′ (x) = − fx
fy
; differentiating again with respect to x gives y′′ (x) = − fy(fx)

′−fx(fy)
′

f2
y

=

− fy(fxx+fxy y′)−fx(fyx+fyy y′)
f2
y

= − fxxf
2
y−2fxfyfxy+fyyf

2
x

f3
y

.

b. For f (x, y) = xy−1 we have fx = y, fy = x, fxy = 1, fxx = fyy = 0, so we obtain y′′ (x) = −− 2xy
x3 = 2

x3

because xy = 1. In this case we can solve to find y (x) = 1
x , so y′′ (x) = 2

x3 is correct.

12.5.69

a. We have
(
∂w
∂x

)
y
= fx + fz

dz
dx = 2 + 4 · 4 = 18.

b. Rewrite z = 4x− 2y as y = 2x− z
2 ; therefore

(
∂w
∂x

)
z
= fx + fy

dy
dx = 2 + 3 · 2 = 8.

c.

d. Hold x constant; then
(

∂w
∂y

)
x
= fy + fz

dz
dy = 3 + 4 (−2) = −5. Hold z constant; then

(
∂w
∂y

)
z
=

fx
dx
dy +fy = 2 · 12 +3 = 4. Hold x constant; then

(
∂w
∂z

)
x
= fy

dy
dz +fz = 3

(− 1
2

)
+4 = 5

2 . Hold y constant;

then
(
∂w
∂z

)
y
= fx

dx
dz + fz = 2 · 1

4 + 4 = 9
2 .
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12.6 Directional Derivatives and the Gradient

12.6.1 Take the dot product of the unit direction vector u and the gradient of the function.

12.6.2 The gradients ∇f = 〈fx, fy〉 and ∇f = 〈fx, fy, fz〉.
12.6.3 The direction of the gradient vector is the direction in which the function is increasing the most
(steepest ascent).

12.6.4 The magnitude of the gradient vector is the largest possible directional derivative of the function at
a point.

12.6.5 The gradient is perpendicular to the level curves.

12.6.6 The direction must be perpendicular to the level curves and in a direction in which the function is

increasing; therefore the gradients have directions ±
(√

2
2 ,

√
2
2

)
at the points ± (1, 1) respectively.

12.6.7

a. Note that fx = −x and fy = −2y. So ∇f(2, 0) = 〈−2, 0〉, ∇f(0, 2) = 〈0,−4〉, and ∇f(1, 1) = 〈−1,−2〉.
(a, b) = (2, 0) (a, b) = (0, 2) (a, b) = (1, 1)

u = 〈
√
2
2 ,

√
2
2 〉 −√

2 −2
√
2 −3

√
2/2

v = 〈−
√
2
2 ,

√
2
2 〉 √

2 −2
√
2 −√

2/2

w = 〈−
√
2
2 ,−

√
2
2 〉 √

2 2
√
2 3

√
2/2

b. The function is decreasing at (2, 0) in the direction of u and increasing at (2, 0) in the direction of v
and w.

12.6.8

a. Note that fx = 4x and fy = 2y. So ∇f(1, 0) = 〈4, 0〉, ∇f(1, 1) = 〈4, 2〉, and ∇f(1, 2) = 〈4, 4〉.
(a, b) = (1, 0) (a, b) = (1, 1) (a, b) = (1, 2)

u = 〈1, 0〉 4 4 4

v = 〈
√
2
2 ,

√
2
2 〉 2

√
2 3

√
2 4

√
2

w = 〈0, 1〉 0 2 4

b. The function is increasing at (1, 0) in the direction of u and v and is constant in the direction of w.

12.6.9 ∇f (x, y) = 〈6x,−10y〉 so ∇f (2,−1) = 〈12, 10〉.
12.6.10 ∇f (x, y) = 〈8x− 2y,−2x+ 2y〉, so ∇f (−1,−5) = 〈2,−8〉.
12.6.11 ∇g (x, y) = 〈2x− 8xy − 8y2,−4x2 − 16xy〉, so ∇g (−1, 2) = 〈−18, 28〉.
12.6.12 ∇p (x, y) = 〈− 4x√

12−4x2−y2
,− y√

12−4x2−y2
〉, so ∇p (−1,−1) = 〈 4√

7
, 1√

7
〉.

12.6.13 ∇f(x, y) = 〈2xye2xy + e2xy, 2x2e2xy〉, so ∇f(1, 0) = 〈1, 2〉.
12.6.14 ∇f(x, y) = 〈3 cos(3x+ 2y), 2 cos(3x+ 2y)〉, so ∇f(π, 3π/2) = 〈3, 2〉.

12.6.15 ∇F (x, y) = 〈−2xe−x2−2y2

,−4ye−x2−2y2〉, so ∇F (−1, 2) = 2e−9〈1,−4〉.
12.6.16 ∇h (x, y) = 〈 2x

1+x2+2y2 ,
4y

1+x2+2y2 〉, so ∇h (2,−3) = 2
23 〈2,−6〉.
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12.6.17 ∇f(x, y) = 〈2x,−2y〉, so ∇f(−1,−3) = 〈−2, 6〉. We have Duf(−1,−3) = 〈−2, 6〉 · 〈3/5,−4/5〉 =
−6/5− 24/5 = −30/5 = −6.

12.6.18 ∇f(x, y) = 〈6x, 3y2〉, so ∇f(3, 2) = 〈18, 12〉. We have Duf(3, 2) = 〈18, 12〉 · 〈5/13, 12/13〉 =
90/13 + 144/13 = 234/13 = 18.

12.6.19 ∇f(x, y) = 〈−6x, y3〉, so ∇f(2,−3) = 〈−12,−27〉. We have Duf (2,−3) = 〈−12,−27〉 · 〈
√
3
2 ,− 1

2 〉 =
27
2 − 6

√
3.

12.6.20 ∇g (x, y) = 〈2π cosπ (2x− y) ,−π cosπ (2x− y)〉, so ∇g(−1,−1) = 〈−2π, π〉. We have
Dug (−1,−1) = 〈−2π, π〉 · 〈 5

13 ,− 12
13 〉 = − 22

13π.

12.6.21 ∇f(x, y) = 〈− x√
4−x2−2y

,− 1√
4−x2−2y

〉, so ∇f(2,−2) = 〈−1,− 1
2 〉. Thus, Duf (2,−2) = 〈−1,− 1

2 〉 ·
〈 1√

5
, 2√

5
〉 = − 2√

5
.

12.6.22 ∇f(x, y) = 〈13yexy, 13xexy〉, so ∇f(1, 0) = 〈0, 13〉. A unit vector in the direction given is
〈5/13, 12/13〉, so Duf = 〈0, 13〉 · 〈5/13, 12/13〉 = 12.

12.6.23 ∇f(x, y) = 〈6x, 2〉, so ∇f(1, 2) = 〈6, 2〉. A unit vector in the direction given is 〈−3/5, 4/5〉, so
Duf = 〈6, 2〉 · 〈−3/5, 4/5〉 = −2.

12.6.24 ∇h(x, y) = 〈−e−x−y,−e−x−y〉, so ∇h(ln 2, ln 3) = −〈16 , 1
6 〉 A unit vector in the direction given is

〈 1√
2
, 1√

2
〉. We have Duh (ln 2, ln 3) = −〈 16 , 1

6 〉 · 〈 1√
2
, 1√

2
〉 = − 2

6
√
2
= − 1

3
√
2
.

12.6.25 ∇g(x, y) = 〈 2x
4+x2+y2 ,

2y
4+x2+y2 〉, so ∇g(−1, 2) = 〈− 2

9 ,
4
9 〉. A unit vector in the direction given is

〈 2√
5
, 1√

5
〉. We have Dug (−1, 2) = 〈− 2

9 ,
4
9 〉 · 〈 2√

5
, 1√

5
〉 = 0.

12.6.26 ∇f(x, y) = 〈− y
(x−y)2

, x
(x−y)2

〉, so ∇f(4, 1) = 〈− 1
9 ,

4
9 〉. A unit vector in the direction given is

〈− 1√
5
, 2√

5
〉. We have Duf (4, 1) = 〈− 1

9 ,
4
9 〉 · 〈− 1√

5
, 2√

5
〉 = 1√

5
.

12.6.27

a. At the point (1,−2) the value of the gradient is ∇f (1,−2) = 〈2x,−8y〉
∣∣∣
(1,−2)

= 〈2, 16〉. Therefore, the
direction of steepest ascent is u = 1√

65
〈1, 8〉 and the direction of steepest descent is −u.

b. Take any vector perpendicular to u; for example, v = 1√
65
〈−8, 1〉.

12.6.28

a. At the point (2, 1) the value of the gradient is ∇f (2, 1) = 〈2x+ 4y, 4x− 2y〉
∣∣∣
(2,1)

= 〈8, 6〉. Therefore,

the direction of steepest ascent is u = 〈4/5, 3/5〉 and the direction of steepest descent is −u.

b. Take any vector perpendicular to u; for example, v = 〈−3/5, 4/5〉.

12.6.29

a. At the point (−1, 1) the value of the gradient is ∇f (−1, 1) = 〈4x3 − 2xy,−x2 + 2y〉
∣∣∣
(−1,1)

= 〈−2, 1〉.
Therefore, the direction of steepest ascent is u = 1√

5
〈−2, 1〉 and the direction of steepest descent is

−u.

b. Take any vector perpendicular to u; for example, v = 1√
5
〈1, 2〉.
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12.6.30

a. At the point (1, 2) the value of the gradient is ∇P (1, 2) =
〈

x+y√
20+x2+2xy−y2

, x−y√
20+x2+2xy−y2

〉∣∣∣
(1,2)

=

〈 3√
21
,− 1√

21
〉. Therefore, the direction of steepest ascent is u = 1√

10
〈3,−1〉 and the direction of steepest

descent is −u.

b. Take any vector perpendicular to u; for example, v = 1√
10
〈1, 3〉.

12.6.31

a. At the point (−1, 1) the value of the gradient is ∇f (−1, 1) =
〈
−xe−x2/2−y2/2,−ye−x2/2−y2/2

〉∣∣
(−1,1)

=

e−1〈1,−1〉. Therefore, the direction of steepest ascent is u = 1√
2
〈1,−1〉 and the direction of steepest

descent is −u.

b. Take any vector perpendicular to u; for example, v = 1√
2
〈1, 1〉.

12.6.32

a. At the point (0, π) the value of the gradient is ∇f (0, π) = 〈4 cos (2x− 3y) ,−6 cos (2x− 3y)〉
∣∣∣
(0,π)

=

〈−4, 6〉. Therefore, the direction of steepest ascent is u = 1√
13
〈−2, 3〉 and the direction of steepest

descent is −u.

b. Take any vector perpendicular to u; for example, v = 1√
13
〈3, 2〉.

12.6.33

a. The gradient of fat P is ∇f (3, 2) = 〈−4x,−6y〉
∣∣∣
(3,2)

= 〈−12,−12〉.

b. The direction of steepest ascent isu = 1√
2
〈−1,−1〉 which makes angle θ = 5π

4 with the x-axis; therefore,

the angle of maximum decrease is θ = π
4 and the angles of zero change are 3π

4 and 7π
4 .

c. We have g (θ) = 〈−12,−12〉 · 〈cos θ, sin θ〉 = −12 cos θ − 12 sin θ.

d. The critical points for g (θ) satisfy g′ (θ) = 12 (sin θ − cos θ) = 0, which gives θ = π
4 ,

5π
4 . By inspection

we see that the maximum occurs at 5π
4 , and we have g

(
5π
4

)
= 12

√
2.

e. Observe that the maximum value of g (θ) occurs at the angle found in part (d), and that |∇f (3, 2) | =
12
√
2 = g

(
5π
4

)
.

12.6.34

a. The gradient of f at p is ∇f (−3,−1) = 〈2x, 6y〉
∣∣∣
(−3,−1)

= 〈−6,−6〉.

b. The direction of steepest ascent is u = 1√
2
〈−1,−1〉 which makes angle θ = 5π

4 with the x-axis;

therefore, the angle of maximum decrease is θ = π
4 and the angles of zero change are 3π

4 and 7π
4 .

c. We have g (θ) = 〈−6,−6〉 · 〈cos θ, sin θ〉 = −6 cos θ − 6 sin θ.

d. The critical points for g (θ) satisfy g′ (θ) = 6 (sin θ − cos θ) = 0, which gives θ = π
4 ,

5π
4 . By inspection

we see that the maximum occurs at 5π
4 , and we have g

(
5π
4

)
= 6

√
2.

e. Observe that the maximum value of g (θ) occurs at the angle found in part (d), and that|∇f (−3,−1) | =
6
√
2 = g

(
5π
4

)
.

12.6.35

a. The gradient of f at P is ∇f
(√

3, 1
)
=
〈

x√
2+x2+y2

, y√
2+x2+y2

〉∣∣∣
(
√
3,1)

=
〈√

3√
6
, 1√

6

〉
=

√
6
6

〈√
3, 1
〉
.
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b. The direction of steepest ascent is u =
〈√

3
2 , 1

2

〉
which makes angle θ = π

6 with the x-axis; therefore,

the angle of maximum decrease is θ = 7π
6 and the angles of zero change are 2π

3 and 5π
3 .

c. We have g (θ) =
√
6
6

〈√
3, 1
〉
· 〈cos θ, sin θ〉 =

√
18
6 cos θ +

√
6
6 sin θ.

d. The critical points for g (θ) satisfy g′ (θ) =
√
6
6

(−√
3 sin θ + cos θ

)
= 0, which gives tan θ = 1√

3
, so

θ = π
6 ,

7π
6 . By inspection we see that the maximum occurs at π

6 , and we have g
(
π
6

)
=

√
6
3 .

e. Observe that the maximum value of g (θ) occurs at the angle found in part (d), and that |∇f (3, 1) | =√
6
3 = g

(
π
6

)
.

12.6.36

a. The gradient of f at P is ∇f
(
−1,− 1√

3

)
=
〈
− x√

12−x2−y2
,− y√

12−x2−y2

〉∣∣∣
(−1,−1/

√
3)

= 1
4
√
2

〈√
3, 1
〉
.

b. The direction of steepest ascent is u =
〈√

3
2 , 1

2

〉
which makes angle θ = π

6 with the x-axis; therefore,

the angle of maximum decrease is θ = 7π
6 and the angles of zero change are 2π

3 and 5π
3 .

c. We have g (θ) = 1
4
√
2

〈√
3, 1
〉
· 〈cos θ, sin θ〉 = 1

4
√
2

(√
3 cos θ + sin θ

)
.

d. The critical points for g (θ) satisfy g′ (θ) = 1
4
√
2

(−√
3 sin θ + cos θ

)
= 0,which gives tan θ = 1√

3
, so

θ = π
6 ,

7π
6 . By inspection we see that the maximum occurs at π

6 , and we have g
(
π
6

)
=

√
2
4 .

e. Observe that the maximum value of g (θ) occurs at theangle found in part (d), and that∣∣∣∇f
(
−1,− 1√

3

) ∣∣∣ = √
2
4 = g

(
π
6

)
.

12.6.37

a. The gradient of f at P is ∇f (−1, 0) =
〈
−2xe−x2−2y2

,−4ye−x2−2y2
〉∣∣

(−1,0)
=
〈
2e−1, 0

〉
.

b. The direction of steepest ascent is u = 〈1, 0〉 which makes angle θ = 0 with the x-axis; therefore the
angle of maximum decrease is θ = π and the angles of zero change are ±π

2 .

c. We have g (θ) = 2
e 〈1, 0〉 · 〈cos θ, sin θ〉 = 2

e cos θ.

d. The maximum value of g (θ) occurs at θ = 0, and we have g (0) = 2
e .

e. Observe that the maximum value of g (θ) occurs at the angle found in part (d), and that |∇f (−1, 0) | =
2
e = g (0).

12.6.38

a. The gradient of f at P is ∇f
(
3
4 ,−

√
3
)
= 〈 4x

1+2x2+3y2 ,
6y

1+2x2+3y2 〉
∣∣∣
(3/4,−

√
3)

= 24
89

〈
1,−2

√
3
〉
.

b. The direction of steepest ascent is u =
〈

1√
13
,− 2

√
3√

13

〉
which makes angle θ = − tan−1

(
2
√
3
)
with the

x-axis; therefore, the angle of maximum decrease is θ = π− tan−1
(
2
√
3
)
and the angles of zero change

are ±π
2 − tan−1

(
2
√
3
)
.

c. We have g (θ) = 24
89

〈
1,−2

√
3
〉
· 〈cos θ, sin θ〉 = 24

89

(
cos θ − 2

√
3 sin θ

)
.

d. The critical points for g (θ) satisfy g′ (θ) = 24
89

(− sin θ − 2
√
3 cos θ

)
= 0, which gives tan θ = −2

√
3, so

θ = − tan−1
(
2
√
3
)
, π−tan−1

(
2
√
3
)
. By inspection we see that the maximum occurs at − tan−1

(
2
√
3
)
,

and we have g
(− tan−1

(
2
√
3
))

= 24
√
13

89 .
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e. Observe that the maximum value of g (θ) occurs at the angle found in part (d), and that
∣∣∣∇f

(
3
4 ,−

√
3
) ∣∣∣

= 24
√
13

89 = g
(− tan−1

(
2
√
3
))
.

12.6.39 The gradient of f at P is ∇f (2,−4) = 〈8x, 4y〉
∣∣∣
(2,−4)

= 〈16,−16〉, which gives the direction of

maximum increase.

12.6.40 The gradient of f at P is ∇f (−1,−2) = 〈12x, 6y〉
∣∣∣
(−1,−2)

= 〈−12,−12〉, which gives the direction

of maximum increase.

12.6.41 The gradient of f at P is ∇f (−3, 3) = 〈2x + y, x + 2y〉
∣∣∣
(−3,3)

= 〈−3, 3〉, which gives the direction

of maximum increase.

12.6.42 The gradient of f at P is ∇f
(

π
16 ,

π
16

)
= 〈2sec2 (2x+ 2y) , 2sec2 (2x+ 2y)〉

∣∣∣
(π/16,π/16)

= 〈4, 4〉, which
gives the direction of maximum increase.
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12.6.43 The slope of the level curves for f (x, y) is given by y′ (x) = − fx
fy

= − 4x
y , so the tangent line has

slope 0 at (0, 16). The gradient of f at this point is ∇f (0, 16) =
〈
−x

2 ,−y
8

〉∣∣∣
(0,16)

= 〈0,−2〉, which is

perpendicular to the tangent line.

12.6.44 The slope of the level curves for f (x, y) is given by y′ (x) = − fx
fy

= − 4x
y , which is undefined at (8, 0),

so the tangent line is vertical at (8, 0). The gradient of f at this point is∇f (8, 0) =
〈
−x

2 ,−y
8

〉∣∣∣
(8,0)

= 〈−4, 0〉,
which is perpendicular to the tangent line.

12.6.45 The slope of the level curves for f (x, y) is given by y′ (x) = − fx
fy

= − 4x
y , which is undefined at (4, 0),

so the tangent line is vertical at (4, 0). The gradient of f at this point is∇f (4, 0) =
〈
−x

2 ,−y
8

〉∣∣∣
(4,0)

= 〈−2, 0〉,
which is perpendicular to the tangent line.

12.6.46 The slope of the level curves for f (x, y) is given by y′ (x) = − fx
fy

= − 4x
y , so the tangent line has

slope −2
√
3 at

(
2
√
3, 4
)
, and its direction is parallel to the vector

〈
1,−2

√
3
〉
. The gradient of f at this

point is ∇f
(
2
√
3, 4
)
=
〈
−x

2 ,−y
8

〉∣∣∣
(2

√
3,4)

=
〈
−√

3,− 1
2

〉
, which is perpendicular to the tangent direction.

12.6.47 Let z = f (x, y). Then z2 = 1 − x2

4 − y2

16 , so 2zzx = −x
2 , which implies that zx = fx = − x

4z .
Also 2zzy = −y

8 , which implies that zy = fy = − y
16z . The slope of the level curves for f (x, y) is given

by y′ (x) = − fx
fy

= − 4x
y , so the tangent line has slope − 2√

3
at
(
1
2 ,
√
3
)
, and its direction is parallel to the

vector 〈1,− 2√
3
〉. The gradient of f at this point is ∇f

(
1
2 ,
√
3
)
=
〈
− x

4z ,− y
16z

〉∣∣∣
(1/2,

√
3)

= − 1
8 〈 2√

3
, 1〉, which

is perpendicular to the tangent direction.

12.6.48 Let z = f (x, y). Then z2 = 1 − x2

4 − y2

16 , so 2zzx = −x
2 , which implies that zx = fx = − x

4z .
Also 2zzy = −y

8 , which implies that zy = fy = − y
16z . The slope of the level curves for f (x, y) is given by

y′ (x) = − fx
fy

= − 4x
y , so the tangent line has slope 0 at

(
0,
√
8
)
, and its direction is parallel to the vector

〈1, 0〉. The gradient of f at this point is ∇f
(
0,
√
8
)
=
〈
− x

4z ,− y
16z

〉∣∣∣
(0,

√
8)

= 〈0,− 1
4 〉,which is perpendicular

to the tangent direction.

12.6.49 Let z = f (x, y). Then z2 = 1 − x2

4 − y2

16 , so 2zzx = −x
2 , which implies that zx = fx = − x

4z .
Also, 2zzy = −y

8 , which implies that zy = fy = − y
16z .The slope of the level curves for f (x, y) is given by

y′ (x) = − fx
fy

= − 4x
y , so the tangent line is vertical at

(√
2, 0
)
, and its direction is parallel to the vector 〈0, 1〉.

The gradient of f at this point is ∇f
(√

2, 0
)
=
〈
− x

4z ,− y
16z

〉∣∣∣
(
√
2,0)

= 〈− 1
2 , 0〉, which is perpendicular to the

tangent direction.
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12.6.50 Let z = f (x, y). Then z2 = 1 − x2

4 − y2

16 , so 2zzx = −x
2 , which implies that zx = fx = − x

4z .
Also, 2zzy = −y

8 , which implies that zy = fy = − y
16z .The slope of the level curves for f (x, y) is given by

y′ (x) = − fx
fy

= − 4x
y , so the tangent line has slope −2 at (1, 2), and its direction is parallel to the vector

〈1,−2〉. The gradient of f at this point is ∇f (1, 2) =
〈
− x

4z ,− y
16z

〉∣∣∣
(1,2)

= −
√
2
8 〈2, 1〉, which is perpendicular

to the tangent direction.

12.6.51

a. We have ∇f = 〈fx, fy〉 = 〈1, 0〉.

b. Let (x (t) , y (t)) be the projection into the xy-plane of the path of steepest descent starting at
(x (0) , y (0)) = (4, 4). We solve (x′ (t) , y′ (t)) = −∇f = 〈−1, 0〉 which together with the initial condi-
tions gives x = 4− t, y = 4 for t ≥ 0.

12.6.52

a. We have ∇f = 〈fx, fy〉 = 〈1, 1〉.

b. Let (x (t) , y (t)) be the projection into the xy-plane of the path of steepest descent starting at
(x (0) , y (0)) = (2, 2). We solve (x′ (t) , y′ (t)) = −∇f = 〈−1,−1〉 which together with the initial
conditions gives x = 2− t, y = 2− t for t ≥ 0.

12.6.53

a. We have ∇f = 〈fx, fy〉 = 〈−2x,−4y〉.

b. Let (x (t) , y (t)) be the projection into the xy-plane of the path of steepest descent starting at
(x (0) , y (0)) =

(
π
2 , 1
)
. We solve (x′ (t) , y′ (t)) = −∇f = 〈2x, 4y〉 with the initial conditions x (0) = 1

and y (0) = 1. The differential equation dx
dt = −2x is separable: we have

∫
1
x dx =

∫
2 dt which implies

that ln |x| = 2t + C. The initial condition x (0) = 1 gives C = 0 so x (t) = e2t. Similarly, y (t) = e4t.
Thus, y = x2 for x ≥ 1.

12.6.54

a. We have ∇f = 〈fx, fy〉 = 〈−x−2, 1〉.

b. Let (x (t) , y (t)) be the projection into the xy-plane of the path of steepest descent starting at
(x (0) , y (0)) = (1, 2). We solve (x′ (t) , y′ (t)) = −∇f = 〈x−2,−1〉 with the initial conditions x (0) = 1
and y (0) = 2. The differential equation dx

dt = 1
x2 is separable: we have

∫
x2 dx =

∫
dt, which implies

that x3

3 = t+ C; the initlal condition gives C = 1
3 so x (t) = (3t+ 1)

1/3
and y (t) = 2− t for t ≥ 0.
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12.6.55

a. We have ∇f = 2xi+ 4yj+ 8zk; ∇f (1, 0, 4) = 2i+ 32k.

b. The vector 2i+ 32k has length 2
√
257, so the unit vector in this direction is u = 1√

257
(i+ 16k).

c. The rate of change of f in the direction of maximum increase at P is |∇f (1, 0, 4) | = 2
√
257.

d. The vector u = 〈 1√
2
, 0, 1√

2
〉 is a unit vector, so the directional derivative at P in this direction is

Duf (1, 0, 4) = 〈2, 0, 32〉 · 〈 1√
2
, 0, 1√

2
〉 = 34√

2
= 17

√
2.

12.6.56

a. We have ∇f = −2xi+ 6yj+ zk; ∇f (0, 2,−1) = 12j− k.

b. The vector 12j− k has length
√
145, so the unit vector in this direction is u = 1√

145
(12j− k).

c. The rate of change of f in the direction of maximum increase at P is |∇f (0, 2,−1) | = √
145.

d. The vector u = 〈0, 1√
2
,− 1√

2
〉 is a unit vector, so the directional derivative at P in this direction is

Duf (0, 2,−1) = 〈0, 12,−1〉 · 〈0, 1√
2
,− 1√

2
〉 = 13√

2
.

12.6.57

a. We have ∇f = 4yzi+ 4xzj+ 4xyk; ∇f (1,−1,−1) = 4i− 4j− 4k.

b. The vector 4i− 4j− 4k has length 4
√
3, so the unit vector in this direction is u = 1√

3
(i− j− k).

c. The rate of change of f in the direction of maximum increase at P is |∇f (1,−1,−1) | = 4
√
3.

d. The vector u = 〈 1√
3
, 1√

3
,− 1√

3
〉 is a unit vector, so the directional derivative at P in this direction is

Duf (1,−1,−1) = 〈4,−4,−4〉 · 〈 1√
3
, 1√

3
,− 1√

3
〉 = 4√

3
.

12.6.58

a. We have ∇f = (y + z) i+ (x+ z) j+ (x+ y)k; ∇f (2,−2, 1) = −i+ 3j.

b. The vector −i+ 3j has length 10, so the unit vector in this direction is u = 1√
10

(−i+ 3j).

c. The rate of change of f in the direction of maximum increase at P is |∇f (2,−2, 1) | = √
10.

d. The vector u = 〈0,− 1√
2
,− 1√

2
〉 is a unit vector, so the directional derivative at P in this direction is

Duf (2,−2, 1) = 〈−1, 3, 0〉 · 〈0,− 1√
2
,− 1√

2
〉 = − 3√

2
.

12.6.59

a. We have ∇f = cos (x+ 2y − z) (i+ 2j− k); ∇f
(
π
6 ,

π
6 ,−π

6

)
= cos

(
2π
3

)
(i+ 2j− k) = − 1

2 i− j+ 1
2k.

b. The vector − 1
2 i−j+ 1

2k has length
√
3√
2
=

√
6
2 , so the unit vector in this direction is u = 1√

6
(−i− 2j+ k).

c. The rate of change of f in the direction of maximum increase at P is
∣∣∇f

(
π
6 ,

π
6 ,−π

6

)∣∣ = √
6
2 .

d. The vector u = 〈 13 , 2
3 ,

2
3 〉 is a unit vector, so the directional derivative at P in this direction is

Duf
(
π
6 ,

π
6 ,−π

6

)
= 〈 13 , 2

3 ,
2
3 〉 · 〈− 1

2 ,−1, 1
2 〉 = − 1

2 .

12.6.60

a. We have ∇f = exyz−1 (yzi+ xzj+ xyk); ∇f (0, 1,−1) = −e−1i.

b. The unit vector in the direction of −e−1i is u = −i.
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c. The rate of change of f in the direction of maximum increase at P is |∇f (0, 1,−1) | = e−1.

d. The vector u = 〈− 2
3 ,

2
3 ,− 1

3 〉 is a unit vector, so the directional derivative at P in this direction is
Duf (0, 1,−1) = 〈− 2

3 ,
2
3 ,− 1

3 〉 · 〈−e−1, 0, 0〉 = 2
3e .

12.6.61

a. We have ∇f = 2
1+x2+y2+z2 (xi+ yj+ zk); ∇f (1, 1,−1) = 1

2 i+
1
2 j− 1

2k.

b. The vector 1
2 i+

1
2 j− 1

2k has length
√
3
2 , so the unit vector in this direction is u = 1√

3
(i+ j− k).

c. The rate of change of f in the direction of maximum increase atP is |∇f (1, 1,−1) | =
√
3
2 .

d. The vector u = 〈 23 , 2
3 ,− 1

3 〉 is a unit vector, so the directional derivative at P in this direction is
Duf (1, 1,−1) = 〈 23 , 2

3 ,− 1
3 〉 · 〈 12 , 1

2 ,− 1
2 〉 = 5

6 .

12.6.62

a. We have ∇f = 1
(y−z)2

((y − z) i+ (z − x) j+ (x− y)k); ∇f (3, 2,−1) = 1
3 i− 4

9 j+
1
9k.

b. The vector 1
3 i− 4

9 j+
1
9k has length

√
26
9 , so the unit vector in this direction is u = 1√

26
(3i− 4j+ k).

c. The rate of change of f in the direction of maximum increase at P is |∇f (3, 2,−1) | =
√
26
9 .

d. The vector u = 〈 13 , 2
3 ,− 2

3 〉 is a unit vector, so the directional derivative at P in this direction is
Duf (3, 2,−1) = 〈 13 , 2

3 ,− 2
3 〉 · 〈 13 ,− 4

9 ,
1
9 〉 = − 7

27 .

12.6.63

a. False. ∇f = 2xi+ 2yj.

b. False. The gradient is a vector, so it does not make sense to say that it is positive.

c. False. f is a function of three variables, so ∇f has three components.

d. True. This is because fx = fy = fz = 0.

12.6.64

a. We can express F (x, y, z) = f (g (x, y, z)) where g (x, y, z) = xyz and f (w) = ew.

b. Observe that ∇F (x, y, z) = exyz (yzi+ xzj+ xyk) = exyz∇g = f ′ (g (x, y, z))∇g (x, y, z).

12.6.65 Observe that ∇f (x, y) = −8xi− 2yj, so ∇f (1, 2) = −8i− 4j. A vector perpendicular to ∇f (1, 2)
is v = i− 2j, so the unit vectors perpendicular to ∇f (1, 2) are u = ± 1√

5
(i− 2j).

12.6.66 Observe that ∇f (x, y) = 2xi − 8yj, so ∇f (4, 1) = 8i − 8j. A vector perpendicular to ∇f (4, 1) is
v = i+ j, so the unit vectors perpendicular to ∇f (4, 1) are u = ± 1√

2
(i+ j).

12.6.67 Observe that ∇f (x, y) = 1√
3+2x2+y2

(2xi+ yj), so ∇f (1,−2) = 2
3 (i− j). A vector perpendicular

to ∇f (1,−2) is v = i+ j, so the unit vectors perpendicular to ∇f (1,−2) are u = ± 1√
2
(i+ j).

12.6.68 Observe that ∇f (x, y) = −e1−xy (yi+ xj), so ∇f (1, 0) = −ej, so the unit vectors perpendicular to
∇f (1, 0) are u = ±i.

12.6.69 The function f(x, y) = ax+by+c has ∇f (x, y) = ai+bj, so the path in the xy-plane corresponding
to the path of steepest ascent on the plane is given by x = x0 + at, y = y0 + bt.
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12.6.70

a. The function z = f (x, y) satisfies the relation z2 = (x− a)
2
+(y − b)

2
, which is the equation of a cone

with vertex at (a, b, 0).

b. We have ∇f (x, y) = 1√
(x−a)2+(y−b)2

((x− a) i+ (y − b) j), which implies that |∇f (x, y) | = 1 for all

points (x, y) �= (a, b).

c. At any point (x, y) �= (a, b), the greatest rate of change of f is 1, which occurs in the direction of the
vector from (a, b) to (x, y).

12.6.71

a. We have ∇f (x, y, z) = 〈2x, 2y, 2z〉, so ∇f (1, 1, 1) = 〈2, 2, 2〉.
b. Points (x, y, z) on the plane P satisfy 〈x− 1, y− 1, z − 1〉 · 〈2, 2, 2〉 = 0, so x+ y+ z = 3 is an equation

for P .

12.6.72

a. We have ∇f (x, y, z) = 〈−yz,−xz,−xy〉, so ∇f (2, 2, 2) = 〈−4,−4,−4〉.
b. Points (x, y, z) on the plane P satisfy 〈x − 2, y − 2, z − 2〉 · 〈−4,−4,−4〉 = 0, so x + y + z = 6 is an

equation for P .

12.6.73

a. We have ∇f (x, y, z) = ex+y−z〈1, 1,−1〉, so ∇f (1, 1, 2) = 〈1, 1,−1〉.
b. Points (x, y, z) on the plane P satisfy 〈x−1, y−1, z−2〉 · 〈1, 1,−1〉 = 0, so x+y− z = 0 is an equation

for P .

12.6.74

a. We have ∇f (x, y, z) = 〈y + z, x− z, x− y〉, so ∇f (1, 1, 1) = 〈2, 0, 0〉.
b. Points (x, y, z) on the plane P satisfy 〈x− 1, y − 1, z − 1〉 · 〈2, 0, 0〉 = 0, so x = 1 is an equation for P .

12.6.75

a.

b. The height function has gradient∇z = cos (x− y) 〈1,−1〉, so the directions in which the height function
has zero change are v = ±〈1, 1〉.

c. The direction v would be the opposite of the direction of ∇z, so v = ±〈1,−1〉.
d. These answers are consistent with the graph in part (a).
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12.6.76

a. The height function has gradient ∇z = cos (ax− b) 〈a,−b〉, so the directions in which the height
function has zero change are v = ±〈b, a〉.

b. The direction v would be the opposite of the direction of ∇z,so v = ±〈a,−b〉.
12.6.77

a. Observe that ϕx = −kQ
r2 rx = −kQ

r2
x√

x2+y2+z2
= −kQx

r3 ; similarly ϕy = −kQy
r3 and ϕz = −kQz

r3 .

Therefore E (x, y, z) = −∇ϕ (x, y, z) = kQ〈 x
r3 ,

y
r3 ,

z
r3 〉.

b. We have |E| = kQ
r3 |〈x, y, z〉| = kQ

r2 . Therefore the magnitude of the electric field is inversely proportional
to the square of the distance to the point charge.

12.6.78 Observe that ϕx = GMm
r2 rx = GMm

r2
x√

x2+y2+z2
= GMmx

r3 , Similarly, ϕy = GMmy
r3 and ϕz = GMmz

r3 .

Therefore F (x, y, z) = −∇ϕ (x, y, z) = −GMm
r3 〈x, y, z〉, and we have |F| = GMm

r3 |〈x, y, z〉| = GMm
r2 . There-

fore the magnitude of the gravitational field is inversely proportional to the square of the distance between
the two objects.

12.6.79 We have 〈u, v〉 = ∇ϕ = 〈π cosπx sin 2πy, 2π sinπx cos 2πy〉.
12.6.80 Observe that∇f (x, y) = Ai+Bj, which is a constant vector. Therefore the direction and magnitude
of the greatest directional derivative of f (x, y, z) is the same at all points (x, y).

12.6.81 We give the proofs for functions on R
2. The proofs for functions on R

3 are similar.

a. ∇ (cf) = 〈(cf)x , (cf)y〉 = 〈cfx, cfy〉 = c∇f .

b. ∇ (f + g) = 〈(f + g)x , (f + g)y〉 = 〈fx + gx, fy + gy〉 = ∇f +∇g.

c. ∇ (fg) = 〈(fg)x , (fg)y〉 = 〈fxg + fgx, fyg + fgy〉 = (∇f) g + f∇g.

d. ∇
(

f
g

)
= 〈
(

f
g

)
x
,
(

f
g

)
y
〉 = 〈 gfx−fgx

g2 ,
gfy−fgy

g2 〉 = g(∇f)−f∇g
g2 .

e. ∇ (f ◦ g) = 〈f ′ (g) gx, f ′ (g) gy〉 = f ′ (g)∇g.

12.6.82 Using the product and chain rules from Exercise 81 gives ∇ (xy cos (xy)) = cos (xy)∇ (xy) +
xy (− sin (xy))∇ (xy) = (cos (xy)− xy sin (xy)) 〈y, x〉.

12.6.83 Using the quotient rule from Exercise 81 gives ∇
(

x+y
x2+y2

)
=

(x2+y2)∇(x+y)−(x+y)∇(x2+y2)
(x2+y2)2

=
1

(x2+y2)2

((
x2 + y2

) 〈1, 1〉 − (x+ y) 〈2x, 2y〉) = 1
(x2+y2)2

〈y2 − x2 − 2xy, x2 − y2 − 2xy〉.

12.6.84 Using the chain rule from Exercise 81 gives ∇ (ln (1 + x2 + y2
))

= 1
1+x2+y2∇

(
1 + x2 + y2

)
=

1
1+x2+y2 〈2x, 2y〉.

12.6.85 Using the chain rule from Exercise 81 gives ∇
(√

25− x2 − y2 − z2
)
=

1

2
√

25−x2−y2−z2
∇ (25− x2 − y2 − z2

)
= 1

2
√

25−x2−y2−z2
〈−2x,−2y,−2z〉 = − 1√

25−x2−y2−z2
〈x, y, z〉.

12.6.86 Using the product and chain rules from Exercise 81 gives ∇ ((x+ y + z) exyz) = exyz∇ (x+ y + z)+
(x+ y + z)∇exyz = exyz (〈1, 1, 1〉+ (x+ y + z) 〈yz, xz, xy〉) = exyz〈1+(x+ y + z) yz, 1+(x+ y + z)xz, 1+
(x+ y + z)xy〉.

12.6.87 Using the quotient rule from Exercise 81 gives ∇
(

x+yz
y+xz

)
= (y+xz)∇(x+yz)−(x+yz)∇(y+xz)

(y+xz)2
=

1
(y+xz)2

((y + xz) 〈1, z, y〉 − (x+ yz) 〈z, 1, x〉) = 1
(y+xz)2

〈y (1− z2
)
, x
(
z2 − 1

)
, y2 − x2〉.
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12.7 Tangent Planes and Linear Approximation

12.7.1 The gradient of F is a multiple of n.

12.7.2 Let F (x, y, z) = z − f (x, y) = z − xy2 − x2y + 10.

12.7.3 The tangent plane has equation Fx (a, b, c) (x− a) + Fy (a, b, c) (y − b) + Fz (a, b, c) (z − c) = 0.

12.7.4 The tangent plane has equation z = fx (a, b) (x− a) + fy (a, b) (y − b) + f (a, b).

12.7.5 Multiply the change in x by fx and the change in y by fy and add both terms to f (a, b).

12.7.6 The change in f is approximately fx (a, b)�x+ fy (a, b)�y.

12.7.7 In terms of differentials, dz = fx (a, b) dx+ fy (a, b) dy.

12.7.8 The differential for the function w = f (x, y, z) at the point (a, b, c) is

dw = f (a, b, c) dx+ fy (a, b, c) dy + fz (a, b, c) dz.

12.7.9 ∇F = 〈2x, 1, 1〉, so ∇F (1, 1, 1) = 〈2, 1, 1〉. The tangent plane at (1, 1, 1) has equation 2(x− 1)+ (y−
1)+ (z− 1) = 0, or 2x+ y+ z = 4. Also, ∇F (2, 0,−1) = 〈4, 1, 1〉, so the equation of the tangent plane there
is 4(x− 2) + y + (z + 1) = 0, or 4x+ y + z = 7.

12.7.10 ∇F = 〈2x, 3y2, 4z3〉, so ∇F (1, 0, 1) = 〈2, 0, 4〉. The tangent plane at (1, 0, 1) is given by 2(x −
1) + 4(z − 1) = 0, or x + 2z = 3. Also, ∇F (−1, 0, 1) = 〈−2, 0, 4〉, so the tangent plane there is given by
−2(x+ 1) + 4(z − 1) = 0, or x− 2z = −3.

12.7.11 ∇F = 〈y + z, x + z, x + y〉, so ∇F (2, 2, 2) = 〈4, 4, 4〉. The tangent plane at (2, 2, 2) is given by
4(x− 2) + 4(y − 2) + 4(z − 2) = 0, or x+ y + z = 6. At the point (2, 0, 6) we have ∇F (2, 0, 6) = 〈6, 8, 2〉, so
the equation of the tangent plane is 6(x− 2) + 8y + 2(z − 6) = 0, or 3x+ 4y + z = 12.

12.7.12 ∇F = 〈2x, 2y,−2z〉, so ∇F (3, 4, 6) = 〈6, 8,−10〉 and the tangent plane at (3, 4, 6) has equation
8 (x− 3) + 8 (y − 4) − 10 (z − 5) = 0, or 3x + 4y − 5z = 0. ∇F (−4,−3, 5) = 〈−8,−6,−10〉 so the tangent
plane at (−4,−3, 5) has equation −8 (x+ 4)− 6 (y + 3)− 10 (z + 5) = 0 or 4x+ 3y + 5z = 0.

12.7.13 ∇F = 〈y sin z, x sin z, yz cos z〉, so ∇F
(
1, 2, π6

)
= 〈1, 1

2 ,
√
3〉 and the tangent plane at

(
1, 2, π

6

)
has

equation (x− 1) + 1
2 (y − 2) +

√
3
(
z − π

6

)
= 0, or x + 1

2y +
√
3z = 2 +

√
3π
6 . Also, ∇F

(−2,−1, 5π
6

)
=

〈− 1
2 ,−1,−√

3〉, so the tangent plane at
(−2,−1, 5π

6

)
has equation − 1

2 (x+ 2) − (y + 1) − √
3
(
z − 5π

6

)
= 0

or 1
2x+ y +

√
3z = 5

√
3π
6 − 2.

12.7.14 ∇F = exz〈yz2, z, y (1 + x) z〉, so ∇F (0, 2, 4) = 〈32, 4, 8〉 and the tangent plane at (0, 2, 4) has
equation 32x + 4 (y − 2) + 8 (z − 4) = 0, or 8x + y + 2z = 10. Also, ∇F (0,−8,−1) = 〈−8,−1, 8〉, so the
tangent plane at (0,−8,−1) has equation −8x− (y + 8) + 8 (z + 1) = 0 or 8x+ y − 8z = 0.

12.7.15 ∇F = 〈−x
8 ,− 2y

9 , 2z〉, so ∇F
(
4, 3,−√

3
)
= 〈− 1

2 ,− 2
3 ,−2

√
3〉 and the tangent plane at

(
4, 3,−√

3
)

has equation − 1
2 (x− 4)− 2

3 (y − 3)− 2
√
3
(
z +

√
3
)
= 0, or 1

2x+
2
3y+2

√
3z = −2. Also, ∇F

(−8, 9,
√
14
)
=〈

1,−2, 2
√
14
〉
, so the tangent plane at

(−8, 9,
√
14
)
has equation (x+ 8)− 2 (y − 9) + 2

√
14
(
z −√

14
)
= 0

or x− 2y + 2
√
14z = 2.

12.7.16 ∇F = 〈2, 2y,−2z〉, so ∇F (0, 1, 1) = 〈2, 2,−2〉 and the tangent plane at (0, 1, 1) has equation
2x + 2 (y − 1) − 2 (z − 1) = 0, or x + y − z = 0. Also, ∇F (4, 1,−3) = 〈2, 2, 6〉, so the tangent plane at
(4, 1,−3) has equation 2 (x− 4) + 2 (y − 1) + 6 (z + 3) = 0 or x+ y + 3z = −4.

12.7.17 We have fx = −4x, fy = −2y, so the tangent plane at (2, 2,−8) has equation z = f (2, 2) +
fx (2, 2) (x− 2)+ fy (2, 2) (y − 2) = −8− 8 (x− 2)− 4 (y − 2), or z = −8x− 4y+16, and the equation of the
tangent plane at (−1,−1, 1) is z = f (−1,−1) + fx (−1,−1) (x+ 1) + fy (−1,−1) (y + 1) = 1 + 4 (x+ 1) +
2 (y + 1), or z = 4x+ 2y + 7.
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12.7.18 We have fx = 4x, fy = y, so the tangent plane at
(− 1

2 , 1, 3
)
has equation z = f

(− 1
2 , 1
)
+

fx
(− 1

2 , 1
) (

x+ 1
2

)
+ fy

(− 1
2 , 1
)
(y − 1) = 3−2

(
x+ 1

2

)
+(y − 1), or z = −2x+y+1, and the equation of the

tangent plane at (3,−2, 22) is z = f (3,−2)+fx (3,−2) (x− 3)+fy (3,−2) (y + 2) = 22+12 (x− 3)−2 (y + 2),
or z = 12x− 2y − 18.

12.7.19 We have fx = yexy, fy = xexy, so the tangent plane at (1, 0, 1) has equation z = f(1, 0) +
fx(1, 0)(x − 1) + fy(1, 0)(y) = 1 + 0 + 1(y), or z = 1 + y. The equation of the tangent plane at (0, 1, 1) is
z = 1 + 1(x) + 0(y − 1), or z = 1 + x.

12.7.20 We have fx = y cos(xy) and fy = x cos(xy), so the tangent plane at (1, 0, 2) has equation z =
f(1, 0) + fx(1, 0)(x− 1) + fy(1, 0)(y) = 2 + 0(x− 1) + 1(y), or z = 2+ y. The equation of the tangent plane
at (0, 5, 2) is z = 2 + 5(x) + 0(y − 5), or z = 2 + 5x.

12.7.21 We have fx =
(
2x+ x2

)
ex−y, fy = −x2ex−y, so the tangent plane at (2, 2, 4) has equation z =

f (2, 2)+fx (2, 2) (x− 2)+fy (2, 2) (y − 2) = 4+8 (x− 2)−4 (y − 2), or z = 8x−4y−4, and the equation of
the tangent plane at (−1,−1, 1) is z = f (−1,−1)+ fx (−1,−1) (x+ 1)+ fy (−1,−1) (y + 1) = 1− (x+ 1)−
(y + 1), or z = −x− y − 1.

12.7.22 We have fx = y
1+xy , fy = x

1+xy , so the tangent plane at (1, 2, ln 3) has equation z = f (1, 2) +

fx (1, 2) (x− 1) + fy (1, 2) (y − 2) = ln 3 + 2
3 (x− 1) + 1

3 (y − 2), or z = 2
3x+ 1

3y + ln 3− 4
3 , and the equation

of the tangent plane at (−2,−1, ln 3) is z = f (−2,−1) + fx (−2,−1) (x+ 2) + fy (−2,−1) (y + 1) = ln 3 −
1
3 (x+ 2)− 2

3 (y + 1), or z = − 1
3x− 2

3y + ln 3− 4
3 .

12.7.23 We have fx = y2+2xy−x2

(x2+y2)2
, fy = y2−2xy−x2

(x2+y2)2
, so the tangent plane at

(
1, 2,− 1

5

)
has equation z =

f (1, 2) + fx (1, 2) (x− 1) + fy (1, 2) (y − 2) = − 1
5 + 7

25 (x− 1) − 1
25 (y − 2), or z = 7

25x − 1
25y − 2

5 , and
the equation of the tangent plane at

(
2,−1, 3

5

)
is z = f (2,−1) + fx (2,−1) (x− 2) + fy (2,−1) (y + 1) =

3
5 − 7

25 (x− 2) + 1
25 (y + 1), or z = − 7

25x+ 1
25y +

6
5 .

12.7.24 We have fx = −2 sin (x− y), fy = 2 sin (x− y), so the tangent plane at
(
π
6 ,−π

6 , 3
)
has equa-

tion z = f
(
π
6 ,−π

6

)
+ fx

(
π
6 ,−π

6

) (
x− π

6

)
+ fy

(
π
6 ,−π

6

) (
y + π

6

)
= 3 − √

3
(
x− π

6

)
+

√
3
(
y + π

6

)
, or z =√

3 (y − x)+3+
√
3π
3 , and the equation of the tangent plane at

(
π
3 ,

π
3 , 4
)
is z = f

(
π
3 ,

π
3

)
+fx

(
π
3 ,

π
3

) (
x− π

3

)
+

fy
(
π
3 ,

π
3

) (
y − π

3

)
= 4, or z = 4.

12.7.25

a. We have fx = y + 1, fy = x − 1, so the linear approximation for f at (2, 3) is L (x, y) = f (2, 3) +
fx (2, 3) (x− 2) + fy (2, 3) (y − 3) = 5 + 4 (x− 2) + (y − 3),or L (x, y) = 4x+ y − 6.

b. We have L (2.1, 2.99) = 5.39.

12.7.26

a. We have fx = −8x, fy = −16y, so the linear approximation for f at (−1, 4) is L (x, y) = f (−1, 4) +
fx (−1, 4) (x+ 1) + fy (−1, 4) (y − 4) = −120 + 8 (x+ 1)− 64 (y − 4) or L (x, y) = 8x− 64y + 144.

b. We have L (−1.05, 3.95) = −117.20.

12.7.27

a. We have fx = −2x, fy = 4y, so the linear approximation for f at (3,−1) is L (x, y) = f (3,−1) +
fx (3,−1) (x− 3) + fy (3,−1) (y + 1) = −7− 6 (x− 3)− 4 (y + 1) or L (x, y) = −6x− 4y + 7.

b. We have L (3.1,−1.04) = −7.44.

12.7.28

a. We have fx = x√
x2+y2

, fy = y√
x2+y2

, so the linear approximation for f at (3,−4) is L (x, y) =

f (3,−4) + fx (3,−4) (x− 3) + fy (3,−4) (y + 4) = 5 + 3
5 (x− 3) + 4

5 (y + 4),or L (x, y) = 3
5x+ 4

5y.
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b. We have L (3.06,−3.92) = 4.972.

12.7.29

a. We have fx = 1
1+x+y , fy = 1

1+x+y , so the linear approximation for f at (0, 0) is L (x, y) = f (0, 0) +

fx (0, 0)x+ fy (0, 0) y = x+ y.

b. We have L (0.1,−0.2) = −0.1.

12.7.30

a. We have fx = − 2y
(x−y)2

, fy = 2x
(x−y)2

, so the linear approximation for f at (3, 2) is L (x, y) = f (3, 2) +

fx (3, 2) (x− 3) + fy (3, 2) (y − 2) = 5− 4 (x− 3) + 6 (y − 2),or L (x, y) = −4x+ 6y + 5.

b. We have L (2.95, 2.05) = 5.50.

12.7.31 We have fx = 2− 2y, fy = −3− 2x, and dx = 0.1, dy = −0.1, so dz = fx (1, 4) dx+ fy (1, 4) dy =
−6dx− 5dy = −0.1.

12.7.32 We have fx = −2x, fy = 6y, and dx = −0.05, dy = −0.1, so dz = fx (−1, 2) dx + fy (−1, 2) dy =
2dx+ 12dy = −1.30.

12.7.33 We have fx = ex+y, fy = ex+y, and dx = 0.1, dy = −0.05, so dz = fx (0, 0) dx + fy (0, 0) dy =
dx+ dy = 0.05.

12.7.34 We have fx = 1
1+x+y , fy = 1

1+x+y , and dx = −0.1, dy = 0.03, so dz = fx (0, 0) dx + fy (0, 0) dy =
dx+ dy = −0.07.

12.7.35

a. If r increases and R decreases then R2 − r2 decreases, so S decreases.

b. If both R and r increase, then it is impossible to say whether R2 − r2 increases or decreases.

c. We have dS = 8π2 (RdR− rdr) = 8π2 (5.50 · 0.15− 3 · 0.05) = 5.4π2 ≈ 53.296.

d. We have dS = 8π2 (RdR− rdr) = 8π2 (7 · 0.04− 3 · (−0.05)) = 3.44π2 ≈ 33.951.

e. The surface area is approximately unchanged when RdR = rdr.

12.7.36

a. We have dV = π
3

(
2rhdr + r2dh

)
= π

3

(
2 · 6.5 · 4.2 · 0.1 + 6.52 (−0.05)

) ≈ 3.505.

b. We have dV = π
3

(
2rhdr + r2dh

)
= π

3

(
2 · 5.4 · 12 (−0.03) + 6.52 (−0.04)

) ≈ −5.293.

12.7.37 Observe that dA = π (bda+ adb) so dA
A = da

a + db
b , and hence the percentage increase in the area is

approximately 2% + 1.5%= 3.5%.

12.7.38 Observe that dV = (π/2)
(
2rhdr + r2dh

)
so dV

V = 2dr
r + dh

h , and hence the percentage decrease in
the area is approximately 2(−1.5%) + 2.2% = −0.8%.

12.7.39 We have dw =
(
y2 + 2xz

)
dx+

(
2xy + z2

)
dy +

(
x2 + 2yz

)
dz.

12.7.40 We have dw = cos (x+ y − z) (dx+ dy − dz).

12.7.41 We have dw = dx
y+z − u+x

(y+z)2
dy − u+x

(y+z)2
dz + du

y+z .

12.7.42 We have dw = q
rsdp+

p
rsdq − pq

r2sdr − pq
rs2 ds.
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12.7.43

a. Observe that 2cdc = (2a− 2b cos θ) da+(2b− 2a cos θ) db+2ab sin θ dθ so dc = a−b cos θ
c da+ b−a cos θ

c db+
ab sin θ

c dθ. We have a = 2, b = 4, θ = π
3 which gives c =

√
12, and da = 0.03, db = −0.04, dθ = π

90 ;
substituting in the equation above gives dc ≈ 0.035.

b. We have a = 2, b = 4, da = 0.03, db = −0.04, dθ = 0, so dc = − 0.01+0.04 cos θ
c ; comparing the cases

θ = π
20 and θ = 9π

20 we see that c is smaller and cos θ is larger in the first case; therefore the change in
c is greater when θ = π

20 .

12.7.44

a. The cost function is obtained by multiplying the distance L by the cost per mile, which is p
m .

b. We have CL = p
m , Cm = − Lp

m2 , Cp = L
m .This shows that C is an increasing function of L and p and a

decreasing function of m, which makes sense.

c. We have dC = p
mdL− Lp

m2 dm+ L
mdp ≈ $10.29.

d. Observe that dC
C = dL

L − dm
m + dp

p ; therefore the cost is equally sensitive to a 1% change in any of the
variables.

12.7.45

a. True. This is because the function F (x, y, z) = x2 + z2 has Fy = 0.

b. True. As z > 0 decreases, 1
z increases.

c. False. The gradient ∇F (a, b, c) is perpendicular to the tangent plane for the surface F (x, y, z) = 0 at
(a, b, c).

12.7.46 Let f (x, y) = tan−1 (x+ y); then fx (x, y) = fy (x, y) =
1

1+(x+y)2
and the tangent plane at (0, 0, 0)

has equation z = fx (0, 0)x+ fy (0, 0) y + f (0, 0) = x+ y.

12.7.47 Let f (x, y) = tan−1 (xy); then fx (x, y) = y
1+(xy)2

, fy (x, y) = x
1+(xy)2

and the tangent plane at(
1, 1, π

4

)
has equation z = fx (1, 1) (x− 1) + fy (1, 1) (y − 1) + f (1, 1) = 1

2x+ 1
2y +

π
4 − 1.

12.7.48 Rewrite this equation as x+ z = 2 (y − z) or equivalently, x− 2y + 3z = 0; therefore the surface is
a plane and hence is identical to its tangent plane at any point.

12.7.49 The branch of the surface sin (xyz) = 1
2 at the point

(
π, 1, 1

6

)
can be described more simply by

the equation F (x, y, z) = xyz = π
6 . We have Fx (x, y, z) = yz, Fy (x, y, z) = xz, Fz (x, y, z) = xy so the

tangent plane at
(
π, 1, 1

6

)
has equation Fx

(
π, 1, 1

6

)
(x− π) + Fy

(
π, 1, 1

6

)
(y − 1) + Fz

(
π, 1, 1

6

) (
z − 1

6

)
= 0,

or 1
6 (x− π) + π

6 (y − 1) + π
(
z − 1

6

)
= 0.

12.7.50 Let f (x, y) = sin (x− y); then fx (x, y) = cos (x− y), fy (x, y) = − cos (x− y) so the tangent plane
at (a, b, sin (a− b)) is horizontal at all points where b− a = π

2 + kπ for some integer k.

12.7.51 Let F (x, y, z) = x2 + 2y2 + z2 − 2x− 2y + 3; then Fx (x, y, z) = 2x− 2, Fy (x, y, z) = 2y + 2. The
tangent plane to the surface F (x, y, z) = 0 at (a, b, c) is horizontal if and only if Fx (a, b, c) = Fy (a, b, c) = 0,
which gives a = 1, b = −1. This implies c2 = 1, so the points are (1,−1, 1) and (1,−1,−1).

12.7.52 Let F (x, y, z) = x2 + 2y2 + z2 − 2x − 2z − 2; then Fx (x, y, z) = 2x − 2, Fy (x, y, z) = 4y. The
tangent plane to the surface F (x, y, z) = 0 at (a, b, c) is horizontal if and only if Fx (a, b, c) = Fy (a, b, c) = 0,
which gives a = 1, b = 0. This implies c2 − 2c− 3 = 0, which gives c = 3,−1 so the points are (1, 0, 3) and
(1, 0,−1).

12.7.53 Let f (x, y) = cos 2x sin y; then fx (x, y) = −2 sin 2x sin y, fy (x, y) = cos 2x cos y; so the tangent
plane at (a, b, cos 2a sin b) is horizontal at all points where sin 2a = cos b = 0 or sin b = cos 2a = 0. In the
region −π ≤ x ≤ π, −π ≤ y ≤ π the points are a = 0, ±π

2 , ±π and b = ±π
2 , or a = ±π

4 , ± 3π
4 and b = 0, ±π.
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12.7.54

a. Apply logarithmic differentiation to A2 = s (s− a) (s− b) (s− c): 2Aa

A =
1
2

s +
− 1

2

s−a +
1
2

s−b +
1
2

s−c , so

Aa = A
4

(
1
s + 1

s−b +
1

s−c − 1
s−a

)
, and similarly Ab =

A
4

(
1
s + 1

s−a + 1
s−c − 1

s−b

)
, and

Ac =
A
4

(
1
s + 1

s−a + 1
s−b − 1

s−c

)
.

b. The change is approximately dA = Aada+Abdb+Acdc ≈ −0.5573.

c. In this case s = 3
2a, s− a = s− b = s− c = 1

2a,and Aa = Ab = Ac =
2A
3a so if all sides change by the

same amount da, then dA
A = 3 · 2

3ada = 2da
a . Therefore if all sides increase by p%, the area will increase

by approximately 2p%. (This result can also be obtained more directly using the formula A =
√
3a2

4
for the area of an equilateral triangle with side a.)

12.7.55

a. We have Sr = π
√
r2 + h2 + πr2√

r2+h2
, Sh = πrh√

r2+h2
; using the values r = 2.5, h = 0.6, dr = 0.05,

dh = −0.02 gives dS = Srdr + Shdh = π√
r2+h2

((
2r2 + h2

)
dr + rhdh

) ≈ 0.749.

b. If r = 100, h = 200 then dS = 40
√
5π (3dr + dh), so the surface area is more sensitive to small changes

in r.

12.7.56

a. The vector n1 = 〈1, 1,−1〉 is normal to this plane.

b. Rewrite the equation of the paraboloid as F (x, y, z) = z− x2 − 3y2 = 0; then ∇F (2, 1, 7) = 〈4, 6,−1〉,
so n2 = 〈4, 6,−1〉 is normal to the tangent plane.

c. The line tangent to C lies in both of these planes and hence must be orthogonal to both vectors n1 and

n2. Therefore a direction vector for this line is given by v = n1×n2 =
∣∣∣ijk11− 146− 1

∣∣∣ = 5i−3j+2k.

d. The tangent line has parametric equation r (t) = 〈2, 1, 7〉 + t〈5,−3, 2〉 = 〈2 + 5t, 1 − 3t, 7 + 2t〉, or
x = 2 + 5t, y = 1− 3t, z = 7 + 2t.

12.7.57

a. The differential of A is given by dA = dx
y − xdy

y2 ; substituting x = 60, y = 175, dx = 2 and dy = 5 gives

dA = 2
1225 ≈ 0.00163.

b. If the batter fails to get a hit, the average decreases by x
y − x

y+1 = x
y(y+1) = A

y+1 , whereas if the

batter gets a hit, the average increases by x+1
y+1 − x

y = y−x
y(y+1) = 1−A

y+1 . If A = 0.350 the second of these

quantities is larger so the answer is no; the batting average changes more if the batter gets a hit than
if he fails to get a hit.

c. The answer depends on whether A is less than or greater than 0.500.

12.7.58 The volume of the tank is V = πr2h
3 , so dV = 2π

3 rhdr + π
3 r

2dh or equivalently dV
V = 2dr

r + dh
h . If

the water level drops from 2.00 to 1.95, then the radius changes proportionately so dV
V = 3dh

h = −0.075,
which gives dV ≈ −0.039m2.

12.7.59

a. The centerline velocity is given by V = R2

L so dV = 2R
L dR− R2

L2 dL; evaluate this with R = 3, dR = 0.05,
L = 50, dL = 0.5 to obtain dV = 21

5000 = 0.0042cm3.

b. Rewrite the formula for dV as dV
V = 2dR

R − dL
L ; hence if R decreases 1% and L increases 2%, then V

will decrease by approximately 4%.
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c. If the radius of the cylinder increases by p%, then the length of the cylinder must decrease by approx-
imately 2p% in order for the velocity to remain constant.

12.7.60

a. Let z = xy; then dz = ydx+ xdy, so the absolute error is at most (|x|+|y|) · 10−16 and the percentage

error at most 100·(|x|+|y|)·10−16

|xy| % =
(

1
|x| +

1
|y|
)
· 10−14%.

b. Let z = x
y ; then dz = ydx−xdy

y2 , so the absolute error is at most
(

|x|+|y|
y2

)
· 10−16 and the percentage

error at most 100 ·
(

|x|+|y|
y2

)
· |y|
|x| · 10−16% =

(
1
|x| +

1
|y|
)
· 10−14%.

c. Let w = xyz; then dw = yzdx+ xzdy+ xydz, so the absolute error is at most (|xy|+|yz|+|xz|) · 10−16

and the percentage error at most 100·(|xy|+|yz|+|xz|)·10−16

|xyz| % =
(

1
|x| +

1
|y| +

1
|z|
)
· 10−14%.

d. Let z = x/y
z = x

yz ; then dz = yzdx−xzdy−xydz
y2z2 , so the absolute error is at most

(
|xy|+|yz|+|xz|

y2z2

)
· 10−16

and the percentage error at most 100 ·
(

|xy|+|yz|+|xz|
y2z2

)
· |yz|

|x| · 10−16% =
(

1
|x| +

1
|y| +

1
|z|
)
· 10−14%.

12.7.61

a. We have fr = n (1− r)
n−1

and fn = − (1− r)
n
ln (1− r).

b. We have �P ≈ f (20, 0.1) · 0.01 = 20 · (0.9)19(0.01) ≈ 0.027.

c. We have �P ≈ f (20, 0.9) · 0.01 = 20 · (0.1)19(0.01) ≈ 2× 10−20.

d. Small changes in the flu rate have a greater effect on the probability of catching the flu when the flu
rate is small compared to when the flu rate is large.

12.7.62

a. We have R = R1R2

R1+R2
so dR =

R2
2dR1+R2

1dR2

(R1+R2)
2 = R2

(
dR1

R2
1
+ dR2

R2
2

)
. Substituting R1 = 2, dR1 = 0.05,R2 =

3, dR2 = −0.05 gives dR = 0.01 ohms.

b. True; if R1 = R2 and dR1 = −dR2 then dR = 0.

c. Yes, because in this case dR > 0.

d. The formula in (a) shows that if R1 > R2 then R is more sensitive to changes in R2, so if R1 increases
by the same small amount that R2 decreases, then R will decrease.

12.7.63 From the equation 1
R = 1

R1
+ 1

R2
+ 1

R3
we obtain − 1

R2
∂R
∂R1

= − 1
R2

1
, which implies that ∂R

∂R1
= R2

R2
1
,

with similar formulas for the other partials. Hence dR = R2
(

dR1

R2
1
+ dR2

R2
2
+ dR3

R2
3

)
. Substituting the values

R1 = 2, dR1 = 0.05, R2 = 3, dR2 = −0.05, R3 = 1.5, dR3 = 0.05 gives R = 2
3 and dR = 7

540 ≈ 0.0130 ohms.

12.7.64 Observe that fx = axa−1yb and fy = bxayb−1, so dz
z = axa−1ybdx+bxayb−1dy

xayb = adx
x + bdyy .

12.7.65

a. Suppose f is a function of x and y; then d (ln f) = (ln f)x dx+ (ln f)y dy = fx
f dx+

fy
f dy = df

f .

b. The absolute change in ln f is approximately d (ln f) and the relative change in f is approximately df
f ;

from part (a) these agree.

c. Observe that df = ydx+ xdy, so df
f = dx

x + dy
y .

d. Observe that df = ydx−xdy
y2 , so df

f = dx
x − dy

y .
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e. If f = x1x2 · · ·xn then ln f = lnx1 + lnx2 + · · ·+ lnxn and therefore df
f = dx1

x1
+ dx2

x2
+ · · ·+ dxn

xn
.

12.7.66

a. Let F (x, y, z) = x2

a2 +
y2

b2 + z2

c2 − 1; then ∇F = 〈 2xa2 ,
2y
b2 ,

2z
c2 〉 so the tangent plane at (p, q, r) has equation

p
a2 (x− p) + q

b2 (y − q) + r
c2 (z − r) = 0, which simplifies to px

a2 + qy
b2 + rz

c2 = 1.

b. The vectors 〈A,B,C〉 and 〈 p
a2 ,

q
b2 ,

r
c2 〉 must be proportional; therefore we can express 〈p, q, r〉 =

λ〈Aa2, Bb2, Cc2〉 for some scalar λ. Substituting in the equation of the ellipsoid gives p2

a2 + q2

b2 +
r2

c2 = λ2
(
A2a2 +B2b2 + C2c2

)
= 1, so λ = ± 1

m and (p, q, r) = ± (Aa2, Bb2, Cc2
)
where m =√

A2a2 +B2b2 + C2c2.

c. The distance of the plane Ax + By + Cz = 1 to the origin is d = 1√
A2+B2+C2

= h (this formula is

derived in 12.1 Exercise 102).

d. The tangent plane at (p, q, r) = ± (Aa2, Bb2, Cc2
)
has equation Ax + By + Cz = ±m, which has

distance to the origin d = m√
A2+B2+C2

= mh using the formula in 12.1 Exercise 102.

e. The plane P does not intersect the ellipsoid if and only if the two tangent planes parallel to P are
closer to the origin than P ; this is equivalent to the condition m < 1.

12.8 Maximum/Minimum Problems

12.8.1 It is locally the highest point on the surface; you cannot get toa higher point in any direction.

12.8.2 The surface looks similar to the hyperbolic paraboloid z = x2 − y2 at the origin.

12.8.3 The partial derivatives are both zero or one or both do not exist.

12.8.4 No; for example f may have a saddle point at (a, b).

12.8.5 The discriminant of f at (a, b) is the determinant given by D (a, b) = fxx (a, b) fyy (a, b)− fxy (a, b)
2
.

12.8.6 The second derivative test may be used to determine whether a critical point is a local maximum,
minimum or saddle point (see Theorem 12.14).

12.8.7 The function f has an absolute minimum value at (a, b) ∈ R if f (x, y) ≥ f (a, b) for all (x, y) ∈ R.

12.8.8 Determine the values of f at all critical points in the closed bounded domain R, and find the
maximum/minimum values of f on the boundary of R; the greatest/smallest of these values is the absolute
maximum/minimum of f on R.

12.8.9 We have fx = 2x, fy = 2y so (0, 0) is the only critical point of f .

12.8.10 We have fx = 2x− 6, fy = 2y + 8 so (3,−4) is the only critical point of f .

12.8.11 We have fx = 6 (3x− 2), fy = 2 (y − 4) so
(
2
3 , 4
)
is the only critical point of f .

12.8.12 We have fx = 6x, fy = −8y so (0, 0) is the only critical point of f .

12.8.13 We have fx = 4x3 − 16y, fy = 4y3 − 16x; solving fx = fy = 0 gives y = x3

4 and x = y3

4 ; therefore

x = x9

44 which gives x = 0,±2, and the critical points are (0, 0), (2, 2) and (−2,−2).

12.8.14 We have fx = x2 + 3y, fy = −y2 + 3x; solving fx = fy = 0 gives y = −x2

3 and x = y2

3 ; therefore

x = x4

33 which gives x = 0, 3, and the critical points are (0, 0) and(3,−3).
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12.8.15 We have fx = 4x3 − 4x and fy = 2y − 4; solving fx = fy = 0 gives x = 0, ±1 and y = 2; and the
critical points of are (0, 2) and (±1, 2).

12.8.16 We have fx = 2x + y − 2 and fy = x − 1; solving fx = fy = 0 gives x = 1, and therefore y = 0 so
(1, 0) is the only critical point of f .

12.8.17 We have fx = 2x + 6 and fy = 2y; solving fx = fy = 0 gives x = −3 and y = 0 so (−3, 0) is the
only critical point of f .

12.8.18 We have fx = (2xy2 − 2y2)ex
2y2−2xy2+y2

and fy = (2x2y − 4xy + 2y)ex
2y2−2xy2+y2

. Solving fx =
fy = 0 gives that either x = 1 and y is arbitrary, or y = 0 and x is arbitrary. Thus the points (1, y) and
(x, 0) for any x and any y are critical points.

12.8.19 We have fx = 4x, fy = 6y; therefore (0, 0) is the only critical point. We also have fxx = 4, fyy = 6
and fxy = 0; hence D (0, 0) = 4 · 6 − 02 = 24 > 0 and fxx (0, 0) > 0, which by the Second Derivative Test
implies that f has a local minimum at (0, 0).

12.8.20 We have fx = 8 (4x− 1), fy = 4 (2y + 4); therefore,
(
1
4 ,−2

)
is the only critical point. We also have

fxx = 32, fyy = 8 and fxy = 0; hence D
(
1
4 ,−2

)
= 32 · 8 > 0 and fxx

(
1
4 ,−2

)
> 0, which by the Second

Derivative Test implies that f has a local minimum at
(
1
4 ,−2

)
.

12.8.21 We have fx = −8x, fy = 16y; therefore, (0, 0) is the only critical point. We also have fxx = −8,
fyy = 16 and fxy = 0; hence D (0, 0) = −8 · 16 < 0 , which by the Second Derivative Test implies that f has
a saddle point at (0, 0).

12.8.22 We have fx = 4x3 − 4, fy = 4y3 − 32; therefore, (1, 2) is the only critical point. We also have
fxx = 12x2, fyy = 12y2 and fxy = 0; hence D (1, 2) = 12 · 48 > 0 and fxx (1, 2) > 0, which by the Second
Derivative Test implies that f has a local minimum at (1, 2).

12.8.23 We have fx = 4x3 − 4y, fy = 4y− 4x; therefore, the critical points satisfy y = x and y = x3, which
gives x3 = x and therefore x = 0, ±1, so the critical points are (0, 0), (1, 1) and (−1,−1). We also have
fxx = 12x2, fyy = 4 and fxy = −4; hence D (x, y) = 48x2 − 16. Thus D (0, 0) = −16 < 0, so f has a saddle
point at (0, 0); and D (1, 1) = D (−1,−1) = 32 > 0, fxx (1, 1) = fxx (−1,−1) = 12 > 0 so f has a local
minimum at (1, 1) and (−1,−1).

12.8.24 We have fx = (1− x) ye−x−y, fy = (1− y)xe−x−y; therefore, the critical points are (0, 0) and(1, 1).
We also have fxx = (x− 2) ye−x−y, fyy = (y − 2)xe−x−y and fxy = (1− x) (1− y) e−x−y; hence D (0, 0) =
−1 < 0 so f has a saddle point at (0, 0); and D (1, 1) = e−2 > 0, fxx (1, 1) = −e−2 < 0 so f has a local
maximum at (1, 1).

12.8.25 Note that f (x, y) has the same critical points as the simpler function

g (x, y) = x2 + y2 − 4x+ 5 = (x− 2)
2
+ y2 + 1.

We have gx = 2 (x− 2), gy = 2y; therefore, (2, 0) is the only critical point. We also have gxx = 2, gyy = 2
and gxy = 0; hence D (2, 0) = 4 > 0 and gxx (2, 0) > 0, which by the Second Derivative Test implies that g
(and hence f) has a local minimum at (2, 0).

12.8.26 We have fx = y
1+x2y2 , fy = x

1+x2y2 ; therefore, (0, 0) is the only critical point. We also have

fxx = − 2xy3

(1+x2y2)2
, fyy = − 2x3y

(1+x2y2)2
and fxy = 1−x2y2

(1+x2y2)2
;hence D (0, 0) = −1 < 0, which by the Second

Derivative Test implies that f has a saddle point at (0, 0).

12.8.27 We have fx = 2
(
1− 2x2

)
ye−x2−y2

, fy = 2
(
1− 2y2

)
xe−x2−y2

. Therefore, the critical points are

(0, 0), ±
(

1√
2
, 1√

2

)
and ±

(
1√
2
,− 1√

2

)
. Also, fxx = 4

(
2x2 − 3

)
xye−x2−y2

, fyy = 4
(
2y2 − 3

)
xye−x2−y2

and

fxy = 2
(
1− 2x2

) (
1− 2y2

)
e−x2−y2

. Hence D (0, 0) = −4 < 0, so f has a saddle point at (0, 0) by the Second

Derivative Test. We also see that D (x, y) > 0 at the four other critical points; also fxx

(
±
(

1√
2
, 1√

2

))
<

0 so f has a local maximum at ±
(

1√
2
, 1√

2

)
, and fxx

(
±
(

1√
2
, 1√

2

))
> 0 so f has a local minimum at

±
(

1√
2
,− 1√

2

)
.
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12.8.28 We have fx = 2x+y2−2, fy = 2xy. Solving fx = fy = 0 gives critical points at (1, 0) and (0,±√
2).

We have fxx = 2, fyy = 2x and fxy = 2y. Hence, D(1, 0) = 4, so f has a local minimum at (1, 0). Also,
D(0,±√

2) = 0− (2
√
2) < 0, so there are saddle points at (0,±√

2).

12.8.29 We have fx = 1+y2−x2

(x2+y2+1)2 and fy = −2xy
(x2+y2+1)2 , so the critical points are (±1, 0). We have fxx =

2x(x2−3(y2+1))
(x2+y2+1)3

, so fxx(±1, 0) = ∓ 1
2 . We have fyy = − 2x(x2−3y2+1)

(x2+y2+1)3
, so fyy(±1, 0) = ∓ 1

2 . Also, fxy =

− 2y(−3x2+y2+1)
(x2+y2+1)3

, so fxy(±1, 0) = 0. Thus, D(±1, 0) = 1
4 , so there is a local maximum at (1, 0) and a local

minimum at (−1, 0).

12.8.30 We have fx = −x2+2x+y2

(x2+y2)2
and fy = − 2(x−1)y

(x2+y2)2
. The only critical point in the domain of f is (2, 0).

Note that fxx =
2(x3−3x2−3xy2+y2)

(x2+y2)3
, so fxx(2, 0) = −1/8. Also, fyy = − 2(x−1)(x2−3y2)

(x2+y2)3
and fyy(2, 0) = −1/8.

Also, fxy = − 2y(−3x2+4x+y2)
(x2+y2)3

and fxy(2, 0) = 0. Thus D(2, 0) > 0, so there is a local maximum at (2, 0).

12.8.31 We have fx = 4x3 + 8x(y − 2) and fy = 4x2 + 16(y − 1). Solving fx = fy = 0 yields critical points
(0, 1) and (±2, 0). We have fxx = 12x2 +8(y− 2), fyy = 16, and fxy = 8x. Thus D(0, 1) < 0, D(±2, 0) > 0.
There is a saddle point at (0, 1) and local minimums at (±2, 0).

12.8.32 We have fx = e(−x−y)(sin y) − xe(−x−y)(sin y) = e(−x−y)(sin y)(1 − x) and fy = xe(−x−y) cos y −
xe(−x−y)(sin y) = xe(−x−y)(cos y − sin y). We have critical points at (1, π/4) and (0, 0). fxx = (x −
2)e(−x−y) sin y, fyy = −2xe(−x−y) cos y and fxy = (x − 1)

(−e(−x−y)
)
(cos y − sin y). We have D(0, 0) =

−1 < 0 so there is a saddle point at (0, 0). D(1, π/4) > 0 and fxx(1, π/4) < 0, so there is a local maximum
at (1, π/4).

12.8.33 We have fx = yex, fy = ex − ey; therefore, the critical points must satisfy y = 0 and y = x, so
(0, 0) is the only critical point. We also have fxx = yex, fyy = −ey and fxy = ex; hence D (0, 0) = −1 < 0
so f has a saddle point at (0, 0).

12.8.34 We have fx = 2π cos (2πx) cos (πy), fy = −π sin (2πx) sin (πy), so the critical points must satisfy
cos (2πx) = sin (πy) = 0, or sin (2πx) = cos (πy) = 0; hence, the only critical points in the interior of
the domain of f are ± ( 14 , 0). We also have fxx = −4π2 sin (2πx) cos (πy), fyy = −π2 sin (2πx) cos (πy),

fxy = −2π2cos(2πx) sin(πy); hence D
(± ( 14 , 0)) > 0. We also have fxx

(
1
4 , 0
)
< 0 andfxx

(− 1
4 , 0
)
> 0, so f

has a local maximum at
(
1
4 , 0
)
and a local minimum at

(− 1
4 , 0
)
.

12.8.35 Let x, y ≥ 0 be the dimensions of the base of the box; then for any given x, y the maximum
allowable height is given by h = 96−2x−2y, and we must have h ≥ 0 which implies x+y ≤ 48. The volume
of the box is given by V = 2xy (48− x− y), which we must maximize over the domain R given by x, y ≥ 0
and x+y ≤ 48. The critical points of V satisfy Vx = 2 (48− 2x− y) y = 0, Vy = 2 (48− x− 2y)x = 0; hence
the critical points in the interior of R satisfy 2x + y = 2y + x = 48, which gives x = y = 16. Furthermore
V (x, y) = 0 on the boundary of R, so the maximum volume must occur at the point (16, 16). Therefore the
box with largest volume has height 32 in and base 16 in×16 in with a volume of 8192 in3.

12.8.36 Let x, y ≥ 0 be the dimensions of the base and h ≥ 0 be the height of the box; then the four
sides of the box plus the base have total area 2xh + 2yh + xy = 2, so h = 2−xy

2x+2y . The volume of the box

is given by V = xyh = 1
2
(2−xy)xy

x+y , which we must maximize over the domain R given by x, y ≥ 0 and

xy ≤ 2. The critical points of V satisfy Vx = 1
2

(2−x2−2xy)y2

(x+y)2
= 0, Vy = 1

2

(2−y2−2xy)x2

(x+y)2
= 0; hence the critical

points in R satisfy x = y and 3x2 = 2, which gives x = y =
√
6
3 , and the corresponding height is

√
6
6 .

Furthermore V (x, y) → 0 as (x, y) approaches the boundary of R, so the maximum volume must occur at

the point
(√

6
3 ,

√
6
3

)
. Therefore, the box with largest volume has height

√
6
6 m and base

√
6
3 ×

√
6
3 m.
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12.8.37 Let x, y ≥ 0 be the dimensions of the base and h ≥ 0 be the height of the box; then the volume of
the box is xyh = 4, so h = 4

xy . The four sides of the box plus the base have total area A = 2xh+2yh+xy =
8
x + 8

y + xy, which we must maximize over the domain R given by x, y ≥ 0. The critical points of A satisfy

Ax = y − 8
x2 = 0, Ay = x − 8

y2 = 0; hence the critical points in R satisfy x2y = xy2 = 8, which gives

x = y and hence x, y = 2; the corresponding height is 1. Furthermore V (x, y) → ∞ as (x, y) approaches the
boundary of R or as either x, y → ∞, so the minimum area must occur at the point (2, 2). Therefore the
box with smallest area has dimensions 2m× 2m× 1m.

12.8.38 Let x, y ≥ 0 be the dimensions of the base and z ≥ 0 be the height of the box; then z = 2− x
3 − 2y

3 .

The box has volume V = xyz = xy
(
2− x

3 − 2y
3

)
, which we must maximize over the domain R given by x,

y ≥ 0 and x + 2y ≤ 6. The critical points of V satisfy Vx = 2y − 2xy
3 − 2y2

3 = 0, Vy = 2x − x2

3 − 4xy
3 = 0;

hence the critical points in the interior of R satisfy x+ y = 3 and x+ 4y = 6, which gives x = 2 and y = 1;
the corresponding height is z = 2

3 . Furthermore V (x, y) = 0 on the boundary of R, so the maximum area
must occur at the point (2, 1). Therefore the box with largest volume has dimensions x = 2, y = 1, z = 2

3 .

12.8.39 Observe that fx = 4x3, fy = 12y3 and fxx = 12x2, fyy = 36y2 and fxy = 0; therefore D (0, 0) = 0
and the Second Derivative Test is inconclusive. Observe that both x4 and 3y4 have absolute minima at 0;
therefore, f has an absolute minimum at (0, 0).

12.8.40 Observe that fx = 2xy, fy = x2 and fxx = 2y, fyy = 0 and fxy = 2x; therefore D (0, 0) = 0 and
the Second Derivative Test is inconclusive. Observe that x2y takes on both negative and positive values in
any disc centered at (0, 0); therefore, f has a saddle at (0, 0).

12.8.41 Observe that fx = 4x3y2, fy = 2x4y and fxx = 12x2y2, fyy = 2x4 and fxy = 8x3y. Note that every
point on the x-axis and on the y-axis is a critical point, and that D = 24x6y2 − 64x6y2 = −40x6y2, which
has value 0 at every point on the axes, so the Second Derivative Test is inconclusive. Note that the function
is always nonnegative, so the value of 0 along the coordinate axes represents the minimum value.

12.8.42 Observe that fx = 2xy2 cos
(
x2y2

)
, fy = 2x2y cos

(
x2y2

)
, fxx = 2y2 cos

(
x2y2

) − 4x2y4 sin
(
x2y2

)
,

fyy = 2x2 cos
(
x2y2

)−4x4y2 sin
(
x2y2

)
and fxy = 4xy cos

(
x2y2

)−4x3y3 sin
(
x2y2

)
. Therefore, D (0, 0) = 0

and the Second Derivative Test is inconclusive. Observe that both x2,y2 ≥ 0 so sin
(
x2y2

) ≥ 0 in sufficiently
small discs centered at (0, 0); therefore, f has an absolute minimum at (0, 0) (and in fact along both coordinate
axes).

12.8.43 First find the values of f at all critical points in the interior of R = {x2+y2 ≤ 4}; we have fx = 2x,
fy = 2y− 2, so (0, 1) is the only critical point in R, and f (0, 1) = 0. Next, find the minimum and maximum
values of f on the boundary of R, which we can parameterize by x = 2 cos θ , y = 2 sin θ for 0 ≤ θ ≤ 2π.
Then f (2 cos θ, 2 sin θ) = 5− 4 sin θ, which has maximum value 9 at θ = 3π

2 and minimum value 1 at θ = π
2 .

Therefore, the maximum value of f on R is f (0,−2) = 9 and the minimum value is f (0, 1) = 0.

12.8.44 First, find the values of f at all critical points in the interior of R. We have fx = 4x and fy = 2y, so
the only critical point in the interior of R is (0, 0) and the value of f there is 0 (which is clearly the absolute
minimum for f). We parameterize the boundary by letting x = 4 cos t and y = 4 sin t for 0 ≤ t ≤ 2π. On
the boundary we have f(x, y) = f(t) = 32 cos2 t+ 16 sin2 t = 16 cos2 t+ 16. Note that f(t) has a maximum
value of 32 at t = 0 and t = π, which corresponds to the points (±4, 0) in R. Thus, the absolute minimum
of f is 0 at (0, 0) and the absolute maximum is 32 at (±4, 0).

12.8.45 First find the values of f at all critical points in the interior of R; we have fx = 4x, fy = 2y,
so (0, 0) is the only critical point in R, and f (0, 0) = 4. Next, find the minimum and maximum values
of f on the boundary of R, which is a square. On the sides y = ±1, −1 ≤ x ≤ 1 we have f (x,±1) =
4 + 2x2 + 1 = 2x2 + 5, which has extreme values 5 and 7 on [−1, 1]. On the sides x = ±1, −1 ≤ y ≤ 1 we
havef (±1, y) = 4 + 2 + y2 = y2 + 6,which has extreme values 6 and 7 on [−1, 1]. Therefore, the maximum
value of f on R is 7 and the minimum value is 4.
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12.8.46 First find the values of f at all critical points in the interior of R; we have fx = −2x, fy = −8y,
so (0, 0) is the only critical point in R, and f (0, 0) = 6. Next, find the minimum and maximum values
of f on the boundary of R, which is a rectangle. On the sides y = ±1, −2 ≤ x ≤ 2 we have f (x,±1) =
6 − x2 − 4 = 2 − x2, which has extreme values ±2 on [−2, 2]. On the sides x = ±2, −1 ≤ y ≤ 1 we have
f (±2, y) = 6 − 4− 4y2 = 2 − 4y2, which has extreme values ±2 on [−1, 1]. Therefore, the maximum value
of f on R is 6 and the minimum value is −2.

12.8.47 First find the values of f at all critical points in the interior of R; we have fx = 4x − 4 and
fy = 6y, so the only critical point is (1, 0). Note that f(1, 0) = 0. Parameterize the boundary of R by letting
x = cos t + 1 and y = sin t for 0 ≤ t ≤ 2π. Note that f(x, y) = (2x2 − 4x + 2) + 3y2 = 2(x − 1)2 + 3y2, so
f(t) = 2 cos2 t + 3 sin2 t = 2 + sin2 t, and f has a maximum of 3 on the boundary of R at (1,±1) and an
absolute minimum of 2 on the boundary of R. Thus, the absolute maximum of f on all of R is 3 and the
absolute minimum is 0.

12.8.48 First find the values of f at all critical points in the interior of R; we have fx = 2x− 2, fy = 2y− 2,
so (1, 1) is the only critical point for f , and hence there are no critical points in the interior of R (the point
(1, 1) is on the boundary of R). Next, find the minimum and maximum values of f on the boundary of R,

which is a triangle. On the side y = 0, 0 ≤ x ≤ 2 we have f (x, 0) = x2−2x = (x− 1)
2−1 which has extreme

values −1, 0 on [0, 2]. Similarly on the side x = 0, 0 ≤ y ≤ 2 we have f (0, y) = y2 − 2y = (y − 1)
2 − 1,

which is the same function as above. The third side is given by y = 2 − x where 0 ≤ x ≤ 2; we have
f (x, 2− x) = x2 + (2− x)

2 − 2x − 2 (2− x) = 2 (x− 1)
2 − 2, which has extreme values −2, 0 on [0, 2].

Therefore, the maximum value of f on R is 0 and the minimum value is −2.

12.8.49 First find the values of f at all critical points in the interior of R; we have fx = −4x + 4 and
fy = −6y − 6, so the only critical point in the interior of R is (1,−1). Note that f(1,−1) = 4. We
parameterize the boundary of R by letting x = 1 + cos t and y = −1 + sin t for 0 ≤ t ≤ 2π. Note
that f(x, y) = −2(x2 − 2x + 1) + −3(y2 + 2y + 1) − 1 + 2 + 3 = −2(x − 1)2 + −3(y + 1)2 + 4. Thus
f(t) = −2 cos2 t− 3 sin2 t+ 3 cos2 t+ 3 sin2 t+ 1 = cos2 t+ 1. This has a maximum of 2 at t = 0 and t = π
and a minimum of 1 at t = π/2 and t = 3π/2. The original function therefore has an absolute maximum of
4 at (1,−1) and an absolute minimum of 1 at (1, 0) and at (1,−2).

12.8.50 Observe that it is easier to find the extreme values of the function g (x, y) = x2 + y2 − 2x+ 2; then
the extreme values of f on R will be the square roots of the extreme values of g on R. We first find the
values of g at all critical points in the interior of R; we have gx = 2x − 2, gy = 2y, so (1, 0) is the only
critical point for g, and hence there are no critical points in the interior of R (the point (1, 0) is on the
boundary of R). Next, find the minimum and maximum values of g on the boundary of R. On the side

y = 0, −2 ≤ x ≤ 2 we have g (x, 0) = x2 − 2x+ 2 = (x− 1)
2
+ 1, which has extreme values 1, 10 on [−2, 2].

We can parameterize the semicircular part of the boundary by x = 2 cos θ , y = 2 sin θ for 0 ≤ θ ≤ π. Then
g (2 cos θ, 2 sin θ) = 4 − 4 cos θ + 2 = 6 − 4 cos θ, which has extreme values 2, 10 on [0, π]. Therefore, the
maximum value of g on R is 10 and the minimum value is 1 hence, the maximum and minimum values of f
are

√
10 and 1.

12.8.51 fx = − x(2y4+1)
(x2y2+1)2

, which is 0 for x = 0, and fy =
(x4+2)y
(x2y2+1)2

, which is 0 for y = 0. On the boundary

y = 2 we have f(x, y) = 8−x2

2+8x2 which is maximized on [1, 2] at x = 1 (with value f(1, 2) = 7
9 ) and minimized

at x = 2 (with value f(2, 2) = 1
3 ). On the boundary y = x we have f(x, y) = x2

2+2x2 which has minimum

value 0 at (0, 0) and maximum value 1
4 at (1, 1). On the boundary y = 2x we have f(x, y) = 7x2

2+8x4 which

has derivative 7x−28x5

(4x4+1)2
. This is zero for x = 0 and for x = 1√

2
. These points lead to a minimum of 0 at (0, 0)

and a maximum of 7
8 at

(
1√
2
,
√
2
)
. Therefore the global minimum of f on the given set is 0 = f(0, 0) and

the global maximum is 7
8 = f

(
1√
2
,
√
2
)
.

12.8.52 fx = x√
x2+y2

and fy = y√
x2+y2

, so the critical point in the interior of the ellipse is (0, 0) which yields

the value f(0, 0) = 0 which is clearly the minimum for the function. We can parameterize the boundary
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with x = 2 cos θ, y = sin θ for 0 ≤ θ ≤ 2π. Then f(x, y) =
√
x2 + y2 =

√
4 cos2 θ + sin2 θ =

√
3 cos2 θ + 1.

This has derivative −3 cos θ sin θ√
3 cos2 θ+1

which is 0 for θ = 0, π
2 , π, and

3π
2 . Checking these points, the maximum for

f is 2 which occurs for θ = 0 and θ = π, which correspond with the points (−2, 0) and (2, 0) on the ellipse.

12.8.53 Observe that f (0, 0) = −4 and f (x, y) ≥ −4 for all points (x, y) ∈ R; hence the absolute minimum
value of f on R is −4. The function f on R takes on all values in the interval [−4, 0); therefore f has no
absolute maximum on R.

12.8.54 Because −1 < x < 1 and −2 < y < 2 on R, the function f (x, y) = x + 3y takes on all values
between −1 + 3 (−2) = −7 and 1 + 3 · 2 = 7; in other words, the range of f on R is the interval (−7, 7), and
we see that f has neither an absolute minimum or maximum on R.

12.8.55 Observe that f (0, 0) = 2 and f (x, y) ≤ 2 for all points (x, y) ∈ R; hence, the absolute maximum
value of f on R is 2. The function f on R takes on all values in the interval (0, 2]; therefore, f has no
absolute minimum on R.

12.8.56 Because −1 < x, y < 1 on R, the function f (x, y) = x2 − y2 takes on all values between −1 and
1; in other words, the range of f on R is the interval (−1, 1), and we see that f has neither an absolute
minimum or maximum on R.

12.8.57 The equation of the plane can be written as z = 4− x− y; so it suffices to minimize the square of
the distance from (x, y, 4− x− y) to (0, 3, 6), which is given by w = x2 + (y − 3)

2
+ (x+ y + 2)

2
. We have

wx = 2 (2x+ y + 2), wy = 2 (x+ 2y − 1), so the critical points of w satisfy 2x + y = −2, x + 2y = 1 which
gives (x, y, z) =

(− 5
3 ,

4
3 ,

13
3

)
. Because we know that there is some point on the plane closest to (0, 3, 6), this

critical point must be that point.

12.8.58 It suffices to minimize the square of the distance from points (x, y, z) on the cone to (1, 4, 0), which is

given by w = (x− 1)
2
+(y − 4)

2
+z2 = (x− 1)

2
+(y − 4)

2
+x2+y2. We have wx = 2 (2x− 1), wy = 2 (2y − 4),

so
(
1
2 , 2
)
is the only critical point of w; the corresponding points on the cone are

(
1
2 , 2,±

√
17
2

)
. Because

there is some point on the cone closest to (1, 4, 0), this critical point provides two points.

12.8.59 Consider the square of the distance between the points (x, x2) and (a, a − 1) which is f(a, x) =
(x − a)2 + (x2 − a + 1)2. Note that fa = −2(x − a) − 2(x2 − a + 1), and fx = 2(x − a) + 4x(x2 − a + 1).
The critical points satisfy x− a = −(x2 − a+ 1) and x− a = −2x(x2 − a+ 1). This has a real solution only
when x = 1/2 and a = 7/8, and this gives rise to the closest point on the parabola being (1/2, 1/4) and the
point on the line it is closest to being (7/8,−1/8).

12.8.60 Let x, y > 0 be the dimensions of the base and z > 0 be the height of the box; then xyz = 10 so
z = 10

xy . The cost to produce the box is C = 2 · 10 · xy + 2 · 1 · xz + 2 · 1 · yz = 20xy + 20
x + 20

y , which we

must minimize over the domain R given by x, y > 0. The critical points of C satisfy Cx = 20y − 20
x2 = 0,

Cy = 20x− 20
y2 = 0; hence the critical points satisfy x2y = xy2 = 1, which gives x = y = 1; the corresponding

height is z = 10. Furthermore C (x, y) → 0 as (x, y) approaches the boundary of R or as either x or y
approach ∞, so the minimum cost must occur at the critical point. Therefore, the box with least cost has
dimensions 1m× 1m× 10m.

12.8.61

a. True. This is because our definition of saddle point is a critical point which is neither a local maximum
or local minimum.

b. False. A necessary condition for a local maximum at (a, b) is that both fx = fy = 0 at (a, b), assuming
both partials exist.

c. True. This is because f may take on its absolute maximum or minimum at a point on the boundary
of its domain.

d. True. The equation of the tangent plane at a critical point (a, b) is z = f (a, b).
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12.8.62 This function has a local maximum at
(
1
2 ,−1

)
and saddle points at (0, 0), (1, 0), (−2, 0) and (1,−2).

12.8.63 This function has a local minimum near (0.3,−0.3) and a saddle point at (0, 0).

12.8.64 Let (x, y, z) be the point on the ellipsoid; then the box has volume V = xyz. We have the relation

36x2+4y2+9z2 = 36 which implies that z2 = 4
(
1− x2 − y2

9

)
, and it suffices to maximize the square of the

volume, which is given by w = 4x2y2
(
1− x2 − y2

9

)
over the region R given by x, y ≥ 0 and x2 − y2

9 ≤ 1.

The critical points in the interior of R satisfy wx = 8xy2
(
1− 2x2 − y2

9

)
= 0, wy = 8x2y

(
1− x2 − 2y2

9

)
= 0,

which gives x2 = 1
3 , y

2 = 3 so x =
√
3
3 , y =

√
3; The corresponding value of z = 2

√
3

3 . Notice that w = 0
on the boundary of the closed and bounded region R; therefore the critical point we found must give the

absolute maximum value of w, so the box with maximum volume has dimensions
√
3
3 ×√

3× 2
√
3

3 .

12.8.65 The plane has equation z = 2 − x + y; the distance from a point (x, y, 2− x+ y) on the plane to

the point (1, 1, 1) is given by d2 = (x− 1)
2
+ (y − 1)

2
+ (x− y − 1)

2
. It suffices to minimize the function

f (x, y) = (x− 1)
2
+ (y − 1)

2
+ (x− y − 1)

2
on R2. We have fx = 2 (x− 1 + x− y − 1) = 2 (2x− y − 2),

fy = 2 (y − 1 + y − x+ 1) = 2 (−x+ 2y), so the critical point of f satisfies 2x − y = 2, x − 2y = 0 which
gives x = 4

3 , y = 2
3 . The corresponding point on the plane is

(
4
3 ,

2
3 ,

4
3

)
. Because there is a point on the plane

closest to the point (1, 1, 1), this must be the point we found.

12.8.66 The level curves of a linear function f (x, y) are a family of parallel lines; therefore at any interior
point of a region R, one can move to a nearby level curve in such a way as to either increase or decrease the
value of f . This shows that the absolute maximum or minimum of f on R cannot occur at an interior point,
and hence must occur along the boundary of R.

12.8.67

a. Using the relation z = 200 − x − y, we see that it suffices to minimize the function f (x, y) = x2 +

y2 + (200− x− y)
2
over the closed bounded region R given by x, y ≥ 0 and x + y ≤ 200. We have

fx = 2 (x+ x+ y − 200) = 2 (2x+ y − 200), fy = 2 (y + x+ y − 200) = 2 (x+ 2y − 200); therefore,
the critical point of f satisfies 2x+ y = 200, x+ 2y = 200 which gives x = y = 200

3 (the corresponding

value of z = 200
3 as well), and we have f

(
200
3 , 200

3

)
= 40,000

3 . We must also find the extreme values of

f on the boundary of R. Along the segment y = 0, 0 ≤ x ≤ 200 we have f (x, 0) = x2 + (200− x)
2

which has range [20, 000, 40, 000], and we get the same result along the other two segments that make
up the boundary of R. Therefore, the minimum value of x2 + y2 + z2 is given by x = y = z = 200

3 .

b. The function
√

x2 + y2 + z2 takes its minimum at the same point that minimizes x2 + y2 + z2, which
we saw in part (a) is x = y = z = 200

3 .

c. Using the relation z = 200 − x − y, we see that it suffices to minimize the function f (x, y) =
xy (200− x− y) = 200xy − x2y − xy2 over the closed bounded region R given by x, y ≥ 0 and
x + y ≤ 200. We have fx = y (200− 2x− y), fy = x (200− x− 2y); therefore, the critical points
of f in the interior of R satisfy 2x+ y = 200, x+2y = 200 which gives x = y = 200

3 (the corresponding

value of z = 200
3 as well), and we have f

(
200
3 , 200

3

)
=
(
200
3

)2
. We also observe that f (x, y) = 0 on the

boundary of R; therefore, the maximum value of xyz is given by x = y = z = 200
3 .

d. The function x2y2z2 takes its maximum at the same point that maximizes xyz, which we saw in part
(c) is x = y = z = 200

3 .

12.8.68

a. Using the relation z = 1− x− y, we see that it suffices to minimize the function f (x, y) =(
1 + x2

) (
1 + y2

) (
1 + z2

)
=
(
1 + x2

) (
1 + y2

) (
1 + (1− x− y)

2
)

over the closed bounded region R

given by x, y ≥ 0 and x+y ≤ 1. Using the chain rule, we have fx = 2
(
1 + y2

) (
x
(
1 + z2

)− z
(
1 + x2

))
,

fy = 2
(
1 + x2

) (
y
(
1 + z2

)− z
(
1 + y2

))
. The critical points of f in the interior of R satisfy fx = fy = 0;
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the first equation gives x
(
1 + z2

) − z
(
1 + x2

)
= (x− z) (1− xz) = 0, and we observe that xz = 1

is impossible, so we conclude that x = z. Similarly y = z so the critical point is
(
1
3 ,

1
3

)
, and we

have f
(
1
3 ,

1
3

)
=
(
10
9

)3
. On the boundary segment given by y = 0, 0 ≤ x ≤ 1 we have f (x, 0) =(

1 + x2
) (

1 + (1− x)
2
)
and this function has a maximum value f (0) = f (1) = 2, and minimum value

f
(
1
2

)
=
(
5
4

)2
. The range of f on the other two boundary components is the same. Therefore the

maximum value of f is 2, and the minimum is
(
10
9

)3
.

b. Using the relation z = 1− x− y, we see that it suffices to minimize the function f (x, y) =
(1 +

√
x)
(
1 +

√
y
)
(1 +

√
z) = (1 +

√
x)
(
1 +

√
y
) (

1 +
√
1− x− y

)
over the closed bounded region R

given by x, y ≥ 0 and x+ y ≤ 1. Using the chain rule, we have

fx = (1 +
√
y)

((
1 +

1

2
√
x

)(
1 +

√
z
)− (1 +√

x
)(

1 +
1

2
√
z

))

=

(
1 +

√
y

4
√
x
√
z

)((
2
√
x+ 1

) (√
z + 1

)− (2√z + 1
) (√

x+ 1
))

=

(
1 +

√
y

4
√
x
√
z

)(√
x−√

z
)
,

and similarly fy =
(

1+
√
x

4
√
y
√
z

) (√
y −√

z
)
. The critical points of f in the interior of R satisfy fx = fy = 0

which gives x = y = 1
3 , so the critical point is

(
1
3 ,

1
3

)
, and we have f

(
1
3 ,

1
3

) ≈ 3.925. On the boundary

segment given by y = 0, 0 ≤ x ≤ 1 we have f (x, 0) = (1 +
√
x)
(
1 +

√
1− x

)
, and this function has

a maximum value f (0) = f (1) = 2, and minimum value f
(
1
2

) ≈ 2.914. The range of f on the other
two boundary components is the same. Therefore the minimum value of f is 2, and the maximum is
3.925.

12.8.69

a. The function to be minimized is f (x, y) = x2 + y2 + (x− 2)
2
+ y2 + (x− 1)

2
+ (y − 1)

2
= 3x2 − 6x+

3y2 − 2y; we have fx = 6 (x− 1), fy = 2 (3y − 1) so the optimal location is the unique critical point(
1, 1

3

)
.

b. The function to be minimized is now f (x, y) = (x− x1)
2
+(y − y1)

2
+(x− x2)

2
+(y − y2)

2
+(x− x3)

2
+

(y − y3)
2
= 3

(
x2 − 2xx+ y2 − 2yy

)
+ const; where x = x1+x2+x3

3 , y = y1+y2+y3

3 . we have fx =
6 (x− x), fy = 6 (y − y) so the optimal location is the unique critical point (x, y).

c. The function to be minimized is now

f (x, y) =
n∑

i=1

(x− xi)
2
+

n∑
i=1

(y − yi)
2
= n

(
x2 − 2xx+ y2 − 2yy

)
+ const

where x = 1
n

∑n
i=1 xi, y = 1

n

∑n
i=1 yi. We have fx = n (x− x), fy = n (y − y) so the optimal location

is the unique critical point (x, y).

d. The actual sum of the distances is given by the function f (x, y) =
√

x2 + y2 +

√
(x− 2)

2
+ y2 +√

(x− 1)
2
+ (y − 1)

2
We can minimize this function as follows. First, fix y = y0 and consider the

function g (x) = f (x, y0). Each of the three terms in this function has positive second derivative, and
approaches ∞ as x → ±∞, so the same is true for their sum; therefore g (x) must have a unique
absolute minimum. Observe in addition that g is symmetric in the line x = 1, which implies that
the absolute minimum must occur at x = 1. So to minimize f (x, y), we can set x = 1 and reduce to

minimizing the function h (y) = f (1, y) = 2
√
1 + y2+ |y−1|, which has absolute minimum at y = 1√

3
.

Therefore, the optimal location is
(
1, 1√

3

)
, which is different from the point found in part (a).

12.8.70 The sum of the squares of the vertical distances is E (m, b) = [(m+ b) − 2]2 + [(3m+ b) − 5]2 +
[(4m+ b)− 6]2 = 26m2 +16mb+3b2 − 82m− 26b+65. We have Em = 52m+16b− 82, Eb = 16m+6b− 26,
and solving the simultaneous equations 52m+ 16b = 82, 16m+ 6b = 26 gives m = 19

14 , b =
10
14 .
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12.8.71 Given the n data points (x1, y1), . . . , (xn, yn), we seek to minimize the function E (m, b) =∑n
k=1 (mxk + b− yk)

2
=
(∑

x2
k

)
m2 + 2 (

∑
xk)mb + nb2 − 2 (

∑
xkyk)m − 2 (

∑
yk) b +

∑
y2k. We have

Em = 2
(∑

x2
k

)
m + 2 (

∑
xk) b − 2 (

∑
xkyk), Eb = 2 (

∑
xk)m + 2nb − 2 (

∑
yk) and solving Em = Eb = 0

gives m = (
∑

xk)(
∑

yk)−n
∑

xkyk

(
∑

xk)
2−n

∑
x2
k

, b = 1
n (
∑

yk −m
∑

xk).

12.8.72 Using the result in Exercise 69, we obtain m = 6·8−3·26
62−3·20 = 5

4 , b =
1
3

(
8− 5

4 · 6) = 1
6 so the line has

equation y = 5
4x+ 1

6 .

12.8.73 Using the result in Exercise 69, we obtain m = 2·14−3·24
22−3·10 = 22

13 , b =
1
3

(
14− 22

13 · 2) = 46
13 so the line

has equation y = 22
13x+ 46

13 .

12.8.74 Observe that D (a, b) = fxx (a, b) fyy (a, b) − fxy (a, b)
2
< 0 because fxx (a, b) fyy (a, b) < 0 in both

cases. Therefore f has a saddle at (a, b).

12.8.75 Let s = a+b+c
2 be the semi-perimeter, which we assume is constant. Then we may express c =

2s − a − b and therefore A2 = s (s− a) (s− b) (s− (2s− a− b)) = s (s− a) (s− b) (a+ b− s), so it suffices
to maximize the simpler function f (a, b) = s (s− a) (s− b) (a+ b− s) over the closed bounded region given
by 0 ≤ a, b ≤ s and a + b ≥ s. We have fa = s (s− b) (− (a+ b− s) + s− a) = s (s− b) (2s− 2a− b) and
similarly fb = s (s− a) (2s− a− 2b), so the critical points of f in the interior of R satisfy 2a + b = 2s,
a+ 2b = 2s which gives a = b = 2

3s, and therefore c = 2
3s as well, so we get an equilateral triangle. We also

observe that f (a, b) = 0 on the boundary of R, so this critical point must give the absolute maximum of f .
We conclude that of all triangles with a given perimeter, the maximum area is obtained when all three sides
are equal (in the special case of perimeter 9 units, each side length is 3 units).

12.8.76 Let (x0, y0, z0) be a point on the ellipsoid; then the tangent plane P at this point has equation
x0x
a2 + y0y

b2 + z0z
c2 = 1, and this plane meets the coordinate axes in the points

(
a2

x0
, 0, 0

)
,
(
0, b2

y0
, 0
)
,
(
0, 0, c2

z0

)
.

Therefore, the tetrahedron T has base area A = a2b2

2x0y0
and height h = c2

z0
, so its volume is V = a2b2c2

6x0y0z0
.

Minimizing this function is equivalent to maximizing its reciprocal, or equivalently the quantityQ =
x2
0

a2 · y
2
0

b2 · z
2
0

c2 .

Now if we let u =
x2
0

a2 , v =
y2
0

b2 , w =
z2
0

c2 , then an equivalent (but simpler) problem is to maximize Q = uvw
where u, v,w ≥ 0 and u+ v +w = 1. The maximum occurs when u = v = w = 1

3 (see problem 65 c), so the

tetrahedron of minimal volume is given by
x2
0

a2 =
y2
0

b2 =
z2
0

c2 = 1
3 which gives V = abc

6

(
a
x0

)3
= abc

√
3

2 .

12.8.77

a. We have d1 (x, y) =

√
(x− x1)

2
+ (y − y1)

2
, so ∇d1 (x, y) =

x−x1

d1(x,y)
i + y−y1

d1(x,y)
j; observe that this is a

unit vector in the direction of the vector joining (x1, y1) to (x, y).

b. Similarly, we have ∇d2 (x, y) =
x−x2

d2(x,y)
i + y−y2

d2(x,y)
j and ∇d3 (x, y) =

x−x3

d3(x,y)
i + y−y3

d3(x,y)
j.

c. Because ∇f = ∇d1 +∇d2 +∇d3, the condition fx = fy = 0 is equivalent to ∇d1 +∇d2 +∇d3 = 0.

d. If three unit vectors add to 0, they must make angles of ± 2π
3 with each other.

e. In this case the optimal point is the vertex at the large angle.

f. Solving the equations fx = fy = 0 numerically gives (0.255457, 0.304504).

12.8.78 Write the equation of the plane in the form ax + by + cz = 1, with a, b, c > 0; then a, b, c must
satisfy the condition 3a+2b+ c = 1. This plane meets the coordinate axes in the points

(
1
a , 0, 0

)
,
(
0, 1

b , 0
)
,(

0, 0, 1
c

)
. The region between then plane and the coordinate planes is a tetrahedron T which has base area

A = 1
2ab and height h = 1

c , so its volume is V = 1
6abc . Minimizing this function is equivalent to maximizing

its reciprocal, or equivalently the quantity Q = abc. Now if we let u = 3a, v = 2b, w = c, then an equivalent
(but simpler) problem is to maximize Q = uvw where u, v,w ≥ 0 and u+ v + w = 1. The maximum occurs
when u = v = w = 1

3 (see problem 65c), so the tetrahedron of minimal volume is given by 3a = 2b = c = 1
3 ,

which gives the plane x
9 + y

6 + z
3 = 1.
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12.8.79

a. We have f (x, y) = −2x4 + 2x2 (ey + 1) − e2y − 1; hence fx = −8x3 + 4x (ey + 1), fy = 2x2ey − 2e2y,
so the critical points must satisfy x2 = ey, and then the equation fx = 0 reduces to ey = 1, so the
critical points are (±1, 0). Next we computefxx = −24x2 + 4 (1 + ey), fyy = 2x2ey − 4e2y, fxy = 4ey

so fxxfyy − f2
xy = (−16) (−2)− (4)

2
= 16 at both critical points; we also have fxx < 0 at both critical

points, so the critical points both yield local maxima.

b. We have fx = 8xey − 8x3, fy = 4x2ey − 4e4y, so the critical points must satisfy x2 = e3y, and then the
equation fx = 0 reduces to ey = 1, so the critical points are (±1, 0). Next we compute fxx = 8ey−24x2,

fyy = 4x2ey − 16e4y, fxy = 8xey, so fxxfyy − f2
xy = (−16) (−12)− (±8)

2
= 128 at both critical points;

we also have fxx < 0 at both critical points, so the critical points both yield local maxima.

12.8.80

a. We have fx = 3ey − 3x2, fy = 3xey − 3e3y, so the critical points must satisfy x = e2y, and then the
equation fx = 0 reduces to e3y = 1, so the only critical point is (1, 0). Next we compute fxx = −6x,
fyy = 3xey − 9e3y, fxy = 3ey, so fxxfyy − f2

xy = (−6) (−6) − 32 = 27 > 0 at the critical point (1, 0);
we also have fxx < 0 at (1, 0), so the critical point is a local maxima, and we conclude that f has a
unique local maximum. However observe that if we fix y = 0, then f (x, 0) = −x3 +3x− 1 takes on all
real values, so f does not have an absolute maximum or minimum.

b. We have fx =
(
2y2 − y4

)
ex − (2y2 − y4 − 1

)
2x

(1+x2)2
, fy =

(
4y − 4y3

) (
ex + 1

1+x2

)
, so the critical

points must satisfy y = 0,±1 from the equation fy = 0. Substituting y = 0 into the equation fx = 0
gives x = 0, whereas substituting y = ±1 into fx = 0 gives no solutions; therefore, (0, 0) is the only
critical point. We compute fxx (0, 0) = 2, fyy (0, 0) = 8, fxy = 0, so D (0, 0) > 0, and fxx (0, 0) > 0
implies that f has a local minimum at (0, 0). However, observe that if we fix y = 1, then f (x, 1) = ex

takes on all positive values, and if we fix y = 2, then f (x, 2) = −8ex− 9
1+x2 takes on all negative values.

Hence f must take on all real values on R2, and therefore has no absolute maximum or minimum.

12.9 Lagrange Multipliers

12.9.1 The level curves of f must be tangential to the level curves of g at the optimal point; thus, the
gradients are parallel.

12.9.2 We have ∇f = 〈2x, 2y〉, ∇g = 〈2, 3〉 so the Lagrange multiplier conditions are 2x = 2λ, 2y = 3λ,
2x+ 3y − 4 = 0.

12.9.3 We have ∇f = 〈2x, 2y, 2z〉, ∇g = 〈2, 3,−5〉 so the Lagrange multiplier conditions are 2x = 2λ,
2y = 3λ, 2z = −5λ, 2x+ 3y − 5z + 4 = 0.

12.9.4 The function f (x, y) = x2 + y2 attains a minimum value of 16
13 at the point

(
8
13 ,

12
13

)
along the

constraint line 2x+ 3y − 4 = 0.
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12.9.5 We have ∇f = 〈1, 2〉, ∇g = 〈2x, 2y〉 so the Lagrange multiplier conditions are 1 = 2λx, 2 = 2λy,
x2+y2−4 = 0. Hence 1

x = 2λ = 2
y =⇒ y = 2x; substituting this in the constraint gives 5x2 = 4, so x = ± 2√

5

and the extreme values of f on the circle x2 + y2 = 4 must occur at the points ±
(

2√
5
, 4√

5

)
. We see that

f
(

2√
5
, 4√

5

)
= 2

√
5 , f

(
− 2√

5
,− 4√

5

)
= −2

√
5 , so these are the maximum and minimum values.

12.9.6 We have ∇f = 〈y2, 2xy〉, ∇g = 〈2x, 2y〉 so the Lagrange multiplier conditions are y2 = 2λx, 2xy =
2λy, x2 + y2 − 1 = 0. One possible solution is y = λ = 0, which gives the points (±1, 0). All other solutions

will have x, y, λ �= 0, so we can eliminate λ and obtain 2λ = y2

x = 2x =⇒ y2 = 2x2; substituting this

in the constraint gives 3x2 = 1, so x = ± 1√
3
, hence y = ±

√
2√
3
and the extreme values of f on the circle

x2 + y2 = 1 must occur at the points (±1, 0),
(

1√
3
,±

√
2√
3

)
and

(
− 1√

3
,±

√
2√
3

)
. We see that f (±1, 0) = 0,

f
(

1√
3
,±

√
2√
3

)
= 2

√
3

9 , f
(
− 1√

3
,±

√
2√
3

)
= − 2

√
3

9 , so the maximum and minimum values are ± 2
√
3

9 .

12.9.7 We have ∇f = 〈1, 1〉, ∇g = 〈2x− y, 2y− x〉, so the Lagrange multiplier conditions are 2x− y = 1/λ,
2y − x = 1/λ, x2 − xy + y2 = 1. Subtracting the first two equations gives 3x − 3y = 0, so x = y = 1/λ,
which yields the points (±1,±1). The maximum value is 2 at (1, 1) and the minimum is −2 at (−1,−1).

12.9.8 We have ∇f = 〈2x, 2y〉, ∇g = 〈4x + 3y, 4y + 3x〉, so the Lagrange multiplier conditions are 2x =
λ(4x+ 3y), 2y = λ(4y + 3x), 2x2 + 3xy + 2y2 = 7. Multiplying the first equation by y and the second by x
and subtracting gives 0 = λ(3y2 − 3x2). Note that if λ = 0, then x = 0 and y = 0 which does not satisfy the
constraint. If λ �= 0, we have x = ±y. If x = y we obtain the points x = y = ±1, if x = −y, we obtain the
point (±√

7,∓√
7). The minimum value of f is 2 at (±1,±1) and the maximum is 14 at (±√

7,∓√
7).

12.9.9 We have ∇f = 〈y, x〉 and ∇g = 〈2x − y, 2y − x〉, so the Lagrange multiplier conditions are y =
λ(2x − y), x = λ(2y − x), x2 + y2 − xy = 9. Multiplying the first equation by x and the second by y and
subtracting leads to λ(2x2 − 2y2) = 0, so either x = ±y or λ = 0. If λ = 0, we have x = y = 0 which doesn’t
meet the constraint. If x = y, we have x = ±3 = y, if x = −y, we have x = ±√

3, y = ∓√
3. There is a

minimum value of −3 at (±√
3,∓√

3) and a maximum value of 9 at (±3,±3).

12.9.10 We have ∇f = 〈1,−1〉 and ∇g = 〈2x − 3y, 2y − 3x〉, so the Lagrange multiplier conditions are
2x − 3y = 1/λ, 2y − 3x = −1/λ, x2 + y2 − 3xy = 20. Adding the first two equations gives −y − x = 0, so
x = −y and we have the points (±2,∓2). There is a maximum value of 4 at (2,−2) and a minimum value
of −4 at (−2, 2).

12.9.11 We have ∇f = 〈2ye2xy, 2xe2xy〉 and ∇g = 〈2x, 2y〉, so the Lagrange multiplier conditions are
2ye2xy = 2λx, 2xe2xy = 2λy, x2 + y2 = 16. If we multiply the first equation by y and the second by x and
subtract, we have (2y2 − 2x2)e2xy = 0, so y = ±x. If y = x, we obtain the points (±2

√
2,±2

√
2), and if

y = −x, we obtain (±2
√
2,∓2

√
2). There is a maximum of e16 at (±2

√
2,±2

√
2) and a minimum of e−16 at

(±2
√
2,∓2

√
2).

12.9.12 We have ∇f = 〈2x, 2y〉, ∇g = 〈6x5, 6y5〉 so the Lagrange multiplier conditions are 2x = 6λx5,
2y = 6λy5, x6 + y6 − 1 = 0. If x, y, λ �= 0 we can eliminate λ and conclude that x4 = y4 or y = ±x; the
constraint gives 2x6 = 1, so x = ±2−1/6 and we get the four points ± (2−1/6,±2−1/6

)
; the value of f at all

of these is the same: f
(
2−1/6, 2−1/6

)
= 2 · 2−1/3 = 22/3 ≈ 1.587. We also have solutions with x or y = 0,

which give the points (±1, 0) and (0,±1); the value of f at all of these is the same: f (1, 0) = 1. Hence the
minimum and maximum values of f on the closed bounded set given by x6 + y6 = 1 are 1 and 22/3.

12.9.13 We have ∇f = 〈−8x, 2y〉, ∇g = 〈2x, 4y〉 so the Lagrange multiplier conditions are −8x = 2λx,
2y = 4λy, x2 + 2y2 − 4 = 0. If x, y �= 0 the first equation gives λ = −4, whereas the second gives λ = 1

2

which is a contradiction; hence we must have x or y = 0, which gives the points (±2, 0) and
(
0,±√

2
)
, and

f (±2, 0) = −16, f
(
0,±√

2
)
= 2. Hence the minimum and maximum values of f on the closed bounded set

given by x2 + 2y2 = 4 are −16 and 2.
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12.9.14 We have ∇f = 〈y + 1, x+ 1〉, ∇g = 〈2xy2, 2yx2〉 so the Lagrange multiplier conditions are y + 1 =
λ(2xy2), x+1 = λ(2yx2), x2y2 = 4. If we multiply the first equation by x and the second by y and subtract,
we obtain x− y = 0, so x = y. This yields the points (±√

2,±√
2), so there is a maximum value of 2 + 2

√
2

at (
√
2,
√
2) and a minimum value of 2− 2

√
2 at (−√

2,−√
2).

12.9.15 We have ∇f = 〈1, 3,−1〉, ∇g = 〈2x, 2y, 2z〉 so the Lagrange multiplier conditions are 1 = 2λx,
3 = 2λy, −1 = 2λz, x2 + y2 + z2 − 4 = 0. These equations imply x, y, z �= 0, so we can eliminate λ and
obtain y = 3x, z = −x. Then the constraint gives 11x2 = 4, so x = ± 2√

11
and the solutions are the points

±
(

2√
11
, 6√

11
,− 2√

11

)
. We compute f

(
2√
11
, 6√

11
,− 2√

11

)
= 2

√
11, f

(
− 2√

11
,− 6√

11
, 2√

11

)
= −2

√
11, and hence

the minimum and maximum values of f on the closed bounded set given by x2 + y2 + z2 = 4 are −2
√
11

and 2
√
11.

12.9.16 We have ∇f = 〈yz, xz, xy〉, ∇g = 〈2x, 4y, 8z〉 so the Lagrange multiplier conditions are yz = 2λx,
xz = 4λy, xy = 8λz, x2 + 2y2 + 4z2 − 9 = 0. Assume first that x, y, z �= 0, so we can eliminate λ and

obtain xyz
2λ = x2 = 2y2 = 4z2. Then using the constraint we obtain 3x2 = 9 so x = ±√

3, y = ±
√
3√
2
and

z = ±
√
3
2 . The value of xyz at any of these points is ±√

3 ·
√
3√
2
·
√
3
2 = ± 3

√
6

4 . We also observe that if any of

x, y, z = 0 then xyz = 0. Hence, the minimum and maximum values of f on the closed bounded set given

by x2 + 2y2 + 4z2 = 9 are ± 3
√
6

4 .

12.9.17 We have ∇f = 〈1, 0, 0〉 and ∇g = 〈2x, 2y, 2z− 1〉. The Lagrange multiplier conditions are 1 = 2xλ,
0 = 2yλ, 0 = (2z−1)λ, and x2+y2+ z2− z = 1. Clearly λ �= 0, so we must have y = 0 and z = 1/2. Solving
the constraint for x gives x = ±√

5/2. There is a maximum of
√
5/2 at (

√
5/2, 0, 1/2) and a minimum of

−√
5/2 at (−√

5/2, 0, 1/2).

12.9.18 We have ∇f = 〈1, 0,−1〉 and ∇g = 〈2x, 2y−1, 2z〉. The Lagrange multiplier conditions are 1 = 2xλ,
0 = (2y − 1)λ, and −1 = 2zλ. Clearly λ �= 0, so we must have y = 1/2. Also, 1

x = −1
z = 2λ, so x = −z.

The constraint equation then gives x = ±3/(2
√
2) and z = ∓3/(2

√
2). There is a minimum of −3/

√
2 at

(−3/(2
√
2), 1/2, 3/(2

√
2)) and a maximum of 3/

√
2 at (3/(2

√
2), 1/2,−3/(2

√
2)).

12.9.19 We have ∇f = 〈2x, 2y, 2z〉 and ∇g = 〈2x−4y, 2y−4x, 2z〉. The Lagrange multiplier conditions are
2x = λ(2x− 4y), 2y = λ(2y− 4x), 2z = λ(2z), and x2 + y2 + z2 − 4xy = 1. Suppose z �= 0. Then λ = 1 and
x = y = 0, so z = ±1. If z = 0, then multiplying the first equation by y and the second by x and subtract
to obtain 0 = λ(4x2 − 4y2), and since we can’t have λ = 0 (because then x = y = z = 0), we must have
x = ±y. When x = y, the constraint becomes 2x2 − 4x2 = 1 which can’t occur. So we must have x = −y,
which yields x = ±1/

√
6 and y = ∓1/

√
6. There is a maximum of 1 at (0, 0,±1) and a minimum of 1/3 at

(±1/
√
6,∓1/

√
6, 0).

12.9.20 We have ∇f = 〈1, 1, 1〉 and ∇g = 〈2x − 2, 2y − 2, 2z〉. The Lagrange multiplier conditions are
1 = λ(2x− 2), 1 = λ(2y − 2), 1 = 2λz, and x2 + y2 + z2 − 2x− 2y = 1. The first two equations imply that
x = y and the third together with the first two implies that x = y = z+1. The constraint then implies that
2x2 + (x − 1)2 − 4x = 1, or 3x2 − 6x = 0. So x = 0 or x = 2. There is a maximum of 5 at (2, 2, 1) and a
minimum of −1 at (0, 0,−1).

12.9.21 ∇f = 〈2, 0, 2z〉 and ∇g = 〈2x, 2y, 4z〉. The Lagrange multiplier conditions are 2 = 2λx, 0 = 2λy,
2z = 4λz, and x2 + y2 + 2z2 = 25. Note that λ �= 0 so y = 0 and if z �= 0 then λ = 1/2 so x = 2 and we
have the point (2, 0,

√
21/2). If z = 0, then we have x = ±5. The minimum is −10 at (−5, 0, 0) and the

maximum is 14.5 at (2, 0,
√
21/2).

12.9.22 We have ∇f = 〈2x, 2y,−1〉 and ∇g = 〈4xy2, 4x2y,−1〉. The Lagrange multiplier conditions are
2x = λ(4xy2), 2y = λ(4x2y), −1 = λ(−1), and 2x2y2 − z = −1. Clearly λ = 1, and 2xy = 4xy3 = 4x3y.
One possible solution is x = y = 0 and thus z = 1. If x �= 0 and y �= 0, then 2 = 4y2 = 4x2, so
(x, y) = ±(1/

√
2,±(1/

√
2)). There is a minimum of −1 at (0, 0, 1), and a maximum of −1/2 at any of the

four points (−1/
√
2,−1/

√
2, 3/2), (−1/

√
2, 1/

√
2, 3/2), (1/

√
2,−1/

√
2, 3/2), and (1/

√
2, 1/

√
2, 3/2).
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12.9.23 We have ∇f = 〈2x, 2y, 2z〉, ∇g = 〈yz, xz, xy〉, so the Lagrange multiplier conditions are 2x = λyz,
2y = λxz, 2z = λxy, xyz − 4 = 0. The first three equations give λxyz

2 = x2 = y2 = z2, so y = ±x, z = ±x.

Then using the constraint we obtain x3 = ±4, so x, y, z = ± 3
√
4. The value of x2 + y2 + z2 at any of these

points is f
(± 3

√
4,± 3

√
4,± 3

√
4
)
= 3 · 42/3 = 6 3

√
2. Note that f (x, y, z) is the square of the distance from

(x, y, z) to the origin, so this function will have an absolute minimum but no maximum on the surface given
by xyz = 4; therefore the minimum value of f on the surface is 6 3

√
2.

12.9.24 Observe first that it is equivalent to find the extreme values of the simpler function h (x, y, z) =

f (x, y, z)
2
= xyz subject to the constraints g (x, y, z) = x + y + z − 1 = 0 and x, y, z ≥ 0. We have

∇h = 〈yz, xz, xy〉, ∇g = 〈1, 1, 1〉, so the Lagrange multiplier conditions are yz = λ, xz = λ, xy = λ,
x+ y+ z− 1 = 0. Assume first that x, y, z �= 0; then first three equations give x = y = z, and the constraint
implies 3x = 1, so x, y, z = 1

3 . The domain of f (or g) is the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1),
which is closed and bounded. We also note that f = h = 0 along any of the edges of the triangle. Therefore,
the maximum value of f is f

(
1
3 ,

1
3 ,

1
3

)
= 1

3
√
3
and the minimum value is 0.

12.9.25 Let x, y, z ≥ 0 denote the lengths of the sides of the box, with z the longest side. Then the length
plus girth of the box is 2x+2y+z so we must maximize the volume f (x, y, z) = xyz subject to the constraint
g (x, y, z) = 2x + 2y + z − 108 = 0. We have ∇f = 〈yz, xz, xy〉, ∇g = 〈2, 2, 1〉 so the Lagrange multiplier
conditions are yz = 2λ, xz = 2λ, xy = λ, 2x + 2y + z − 108 = 0. Assume that x, y, z > 0 (otherwise
the volume is 0); then the first three equations give xyz

2λ = x = y = z
2 , and the constraint gives 6x = 108,

so x = 18 and the box has dimensions 18 in×18 in×36 in. The domain of f is the triangle with vertices
(54, 0, 0), (0, 54, 0), (0, 0, 108), which is closed and bounded. We also note that f = 0 along any of the edges
of the triangle. Therefore, the maximum value of f occurs at the point we found, and the minimum value is
0.

12.9.26 Let x, y, z > 0 denote the lengths of the sides of the box; then its surface area is given by
f (x, y, z) = 2xy + 2yz + 2xz, which we must maximize subject to the constraint g (x, y, z) = xyz − 16 = 0.
We have ∇f = 〈2 (y + z) , 2 (x+ z) , 2 (x+ y)〉, ∇g = 〈yz, xz, xy〉 so the Lagrange multiplier conditions are
2 (y + z) = λyz, 2 (x+ z) = λxz, 2 (x+ y) = λxy, xyz− 16 = 0. The first three equations give λ

2 = 1
y + 1

z =
1
x + 1

z = 1
x + 1

y which implies x = y = z; the constraint gives x3 = 16, so x = y = z = 2 3
√
2 ,and the box

is a cube with side length 2 3
√
2 ft. The domain of f is the surface in the first quadrant given by xyz = 16,

which is unbounded. We can rewrite f (x, y, z) = 2xy + 2yz + 2xz = 2xyz
(

1
x + 1

y + 1
z

)
= 32

(
1
x + 1

y + 1
z

)
on this surface. Now if, say, x → ∞ on this surface either y → 0 or z → 0 (or both) because of the relation
xyz = 16; therefore, f (x, y, z) → ∞. This shows that the point we found above must give the absolute
minimum value of f on the surface.

12.9.27 It suffices to find the extreme values of the function f (x, y) = x2 + y2 subject to the constraint
g (x, y) = x2 + xy + 2y2 − 1 = 0. We have ∇f = 〈2x, 2y〉, ∇g = 〈2x+ y, 4y + x〉, so the Lagrange multiplier
conditions are 2x = λ (2x+ y), 2y = λ (4y + x), x2 + xy + 2y2 − 1 = 0. The first two equations give
2x (4y + x) = λ (2x+ y) (4y + x) = 2y (2x+ y) =⇒ x2 + 4xy = y2 + 2xy, or x2 + 2xy − y2. This implies
that both x, y �= 0, for if, say, x = 0 then this condition gives y = 0 as well, which violates the constraint

(same argument for y = 0). Let r = y
x , and rewrite this equation as y2

x2 − 2y
x − 1 = r2 − 2r − 1 = 0,

which we can solve to obtain r = 1 ± √
2. We now use the constraint and the relation y = rx to obtain

x2
(
1 + r + 2r2

)
= 1or x2 = 1

2r2+r+1 . Then the values of the function f are given by f (x, y) = f (x, rx) =

x2
(
1 + r2

)
= 1+r2

2r2+r+1 = 6±2
√
2

7 ≈ 0.4531, 1.2612, and the corresponding minimum and maximum distances

are

√
6±2

√
2

7 ≈ 0.6731, 1.1230.

12.9.28 Let (x, y) be the vertex of the rectangle in the first quadrant; then the area of the rectangle is 4xy,
so it suffices to maximize the function f (x, y) = xy subject to the constraint g (x, y) = x2 +4y2 − 4 = 0 and
x, y ≥ 0. We have ∇f = 〈y, x〉, ∇g = 〈2x, 8y〉 so the Lagrange multiplier conditions are y = 2λx, x = 8λy,
x2 + 4y2 − 4 = 0. The first two equations give 4y2 = 8λxy = x2, and substituting in the constraint gives

2x2 = 4 so x =
√
2 and y =

√
2
2 . The domain given by the constraint and x, y ≥ 0 is a closed and bounded
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arc, and we observe that f = 0 at the boundary points (2, 0) and (1, 0). Therefore, f takes its maximum at(√
2,

√
2
2

)
, and the corresponding area of the rectangle is A = 4 · √2 ·

√
2
2 = 4.

12.9.29 Let (x, y) be the vertex of the rectangle in the first quadrant; then the perimeter of the rectangle
is 4 (x+ y), so it suffices to maximize the function f (x, y) = x + y subject to the constraint g (x, y) =
2x2 + 4y2 − 3 = 0 and x, y ≥ 0. We have ∇f = 〈1, 1〉, ∇g = 〈4x, 8y〉, so the Lagrange multiplier conditions
are 1 = 4λx, 1 = 8λy, 2x2 + 4y2 − 3 = 0. The first two equations give 4x = 1

λ = 8y; so x = 2y. Substituting
in the constraint gives 8y2 + 4y2 = 3, so y2 = 1/4 and y = 1/2 and thus x = 1. Note that f(1, 1/2) = 1.5.
The domain given by the constraint and x, y ≥ 0 is a closed and bounded arc, and we observe that at the
boundary points we have f(0,

√
3/2) =

√
3/2 ≈ .87 and f(

√
3/2, 0) =

√
3/2 ≈ 1.25. Thus, the dimensions

of the rectangle of maximum perimeter is 2× 1.

12.9.30 It suffices to maximize the function f (x, y, z) = (x+ 2)
2
+ (y − 5)

2
+ (z − 1)

2
subject to the con-

straint g (x, y, z) = 2x + 3y + 6z − 10 = 0. We have ∇f = 〈2x + 4, 2y − 10, 2z − 2〉, ∇g = 〈2, 3, 6〉, so the
Lagrange multiplier conditions are 2x + 4 = 2λ, 2y − 10 = 3λ, 2z − 2 = 6λ, 2x + 3y + 6z − 10 = 0. The
first three equations give x + 2 = λ = 2y−10

3 = z−1
3 , which gives y = 3

2x + 8, z = 3x + 7. Substituting in
the constraint and solving for x gives x = − 16

7 , so the closest point is
(− 16

7 , 32
7 , 1

7

)
; f
(− 16

7 , 32
7 , 1

7

)
= 1 so the

distance is 1.

12.9.31 It suffices to minimize the function f(x, y, z) = (x − 1)2 + (y − 2)2 + (z + 3)2 subject to the
constraint 4x+y−1 = 0. We have ∇f = 〈2(x−1), 2(y−2), 2(z+3)〉 and ∇g = 〈4, 1, 0〉. Then the Lagrange
multiplier conditions are 2x − 2 = 4λ, 2y − 4 = λ, 2z + 6 = 0, 4x + y − 1 = 0. Solving this system gives
x = −3/17, y = 29/17, z = −3, and λ = −10/17, so the closest point on the surface to the given point is
(−3/17, 29/17,−3).

12.9.32 It suffices to minimize the function f (x, y, z) = (x− 1)
2
+ (y − 2)

2
+ z2 subject to the constraint

g (x, y, z) = x2 + y2 − z2 = 0. We have ∇f = 〈2x − 2, 2y − 4, 2z〉, ∇g = 〈2x, 2y,−2z〉 so the Lagrange
multiplier conditions are 2x − 2 = 2λx, 2y − 4 = 2λy, 2z = −2λz, x2 + y2 − z2 = 0. Observe that z �= 0;
otherwise x = y = z = 0, which is not a solution to the Lagrange multiplier equations. Therefore, the

third equation gives λ = −1, the first two equations give x = 1
2 , y = 1 and the constraint gives z = ±

√
5
2 .

Therefore, the points on the cone closest to (1, 2, 0) is
(

1
2 , 1,±

√
5
2

)
.

12.9.33 It suffices to find the extreme values the function f (x, y, z) = (x− 2)
2
+(y − 3)

2
+(z − 4)

2
subject

to the constraint g (x, y, z) = x2 + y2 + z2 − 9 = 0. We have ∇f = 〈2x− 4, 2y− 6, 2z − 8〉, ∇g = 〈2x, 2y, 2z〉
so the Lagrange multiplier conditions are 2x− 4 = 2λx, 2y − 6 = 2λy, 2z − 8 = 2λz, x2 + y2 + z2 − 9 = 0.
We can write the first three equations in the form (1− λ) 〈x, y, z〉 = 〈2, 3, 4〉 so 〈x, y, z〉 = c〈2, 3, 4〉 for some
scalar c; using the constraint, we find that c = ± 3√

29
, and hence 〈x, y, z〉 = ± 3√

29
〈2, 3, 4〉; the corresponding

values of f are f
(
±
(

6√
29
, 9√

29
, 12√

29

))
= 38∓ 6

√
29 =

(√
29∓ 3

)2
, so the minimum distance is

√
29− 3 and

the maximum distance is
√
29 + 3.

12.9.34 Assume the cylinder is the region x2 + y2 ≤ r2, −h
2 ≤ z ≤ h

2 ; then r and h are the radius and
height respectively of the cylinder, and the points on the cylinder furthest from the origin have distance(
r2 +

(
h
2

)2)1/2
; therefore, we must maximize the function V = f (r, h) = πr2h subject to the constrain

g (r, h) = r2 +
(
h
2

)2 − 162 = 0. We have ∇f = π〈2rh, r2〉, ∇g =
〈
2r, h

2

〉
, so the Lagrange multiplier

conditions are equivalent to 2rh = 2λr, r2 = λh
2 , r2 +

(
h
2

)2 − 162 = 0. Because we are interested in
maximizing the volume we may assume that r, h > 0; then the first equation gives λ = h and the second

equation gives h2 = 2r2; substituting in the constraint then gives dimensions r = 16
√
6

3 , h = 32
√
3

3 .

12.9.35 Notice that the constraint is equivalent to � + 2g = 6. We have ∇U = 5〈�−1/2g1/2, �1/2g−1/2〉 so
the Lagrange multiplier conditions are equivalent to �−1/2g1/2 = λ, �1/2g−1/2 = 2λ, �+ 2g = 6. Eliminating
λ from the first two equations gives �1/2g−1/2 = 2�−1/2g1/2, which simplifies to g = �

2 ; substituting in the

constraint then gives � = 3 and g = 3
2 . The value of the utility function at this point is U = 15

√
2.
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12.9.36 Notice that the constraint is equivalent to 2�+ g = 6. We have ∇U = 32
3 〈2�−1/3g1/3, �2/3g−2/3〉, so

the Lagrange multiplier conditions are equivalent to 2�−1/3g1/3 = 2λ, �2/3g−2/3 = λ, 2�+g = 6. Eliminating
λ from the first two equations gives �−1/3g1/3 = �2/3g−2/3, which simplifies to g = �; substituting in the
constraint then gives � = g = 2. The value of the utility function at this point is U = 64.

12.9.37 Notice that the constraint is equivalent to 5� + 4g = 20. We have ∇U = 8
5 〈4�−1/5g1/5, �4/5g−4/5〉,

so the Lagrange multiplier conditions are equivalent to 4�−1/5g1/5 = 5λ, �4/5g−4/5 = 4λ, 5� + 4g = 20.
Eliminating λ from the first two equations gives 16�−1/5g1/5 = 5�4/5g−4/5, which simplifies to g = 5�

16 ;
substituting in the constraint then gives � = 16

5 , g = 1. The value of the utility function at this point is

U = 8 · ( 165 )4/5 ≈ 20.287.

12.9.38 We have ∇U = 1
6 〈�−5/6g5/6, 5�1/6g−1/6〉, so the Lagrange multiplier conditions are equivalent to

�−5/6g5/6 = 4λ, 5�1/6g−1/6 = 5λ, 4�+ 5g = 20. Eliminating from the first two equations gives �−5/6g5/6 =
4�1/6g−1/6, which simplifies to g = 4�; substituting in the constraint then gives � = 5

6 , g = 10
3 . The value of

the utility function at this point is U =
(
5
6

)1/6 ( 10
3

)5/6 ≈ 2.646.

12.9.39

a. True. This is because the tangent plane to a sphere at any point has normal vector in the direction of
the line joining the point to the center of the sphere.

b. False in general. In fact, the two vectors ∇f and ∇g are in the same direction, so ∇f · ∇g = 0 only if
one of these vectors is zero.

12.9.40 Let x, y ≥ 0 be the dimensions of the base of the box and h be the height; then x, y, h satisfy the
constraint 2x+ 2y + h = 96. The volume of the box is V = xyh, so the Lagrange multiplier conditions are
yh = 2λ, xh = 2λ, xy = λ, 2x+ 2y + h = 96. Eliminating λ from the first three equations gives y = x and
h = 2x; substituting in the constraint then gives x = 16, y = 16, h = 32 in.

12.9.41 Let x, y > 0 be the dimensions of the base and h > 0 be the height of the box; then the four sides
of the box plus the base have total area 2xh+2yh+xy = 2, which is our constraint. The volume of the box
is V = xyh, so the Lagrange multiplier conditions are yh = λ (2h+ y), xh = λ (2h+ x), xy = 2λ (x+ y),
2xh+2yh+xy = 2. The first two equations give 2h+y

yh = 2h+x
xh =⇒ 2

y +
1
h = 2

x +
1
h , so y = x. The second and

third equations give 2h+x
xh = 2x+2y

xy =⇒ 2
x + 1

h = 2
x + 2

y = 4
x , so h = x

2 . Then substituting in the constraint

gives 3x2 = 2, so x =
√
6
3 . Therefore, the box with largest volume has height

√
6
6 m and base

√
6
3 ×

√
6
3 m.

12.9.42 Let x, y > 0 be the dimensions of the base and h > 0 be the height of the box; then the volume
of the box is xyh = 4, which is our constraint. The four sides of the box plus the base have total area
A = 2xh+2yh+ xy, so the Lagrange multiplier conditions are 2h+ y = λyh, 2h+ x = λxh, 2x+2y = λxy,
xyh = 4. The first two equations give 2h+y

yh = 2h+x
xh =⇒ 2

y + 1
h = 2

x + 1
h , so y = x. The second and third

equations give 2h+x
xh = 2x+2y

xy =⇒ 2
x + 1

h = 2
x + 2

y = 4
x , so h = x

2 . Then substituting in the constraint gives

x3 = 8, so x = 2. Therefore, the box with smallest area has dimensions 2 m×2m×1m.

12.9.43 Let x, y ≥ 0 be the dimensions of the base and z ≥ 0 be the height of the box; then x+2y+3z = 6
is our constraint. The box has volume V = xyz, so the Lagrange multiplier conditions are yz = λ, xz = 2λ,
xy = 3λ, x+ 2y + 3z = 6. The first two equations give y = x

2 , the first and third equations give z = x
3 , and

substituting in the constraint gives x = 2. Therefore, the box with largest volume has dimensions x = 2,
y = 1, z = 2

3 .

12.9.44 Let (x, y, z) be the point on the ellipsoid; then x, y, z > 0 and the box has volume V = xyz;
the relation 36x2 + 4y2 + 9z2 = 36 is our constraint. The Lagrange multiplier conditions are yz = 72λx,
xz = 8λy, xy = 18λz, 36x2 + 4y2 + 9z2 = 36. The first two equations give λ = yz

72x = xz
8y , which implies

y2 = 9x2 or y = 3x. Similarly the first and third equations give z = 2x and then the constraint gives 3x2 = 1,

so x =
√
3
3 , and the box with maximum volume has dimensions

√
3
3 ×√

3× 2
√
3

3 .
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12.9.45 The constraint is the equation of the plane x − y + z = 2; the distance from a point (x, y, z) to

the point (1, 1, 1) is given by d2 = (x− 1)
2
+ (y − 1)

2
+ (x− y − 1)

2
, so it suffices to minimize the function

f (x, y, z) = (x− 1)
2
+ (y − 1)

2
+ (z − 1)

2
subject to the constraint x− y + z = 2. The Lagrange multiplier

conditions are 2x−2 = λ, 2y−2 = −λ, 2z−2 = λ, x−y+ z = 2. The first two equations give 2 (x+ y) = 4,
so y = 2 − x, the first and third equations give z = x, and then substituting in the constraint gives x = 4

3 ,
so the closest point on the plane to (1, 1, 1) is

(
4
3 ,

2
3 ,

4
3

)
.

12.9.46 The function f (x, y) = x2 + 4y2 + 1 has a unique critical point at (0, 0), and f (0, 0) = 1. On the
boundary {x2+4y2 = 1} of R, f (x, y) = 2 at all points. Hence, the absolute minimum and maximum values
of f on R are 1 and 2.

12.9.47 We have ∇f = 〈2x+ y,−8y + x〉; solving 2x+ y = 0 and −8y + x = 0 simultaneously gives unique
solution (0, 0), and f (0, 0) = 0. Next we use Lagrange multipliers to find the minimum and maximum values
of f on the boundary of R given by 4x2 + 9y2 = 36. The Lagrange multiplier conditions are 2x+ y = 8λx,

−8y+x = 18λy, 4x2+9y2 = 36. The first two equations give λxy = 2xy+y2

8 = x2−8xy
18 =⇒ 9y2+50xy−4x2 =

0; therefore, y = rx where r satisfies the quadratic 9r2 + 50r − 4 = 0, which has roots r = −25±√
661

9 .
Then the constraint gives

(
4 + 9r2

)
x2 = 36, so x2 = 36

9r2+4 = 18
8−25r (using 9r2 = 4 − 50r) and hence

f (x, y) =
(
1− 4r2 + r

)
x2 = −7+209r

9 · 18
4−25r = 418r−14

4−25r = −7±√
661

2 , which gives the absolute minimum and
maximum values of f on R.

12.9.48 We have ∇f = 〈4x + 2, 2y − 3〉; therefore, f has unique critical point
(− 1

2 ,
3
2

)
which is not in

R and so is irrelevant. Next we use Lagrange multipliers to find the minimum and maximum values of
f on the boundary of R given by x2 + y2 = 1. The Lagrange multiplier conditions are4x + 2 = 2λx,
2y − 3 = 2λy, x2 + y2 = 1.The first two equations give2λxy = 4xy + 2y = 2xy − 3x =⇒ (2x+ 2) y = −3x;

therefore, y = − 3x
2x+2 . Then the constraint givesx2 + 9x2

(2x+2)2
= 1 =⇒ 4 (x+ 1)

2 (
x2 − 1

)
+ 9x2 = 0, or

4x4 +8x3 +9x2 − 8x− 4 = 0.Using a numerical solver, we find that this equation has roots x ≈ −0.38, 0.76;
the corresponding values of f are ≈ −2.39, 5.05.

12.9.49 We have ∇f = 〈2 (x− 1) , 2 (y + 1)〉; therefore f has unique critical point (1,−1) which is inside
R; f (1,−1) = 0. Next we use Lagrange multipliers to find the minimum and maximum values of fon the
boundary of R given by x2 + y2 = 4. The Lagrange multiplier conditions are equivalent tox − 1 = λx,
y + 1 = λy, x2 + y2 = 4. The first two equations give λxy = xy − y = xy + x =⇒ y = −x; then the
constraint gives 2x2 = 4, so x = ±√

2 and the solutions are ± (√2,−√
2
)
. The values of f at these points

aref
(√

2,−√
2
)
= 6 − 4

√
2 ≈ 0.343, f

(−√
2,
√
2
)
= 6 + 4

√
2 ≈ 11.657; therefore, the maximum value of f

on R is 6 + 4
√
2 and the minimum value is 0.

12.9.50 The maximum and minimum values of f along the curve g (x, y) = 0 occur at points where the level
curves of f are tangent to the curve g (x, y) = 0; using this, we see that the minimum and maximum values
are 2 and 6.

12.9.51 The maximum and minimum values of f along the curve g (x, y) = 0 occur at points where the level
curves of f are tangent to the curve g (x, y) = 0; using this, we see that the minimum and maximum values
are 1 and 8.

12.9.52

a. It suffices to maximize the function f (x, y, z) = x2 + y2 + z2 subject to the constraint g (x, y, z) =
x4 + y4 + z4 = 1. The Lagrange multiplier conditions give 2x = 4λx3, 2y = 4λy3, 2z = 4λz3,
x4+y4+z4 = 1. Assume first that x, y, z �= 0; then we can eliminate λ and conclude that x2 = y2 = z2;
the constraint gives 3x4 = 1 so x2 = 1√

3
and f (x, y, z) =

√
3. There are also solutions to the Lagrange

conditions with x, y or z = 0, but one can check that these do not give larger values of f . Therefore,
the extreme points have coordinates x, y, z = ±3−1/4.

b. It suffices to maximize the function f (x, y, z) = x2 + y2 + z2 subject to the constraint g (x, y, z) =
x2n + y2n + z2n = 1. The Lagrange multiplier conditions give 2x = 2λnx2n−1, 2y = 2λny2n−1,
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2z = 2λnz2n−1, x2n + y2n + z2n = 1. As above, assume that x, y, z �= 0; then we can eliminate λ and
conclude that x2n−2 = y2n−2 = z2n−2, which implies x2n = y2n = z2n; the constraint gives 3x2n = 1

so x2 = 3−1/n =⇒ f (x, y, z) = 3
n−1
n . There are also solutions to the Lagrange conditions with x, y or

z = 0, but one can check that these do not give larger values of f . Therefore, the extreme points have
coordinates x, y, z = ±3−

1
2n .

c. As n → ∞, the coordinates of the extreme points x, y, z → ±1, and the limiting distance of these
points to the origin is

√
3.

12.9.53 Notice that the constraint is equivalent to 2K+3L = 30. We have ∇f = 1
2 〈K−1/2L1/2,K1/2L−1/2〉,

so the Lagrange multiplier conditions are equivalent to K−1/2L1/2 = 2λ, K1/2L−1/2 = 3λ, 2K + 3L = 30.
Eliminating λ from the first two equations gives 3K−1/2L1/2 = 2K1/2L−1/2, which simplifies to 3L = 2K;
substituting in the constraint then gives K = 7.5 and L = 5. The domain over which f is to be maximized
is a closed line segment; K or L is 0 at the endpoints, and hence so is f . Therefore, the values of K and L
found above must maximize f .

12.9.54 Notice that the constraint is equivalent toK+2L = 12. We have∇f = 10
3 〈K−2/3L2/3, 2K1/3L−1/3〉,

so the Lagrange multiplier conditions are equivalent to K−2/3L2/3 = λ, 2K1/3L−1/3 = 2λ, K + 2L = 12.
Eliminating λ from the first two equations gives K−2/3L2/3 = K1/3L−1/3, which simplifies to K = L;
substituting in the constraint then gives K = L = 4. The domain over which f is to be maximized is a
closed line segment; K or L is 0 at the endpoints, and hence so is f . Therefore, the values of K and L found
above must maximize f .

12.9.55 We have ∇f = 〈aKa−1L1−a, (1− a)KaL−a〉, so the Lagrange multiplier conditions are equivalent
to aKa−1L1−a = λp, (1− a)KaL−a = λq, pK + qL = B. Eliminating λ from the first two equations gives
aqKa−1L1−a = (1− a) pKaL−a, which simplifies to aqL = (1− a) pK; substituting in the constraint then

gives K = aB
p and L = (1−a)B

q . The domain over which f is to be maximized is a closed line segment; K or
L is 0 at the endpoints, and hence so is f . Therefore, the values of K and L found above must maximize f .

12.9.56 We have ∇T = 〈50x, 50y〉 and ∇g = 〈2x+ y, 2y+ x〉 where g(x) = x2 + y2 + xy = 1. The Lagrange
multiplier conditions are 50x = λ(2x+y), 50y = 2y+x, and x2+y2+xy = 1. Multiplying the first equation
by y and the second by x and subtracting gives 0 = y2 − x2, so x = ±y. If x = y, then the constraint gives
3x2 = 1, so x = ± 1√

3
. Note that T (±(1/

√
3),±(1/

√
3)) = 50/3. If x = −y, the constraint gives x = ±1, and

note that T (1,−1) = T (−1, 1) = 50. The hottest temperature on the edge of the plate is 50 and the coldest
is 50

3 .

12.9.57 The function to be maximized is f (x1, x2, x3, x4) = x1 + x2 + x3 + x4, subject to the constraint
x2
1 + x2

2 + x2
3 + x2

4 = 16. The Lagrange multiplier conditions are 1 = 2λx1, 1 = 2λx2, 1 = 2λx3, 1 = 2λx4,
x2
1 + x2

2 + x2
3 + x2

4 = 16. The first four equations give x1 = x2 = x3 = x4, and then the constraint gives
4x2

1 = 16, so x1 = ±2. Therefore, the maximum of f on the closed, bounded set given by x2
1+x2

2+x2
3+x2

4 = 16
is f (2, 2, 2, 2) = 8 (and the minimum is f (−2,−2,−2,−2) = −8).

12.9.58 The function to be maximized is f (x1, x2, . . . , xn) = x1 + x2 + · · · + xn, subject to the constraint
x2
1 + x2

2 + · · · + x2
n = c2. The Lagrange multiplier conditions are 1 = 2λx1, 1 = 2λx2, . . ., 1 = 2λxn,

x2
1+x2

2+· · ·+x2
n = c2. The first n equations give x1 = x2 = · · · = xn, and then the constraint gives nx2

1 = c2,
so x1 = ± c√

n
. Therefore, the maximum of f on the closed, bounded set given by x2

1 + x2
2 + · · ·+ x2

n = c2 is

f
(

c√
n
, . . . , c√

n

)
= c

√
n (and the minimum is −c

√
n).

12.9.59 The function to be maximized is f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · · + anxn, subject to the
constraint x2

1 + x2
2 + · · · + x2

n = 1. The Lagrange multiplier conditions are a1 = 2λx1, a2 = 2λx2, . . .,
an = 2λxn, x

2
1+x2

2+ · · ·+x2
n = 1. The first n equations are equivalent to c (x1, x2, . . . , xn) = (a1, a2, . . . , an)

for some c, and then the constraint gives c2 = a21+a22+ · · ·+a2n. Therefore, the maximum of f on the closed,
bounded set given by f

(
a1

c ,
a2

c , . . . ,
an

c

)
= 1

c

(
a21 + a22 + · · ·+ a2n

)
=
√
a21 + a22 + · · ·+ a2n (and the minimum

is −
√
a21 + a22 + · · ·+ a2n).
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12.9.60

a. The function to be maximized is f (x, y, z) = xyz, subject to the constraints x + y + z = k and x, y,
z > 0. The Lagrange multiplier conditions are yz = λ, xz = λ, xy = λ, x + y + z = k; the first three
equations imply xyz

λ = x = y = z, and the constraint gives x = y = z = k
3 . The set determined by the

constraints x + y + z = k and x, y, z ≥ 0 is a triangle, and f (x, y, z) = 0 along its edges. Therefore,
the maximum of f must occur at the point we found. This means that if x, y, z > 0 and x+ y+ z = k,

then xyz ≤ (k3 )3 if and only if (xyz)
1/3 ≤ x+y+z

3 .

b. Generalizing the case above, the function to be maximized is f (x1, . . . , xn) = x1 · · ·xn, subject to
the constraints x1 + · · · + xn = k and x1, . . . , xn > 0. The Lagrange multiplier conditions are
x2 · · ·xn = λ, x1x3 · · ·xn = λ, . . . , x2 · · ·xn−1 = λ, x1 + · · · + xn = k; the first n equations imply
x1···xn

λ = x1 = x2 = · · · = xn, and the constraint gives x1 = x2 = · · · = xn = k
n . The set determined

by the constraints x1 + · · ·+ xn = k and x1, . . . , xn ≥ 0 is closed and bounded, and f (x1, . . . , xn) = 0
along its boundary. Therefore, the maximum of f must occur at the point we found. This means that

if x1, . . . , xn > 0 and x1 + · · ·+ xn = k, then x1 · · ·xn ≤ ( kn)n ⇐⇒ (x1 · · ·xn)
1/n ≤ x1+···+xn

k .

12.9.61

a. Gradients are perpendicular to level surfaces.

b. If ∇f was not in the plane spanned by ∇g and ∇h, then f could be increased or decreased by moving
the point P slightly along the curve C.

c. Because ∇f is in the plane spanned by ∇g and ∇h, we can express ∇f as a linear combination of ∇g
and ∇h.

d. The gradient condition from part (c), as well as the constraints, must be satisfied.

12.9.62 It suffices to minimize the function f (x, y, z) = x2 + y2 + z2 subject to the constraints g (x, y, z) =
x+ 2z − 12 = 0 and h (x, y, z) = x+ y − 6 = 0. Using the method described in problem 61 above, we solve
the equation ∇f = λ∇g+μ∇h, together with the constraints. This gives the conditions 2x = λ+μ, 2y = μ,
2z = 2λ, x + 2z = 12, x + y = 6. The first three equations imply 2x = 2y + z, and the constraints give
y = 6−x, z = 6− 1

2x; therefore 2x = 2 (6− x)+6− 1
2x, so x = 4, which gives y = 2, z = 4. There is a point

on the line closest to the origin, so this point must be (4, 2, 4).

12.9.63 We wish to find the extreme values of the function f (x, y, z) = xyz subject to the constraints
g (x, y, z) = x2 + y2 − 4 = 0 and h (x, y, z) = x + y + z − 1 = 0. Using the method described in problem
61 above, we solve the equation ∇f = λ∇g + μ∇h, together with the constraints. This gives the conditions
yz = 2λx + μ, xz = 2λy + μ, xy = μ, x2 + y2 = 4, x + y + z = 1. The first and second equations together
give z (y − x) = 2λ (x− y), which implies either x = y or z = −2λ. In the former case the first constraint
gives 2x2 = 4, so x = y = ±√

2, solving for z gives z = 1 ∓ 2
√
2 and f (x, y, z) = 2 ± 4

√
2. In the latter

case we obtain (x+ y) z = μ = xy from the first and third equations, and then solving for z = 1 − x − y
gives (x+ y) (1− x− y) − xy = 0 ⇐⇒ x + y − 3xy − 4 = 0, using the relation x2 + y2 = 4. Therefore,

x − 4 = (3x− 1) y (x− 4)
2
= (3x− 1)

2 (
4− x2

)
x2 − 8x + 16 =

(
9x2 − 6x+ 1

) (
4− x2

)
which simplifies to

9x4− 6x3− 34x2+16x+12 = 0. This equation has roots x ≈ −0.42,−1.78, 1.96, 0.91 in the interval (−2, 2);
one can check that the corresponding solutions (x, y, z) to the Lagrange conditions do not give values larger
or smaller resp. than 2+ 4

√
2, 2− 4

√
2, so these are in fact the maximum and minimum values of f subject

to the constraints.

12.9.64 We wish to find the extreme values of the function f (x, y, z) = x2+y2+z2 subject to the constraints
g (x, y, z) = x2+2y2− z+1 = 0 and h (x, y, z) = x− y+2z− 4 = 0. Using the method described in problem
61 above, we solve the equation ∇f = λ∇g + μ∇h, together with the constraints. This gives the conditions
2x = 2λx + μ, 2y = 4λy − μ, 2z = −λ + 2μ, x2 + 2y2 − z = −1, x − y + 2z = 4. We can use the
second and third equations to solve for λ and μ in terms of x, y, z; then the first equation reduces to
4xy − 2xz − 4yz − x − y = 0. Next, we use the second constraint equation to express z = 2 − x

2 + y
2 ,

which gives 4xy − x − y = (2x+ 4y) z = (x+ 2y) (4− x+ y), or x2 + 5xy − 2y2 − 5x − 9y = 0. Substitute
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the equation z = 2 − x
2 + y

2 in the first constraint equation to obtain 2x2 + 4y2 + x − y = 2, and double

the first of these two equations and add to obtain 4x2 + 10xy − 9x − 19y = 2 =⇒ y = −4x2+9x+2
10x−19 . We

can also solve 2x2 + 4y2 + x − y = 2 for y using the quadratic formula to obtain y = 1±√−32x2−16x+33
8 .

Using a numerical solver, we find that the equations −4x2+9x+2
10x−19 − 1±√−32x2−16x+33

8 = 0 have approximate
solutions x ≈ −1.1814, 0.4982; the corresponding points on the curve are ≈ (−1.1814, 0.4613, 2.3600),
(0.4982,−0.3917, 1.9468), which have distances to the origin ≈ 2.3235, 2.0473 respectively.

12.9.65 We wish to find the extreme values of the function f (x, y, z) = x2+y2+z2 subject to the constraints
g (x, y, z) = 4x2 + 4y2 − z2 = 0 and h (x, y, z) = 2x + 4z − 5 = 0. Using the method described in problem
61 above, we solve the equation ∇f = λ∇g + μ∇h, together with the constraints. This gives the conditions
2x = 8λx + 2μ, 2y = 8λy, 2z = −2λz + 4μ, z2 = 4x2 + 4y2, 2x + 4z = 5. The second equation gives
y (1− 4λ) = 0, so either y = 0 or λ = 1

4 . Consider first the case y = 0; then the first constraint equation gives
z = ±2x. If z = 2x then the second constraint equation gives x = 1

2 , z = 1 and we obtain the point
(
1
2 , 0, 1

)
;

similarly if z = −2x then we obtain the point
(− 5

6 , 0,
5
3

)
. In the case λ = 1

4 the first equation gives μ = 0 and
then the third equation gives z = 0; but then the first of the constraints implies that x = y = z = 0, which
violates the second constraint. Hence there are no solutions to the Lagrange conditions in this case, and the
minimum and maximum values of the function f along this curve are f

(
1
2 , 0, 1

)
= 5

4 and f
(− 5

6 , 0,
5
3

)
= 125

36 .

Chapter Twelve Review

1

a. False. This equation describes a plane in R3.

b. False. If 2x2 − 6y2 > 0 then z =
√
2x2 − 6y2 or z = −

√
2x2 − 6y2.

c. False. For example f (x, y) = x2y has fxxy = 2, fxyy = 0.

d. False. ∇f lies in the xy-plane.

e. True. A normal vector for an orthogonal plane can be found by taking the cross product of normal
vectors for the two intersecting planes.

2

a. This plane has equation 3 (x− 6) + 4y − 6 (z − 1) = 0, which simplifies to 3x+ 4y − 6z = 12.

b. The x-intercept is found by setting y = z = 0 and solving 3x = 12 to obtain x = 4. Similarly, the y
and z-intercepts are y = 3 and z = −2.

c.

3

a. Let P = (0, 0, 3), Q = (1, 0,−6) and R = (1, 2, 3). Then the vectors
−−→
PQ = 〈1, 0,−9〉 and −→

PR = 〈1, 2, 0〉

lie in the plane, so n =
−−→
PQ×−→

PR =

∣∣∣∣∣∣∣∣
i j k

1 0 −9

1 2 0

∣∣∣∣∣∣∣∣ = 18i− 9j+2k is normal to the plane. The plane has

equation 18x− 9y + 2 (z − 3) = 0, which simplifies to 18x− 9y + 2z = 6.
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b. The x-intercept is found by setting y = z = 0 and solving 18x = 6 to obtain x = 1
3 . Similarly, the y

and z-intercepts are y = − 2
3 and z = 3.

c.

4 First, note that the vectors normal to the planes, nQ = 〈2, 1,−1〉and nR = 〈−1, 1, 1〉, are not multiples of
each other; therefore, these planes are not parallel and they intersect in a line �. We need to find a point
on � and a vector in the direction of �. Setting x = 0 in the equations of the planes gives equations of the
lines in which the planes intersect the yz plane: y− z = 0, y+ z = 1. Solving these equations simultaneously

gives y = z = 1
2 , so

(
0, 1

2 ,
1
2

)
is a point on �. A vector in the direction of � is nQ × nR =

∣∣∣∣∣∣∣∣
i j k

2 1 −1

−1 1 1

∣∣∣∣∣∣∣∣ =
2i − j + 3k = 〈2,−1, 3〉. Therefore � has equation r (t) =

〈
0, 1

2 ,
1
2

〉
+ t〈2,−1, 3〉 =

〈
2t, 1

2 − t, 1
2 + 3t

〉
, or

x = 2t, y = 1
2 − t, z = 1

2 + 3t.

5 First, note that the vectors normal to the planes, nQ = 〈−3, 1, 2〉 and nR = 〈3, 3, 4〉 are not multiples of
each other; therefore, these planes are not parallel and they intersect in a line �. We need to find a point on
� and a vector in the direction of �. Setting x = 0 in the equations of the planes gives equations of the lines
in which the planes intersect the yz plane: y+2z = 0, 3y+4z = 12. Solving these equations simultaneously

gives y = 12, z = −6, so (0, 12,−6) is a point on �. A vector in the direction of � is nQ×nR =

∣∣∣∣∣∣∣∣
i j k

−3 1 2

3 3 4

∣∣∣∣∣∣∣∣ =
−2i+18j−12k = −2〈1,−9, 6〉. Therefore, � has equation r (t) = 〈0, 12,−6〉+t〈1,−9, 6〉 = 〈t, 12−9t,−6+6t〉,
or x = t, y = 12− 9t, z = −6 + 6t.

6 The line has direction v = 〈1, 3,−3〉, so the desired plane has equation 1(x− 2)+3 (y + 3)−3 (z − 1) = 0,
which simplifies to x+ 3y − 3z = −10.

7 Let P = (−2, 3, 1), Q = (1, 1, 0) and R = (−1, 0, 1). Then the vectors
−−→
PQ = 〈3,−2,−1〉 and

−→
PR =

〈1,−3, 0〉 lie in the plane, so n =
−−→
PQ × −→

PR =

∣∣∣∣∣∣∣∣
i j k

3 −2 −1

1 −3 0

∣∣∣∣∣∣∣∣ = − (3i+ j+ 7k) is normal to the plane. The

plane has equation 3 (x+ 2) + 1 (y − 3) + 7 (z − 1) = 0, which simplifies to 3x+ y + 7z = 4.

8

a. This surface is a cylinder consisting of lines parallel to the y-axis passing through the curve z =
√
x in

the xz-plane.

b. The xy-trace is found by setting z = 0 in the equation z =
√
x, which gives all points (0, y, 0) (the

y-axis). Similarly, we see that the xz-trace is the curve z =
√
x and the yz-trace is the line z = 0.
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c. The x-intercept is found by setting y = z = 0 in the equation z =
√
x, which gives the point (0, 0, 0).

The y-intercepts consist of all points on the y-axis, and the z-intercept is the point (0, 0, 0).

d.

9

a. This surface is a hyperbolic paraboloid.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives y = ±2x (two lines

intersecting at the origin). Similarly, we see that the xz-trace is the parabola z = x2

36 and the yz-trace

is the parabola z = − y2

144 .

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the point
(0, 0, 0). Similarly, we see that the y- and z-intercepts are also (0, 0, 0).

d.

10

a. This surface is an ellipsoid.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives the ellipse x2

100+4y2 =

1. Similarly, we see that the xz-trace is the ellipse x2

100 + z2

16 = 1, and the yz-trace is the ellipse

4y2 + z2

16 = 1.

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the points
(±10, 0, 0). Similarly, we see that the y-intercepts are the points

(
0,± 1

2 , 0
)
, and the z-intercepts are

the points (0, 0,±4).

d.
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11

a. This surface is an elliptic cone.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives y = ±2x (two lines
intersecting at the origin). Similarly, we see that the xz-trace is (0, 0, 0) and the yz-trace is z = ±5y.

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the point
(0, 0, 0). Similarly, we see that the y- and z-intercepts are also (0, 0, 0).

d.

12

a. This surface is an elliptic cone.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives y = ± 2x
3 (two lines

intersecting at the origin). Similarly, we see that the xz-trace is (0, 0, 0), and the yz-trace is y = ± 3z
2 .

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the point
(0, 0, 0). Similarly, we see that the y- and z-intercepts are also (0, 0, 0).

d.

13

a. This surface is an elliptic paraboloid.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives (0, 0, 0). Similarly,

we see that the xz-trace is the parabola z = x2

16 , and the yz-trace is the parabola z = y2

36 .
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c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the point
(0, 0, 0). Similarly, we see that the y- and z-intercepts are also (0, 0, 0).

d.

14

a. This surface is a hyperboloid of one sheet.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives the hyperbola
x2

16 − y2

100 = 1. Similarly, we see that the xz-trace is the ellipse x2

16 + z2

36 = 1, and the yz-trace is the

hyperbola z2

36 − y2

100 = 1.

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the points
(±4, 0, 0). Similarly, we see that there is no y-intercept, and the z-intercepts are (0, 0,±6).

d.

15

a. This surface is a hyperboloid of one sheet.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives the hyperbola
y2 − 2x2 = 1. Similarly, we see that the xz-trace is the hyperbola 4z2 − 2x2 = 1, and the yz-trace is
the ellipse y2 + 4z2 = 1.

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives no solutions.
Similarly, we see that the y-intercepts are (0,±1, 0), and the z-intercepts are

(
0, 0,± 1

2

)
.

d.
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16

a. This surface is a hyperboloid of two sheets.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives no solutions. Similarly,

we see that the xz-trace is the hyperbola −x2

16 +
z2

36 = 4, and the yz-trace is the hyperbola z2

36 − y2

25 = 4.

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives no solutions.
Similarly, we see that there is no y-intercept, and the z-intercepts are (0, 0,±12).

d.

17

a. This surface is a hyperboloid of one sheet.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives the ellipse x2

4 + y2

16 = 4.

Similarly, we see that the xz-trace is the hyperbola x2

4 − z2 = 4, and the yz-trace is the hyperbola
y2

16 − z2 = 4.

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the points
(±4, 0, 0). Similarly, we see that the y-intercepts are (0,±8, 0), and there are no z-intercepts.

d.

18

a. This surface is a hyperbolic paraboloid.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives the parabola x = y2

64 .

Similarly, we see that the xz-trace is the parabola x = − z2

9 and the yz-trace is the y = ± 8z
3 (two lines

intersecting at the origin).

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the point
(0, 0, 0). Similarly, we see that the y- and z-intercepts are also (0, 0, 0).
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d.

19

a. This surface is an ellipsoid.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives the ellipse x2

4 + y2

16 = 4.

Similarly, we see that the xz-trace is the ellipsex2

4 + z2 = 4, and the yz-trace is the ellipse y2

16 + z2 = 4.

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the points
(±4, 0, 0). Similarly, we see that the y-intercepts are the points (0,±8, 0), and the z-intercepts are the
points (0, 0,±2).

d.

20

a. This surface is a cylinder consisting of lines parallel to the z-axis passing through the curve y = e−x

in the xy-plane.

b. The xy-trace is found by setting z = 0 in the equation y = e−x, which gives the curve y = e−x.
Similarly, we see that there is no xz-trace, and the yz-trace is the line consisting of all points (0, 1, z).

c. The x-intercept is found by setting y = z = 0 in the equation y = e−x, which has no solutions.
Similarly, we see that the y-intercept is the point (0, 1, 0), and there are no z-intercepts.

d.
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21

a. This surface is an elliptic cone.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives the origin (0, 0, 0).
Similarly, we see that the xz-trace is z = ± 8x

3 (two lines intersecting at the origin), and the yz-trace
is y = ± 7z

8 .

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the point
(0, 0, 0). Similarly, we see that the y and z-intercepts are also (0, 0, 0).

d.

22

a. This surface is an elliptic paraboloid.

b. The xy-trace is found by setting z = 0 in the equation of the surface, which gives the parabola y = 4x2.

Similarly, we see that the xz-trace is the origin, and the yz-trace is the parabola y = z2

9 .

c. The x-intercept is found by setting y = z = 0 in the equation of the surface, which gives the point
(0, 0, 0). Similarly, we see that the y- and z-intercepts are also (0, 0, 0).

d.
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23 The domain is D = {(x, y) : (x, y) �= (0, 0)}.

24 The domain is D = {(x, y) : xy > 0}.

25 The domain is D={(x, y) : x ≥ y2}.

26 D = {(x, y) : x+ y �= π
2 + kπ} where k is any integer.
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27

a. The graph of this function is part of a hyperboloid of two sheets and contains the origin, which matches
A.

b. The graph of this function is a cylinder, which matches D.

c. The graph of this function is a hyperbolic paraboloid, which matches C.

d. The graph of this function is part of a hyperboloid of one sheet, which matches B.

28 29

30

a. This matches A.

b. This matches C.

c. This matches D.

d. This matches B.

31 This limit may be evaluated directly by substitution: lim(x,y)→(4,−2) (10x− 5y + 6xy) = 10 · 4− 5 (−2)+
6 · 4 (−2) = 2.

32 This limit may be evaluated directly by substitution: lim(x,y)→(1,1)
xy
x+y = 1·1

1+1 = 1
2 .

33 Along the path y = −x we have lim(x,y)→(0,0) f(x, y) = lim(x,y)→(0,0)
0

−x2 = 0, but along the path y = x

we have lim(x,y)→(0,0) f(x, y) = lim(x,y)→(0,0)
2x
x2 = lim(x,y)→(0,0)

2
x �= 0, so the limit does not exist.

34 Along the path y = x we have lim(x,y)→(0,0) f(x, y) = lim(x,y)→(0,0)
sin(x2)
2x2 = 1

2 , while along the line

y = −x we have lim(x,y)→(0,0) f(x, y) = lim(x,y)→(0,0)
sin(−x2)

2x2 = −1
2 lim(x,y)→(0,0)

sin(x2)
x2 = −1

2 , so the limit
does not exist.

35 This limit may be evaluated by factoring the numerator and denominator and canceling the common

factor x+ y: lim(x,y)→(−1,1)
x2−y2

x2−xy−2y2 = lim(x,y)→(−1,1)
(x−y)(x+y)
(x−2y)(x+y) = lim(x,y)→(−1,1)

x−y
x−2y = 2

3 .

36 This limit may be evaluated directly by substitution: lim(x,y)→(1,2)
x2y

x4+2y2 = 1·2
1+2·4 = 2

9 .

37 This limit may be evaluated directly by substitution: lim(x,y,z)→(π
2 ,0,π2 )

4 cos y sin
√
xz =

4(cos 0)(sin
(
π
2

)
= 4.

38 This limit may be evaluated directly by substitution: lim(x,y,z)→(5,2,−3) tan
−1
(

x+y2

z2

)
= tan−1 1 = π

4 .
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39 fx = 6xy5, fy = 15x2y4.

40 gx = 4yz2 − 3/y, gy = 4xz2 + 3x/y2, gz = 8xyz.

41 fx = (x2+y2)(2x)−x2(2x)
(x2+y2)2 = 2xy2

(x2+y2)2 . fy = 0−x2(2y)
(x2+y2)2 = −2x2y

(x2+y2)2 .

42 gx = (x+y)yz−(xyz)
(x+y)2 = y2z

(x+y)2 . gy = (x+y)xz−(xyz)
(x+y)2 = x2z

(x+y)2 , gz = xy
x+y .

43 ∂
∂x

[
xyexy

]
= yexy + xy2exy = y (1 + xy) exy, ∂

∂y

[
xyexy

]
= xexy + x2yexy = x (1 + xy) exy.

44 ∂
∂u [u cos v − v sinu] = cos v − v cosu, ∂

∂v [u cos v − v sinu] = −u sin v − sinu.

45 fx (x, y, z) = ex+2y+3z, fy (x, y, z) = 2ex+2y+3z, fz (x, y, z) = 3ex+2y+3z.

46 Hp (p, q, r) = 2p
√
q + r, Hq (p, q, r) =

p2

2
√
q+r

, Hr (p, q, r) =
p2

2
√
q+r

.

47 ∂2u
∂x2 + ∂2u

∂y2 = 6y − 6y = 0.

48 ∂2u
∂x2 + ∂2u

∂y2 =
2(y2−x2)
(x2+y2)2

+
2(x2−y2)
(x2+y2)2

= 0.

49

a. If r is held fixed and R increases then V increases, so VR > 0, whereas, if R is held fixed and r increases
then V decreases, so Vr < 0.

b. We have VR = 4πR2 > 0 and Vr = −4πr2 < 0, consistent with the predictions in part (a).

c. If R = 3, r = 1 and R is increased by �R = 0.1, then �V ≈ 4π · 32 · 0.1 = 3.6π; if r is decreased by
0.1 then �V ≈ −4π · 12 · (−0.1) = 0.4π. Therefore, the volume changes more if R is increased.

50 The chain rule gives dw
dt = ∂w

∂x
dx
dt + ∂w

∂y
dy
dt + ∂w

∂z
dz
dt = (y sin z) · 2t + (x sin z) · 12t2 + (xy cos z) · 1 =

20t4 sin (t+ 1) + 4t5 cos (t+ 1) .

51 The chain rule gives dw
dt = ∂w

∂x
dx
dt +

∂w
∂y

dy
dt +

∂w
∂z

dz
dt = x√

x2+y2+z2
· cos t+ y√

x2+y2+z2
· (− sin t)+ z√

x2+y2+z2
·

(− sin t) = − cos t sin t√
1+cos2 t

.

52 The chain rule gives ws = wxxs + wyys + wzzs = yz · 2t + xz · t2 + xy · 2st = st2 · s2t · 2t + 2st ·
s2t · t2 + 2st · st2 · 2st = 8s3t4 and similarly wt = wxxt + wyyt + wzzt = yz · 2s + xz · 2st + xy · s2 =
st2 · s2t · 2s+ 2st · s2t · 2st+ 2st · st2 · s2 = 8s4t3

53 The chain rule gives wr = wxxr + wyyr = 1
x (st) +

2
y (1) = 1

r + 2
r+s = 3r+s

r(r+s) . ws = wxxs + wyys =
1
x (rt) +

2
y (1) =

1
s + 2

r+s = r+3s
s(r+s) . wt = wxxt + wyyt =

1
x (rs) +

2
y · 0 = 1

t .

54 Let F (x, y) = 2x2 + 3xy − 3y4 − 2; then if y is determined by F (x, y) = 0, we have dy
dx = −Fx

Fy
=

− 4x+3y
3x−12y3 = 4x+3y

12y3−3x .

55 Let F (x, y) = yln
(
x2 + y2

) − 4; then if y is determined by F (x, y) = 0, we have dy
dx = −Fx

Fy
=

−
2xy

x2+y2

ln(x2+y2)+ 2y2

x2+y2

= − 2xy
2y2+(x2+y2) ln(x2+y2) .

56

a. The chain rule gives z′(t) = 8xx′ (t) + 2yy′ (t) = −6 cos t sin t = −3 sin 2t.

b. Walking uphill corresponds to z′(t) > 0, which occurs when π
2 < t < π and 3π

2 < t < 2π.
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57

a. The chain rule gives z′(t) = 2xx′ (t)− 4yy′ (t) = −24costsint = −12sin2t.

b. Walking uphill corresponds to z′(t) > 0, which occurs when π
2 < t < π and 3π

2 < t < 2π.

58 Observe that r′ (t) = ar
t and h′ (t) = − bh

t ; hence, by the chain rule, V ′ (t) = π
3

(
2rhr′ (t) + r2h′ (t)

)
= πr2h

3t (2a− b). Therefore, the volume of the cone remains constant if and only if 2a = b. (This can also
be seen by substituting the formulas for r (t) and h (t) in the formula for the volume of a cone to obtain
V (t) = π

3 t
2a−b.)

59

a.

(a, b) = (0, 0) (a, b) = (2, 0) (a, b) = (1, 1)

u = 〈√2/2,
√
2/2〉 0 4

√
2 −2

√
2

v = 〈−√
2/2,

√
2/2〉 0 −4

√
2 −6

√
2

w = 〈−√
2/2,−√

2/2〉 0 −4
√
2 2

√
2

b. The function is increasing at (2, 0) in the direction of u and decreasing at (2, 0) in the directions of v
and w.

60 ∇f = 〈2x, 0〉, so ∇f(1, 2) = 〈2, 0〉. Duf(1, 2) = 〈2, 0〉 · u = 2√
2
=

√
2.

61 ∇g = 〈2xy3, 3x2y2〉, so ∇g(−1, 1) = 〈−2, 3〉. Dug(−1, 1) = 〈−2, 3〉 · u = −10
13 + 36

13 = 2.

62 ∇f = 〈1/y2,−2x/y3〉, so ∇f(0, 3) = 〈1/9, 0〉. Duf(0, 3) = 〈0, 3〉 · u =
√
3/18.

63 The gradient of h is given by ∇h (x, y) = hxi + hyj = 1√
2+x2+2y2

(xi + 2yj); therefore, ∇h (2, 1) =
√
2
2 (i+ j) and the directional derivative in the direction of u is given by ∇h (2, 1) ·u =

√
2

10 (i + j) · (3i+ 4j) =
7
√
2

10 ≈ 0.9899.

64 The gradient of f is given by ∇f (x, y, z) = fxi+ fyj+ fzk = (y + z) i+ (x+ z) j+ (x+ y)k; therefore,
∇f (2,−2, 1) = −i+3j and the directional derivative in the direction of u is given by ∇f (2,−2, 1) · u =
1√
2
(−i+ 3j) · (−j− k) = − 3

√
2

2 .

65 The gradient of f is given by ∇f (x, y, z) = fxi + fyj + fzk = cos (x+ 2y − z) (i+ 2j− k); there-
fore, ∇f

(
π
6 ,

π
6 ,−π

6

)
= − 1

2 (i+ 2j− k) and the directional derivative in the direction of u is given by

∇f
(
π
6 ,

π
6 ,−π

6

) · u = − 1
6 (i+ 2j− k) · (i+ 2j+ 2k) = − 1

2 .

66

a. The gradient of f is given by ∇f (x, y) = fxi + fyj =
1

1+xy (yi+ xj), so ∇f (2, 3) = 1
7 (3i+ 2j). The

direction of steepest ascent is the unit vector in this direction, u = 3√
13
i+ 2√

13
j, and the direction of

steepest descent is −u.

b. The unit vectors that point in the direction of no change are v= ±
(

2√
13
i− 3√

13
j
)
, because u · v = 0.

67

a. The gradient of f is given by ∇f (x, y) = fxi+ fyj = − 1√
4−x2−y2

(xi+ yj), so ∇f (−1, 1) = 1√
2
(i− j).

The direction of steepest ascent is the unit vector in this direction, u =
√
2
2 i−

√
2
2 j, and the direction of

steepest descent is −u.

b. The unit vectors that point in the direction of no change are v= ±
(√

2
2 i +

√
2
2 j
)
, because u · v = 0.
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68 If y is determined by f (x, y) = C we have dy
dx = − fx

fy
= −−4x

−2y = 2x
y . Therefore, the level curve f (x, y) = 5

has slope m = 2 at the point (1, 1), so the tangent line has direction i+2j. The gradient of f at this point is

∇f (1, 1) = (−4xi− 2yj)
∣∣∣
(1,1)

= −4i− 2j, which is perpendicular to the tangent direction.

69 If x is determined by f (x, y) = C we have dy
dx = − fx

fy
= −−2y

−4x = y
2x . Therefore, the level curve f (x, y) = 0

has a vertical tangent at the point (0, 0), so the tangent line has direction j. The gradient of f at this point

is ∇f (2, 0) = (−4xi− 2yj)
∣∣∣
(2,0)

= −8i, which is perpendicular to the tangent direction.

70 The gradient of f at (1, 1) is given by ∇f (1, 1) = (8xi− 2yj)
∣∣∣
(1,1)

= 8i − 2j = 2 (4i− j), so the unit

vectors in the direction of no change are u = ± 1√
17

(i+ 4j).

71 Observe that V = −k
2

(
ln
(
x2 + y2

)− lnR2
)
; therefore E = −∇V = k

2

(
2x

x2+y2 i+
2y

x2+y2 j
)
= kx

x2+y2 i +
ky

x2+y2 j.

72 Let f(x, y, z) = 2x2+y2−z. ∇f = 〈4x, 2y,−1〉 and ∇f(1, 1, 3) = 〈4, 2,−1〉. The equation of the tangent
plane at (1, 1, 3) is 4(x− 1) + 2(y − 1)− (z − 3) = 0, or 4x+ 2y − z = 3. At the other given point we have
∇f(0, 2, 4) = 〈0, 4,−1〉, so the equation of the tangent plane is 4(y − 2)− (z − 4) = 0, or 4y − z = 4.

73 Let f(x, y, z) = x2 + y2/4 − z2/9. ∇f = 〈2x, y/2,−2z/9〉, so ∇f(0, 2, 0) = 〈0, 1, 0〉. The equation
of the tangent plane at (0, 2, 0) is given by 1(y − 2) = 0, or y = 2. At the point (1, 1, 3/2) we have
∇f = 〈2, 1/2,−1/3〉, so the equation of the tangent plane is 2(x− 1) + (1/2)(y − 1) + (−1/3)(z − 3/2) = 0,
or 12x+ 3y − 2z = 12.

74 Let F (x, y, z) = xy sin z − 1; then ∇F
(
1, 2, π6

)
= 〈y sin z, x sin zz, xy cos z〉

∣∣∣
(1,2,π6 )

=
〈
1, 1

2 ,
√
3
〉
, so the

tangent plane at
(
1, 2, π

6

)
has equation (x− 1)+ 1

2 (y − 2)+
√
3
(
z − π

6

)
= 0, or 6x+3y+6

√
3z−12−π

√
3 = 0.

Similarly, ∇F
(−2,−1, 5π

6

)
= 〈y sin z, x sin z, xy cos z〉

∣∣∣
(−2,−1, 5π6 )

=
〈
− 1

2 ,−1,−√
3
〉
, so the tangent plane

at
(−2,−1, 5π

6

)
has equation − 1

2 (x+ 2)− (y + 1)−√
3
(
z − 5π

6

)
= 0, or 3x+ 6y + 6

√
3z + 12− 5π

√
3 = 0.

75 Let F (x, y, z) = yzexz − 8; then ∇F (0, 2, 4) = 〈yz2exz, zexz, (y + xyz) exz〉
∣∣∣
(0,2,4)

= 〈32, 4, 2〉, so the

tangent plane at (0, 2, 4) has equation 32x + 4 (y − 2) + 2 (z − 4) = 0, or 16x + 2y + z − 8 = 0. Similarly,

∇F (0,−8,−1) = 〈yz2exz, zexz, (y + xyz) exz〉
∣∣∣
(0,−8,−1)

= 〈−8,−1,−8〉, so the tangent plane at (0,−8,−1)

has equation −8x− (y + 8)− 8 (z + 1) = 0, or 8x+ y + 8z + 16 = 0.

76 Let f (x, y) = x2ex−y; then fx (x, y) =
(
2x+ x2

)
ex−y and fy (x, y) = −x2ex−y, so the tangent plane

at (2, 2, 4) has equation z = f (2, 2) + fx (2, 2) (x− 2) + fy (2, 2) (y − 2) = 4 + 8 (x− 2) − 4 (y − 2) =
8x− 4y− 4. Similarly, the tangent plane at (−1,−1, 1) has equation z = f (−1,−1)+ fx (−1,−1) (x+ 1)+
fy (−1,−1) (y + 1) = 1− (x+ 1)− (y + 1) = −x− y − 1.

77 Let f (x, y) =ln(1 + xy); then fx (x, y) =
y

1+xy and fy (x, y) =
x

1+xy , so the tangent plane at (1, 2, ln 3)

has equation z = f (1, 2) + fx (1, 2) (x− 1) + fy (1, 2) (y − 2) =ln3 + 2
3 (x− 1) + 1

3 (y − 2) = 2
3x+ 1

3y+ln3−
4
3 . Similarly, the tangent plane at (−2,−1, ln 3) has equation z = f (−2,−1) + fx (−2,−1) (x+ 2) +
fy (−2,−1) (y + 1) =ln3− 1

3 (x+ 2)− 2
3 (y + 1) = − 1

3x− 2
3y+ln3− 4

3 .

78

a. The linear approximation is given by L (x, y) = f (a, b) + fx (a, b) (x− a) + fy (a, b) (y − b) = 2
√
2 −

8 sin
(
π
4

) (
x− π

4

)
+ 4 sin

(
π
4

) (
y − π

4

)
= −4

√
2x+ 2

√
2y + 2

√
2 +

√
2π
2 .

b. This gives the estimate f(0.8, 0.8) ≈ −3.2+2
√
2+π ≈ 2.787 (the actual answer is 2.787 to three decimal

places).
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79

a. The linear approximation is given by L (x, y) = f (a, b) + fx (a, b) (x− a) + fy (a, b) (y − b) = 2 +
(x− 2) + 5y = x+ 5y.

b. This gives the estimate f (1.95, 0.05) ≈ 2.2 (the actual answer is 2.205 to three decimal places).

80 We have �f ≈ fx (1,−2)�x+ fy (1,−2)�y = 4 · 0.05+ 9 · 0.1 = 1.1 (the actual change is 1.093 to three
decimal places).

81 We have dV = π
(
2rhdr + r2dh

)
, so dV

V = 2dr
r + dh

h . Therefore, if the radius decreases by 3% and the
height increases by 2%, the approximate change in volume is −4%.

82 We have dV = π (bcda+ acdb+ abdc), so dV
V = da

a + db
b + dc

c . Therefore, if a, b, c change by 2%, 1.5%,
−2.5% respectively, the approximate change in the volume is 1%.

83

a. We have dV = π
(
2rh− h2

)
dh = 2π (−0.05) = −0.1πm3 (notice that r = 1.50 m is constant, so there

is no contribution from the dr term in dV ).

b. The surface of the water is a disc with radius s =
√
2rh− h2, so the surface area is S = π

(
2rh− h2

)
.

Therefore dS = 2π (r − h) dh = −0.05πm2.

84 We have fx = 4x3 − 16y, fy = 4y3 − 16x; therefore, the critical points satisfy the equations y = x3

4 and

x = y3

4 . Eliminating y gives x9 = 28x, so x = 0,±2 , and the critical points are (0, 0),± (2, 2). We also have
fxx = 12x2, fyy = 12y2 and fxy = −16; hence D (x, y) = 16

(
9x2y2 − 1

)
. We see that D (0, 0) < 0 so (0, 0) is

a saddle. We have D (2, 2) = D (−2,−2) > 0; fxx (2, 2) = fxx (−2,−2) > 0, which by the Second Derivative
Test implies that f has local minima at ± (2, 2).

85 We have fx = x2 + 2y, fy = −y2 + 2x; therefore, the critical points satisfy the equations y = −x2

2 and

x = y2

2 . Eliminating y gives x4 = 8x so x = 0, 2, and the critical points are (0, 0), (2,−2). We also have
fxx = 2x, fyy = −2y and fxy = 2; hence D (x, y) = −4 (1 + xy). We see that D(0, 0) < 0 so (0, 0) is a
saddle. We have D (2,−2) > 0, fxx (2,−2) > 0, which by the Second Derivative Test implies that f has a
local minimum at (2,−2).

86 We have fx = 2xy2 − 6xy + 2y2 − 6y, fy = 2x2y − 3x2 + 4xy − 6x; therefore, the critical points satisfy
the equations y (2xy − 6x+ 2y − 6) = 0, x (2xy − 3x+ 4y − 6) = 0. If y = 0 then the second equation gives
x = 0,−2, and if x = 0 then the first equation gives y = 0, 3. If both x, y �= 0 then we can divide the
equations by x, y respectively and subtract to obtain 3x+ 2y = 0, so y = − 3x

2 ; substituting this in the first
equation gives x2 + 3x + 2 = 0, which has roots x = −1,−2. Therefore, the critical point are (0, 0), (0, 3),
(−2, 0),

(−1, 3
2

)
and (−2, 3). We also have fxx = 2y2 − 6y, fyy = 2x2 + 4x and fxy = 4xy − 6x + 4y − 6.

We see that D (0, 0), D (0, 3), D (−2, 0), and D (−2, 3) < 0 so (0, 0), (0, 3), (−2, 0)and (−2, 3) are saddles.
We have D

(−1, 3
2

)
> 0, fxx

(−1, 3
2

)
< 0, which by the Second Derivative Test implies that f has a local

maximum at
(−1, 3

2

)
.

87 We have fx = −3x2 − 6x, fy = −3y2 +6y; therefore the critical points must have x = 0,−2 and y = 0, 2.
We also have fxx = −6x − 6, fyy = −6y + 6 and fxy = 0; hence D (x, y) = 36 (x+ 1) (y − 1). We see that
D (0, 0), D (−2, 2) < 0 so (0, 0) and (−2, 2) are saddles. We have D (0, 2) > 0, fxx (0, 2) < 0, which by the
Second Derivative Test implies that f has a local maximum at (0, 2); D (−2, 0) > 0, fxx (−2, 0) > 0, which
by the Second Derivative Test implies that f has a local minimum at (−2, 0).

88 First we find the critical points of f inside the rectangle R: we have fx = x2 + 2y, fy = −y2 + 2x;

the equation fx = 0 gives y = −x2

2 , and then substituting this in the equation fy = 0 gives x4 = 8x, or
x = 0, 2. Hence the critical points are (0, 0) and (2,−2), neither of which is in the interior of R. Therefore,
we must find the maximum and minimum values of f on the boundary of R, which consists of four segments.
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On the segment 0 ≤ x ≤ 3, y = −1, let g (x) = f (x,−1) = x3

3 − 2x + 1
3 : then g has a critical point at

x =
√
2, and find that g has extreme values 1−4

√
2

3 and 10
3 on [0, 3]. Similarly, we find that on the segment

0 ≤ x ≤ 3, y = 1, g (x) = f (x, 1) = x3

3 +2x− 1
3 has extreme values − 1

3 and 44
3 . On the segment −1 ≤ y ≤ 1,

x = 0, let h (y) = f (0, y) = −y3

3 : then h has extreme values ± 1
3 on this segment. Similarly, we find that

on the segment −1 ≤ y ≤ 1, x = 3, h (y) = f (3, y) = −y3

3 + 6y + 9 has a critical point at y =
√
6, and h

has extreme values 10
3 and 4

√
6 + 9. Therefore the absolute minimum and maximum values of f on R are

f
(√

2, 1
)
= 1−4

√
2

3 ≈ −0.886 and f
(
3,
√
6
)
= 4

√
6 + 9 ≈ 18.798.

89 First we find the critical points of f inside the square R: we have fx = 4x3 − 4y, fy = 4y3 − 4x; the
equation fx = 0 gives y = x3, and then substituting this in the equation fy = 0 gives x9 = x, or x = 0,±1.
Hence, the critical points are (0, 0) and ± (1, 1), which are all in the interior of R. We observe that the values
of f at these points are f (0, 0) = 1, f (1, 1) = f (−1,−1) = −1. Next we must find the maximum and
minimum values of f on the boundary of R, which consists of four segments. On the segment −2 ≤ x ≤ 2,
y = 2, let g (x) = f (x, 2) = x4 − 8x+17: then g has a critical point at x = 3

√
2, and find that g has extreme

values 17 − 6 3
√
2 and 49 on [0, 3]. We also note that f (y, x) = f (−x,−y) = f (x, y); therefore f takes the

same values on all four segments of the square. Hence, the absolute minimum and maximum values of f on
R are f (1, 1) = f (−1,−1) = −1 and f (2,−2) = f (−2, 2) = 49.

90 First we find the critical points of f inside the triangle. We have fx = 2xy and fy = x2 − 3y2, so there
are no critical points inside the triangle. Now consider the boundary triangle. On the vertical side x = 0,
we have f(x, y) = −y3 which has a maximum for 0 ≤ y ≤ 2 of 0 and a minimum of −8. On the horizontal
side y = 0, we have f(x, y) = 0, so the minimum and maximum are both 0. On the side y = 2− x, we have
f(x, y) = g(x) = 2x2 − x3 − (2 − x)3. Note that g′(x) = 4x − 3x2 + 3(2 − x)2 = 12 − 8x, which is zero for
x = 3/2. The value of g at x = 3/2 is g(3/2) = 1. Thus, the absolute maximum of f is 1 at (3/2, 1/2) and
the absolute minimum is −8 at (0, 2).

91 First we find the critical points of f inside the semicircle. We have fx = y and fy = x, so the only critical
point is (0, 0), where the value of f is 0. On the flat part of the semicircle where y = 0, the value of f is
also 0. Now we parametrize the circular part of the boundary by letting x = cos t, y = sin t for 0 ≤ t ≤ π.
Then f(x, y) = g(t) = cos t sin t, and g′(t) = − sin2 t + cos2 t. This is zero for t = π/4 and t = 3π/4, where
the value of f is 1/2 and −1/2, respectively. Thus, the absolute maximum of f is 1/2 at (

√
2/2,

√
2/2) and

the absolute minimum is −1/2 at (−√
2/2,

√
2/2).

92 First, observe that there is a unique point on any plane that is closest to the origin. To find this point,
it suffices to minimize the function f (y, z) = x2 + y2 + z2 = (8− y − 4z)

2
+ y2 + z2 over all points (y, z).

We have fy = 2 (y + 4z − 8) + 2y, fz = 2 · 4 (4z + y − 8) + 2z and setting fy = fz = 0 gives the equations
y + 2z = 4, 4y + 17z = 32; solving these simultaneously gives y = 4

9 , z = 16
9 and hence x = 4

9 ; therefore, the
closest point is

(
4
9 ,

4
9 ,

16
9

)
.

93 We have ∇f = 〈2, 1〉 and ∇g = 〈4(x− 1), 8(y− 1)〉, where g(x, y) = 2(x− 1)2 +4(y− 1)2. The Lagrange
equations are thus 2 = 4λ(x − 1), 1 = 8λ(y − 1), and 2(x − 1)2 + 4(y − 1)2 = 1. Solving gives λ = 3/4,
x = 5/3, and y = 7/6, or λ = −3/4, x = 1/3, and y = 5/6. The maximum for f is f(5/3, 7/6) = 29/2 and
the minimum for f is f(1/3, 5/6) = 23/2.

94 The Lagrange multiplier conditions are 2xy2 = 4λx, 2x2y = 2λy, 2x2 + y2 = 1. Hence, xy3 = 2λxy =

2x3y =⇒ xy
(
y2 − 2x2

)
= 0; combining this with the constraint gives solutions (0,±1),

(
±

√
2
2 , 0

)
,
(

1
2 ,±

√
2
2

)
and

(
− 1

2 ,±
√
2
2

)
. Comparing the values of f at these points, we see that the extreme values of f on the

closed bounded set given by 2x2 + y2 = 1 are f (0,±1) = f
(
±

√
2
2 , 0

)
= 0, f

(
1
2 ,±

√
2
2

)
= f

(
− 1

2 ,±
√
2
2

)
= 1

8 .

95 The Lagrange multiplier conditions are 1 = 2λx, 2 = 2λy, −1 = 2λz, x2 + y2 + z2 = 1. Hence

2λ = 1
x = 2

y = − 1
z =⇒ y = 2x, z = −x; substituting these in the constraint gives 6x2 = 1 so x = ±

√
6
6 and

we obtain solutions ±
(√

6
6 ,

√
6
3 ,−

√
6
6

)
. Therefore the extreme values of f on the closed bounded set given

by x2 + y2 + z2 = 1 are f
(√

6
6 ,

√
6
3 ,−

√
6
6

)
=

√
6, f

(
−

√
6
6 ,−

√
6
3 ,

√
6
6

)
= −√

6.
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96 The Lagrange multiplier conditions are 2xy2z = 4λx, 2x2yz = 2λy, x2y2 = 2λz, 2x2 + y2 + z2 = 25.
If x, y or z = 0 then f (x, y, z) = 0, which is neither the maximum or minimum of f on the ellipsoid
given by the constraint (f takes both positive and negative values on this set). Hence, we can assume x,

y, z �= 0 in the Lagrange conditions, and eliminating λ in the first three equations gives λ = y2z
2 = x2z =

x2y2

2z =⇒ y2 = 2z2 = 2x2; substituting this in the constraint gives 5x2 = 25, so x = ±√
5, y = ±√

10 and

z = ±√
5. Therefore the maximum value of f on the closed bounded set given by 2x2 + y2 + z2 = 25 is

f
(±√

5,±√
10,

√
5
)
= 50

√
5, and the minimum value is f

(±√
5,±√

10,−√
5
)
= −50

√
5.

97 Let (x, y) be the corner of the rectangle in the first quadrant; then the perimeter of the rectangle is

4 (x+ y), so it suffices to find the maximum value of x + y subject to the constraint x2

a2 + y2

b2 = 1. The

Lagrange multiplier conditions are 1 = 2λx
a2 , 1 = 2λy

b2 , x2

a2 + y2

b2 = 1. Hence, 2λ = a2

x = b2

y =⇒ y = b2x
a2 ;

substituting in the constraint gives x2
(
a2 + b2

)
= a4 so x = a2√

a2+b2
, y = b2√

a2+b2
, and the dimensions of the

rectangle with greatest perimeter are 2a2√
a2+b2

by 2b2√
a2+b2

.

98 Let r be the radius and h the height of the cylinder; then the surface area is A = 2πr2 + 2πrh and
the volume is πr2h, so it suffices to minimize r2 + rh subject to the constraint πr2h = 32. The Lagrange
multiplier conditions are 2r+h = 2λrh, r = λr2, πr2h = 32. We must have r, h > 0, so the second equation
gives λ = 1

r , and then the first equation reduces to 2r = h. Substituting this in the constraint gives r3 = 16
π ,

so r = 2 3

√
2
π in. and h = 4 3

√
2
π in.

99 It suffices to minimize the function f(x, y, z) = (x− 1)
2
+ (y − 3)

2
+ (z − 1)

2
subject to the constraint

x2 + y2 − z2 = 0. The Lagrange multiplier conditions are equivalent to x − 1 = λx, y − 3 = λy, z −
1 = −λz, x2 + y2 − z2 = 0. The first two equations give λxy = (x− 1) y = (y − 3)x =⇒ y = 3x and
similarly, the first and third equations give λxz = (x− 1) z = −x (z − 1) =⇒ (2x− 1) z = x ⇒ z =

√
10x.

Substituting these equations in the constraint gives (2x− 1)
2 · 10x2 = x2, so either x = 0 (and hence

y = z = 0 as well) or 10 (2x− 1)
2
= 1, which has solutions x = 1

2 ±
√
10
20 . Therefore, there are three

solutions to the Lagrange conditions: (0, 0, 0),
(

1
2 ±

√
10
20 , 3

2 ± 3
√
10

20 , 1
2 ±

√
10
2

)
. We see that f (0, 0, 0) = 11,

f
(

1
2 ±

√
10
20 , 3

2 ± 3
√
10

20 , 1
2 ±

√
10
2

)
= 11

2 ∓ √
10, so the closest point is

(
1
2 +

√
10
20 , 3

2 + 3
√
10

20 , 1
2 +

√
10
2

)
. (The

function f (x, y, z) → ∞ as either x, y or z → ∞ on the cone; therefore, f must have minimum somewhere
on the cone, which corresponds to the point we found.)

100

a. We have d (x, y, z) =

√
(x− a)

2
+ (y − b)

2
+ (z − c)

2
, so ∇d (x, y, z) = 〈 x−a

d(x,y,z) ,
y−b

d(x,y,z) ,
z−c

d(x,y,z) 〉.

b. Observe that ∇d (x, y, z) = 1
d(x,y,z)

−−→
PP0 and

∣∣∣−−→PP0

∣∣∣ = d (x, y, z); therefore, ∇d (x, y, z) is a unit vector.

c. The level surfaces of d are spheres centered at a, b, c, and ∇d (x, y, z) is perpendicular to these spheres
(pointing outwards).

d. If P → P0 in the direction of a unit vector u, we have ∇d (x, y, z) = ±u; but because the limit must
be the same in all directions, we conclude that this limit does not exist.
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Chapter 13

Multiple Integration

13.1 Double Integrals over Rectangular Regions

13.1.1
∫ 2

0

∫ 3

1
xy dy dx or

∫ 3

1

∫ 2

0
xy dx dy.

13.1.2 Two solutions:
∫ 5

0

∫ 4

−2
10 dy dx or

∫ 4

−2

∫ 5

0
10 dx dy.

13.1.3 With respect to x first:
∫ 5

1

∫ 4

−2
f (x, y) dx dy; with respect to y first:

∫ 4

−2

∫ 5

1
f (x, y) dy dx.

13.1.4 y is the first (inner) varaiable and has limits −1 ≤ y ≤ 1, x is the second (outer) variable and has
limits 1 ≤ x ≤ 3.

13.1.5
∫ 2

0

∫ 1

0
(4xy) dx dy =

∫ 2

0
(2x2y)

∣∣∣1
0
dy =

∫ 2

0
(2y) dy = (y2)

∣∣∣2
0
= 4.

13.1.6
∫ 2

1

∫ 1

0
(3x2 + 4y3) dy dx =

∫ 2

1
(3x2y + y4)

∣∣∣1
0
dx =

∫ 2

1
(3x2 + 1) dx = (x3 + x)

∣∣∣2
1
= 10− 2 = 8.

13.1.7
∫ 3

1

∫ 2

0
x2 y dx dy =

∫ 3

1

(
x3y
3

) ∣∣∣2
0
dy = 8

3

∫ 3

1
y dy = 8

3

(
y2

2

) ∣∣∣3
1
= 32

3 .

13.1.8
∫ 3

0

∫ 1

−2
(2x+ 3 y) dx dy =

∫ 3

0

(
x2 + 3x y

) ∣∣∣1
−2

dy =
∫ 3

0
(9y − 3) dy =

(
9
2y

2 − 3y
) ∣∣∣3

0
= 63

2 .

13.1.9
∫ 3

1

∫ π/2

0
x sin y dy dx =

∫ 3

1
(−x cos y)

∣∣∣π/2
0

dx =
∫ 3

1
x dx =

(
x2

2

) ∣∣∣3
1
= 4.

13.1.10
∫ 3

1

∫ 2

1

(
y2 + y

)
dx dy =

∫ 3

1

(
x y2 + x y

) ∣∣∣2
1
dy =

∫ 3

1

(
y2 + y

)
dy =

(
y3

3 + y2

2

) ∣∣∣3
1
= 38

3 .

13.1.11
∫ 4

1

∫ 4

0

√
u v du dv =

∫ 4

1

(
2
3u

3/2v1/2
) ∣∣∣u=4

u=0
dv =

∫ 4

1

(
16
3 v1/2

)
dv =

(
32
9 v3/2

) ∣∣∣v=4

v=1
= 224

9 .

13.1.12
∫ π/2

0

∫ 1

0
x cosx y dy dx =

∫ π/2

0
(sinx y)

∣∣∣1
0
dx =

∫ π/2

0
(sinx) dx = (− cosx)

∣∣∣π/2
0

= 1.

13.1.13
∫ ln 2

0

∫ 1

0
6xe3y dx dy =

∫ ln 2

0
3x2e3y

∣∣∣1
0
dy =

∫ ln 2

0
3e3y dy = e3y

∣∣∣ln 2

0
= 8− 1 = 7.

13.1.14
∫ 1

0

∫ 1

0
y

1+x2 dx dy =
∫ 1

0
y tan−1(x)

∣∣∣1
0
dy =

∫ 1

0
πy
4 dy = πy2

8

∣∣∣1
0
= π

8 .

13.1.15
∫ ln 5

1

∫ ln 3

0
ex+y dx dy =

∫ ln 5

1

∫ ln 3

0
(ex) (ey) dx dy =

∫ ln 5

1
(ex · ey )

∣∣∣ln 3

0
dy =

∫ ln 5

1
(2ey ) dy =

(2ey)
∣∣∣ln 5

1
= 10− 2e.
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13.1.16
∫ π/4

0

∫ 3

0
(sec θ)r dr dθ =

∫ π/4

0

(
(sec θ) r

2

2

) ∣∣∣r=3

r=0
dθ =

∫ π/4

0

(
9
2 sec θ

)
dθ =(

9
2 · ln

∣∣∣ sec θ + tan θ
∣∣∣) ∣∣∣θ=π/4

θ=0
= 9

2

(
ln
∣∣∣√2 + 1

∣∣∣− ln
∣∣∣1 + 0

∣∣∣) = 9
2 ln
(√

2 + 1
)
.

13.1.17
∫∫
R

(x+ 2y) dA =
∫ 4

1

∫ 3

0
(x+ 2y) dx dy =

∫ 4

1

(
x2

2 + 2x y
) ∣∣∣3

0
dy =

∫ 4

1

(
9
2 + 6y

)
dy =(

9
2y + 3y2

) ∣∣∣4
1
= 117

2 .

13.1.18
∫∫
R

(
x2 + x y

)
dA =

∫ 1

−1

∫ 2

1

(
x2 + x y

)
dx dy =

∫ 1

−1

(
x3

3 + x2y
2

) ∣∣∣2
1
dy =

∫ 1

−1

(
7
3 + 3y

2

)
dy =(

7
3y +

3
4y

2
) ∣∣∣1

−1
= 14

3 .

13.1.19
∫∫
R

4x3 cos y dA =
∫ 2

1

∫ π/2

0
4x3 cos y dy dx =

∫ 2

1
4x3 sin y

∣∣∣π/2
0

dx =
∫ 2

1
4x3 dx = x4

∣∣∣2
1
= 16− 1 = 15.

13.1.20
∫∫
R

y√
1−x2

dA =
∫√

3/2

1/2

∫ 2

1
y√

1−x2
dy dx =

∫√
3/2

1/2
y2

2
√
1−x2

∣∣∣2
1
= 3

2

∫√
3/2

1/2
1√

1−x2
dx =

3
2

(
sin−1(x)

) ∣∣∣√3/2

1/2
= 3

2

(
π
3 − π

6

)
= π

4 .

13.1.21
∫∫
R

√
x
y dA =

∫ 4

1

∫ 1

0

(
x
y

)1/2
dx dy =

∫ 4

1

(
2
3 · x3/2

y1/2

) ∣∣∣1
0
dy =

∫ 4

1

(
2

3 y1/2

)
dy =

(
4
3y

1/2
) ∣∣∣4

1
= 4

3 .

13.1.22
∫∫
R

xy sinx2 dA =
∫√π/2

0

∫ 1

0
x y sinx2 dy dx =

∫√π/2

0

(
x y2

2 sinx2
) ∣∣∣1

0
dx = 1

2

∫√π/2

0

(
x sinx2

)
dx

= − 1
4

(
cosx2

) ∣∣∣√π/2

0
= − 1

4

(
cos
(
π
2

)− 1
)
= − 1

4 (−1) = 1
4 .

13.1.23
∫∫
R

ex+2y dA =
∫ ln 3

1

∫ ln 2

0

(
ex · e2y) dx dy =

∫ ln 3

1

(
ex · e2y) ∣∣∣ln 2

0
dy =

∫ ln 3

1
e2y dy =

(
1
2e

2y
) ∣∣∣ln 3

1
=

1
2

(
9− e2

)
.

13.1.24
∫∫
R

(x2 − y2)2 dA =
∫ 2

−1

∫ 1

0
(x4 − 2x2y2 + y4) dy dx =

∫ 2

−1
(x4y − 2x2y3/3 + y5/5)

∣∣∣1
0
dx =∫ 2

−1
(x4 − 2x2/3 + 1/5) dx = (x5/5− 2x3/9 + x/5)

∣∣∣2
−1

= 32/5− 16/9 + 2/5− (−1/5 + 2/9− 1/5) = 26/5.

13.1.25
∫∫
R

(
x5 − y5

)2
dA =

∫ 1

−1

∫ 1

0

(
x10 − 2x5y5 + y10

)
dx dy =

∫ 1

−1

(
x11

11 − 1
3x

6y5 + x y10
) ∣∣∣1

0
dy =∫ 1

−1

(
1
11 − 1

3y
5 + y10

)
dy =

(
y
11 − y6

18 + y11

11

) ∣∣∣1
−1

= 4
11 .

13.1.26 Integrate first with respect to x.
∫∫
R

y cosxy dA =
∫ π/3

0

∫ 1

0
y cosxy dx dy =

∫ π/3

0
sinxy

∣∣∣1
0
dy =∫ π/3

0
sin y dy = − cos y

∣∣∣π/3
0

= −(1/2− 1) = 1/2.

13.1.27 Integrate first with respect to x.
∫∫
R

(y + 1)ex(y+1) dA =
∫ 1

−1

∫ 1

0
(y + 1)ex(y+1) dx dy =∫ 1

−1
ex(y+1)

∣∣∣1
0
dy =

∫ 1

−1
(ey+1 − 1) dy = (ey+1 − y)

∣∣∣1
−1

= (e2 − 1)− (1− (−1)) = e2 − 3.

13.1.28 Integrate first with respect to y.
∫∫
R

x sec2 (x y) dA =
∫ π/3

0

∫ 1

0
x sec2 (x y) dy dx =∫ π/3

0

(
x · ( 1x) tan (x y)) ∣∣∣1

0
dx =

∫ π/3

0
tanx dx = (ln |sec x |)

∣∣∣π/3
0

= ln 2.
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13.1.29 Integrate first with respect to y.
∫∫
R

6x5ex
3y dA =

∫ 2

0

∫ 2

0
6x5ex

3y dy dx =
∫ 2

0
6x2ex

3y
∣∣∣2
0
dx =∫ 2

0
(6x2e2x

3 − 6x2) dx = (e2x
3 − 2x3)

∣∣∣2
0
= e16 − 16− (1− 0) = e16 − 17.

13.1.30 Integrate first with respect to x.
∫∫
R

y3 sin
(
xy2
)
dA =

∫√π/2

0

∫ 2

0
y3 sin

(
xy2
)
dx dy =

∫√π/2

0

(
−y3

y2 cos
(
x y2
)) ∣∣∣2

0
dy =

∫√π/2

0

(
y − y cos

(
2y2
))

dy =
(

y2

2 − 1
4 sin

(
2y2
)) ∣∣∣√π/2

0
= π

4 .

13.1.31 Integrate first with respect to y.
∫∫
R

x
(1+x y)2

dA =
∫ 4

0

∫ 2

1
x

(1+x y)2
dy dx. Let u = 1 + xy, so that

du = x dy. Then we have
∫ 4

0

(
− 1

1+x y

) ∣∣∣2
1
dx =

∫ 4

0

(
1

1+x − 1
1+2x

)
dx =

(
ln |1 + x|− 1

2 ln |1 + 2x|) ∣∣∣4
0
= ln 5 −

1
2 ln 9 = ln

(
5
3

)
.

13.1.32 fave =
1

area of R

∫∫
R

f (x, y) dA = 1
4

∫ 2

0

∫ 2

0
(4− x− y) dy dx = 1

4

∫ 2

0

(
4y − x y − y2

2

) ∣∣∣2
0
dx =

1
4

∫ 2

0
(6− 2x) dx = 1

4

(
6x− x2

) ∣∣∣2
0
= 1

4 (8) = 2.

13.1.33 fave =
1

area of R

∫∫
R

f (x, y) dA = 1
6 ln 2

∫ 6

0

∫ ln 2

0
e−y dy dx = 1

6 ln 2

∫ 6

0
(−e−y)

∣∣∣ln 2

0
dx =

1
6 ln 2

∫ 6

0

(
1
2

)
dx = 1

6 ln 2

(
x
2

) ∣∣∣6
0
= 1

6 ln 2 (3) =
1

2 ln 2 .

13.1.34 fave =
1

area of R

∫∫
R

f (x, y) dA = 1
π2

∫ π

0

∫ π

0
sinx sin y dy dx = 1

π2

∫ π

0
(− sinx cos y)

∣∣∣π
0
dx =

1
π2

∫ π

0
2 sinx dx = 2

π2 (− cosx)
∣∣∣π
0
= 2

π2 (2) =
4
π2 .

13.1.35 fave =
1

area of R

∫∫
R

f (x, y) dA = 1
8

∫ 2

−2

∫ 2

0

(
x2 + y2

)
dy dx = 1

8

∫ 2

−2

(
x2y + 1

3y
3
) ∣∣∣2

0
dx =

1
8

∫ 2

−2

(
2x2 + 8

3

)
dx = 1

8

(
2
3x

3 + 8
3x
) ∣∣∣2

−2
= 8

3 .

13.1.36 fave =
1

area of R

∫∫
R

f (x, y) dA = 1
9

∫ 3

0

∫ 3

0

(
(x− 3)

2
+ (y − 3)

2
)
dy dx =

1
9

∫ 3

0

(
y (x− 3)

2
+ 1

3 (y − 3)
3
) ∣∣∣3

0
dx = 1

9

∫ 3

0

(
3 (x− 3)

2
+ 9
)
dx = 1

9

(
(x− 3)

2
+ 9x

) ∣∣∣3
0
= 6.

13.1.37

a. True. The region R = {(x, y) | 1 ≤ x ≤ 3, 4 ≤ y ≤ 6} is a rectangle that has width 2 and length 2,
thus is a square.

b. False. The region for
∫ 6

4

∫ 3

1
f (x, y) dx dy is R = {(x, y) | 1 ≤ x ≤ 3, 4 ≤ y ≤ 6} is not equivalent to

the region for
∫ 6

4

∫ 3

1
f (x, y) dy dx which is R = {(x, y) | 4 ≤ x ≤ 6, 1 ≤ y ≤ 3} thus Fubini’s Theorem

does not apply.

c. True. The region is R = {(x, y) | 1 ≤ x ≤ 3, 4 ≤ y ≤ 6}.

13.1.38

a.
∫∫
R

xy e−(x
2+y2) dA =

∫ a

−a

∫ b

−b
xy e−(x

2+y2) dy dx. Let f(x, y) = xye−(x2+y2). Note that f(−x, y) =

−f(x, y), so the integral over the portion of R in the first and fourth quadrants cancels the integral
over the portion of R in the second and third quadrants, yielding a value of 0.
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b. Let f (x, y) = sin(x−y)
x2+y2+1 . Note that f(−x,−y) = −f(x, y), so the integral over the portion of R in the

first quadrant cancels the integral over the portion in the third quadrant, and likewise for the second
and fourth quadrants, yielding a value of 0.

13.1.39

a. total population = (total population region 1) + (total population region 2) + . . .+
(total population region 9) = (population density of region 1)× (area of region 1) +
(population density of region 2)× (area of region 2) + . . .
+(population density of region 9)×(area of region 9) = (350)

(
1
2

)
+(300)

(
1
4

)
+(150)

(
3
4

)
+(500)

(
1
2

)
+

(400)
(
1
4

)
+ (250)

(
3
4

)
+ (250) (1) + (200)

(
1
2

)
+ (150)

(
3
2

)
= 1475.

b. The calculation above could be expressed as the sum
∑3

k=1 f (xk, yk)ΔAk where f (xk, yk) represents
the population density for each sub-region of R with area ΔAk. This sum can be used as an approx-
imation for a ’continuous’ function f (x, y) that represents the population density at each point in R
then

∑n
k=1 f (xk, yk)ΔAk ≈ ∫∫

R

f (x, y) dA.

13.1.40 V ≈ ∑n
k=1 f (xk, yk)ΔAk. Also, ΔAk = ΔxkΔyk = 5 · 6 = 30. So

∑15
k=1 f (xk, yk)ΔAk =

30 · (f (x1, y1) + f (x2, y2) + · · ·+ f (x15, y15)) =
30 · (1 + 1.5 + 2.0 + 2.5 + 3.0 + 1 + 1.5 + 2.0 + 2.5 + 3.0 + 0.75 + 1.25 + 1.75 + 2.25 + 2.75) = 862.5m3.

13.1.41 V =
∫ 6

0

∫ 2

1
10 dy dx =

∫ 6

0
(10y)

∣∣∣2
1
dx =

∫ 6

0
10 dx = (10x)

∣∣∣6
0
= 60.

13.1.42 V =
∫ 1

0

∫ 1

−1

(
4− x2 − y2

)
dx dy =

∫ 1

0

(
4x− x3

3 − x y2
) ∣∣∣1

−1
dy =∫ 1

0

(
22
3 − 2y2

)
dy =

(
22
3 y − 2

3y
3
) ∣∣∣1

0
= 20

3 .
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13.1.43
∫ 2

1

∫ 2

1
x

x+y dy dx =
∫ 2

1
(x ln (x+ y))

∣∣∣2
1
dx =

∫ 2

1
(x ln(x + 2) − x ln(x + 1)) dx = (− 1

2x
2 ln(x + 1) +

1
2x

2 ln(x+2)+ x
2+

1
2 ln(x+1)−2 ln(x+2))

∣∣∣2
1
= −2 ln 3+2 ln 4+1+ ln 3

2 −2 ln 4−(− ln 2
2 + ln 3

2 + 1
2+

ln 2
2 −2 ln 3) =

1− 1
2 = 1

2 .

13.1.44
∫ 2

0

∫ 1

0
x5 y2ex

3y3

dy dx =
∫ 2

0

(
x5

3x3 e
x5y3
) ∣∣∣1

0
dx = 1

3

∫ 2

0

(
x2 ex

3 − x2
)
dx = 1

3

(
1
3e

x3 − 1
3x

3
) ∣∣∣2

0
=

1
9

(
e8 − 9

)
.

13.1.45
∫ 1

0

∫ 4

1
3y√
x+y2

dx dy =
∫ 1

0

(
6y
√

x+ y2
) ∣∣∣4

1
dy = 6

∫ 1

0

(
y
√

4 + y2 − y
√

1 + y2
)
dy =

6
(

1
3

(
4 + y2

)3/2 − 1
3

(
1 + y2

)3/2) ∣∣∣1
0
= 2
(
5
√
5− 2

√
2− 7

)
.

13.1.46
∫ 4

1

∫ 2

0
ey

√
x dy dx =

∫ 4

1

(
ey

√
x√
x

) ∣∣∣2
0
dx =

∫ 4

1

(
e2

√
x√
x

− 1√
x

)
dx =

(
e2

√
x − 2

√
x
) ∣∣∣4

1
= e4 − e2 − 2.

13.1.47
∫ 2

−2

∫ ln 4

0
e−x dx dy =

∫ 2

−2
(−e−x)

∣∣∣ln 4

0
dy =

∫ 2

−2
3
4 dy =

(
3
4y
) ∣∣∣2

−2
= 3.

13.1.48
∫ 2

0

∫ 1

0
(6− x− 2y) dy dx =

∫ 2

0

(
6y − x y − y2

) ∣∣∣1
0
dx =

∫ 2

0
(5− x) dx =

(
5x− x2

2

) ∣∣∣2
0
= 8.

13.1.49
∫ 3

−1

∫ 2

0
(24− 3x− 4y) dy dx =

∫ 3

−1

(
24y − 3x y − 2y2

) ∣∣∣2
0
dx =

∫ 3

−1
(40− 6x) dx =(

40x− 3x2
) ∣∣∣3

−1
= 136.

13.1.50
∫ 2

1

∫ 1

0

(
12− x2 − 2y2

)
dy dx =

∫ 2

1

(
12y − x2y − 2

3y
3
) ∣∣∣1

0
dx =

∫ 2

1

(
34
3 − x2

)
dx =(

34
3 x− x3

3

) ∣∣∣2
1
= 9.

13.1.51
∫ a

0

∫ π

0
sin (x+ y) dx dy =

∫ a

0
(− cos (x+ y))

∣∣∣π
0
dy =

∫ a

0
(cos y − cos (π + y)) dy =

(sin y − sin (π + y))
∣∣∣a
0
= (sin a− sin (π + a)) = 1. Solving for a yields: (sin a− sin (π + a)) = 1, so 2 sin a =

1, so sin a = 1
2 . The solutions are a = π

6 and a = 5π
6 .

13.1.52 f = 1
a2

∫ a

0

∫ a

0
(x+ y − 8) dx dy = 1

a2

∫ a

0

(
x2

2 + x y − 8x
) ∣∣∣a

0
dy = 1

a2

∫ a

0

(
a2

2 + a y − 8a
)
dy =

1
a2

(
a2

2 y + a y2

2 − 8a y
) ∣∣∣a

0
= 1

a2

(
a3

2 + a3

2 − 8a2
)
= a− 8 = f .

Setting f = 0 and solving for a yields a− 8 = 0, thus a = 8.

13.1.53 f = 1
a2

∫ a

0

∫ a

0

(
4− x2 − y2

)
dy dx = 1

a2

∫ a

0

(
4y − x2y − y3

3

) ∣∣∣a
0
dx = 1

a2

∫ a

0

(
4a− a x2 − a3

3

)
dx =

1
a2

(
4a x− a x3

3 − a3

3 x
) ∣∣∣a

0
= 1

a2

(
4a2 − 2a4

3

)
= 4− 2a2

3 = f . Setting f = 0 and solving for a yields 4− 2a2

3 = 0,

so a2 = 6. Because a > 0, we have a =
√
6.

13.1.54 Consider
∫ b

0

∫ a

0
(6− x− 3y) dx dy =

∫ b

0

(
6x− x2/2− 3xy

) ∣∣∣a
0
dy =

∫ b

0

(
6a− a2/2− 3ay

)
dy =(

(6a− a2/2)y − 3ay2/2
) ∣∣∣b

0
=
(
6ab− a2b/2− 3ab2/2

)
.

Maximize
(
6ab− a2b/2− 3ab2/2

)
with the constraint a = 6−3b. Substituting 6−3b for a gives 9(2b−b2).

This is maximized for b = 1. Thus, the desired point is (3, 1) and the value of the integral is 9.

Copyright c© 2015 Pearson Education, Inc.



412 Chapter 13. Multiple Integration

13.1.55

a. m =
∫∫
R

ρ (x, y) dA =
∫ π

0

∫ π/2

0
(1 + sinx) dx dy =

∫ π

0
(x− cosx)

∣∣∣π/2
0

dy =∫ π

0

(
π
2 + 1

)
dy =

(
π
2 + 1

)
y
∣∣∣π
0
= π2

2 + π.

b. m =
∫∫
R

ρ (x, y) dA =
∫ π/2

0

∫ π

0
(1 + sin y) dy dx =

∫ π/2

0
(y − cos y)

∣∣∣π
0
dx =∫ π

0
(π + 2) dx = (π + 2) x

∣∣∣π/2
0

= π2

2 + π.

c. m =
∫∫
R

ρ (x, y) dA =
∫ π

0

∫ π/2

0
(1 + sinx sin y) dx dy =∫ π

0
(x− cosx sin y)

∣∣∣π/2
0

dy =
∫ π

0

(
π
2 + sin y

)
dy =

(
π
2 y − cos y

) ∣∣∣π
0
= π2

2 + 2.

13.1.56 Let the base of the shed be in the xy-plane with corners at (0, 0), (16, 0), (16, 10), and (0, 10). Let
the peak of the roof be over the point (0, 0). With these assumptions the height of the roof h (x, y) over any
point (x, y) in the base is the lesser of these two functions f (x, y) = 12− x

4 and g (x, y) = 12− 2y
5 . Divide the

base of the shed into 40 squares each of size 2 by 2 (that is, �x = �y = 2), and produce the Riemann sum
for h (x, y) over the base, evaluating h (x, y) at the midpoint of each square. Thus x1 = 1, x2 = 3, x3 = 5,
x4 = 7, x5 = 9, x6 = 11, x7 = 13, and x8 = 15. Likewise y1 = 1, y2 = 3, y3 = 5, y4 = 7, and y5 = 9. The
volume will thus be approximated by the Riemann sum

∑8
j=1

∑5
i=1 h

(
xi, yj

)�xi�yj = 373.7×4 = 1494.8.

13.1.57 The area of the constant cross section of S is A =
∫ b

a
f (x) dx for any value of y. The volume of S

can be expressed as
∫ d

c

∫ b

a
f (x) dx dy =

∫ d

c
Ady = A · y

∣∣∣d
c
= A (d− c).

13.1.58

a.
∫ d

c

∫ b

a
f (x, y) dx dy =

∫ d

c

∫ b

a
(g (x) · h (y)) dx dy =

∫ d

c
h (y)

(∫ b

a
g (x) dx

)
dy, because h(y) is constant

relative to x. Also,
∫ b

a
g (x) dx is constant relative to y, so we have

(∫ b

a
g (x) dx

)(∫ d

c
h (y) dy

)
.

b.
(∫ b

a
g (x) dx

)2
=
(∫ b

a
g (x) dx

)(∫ b

a
g (x) dx

)
=
∫ b

a
(g (x))

2
dx.

c.
∫ 2π

0

∫ 30

10

(
cosx · e−4y2

)
dy dx =

(∫ 2π

0
cosx dx

)(∫ 30

10
e−4y2

dy
)
= (0)

(∫ 30

10
e−4y2

dy
)
= 0.

13.1.59
∫∫
R

∂2f
∂x ∂y dA =

∫ b

0

∫ a

0

(
∂2f
∂x ∂y

)
dx dy =

∫ b

0

(
∂f
∂y

) ∣∣∣a
0
dy =

∫ b

0

(
∂f
∂y (a, y)− ∂f

∂y (0, y)
)
dy =

(f (a, y)− f (0, y))
∣∣∣b
0
= f (a, b)− f (0, b)− f (a, 0) + f (0, 0) .

13.1.60

a.
∫ 1

0

∫ 1

0
cos
(
x
√
y
)
dx dy =

∫ 1

0

(
sin(x

√
y)√

y

) ∣∣∣1
0
dy =

∫ 1

0

sin(
√
y )√

y dy =
(−2 cos

√
y
) ∣∣∣1

0
= 2 (1− cos (1)).

b.
∫ 1

0

∫ 1

0
x3y cos

(
x2 y2

)
dy dx =

∫ 1

0

(
x3

2x2 sin
(
x2y2

)) ∣∣∣1
0
dx =

∫ 1

0
1
2x sin

(
x2
)
dx =

(− 1
4 cos

(
x2
)) ∣∣∣1

0
=

1
4 (1− cos (1)).

13.1.61
∫∫
R

x2r−1ys−1f (xr · ys) dA =
∫ 1

0

∫ 1

0
x2r−1ys−1f (xr · ys) dy dx. Choose u = xr · ys, then du

s·xr =

ys−1 dy, and
∫
x2r−1ys−1 f (xrys) dy =

∫
x2r−1

s·xr f (u) du = 1
sx

r−1F (u) + C = 1
sx

r−1F (xrys) + C. Thus,∫ 1

0
x2r−1ys−1 f (xrys) dy = 1

sx
r−1F (xrys)

∣∣∣1
0
= 1

sx
r−1F (xr) dx, so

∫ 1

0

∫ 1

0
x2r−1ys−1 f (xrys) dy dx =

1
s

∫ 1

0
xr−1F (xr) dx. Now choose u = xr. Then du

r = xr−1 dx, and
∫
xr−1F (xr) dx = 1

r

∫
F (u) du =

1
rG (u) + C = 1

rG (xr) + C. Thus,
∫ 1

0

∫ 1

0
x2r−1ys−1 f (xrys) dy dx = 1

s

(
1
rG (xr)

) ∣∣∣1
0
= G(1)−G(0)

rs .
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13.2 Double Integrals over General Regions

13.2.1 A region is bounded below by y = f (x) and above by y = g (x), on the left by x = a and on the
right by x = b. R = {(x, y) | a ≤ x ≤ b, f (x) ≤ y ≤ g (x)}.

13.2.2 A region is bounded below by y = c and above by y = d, on the left by x = f (y) and on the right
by x = g (y). R = {(x, y) | f (y) ≤ x ≤ g (y) , c ≤ y ≤ d .

13.2.3 Integrate first with respect to x, then with respect to y.
∫∫
R

f (x, y) dA =
∫ 1

0

∫ 1−y

y−1
x y dx dy.

13.2.4 Integrate first with respect to x, then with respect to y. A =
∫∫
R

(1) dA =
∫ 17

0

∫ y +4
3

y − 3
2

(1) dx dy.

13.2.5
∫ 1

0

∫√
x

x2 f (x, y) dy dx.

13.2.6

13.2.7
∫∫
R

f (x, y) dA =
∫ 2

0

∫ 4x

x2 f (x, y) dy dx.

13.2.8
∫∫
R

f (x, y) dA =
∫ 4

−3

∫ 2x+24

2x2 f (x, y) dy dx.
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13.2.9
∫∫
R

f (x, y) dA =
∫ π

4

0

∫ cos x

sin x
f (x, y) dy dx.

13.2.10
∫∫
R

f (x, y) dA =
∫ 2

0

∫ −6x+24

3x2 f (x, y) dy dx.

13.2.11
∫∫
R

f (x, y) dA =
∫ 2

1

∫ 2x+4

x+1
f (x, y) dy dx.

13.2.12
∫∫
R

f (x, y) dA =
∫ 4

0

∫ 8
√
x

x2 f (x, y) dy dx (or) =
∫ 16

0

∫√
y

y2/16 f (x, y) dx dy.
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13.2.13
∫∫
R

f(x, y) dA =
∫ 1

0

∫ −2x+2

0
f(x, y) dy dx.

0.2 0.4 0.6 0.8 1.0 x

0.5

1.0

1.5

2.0
y

13.2.14
∫∫
R

f(x, y) dA =
∫ 1

0

∫ −x+2

x
f(x, y) dy dx.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 x

0.5

1.0

1.5

2.0
y

13.2.15
∫∫
R

f(x, y) dA =
∫ 1

0

∫√
1−x2

0
f(x, y) dy dx.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 x

0.2

0.4

0.6

0.8

1.0
y

13.2.16
∫∫
R

f(x, y) dA =
∫ 1/

√
2

0

∫ 1−x2

x2 f(x, y) dy dx.
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0.2 0.4 0.6 0.8 x

0.2

0.4

0.6

0.8

1.0
y

13.2.17
∫ 1

0
3y2
∣∣∣1
x
dx =

∫ 1

0
(3− 3x2) dx = (3x− x3)

∣∣∣1
0
= 2.

13.2.18
∫ 1

0
5xy3

∣∣∣2x
0

dx =
∫ 1

0
40x4 dx = 8x5

∣∣∣1
0
= 8.

13.2.19
∫ 2

0

∫ 2x

x2 x y dy dx =
∫ 2

0

(
x y2

2

) ∣∣∣2x
x2

dx = 1
2

∫ 2

0

(
4x3 − x5

)
dx = 1

2

(
x4 − x6

6

) ∣∣∣2
0
= 8

3 .

13.2.20
∫ 3

0

∫ x+6

x2 (x − 1) dy dx =
∫ 3

0
y(x − 1)

∣∣∣x+6

x2
dx =

∫ 3

0
((x + 6)(x − 1) − x2(x − 1)) dx =

∫ 3

0
(−x3 + 2x2 +

5x− 6) dx = (−x4/4 + 2x3/3 + 5x2/2− 6x)
∣∣∣3
0
= −(34)/4 + 2(33)/3 + 5(3)2/2− 6(3) = 9/4.

13.2.21
∫ π/4

−π/4

∫ cos x

sin x
dy dx =

∫ π/4

−π/4
(y)
∣∣∣ cos x
sin x

dx =
∫ π/4

−π/4
(cosx− sinx) dx = (sinx+ cosx)

∣∣∣π/4
−π/4

=
√
2.

13.2.22
∫ 1

0

∫√
1− x2

−√
1− x2 2x2y dy dx =

∫ 1

0

(
x2y2

) ∣∣∣√1− x2

−√
1− x2

dx =
∫ 1

0
0 dx = 0.

13.2.23
∫ 2

−2

∫ 8− x2

x2 x dy dx =
∫ 2

−2
(x y)

∣∣∣8−x2

x2
dx =

∫ 2

−2

(
8x− 2x3

)
dx =

(
4x2 − x4

2

) ∣∣∣2
−2

= 0.

13.2.24
∫ ln 2

0

∫ 2

ex
dy dx =

∫ ln 2

0
(y)
∣∣∣2
ex

dx =
∫ ln 2

0
(2− ex) dx = (2x− ex)

∣∣∣ln 2

0
= 2 ln 2− 1.

13.2.25
∫ 1

0

∫ x

0
2ex

2

dy dx =
∫ 1

0
2xex

2

dx = ex
2
∣∣∣1
0
= e− 1.

13.2.26
∫ 3
√

π/2

0

∫ x

0
y cosx3 dy dx =

∫ 3
√

π/2

0
(y2/2) cosx3

∣∣∣x
0
dx = 1

2

∫ 3
√

π/2

0
x2 cosx3 dx = 1

6

(
sinx3

) ∣∣∣ 3
√

π/2

0
= 1

6 .

13.2.27
∫∫
R

xy dA =
∫ 1

0

∫ −2x+5

2x+1
xy dy dx =

∫ 1

0

(
xy2

2

) ∣∣∣−2x+5

2x+1
dx =

∫ 1

0

(
12x− 12x2

)
dx =(

6x2 − 4x3
) ∣∣∣1

0
= 2.

0.0 0.2 0.4 0.6 0.8 1.0 x

1

2

3

4

5
y
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13.2.28
∫∫
R

(x+ y) dA =
∫ 2

0

∫ 8− x2

x2 (x+ y) dy dx =
∫ 2

0

(
x y + y2

2

) ∣∣∣8−x2

x2
dx =∫ 2

0

(
32 + 8x− 8x2 − 2x3

)
dx =

(
32x+ 4x2 − 8

3x
3 − x4

2

) ∣∣∣2
0
= 152

3 .

0.0 0.5 1.0 1.5 2.0 x

2

4

6

8
y

13.2.29
∫∫
R

y2 dA =
∫ 1

−1

∫ 2x+2

−x−1
y2 dy dx =

∫ 1

−1
y3

3

∣∣∣2x+2

−x−1
dx = 1

3

∫ 1

−1

(
8 (x+ 1)

3
+ (x+ 1)

3
)
dx =

3
∫ 1

−1
(x+ 1)

3
dx = 3

4 (x+ 1)
4
∣∣∣1
−1

= 12.

�1.0 �0.5 0.5 1.0 x

�2

�1

1

2

3

4
y

13.2.30
∫∫
R

x2y dA =
∫ 4

−4

∫√16− y2

0
x2y dx dy =

∫ 4

−4

(
x3y
3

) ∣∣∣√16− y2

0
dy = 1

3

∫ 4

−4
y
(
16− y2

)3/2
dx . Let u =

16− y2 so that du = −2y dy, Then the integral is equal to 1
6

∫ 0

0
u3/2 du = 0.

�2 �1 0 1 2

�2

�1

0

1

2

13.2.31
∫∫
R

f (x, y) dA =
∫ 18

0

∫ (y+9)/3

y/2
f (x, y) dx dy.

13.2.32
∫∫
R

f (x, y) dA =
∫ 5

−4

∫√25− y2

(5− y)/3 f (x, y) dx dy.
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13.2.33
∫∫
R

f (x, y) dA =
∫ 23

0

∫ (y+7)/3

(y− 3)/2
f (x, y) dx dy.

0 2 4 6 8 10 x

5

10

15

20

y

13.2.34
∫∫
R

f (x, y) dA =
∫ 1

0

∫ y(1− y)

0
f (x, y) dx dy.

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.2

0.4

0.6

0.8

1.0

13.2.35
∫∫
R

f (x, y) dA =
∫ 4

1

∫ 4− y

0
f (x, y) dx dy =

∫ 3

0

∫ 4−x

1
f (x, y) dy dx.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 x

1

2

3

4

5
y

13.2.36
∫∫
R

f (x, y) dA =
∫ 3

−3

∫ 0

−
√

9− y2 f (x, y) dx dy.
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�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

13.2.37
∫∫
R

f (x, y) dA =
∫ 1

0

∫ 2−y

y
f (x, y) dx dy.

0.0 0.5 1.0 1.5 2.0 x

0.2

0.4

0.6

0.8

1.0
y

13.2.38
∫∫
R

f (x, y) dA =
∫ 2

0

∫ 6−y

y2 f (x, y) dx dy.

0 1 2 3 4 5 6 x

0.5

1.0

1.5

2.0

y

13.2.39 R = {(x, y) | y ≤ x ≤ 4 − y, −1 ≤ y ≤ 2}. We have
∫ 2

−1

∫ 4− y

y
dx dy =

∫ 2

−1
(x)
∣∣∣4− y

y
dy =∫ 2

−1
(4− 2y) dy = (4− 2y)

∣∣∣2
−1

= 9.

Copyright c© 2015 Pearson Education, Inc.



420 Chapter 13. Multiple Integration

13.2.40 R = {(x, y) | 0 ≤ x ≤ 4 − y2, 0 ≤ y ≤ 2}. We have
∫ 2

0

∫ 4−y2

0
y dx dy =

∫ 2

0
(xy)

∣∣∣4−y2

0
dy =

∫ 2

0
(4y −

y3) dy = (2y2 − y4/4)
∣∣∣2
0
= 8− 4 = 4.

1 2 3 4 x

0.5

1.0

1.5

2.0
y

13.2.41 R = {(x, y) | −
√
16− y2 ≤ x ≤

√
16− y2, 0 ≤ y ≤ 4}. We have

∫ 4

0

∫ √16− y2

−
√

16− y2
2xy dx dy =∫ 4

0

(
x2 y
) ∣∣∣√16− y2

−
√

16− y2
dy =

∫ 4

0
0 dy = 0.

13.2.42 R = {(x, y) | − 2
√
1− y2 ≤ x ≤ 2

√
1− y2, 0 ≤ y ≤ 1}. We have

∫ 1

0

∫ 2
√

1− y2

−2
√

1− y2
2x dx dy =∫ 1

0

(
x2
) ∣∣∣ 2√1− y2

− 2
√

1− y2
dy =

∫ 1

0
0 dy = 0.

13.2.43 R = {(x, y) | ey ≤ x ≤ 2, 0 ≤ y ≤ ln 2} . We have
∫ ln 2

0

∫ 2

ey

(
y
x

)
dx dy =

∫ ln 2

0
(y ln |x |)

∣∣∣2
ey

dy =∫ ln 2

0

(
y ln 2− y2

)
dy =

(
ln 2
2 y2 − y3

3

) ∣∣∣ln 2

0
= (ln 2)3

6 .
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13.2.44 R = {(x, y) | y ≤ x ≤ 2y, 0 ≤ y ≤ 4}. We have
∫ 4

0

∫ 2y

y
(x y) dx dy =

∫ 4

0

(
x2y
2

) ∣∣∣2y
y

dy =∫ 4

0

(
3
2y

3
)
dy =

(
3
8y

4
) ∣∣∣4

0
= 96.

13.2.45 R = {(x, y) | y ≤ x ≤ π/2, 0 ≤ y ≤ π/2}. We have
∫ π/2

0

∫ π/2

y
6 sin(2x−3y) dx dy =

∫ π/2

0
(−3 cos(2x−

3y))
∣∣∣π/2
y

dy = −3
∫ π/2

0
(cos(π − 3y)− cos(−y)) dy = (sin(π − 3y)− 3 sin(−y))

∣∣∣π/2
0

= −1− (−3) = 2.

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

13.2.46 R = {(x, y) | 0 ≤ x ≤ cos y, 0 ≤ y ≤ π/2}. We have∫ π/2

0

∫ cos y

0
esin y dx dy =

∫ π/2

0
(xesin y)

∣∣∣cos y
0

dy =
∫
cos yesin y dy = esin y

∣∣∣π/2
0

= e− 1.
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0.5 1.0 1.5 x

0.5

1.0

1.5

y

13.2.47
∫∫
R

12y dA =
∫ 1

0

∫ 2−y

y2 12y dx dy =
∫ 1

0
(12xy)

∣∣∣2−y

y2
dy = 12

∫ 1

0
(2y − y2 − y3) dy = 12(y2 − y3/3 −

y4/4)
∣∣∣1
0
= 12(5/12) = 5.

0.5 1.0 1.5 2.0 x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

13.2.48
∫∫
R

y2 dA =
∫ 1

0

∫ y+1

1−y
y2 dx dy =

∫ 1

0
(xy2)

∣∣∣y+1

1−y
dy =

∫ 1

0
(y3 + y2 − y2 + y3) dy =

∫ 1

0
2y3 dy = y4/2

∣∣∣1
0
=

1/2.

0.0 0.5 1.0 1.5 2.0 x
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1.0
y

13.2.49
∫∫
R

3xy dA =
∫ 2

0

∫ 4−y2

2−y
3xy dx dy =

∫ 2

0
(3x2y/2)

∣∣∣4−y2

2−y
dy =

∫ 2

0
(3(4 − y2)2y/2 − 3(2 − y)2y/2) dy =

3
2

∫ 2

0
(16y−8y3+y5− (4y−4y2+y3)) dy = 3

2

∫ 2

0
(y5−9y3+4y2+12y) dy = 3

2 (y
6/6−9y4/4+4y3/3+6y2)

∣∣∣2
0
=

3
2 (32/3− 36 + 32/3 + 24) = 14.

0 1 2 3 4 x

0.5

1.0

1.5

2.0
y
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13.2.50

RR
R

(x+ y) dA =
R
4

0

R y
�y (x+ y) dx dy =

R
4

0

⇣
x2

2

+ xy
⌘ ���y

�y
dy =

R
4

0

�
2y2

�
dy =

�
2

3

y3
� ���4

0

= 128

4

.

13.2.51

RR
R

3x2 dA =
R
8

0

R
3

p
y

y�4

2

3x2 dx dy =
R
8

0

�
x3

� ��� 3

p
y

y�4

2

dy =
R
8

0

�
y � (1/8)(y3 � 12y2 + 48y � 64)

�
dy =R

8

0

(�y3/8 + 3y2/2� 5y + 8) dy = (�y4/32 + y3/2� 5y2/2 + 8y)
���8
0

= 32.

13.2.52

RR
R

x2y dA =
R
2

0

R y+2

y2

x2y dx dy =
R
2

0

⇣
x3y
3

⌘ ���y+2

y2

dy =
R
2

0

⇣
8

3

y + 4y2 + 2y3 + y4

3

� y7

3

⌘
dy =⇣

4

3

y2 + 4

3

y3 + y4

2

+ y5

15

� y8

24

⌘ ���2
0

= 232

15

.
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13.2.53 V =
∫ 4

0

∫ 2− x
2

0
(8− 2x− 4y) dy dx =

∫ 4

0

(
8y − 2xy − 2y2

) ∣∣∣ 2− x
2

0
dx =

∫ 4

0

(
8− 4x− 1

2x
2
)
dx =(

8x− 2x2 − 1
6x

3
) ∣∣∣4

0
= 32

3 , or V =
∫ 2

0

∫ 4−2y

0
(8− 2x− 4y) dx dy = 32

3 .

13.2.54
∫ 1

0

∫ 1−x2

0
(1−y−x2) dy dx =

∫ 1

0
(y−y2/2−x2y)

∣∣∣1−x2

0
dx =

∫ 1

0
(1−x2−(1/2)(1−2x2+x4)−x2+x4) dx =

1
2

∫ 1

0
(x4 − 2x2 + 1) dx = 1

2 (x
5/5− 2x3/3 + x)

∣∣∣1
0
= 4

15 .

13.2.55 V =
∫ 1

−1

∫√
1−x2

−√
1−x2 (12 + x+ y) dy dx =

∫ 1

−1

(
12y + xy + 1

2y
2
) ∣∣∣√1−x2

−√
1−x2

dx =∫ 1

−1

(
24
√
1− x2 + 2x

√
1− x2

)
dx =

(
12x

√
1− x2 + 12 sin−1 x− 2

3

(
1− x2

)3/2) ∣∣∣1
−1

=

12
(
sin−1 (1)− sin−1 (−1)

)
= 12π.

13.2.56 V =
∫ 1

0

∫ x

0
y2 dy dx =

∫ 1

0

(
1
3y

3
) ∣∣∣ x

0
dx = 1

3

∫ 1

0
x3 dx = 1

12

(
x4
) ∣∣∣1

0
= 1

12 .

13.2.57
∫ 2

0

∫ 2x

x2 f (x, y) dy dx =
∫ 4

0

∫√
y

y/2 f (x, y) dx dy.

13.2.58
∫ 3

0

∫ 6−2x

0
f (x, y) dy dx =

∫ 6

0

∫ 6− y
2

0
f (x, y) dx dy.

13.2.59
∫ 1

1/2

∫ −ln y

0
f (x, y) dx dy =

∫ ln 2

0

∫ e−x

1/2
f (x, y) dy dx.

13.2.60
∫ 1

0

∫ ey

1
f (x, y) dx dy =

∫ e

1

∫ 1

ln x
f (x, y) dy dx.

13.2.61
∫ 1

0

∫ cos−1 y

0
f (x, y) dx dy =

∫ π/2

0

∫ cos x

0
f (x, y) dy dx.

13.2.62
∫ e

1

∫ ln x

0
f (x, y) dy dx =

∫ 1

0

∫ e

ey
f (x, y) dx dy.

13.2.63
∫ 1

0

∫ 1

y
ex

2

dx dy =
∫ 1

0

∫ x

0
ex

2

dy dx =
∫ 1

0

(
y ex

2
) ∣∣∣x

0
dx =

∫ 1

0

(
x ex

2
)
dx =

(
1
2e

x2
) ∣∣∣1

0
= 1

2 (e− 1).

13.2.64
∫ π

0

∫ π

x
sin y2 dy dx =

∫ π

0

∫ y

0
sin y2 dx dy =

∫ π

0

(
x sin y2

) ∣∣∣y
0
dy =

∫ π

0
y sin y2 dy =(− 1

2 cos y
2
) ∣∣∣π

0
= 1

2 − 1
2 cosπ

2.
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13.2.65
∫ 1/2

0

∫ 1/4

y2 y cos
(
16πx2

)
dx dy =

∫ 1/4

0

∫√
x

0
y cos

(
16πx2

)
dy dx =

∫ 1/4

0

(
1
2y

2 cos
(
16πx2

)) ∣∣∣√x

0
dx =∫ 1/4

0
1
2x cos

(
16πx2

)
dx. Let u = 16πx2 so that du = 32π dx. We have

∫ π

0
cosu
64π du =

(
sinu
64π

) ∣∣∣u=π

u=0
= 0 .

13.2.66
∫ 4

0

∫ 2√
x

x
y5+1 dy dx =

∫ 2

0

∫ y2

0
x

y5+1 dx dy =
∫ 2

0

(
x2

2(y5+1)

) ∣∣∣y2

0
dy =

∫ 2

0
y4

2(y5+1) dy. Let u = y5 + 1 so

that du = 5y4 dy. Substituting gives
∫ 33

1
1

10u du = 1
10 (ln|u|)

∣∣∣u=33

u=1
= ln 33

10 .

13.2.67
∫ 3

√
π

0

∫ 3
√
π

y
x4 cos

(
x2y
)
dx dy =

∫ 3
√
π

0

∫ x

0
x4 cos

(
x2y
)
dy dx =

∫ 3
√
π

0

(
x2 sin

(
x2y
)) ∣∣∣x

0
dx =∫ 3

√
π

0
x2 sin

(
x3
)
dx = − 1

3

(
cosx3

) ∣∣∣u= 3
√
π

u=0
= 2

3 .

13.2.68
∫ 2

0

∫ 4−x2

0
x e2y

4−y dy dx =
∫ 4

0

∫√
4−y

0
x e2y

4−y dx dy =
∫ 4

0

(
x2 e2y

2(4−y)

) ∣∣∣√4−y

0
dy =

∫ 4

0
(4−y) e2y

2(4−y) dy =∫ 4

0
e2y

2 dy = 1
4

(
e2y
) ∣∣∣4

0
= 1

4

(
e8 − 1

)
.
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13.2.69 V =
∫ 1

0

∫ 1−x

0
((2 − x2 − y2) − (x2 + y2)) dy dx = 2

∫ 1

0

∫ 1−x

0
(1 − x2 − y2) dy dx = 2

∫ 1

0
(y − x2y −

y3/3)
∣∣∣1−x

0
dx = 2

3

∫ 1

0
((3 − 3x) − (3x2 − 3x3) − (1 − 3x + 3x2 − x3)) dx = 2

3

∫ 1

0
(4x3 − 6x2 + 2) dx = 2

3 (x
4 −

2x3 + 2x)
∣∣∣1
0
= 2

3 .

13.2.70 V =
∫ 1

0

∫ 1−x2

0
(2 − y − 1) dy dx =

∫ 1

0
(y − y2/2)

∣∣∣1−x2

0
dx = 1

2

∫ 1

0
(2 − 2x2 − (1 − 2x2 + x4)) dx =

1
2

∫ 1

0
(−x4 + 1) dx = 1

2 (−x5/5 + x)
∣∣∣1
0
= 2

5 .

13.2.71 V =
∫∫
R

(
9− x2 − y2

)
dA =

∫ 3

−3

∫√
9−x2

−√
9−x2

(
9− x2 − y2

)
dy dx =

∫ 3

−3

((
9− x2

)
y − 1

3y
3
) ∣∣∣√9−x2

−√
9−x2

dx =
∫ 3

−3

(
12
√
9− x2 − 4

3x
2
√
9− x2

)
dx =(

15
2 x

√
9− x2 − 1

3x
2
√
9− x2 + 81

2 sin−1
(
x
3

)) ∣∣∣3
−3

= 81π
2 .

13.2.72 V =
∫∫
R

(
(y + 1)− (x2 + 1)

)
dA =

∫ 1

−1

∫ 1

x2(y − x2) dy dx =
∫ 1

−1

(
y2

2 − x2y
) ∣∣∣1

x2
dx =∫ 1

−1

((
1
2 − x2

)− (x4

2 − x4
))

dx =
∫ 1

−1

(
1
2 − x2 + x4

2

)
dx =

(
x
2 − x3

3 + x5

10

) ∣∣∣1
−1

= 8
15 .

13.2.73 V =
∫∫
R

(8− 2x− 3y) dA =
∫ 1

0

∫ 2−x

0
(8− 2x− 3y) dy dx =

∫ 1

0

(
(8− 2x) y − 3

2y
2
) ∣∣∣2−x

0
dx =∫ 1

0

(
10− 6x+ 1

2x
2
)
dx =

(
10x− 3x2 + 1

6x
3
) ∣∣∣1

0
= 43

6 .

13.2.74 V =
∫∫
R

(ex−y − (−ex−y)) dA =
∫ 1

0

∫ y

0
2ex−y dx dy =

∫ 1

0
(2ex−y)

∣∣∣y
0
dy =

∫ 1

0
2 (1− e−y) dy =

2 (y + e−y)
∣∣∣1
0

= 2
e .

13.2.75 A =
∫∫
R

1 dA =
∫ 2

−2

∫ 4

x2 1 dy dx =
∫ 2

−2
(y)
∣∣∣4
x2

dy =
∫ 2

−2

(
4− x2

)
dx =

(
4x− 1

3x
3
) ∣∣∣2

−2
= 32

3 .
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13.2.76 A =
∫∫
R

1 dA =
∫ 2

−1

∫ x+2

x2 1 dy dx =
∫ 2

−1
(y)
∣∣∣x+2

x2
dx =

∫ 2

−1

(
x+ 2− x2

)
dx =(

1
2x

2 + 2x− 1
3x

3
) ∣∣∣2

−1
= 9

2 .

13.2.77 A =
∫∫
R

1 dA =
∫ ln 2

0

∫ ex

0
1 dy dx =

∫ ln 2

0
(y)
∣∣∣ex
0

dx =
∫ ln 2

0
ex dx = (ex)

∣∣∣ln 2

0
= 1.

13.2.78 A =
∫∫
R

1 dA =
∫ π

0

∫ 1+sin x

1−sin x
1 dy dx =

∫ π

0
(y)
∣∣∣1+sin x

1−sin x
dx =

∫ π

0
2 sinx dx = (−2 cosx)

∣∣∣π
0
= 4.
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13.2.79 A =
∫∫
R

1 dA. =
∫ 2

0

∫ 5x+6

6−x
1 dy dx+

∫ 6

2

∫ 5x+6

x2 1 dy dx =
∫ 2

0
(y)
∣∣∣5x+6

6−x
dx+

∫ 6

2
(y)
∣∣∣5x+6

x2
dx =

∫ 2

0
6x dx+∫ 6

2

(
5x+ 6− x2

)
dx =

(
3x2
) ∣∣∣2

0
+
(
5
2x

2 + 6x− 1
3x

3
) ∣∣∣6

2
= 140

3 .

13.2.80 A =
∫∫
R

1 dA =
∫ 4

0

∫ 2x+1

x
1 dy dx =

∫ 4

0
(y)
∣∣∣2x+1

x
dx =

∫ 4

0
(x+ 1) dx =

(
1
2x

2 + x
) ∣∣∣4

0
= 12. .

13.2.81

a. False. a and b must be constants or functions of y.

b. False. a and d must be constants.

c. False. Variable limits of integration are not allowed in the outermost integral.

13.2.82
∫∫
R

y dA =
∫ π/3

0

∫ sec x

0
y dy dx =

∫ π/3

0

(
1
2y

2
) ∣∣∣sec x

0
dx =

∫ π/3

0
1
2 sec

2 x dx =
(
1
2 tanx

) ∣∣∣π/3
0

=
√
3
2 .

13.2.83
∫∫
R

(x+ y) dA =
∫ 2

1/2

∫ 5/2−x

1/x
(x+ y) dy dx =

∫ 2

1/2

(
xy + 1

2y
2
) ∣∣∣ 52−x

1
x

dx =∫ 2

1/2

(
17
8 − x2

2 − 1
2x2

)
dx =

(
17
8 x− x3

6 + 1
2x

) ∣∣∣1
1/2

= 9
8 .

13.2.84
∫∫
R

xy
1+x2+y2 dA =

∫ 2

0

∫ x

0
xy

1+x2+y2 dy dx =
∫ 2

0
1
2x ln

(
1 + x2 + y2

) ∣∣∣x
0
dx =

1
2

∫ 2

0

(
x ln
(
1 + 2x2

)− x ln
(
1 + x2

))
dx. Let u = 1 + 2x2 and v = 1 + x2. Substituting gives 1

8

∫ 9

1
lnu du −

1
4

∫ 5

1
ln v dv = 1

8 (u lnu− u)
∣∣∣u=9

u=1
− 1

4 (v ln v − v)
∣∣∣v=5

v=1
=
(
9
8 ln 9− 1

)− ( 54 ln 5− 1
)
= 9

8 ln 9− 5
4 ln 5.
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13.2.85
∫∫
R

x sec2y dA =
∫√

π/2

0

∫ x2

0
x sec2y dy dx =

∫√
π/2

0
x tan y

∣∣∣x2

0
dx =

∫√
π/2

0
x tanx2 dx =(

1
2 ln |secx2|) ∣∣∣√π/2

0
= 1

2 ln
(√

2
)
= 1

4 ln 2.

13.2.86 V =
∫∫
R

(ztop − zbottom) dA where R is enclosed by the intersection of the surfaces z = x2 + y2 and

z = 1− 2y. Setting x2 + y2 = 1− 2y gives the circle x2 + (y + 1)
2
= 2.

So V =
∫√

2

−√
2

∫ −1+
√
2−x2

−1−√
2−x2

(
(1− 2y)− (x2 + y2

))
dy dx =

∫√
2

−√
2

(
y − y2 − x2y − 1

3y
3
) ∣∣∣−1+

√
2−x2

−1−√
2−x2

dx =∫√
2

−√
2

(
8
3

√
2− x2 − 4

3x
2
√
2− x2

)
dx =

(
5
3x

√
2− x2 − 1

3x
3
√
2− x2 + 2 sin−1

(
x√
2

)) ∣∣∣√2

−√
2
= 2π.

13.2.87
∫ 1

0

∫ e

ey
f (x, y) dx dy +

∫ 0

−1

∫ e

e−y f (x, y) dx dy =
∫ e

1

∫ ln x

−ln x
f (x, y) dy dx.

13.2.88

a. A =
∫ 0

−1

∫ 1+x

−1−x
1 dy dx +

∫ 1

0

∫ 1−x

x−1
1 dy dx =

∫ 0

−1
(2 + 2x) dy dx +

∫ 1

0
(2− 2x) dx =

(
2x+ x2

) ∣∣∣0
−1

+(
2x− x2

) ∣∣∣1
0
= 1 + 1 = 2.

b. A =
∫ 0

−1

∫ 1+x

−1−x
(12− 3x− 4y) dy dx+

∫ 1

0

∫ 1−x

x−1
(12− 3x− 4y) dy dx =∫ 0

−1

(
(12− 3x) y − 2y2

) ∣∣∣ 1+x

−1−x
dx+

∫ 1

0

(
(12− 3x) y − 2y2

) ∣∣∣ 1−x

x−1
dx =

∫ 0

−1

(
24 + 18x− 6x2

)
dy dx+∫ 1

0

(
24− 30x+ 6x2

)
dx =

(
24x+ 9x2 − 2x3

) ∣∣∣0
−1

+
(
24x− 15x2 + 2x3

) ∣∣∣1
0
= 13 + 11 = 24.

c. V =
∫ 0

−1

∫ 1+x

−1−x

√
1− x2 dy dx+

∫ 1

0

∫ 1−x

x−1

√
1− x2 dy dx = 2

∫ 1

0

∫ 1−x

x−1

√
1− x2 dy dx, where the last equal-

ity is due to symmetry. Then we have 2
∫ 1

0

(
y
√
1− x2

) ∣∣∣ 1−x

x−1
dx = 2

∫ 1

0
(2− 2x)

√
1− x2 dx =

4
∫ 1

0

(√
1− x2 − x

√
1− x2

)
dx = 4

(
1
2x

√
1− x2 + 1

2 sin
−1 x+ 1

3

(
1− x2

)3/2) ∣∣∣1
0
=

4
(
0 + π

4 + 0− 0− 0− 1
3

)
= π − 4

3 .

d. Use symmetry.

V = 4
∫ 1

0

∫ 1−x

0
6 (1− x− y) dy dx = 24

∫ 1

0

(
(1− x) y − 1

2y
2
) ∣∣∣ 1−x

0
dx = 24

∫ 1

0
1
2 (1− x)

2
dx =

12
(
− 1

3 (1− x)
3
) ∣∣∣1

0
= 4.

13.2.89 f = 1
Area of R

∫∫
R

f (x, y) dA = 1
1
2a

2

∫ a

0

∫ a−x

0
(a− x− y) dy dx = 2

a2

∫ 2

0

(
(a− x) y − 1

2y
2
) ∣∣∣a−x

0
dx

= 2
a2

∫ 9

1
1
2 (a− x)

2
dx = 1

a2

(
− 1

3 (a− x)
3
) ∣∣∣a

0
= 1

a2

(
a3

3

)
= a

3 .
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13.2.90 f = 1
Area of R

∫∫
R

f (x, y) dA = 1
πa2

∫ a

−a

∫√
a2−x2

−√
a2−x2

(
a2 − x2 − y2

)
dy dx, which by symmetry is equal

to 4
πa2

∫ a

0

∫√
a2−x2

0

(
a2 − x2 − y2

)
dy dx = 4

πa2

∫ a

0

((
a2 − x2

)
y − 1

3y
3
) ∣∣∣√a2−x2

0
dx =

4
πa2

∫ a

0
2
3

(
a2 − x2

)3/2
dx = 8

3πa2

(
−x

8

(
2x2 − 5a2

)√
a2 − x2 + 3a4

8 sin−1
(
x
a

)) ∣∣∣a
0
= a2

3 .

13.2.91

a.

b. A =
∫∫
R

1 dA =
∫∫
R1

1 dA+
∫∫
R2

1 dA+
∫∫
R3

1 dA =
∫ −1/2

−2

∫ x+3/2

1/x
1 dy dx+

∫ 1/2

−1/2

∫ x+3/2

x−3/2
1 dy dx+∫ 2

1/2

∫ 1/x

x−3/2
1 dy dx =

∫ −1/2

−2

(
x+ 3

2 − 1
x

)
dx+

∫ 1/2

−1/2
(3) dx+

∫ 2

1/2

(
1
x − x+ 3

2

)
dx =(

1
2x

2 + 3
2x− ln |x|) ∣∣∣−1/2

−2
+(3x)

∣∣∣1/2
−1/2

+
(
ln |x| − 1

2x
2 + 3

2x
) ∣∣∣2

1/2
= 3

8 +2 ln 2+3+ 3
8 +2 ln 2 = 15

4 +4 ln 2.

c.
∫∫
R

xy dA =
∫ −1/2

−2

∫ x+3/2

1/x
xy dy dx+

∫ 1/2

−1/2

∫ x+3/2

x−3/2
xy dy dx+

∫ 2

1/2

∫ 1/x

x−3/2
xy dy dx =∫ −1/2

−2

(
1
2xy

2
) ∣∣∣x+3/2

1/x
dx+

∫ 1/2

−1/2

(
1
2xy

2
) ∣∣∣x+3/2

x−3/2
dx+

∫ 2

1/2

(
1
2xy

2
) ∣∣∣1/x

x−3/2
dx =

1
2

∫ −1/2

−2

(
x3 + 3x2 + 9

4x− 1
x

)
dx+ 1

2

∫ 1/2

−1/2

(
6x2
)
dx+ 1

2

∫ 2

1/2

(
1
x − 9

4x+ 3x2 − x3
)
dx =

1
2

(
1
4x

4 + x3 + 9
8x

2 − ln |x|) ∣∣∣−1/2

−2
+
(
x3
) ∣∣∣1/2

−1/2
+ 1

2

(
ln |x| − 9

8x
2 + x3 − 1

4x
4
) ∣∣∣2

1/2
=

1
2

(− 21
64 + 2 ln 2

)
+ 1

4 + 1
2

(− 21
64 + 2 ln 2

)
= − 5

64 + 2 ln 2.

13.2.92

a.
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b. A =
∫∫
R

1 dA =
∫∫
R1

1 dA+
∫∫
R2

1 dA+
∫∫
R3

1 dA. Note: By symmmetry we see that the area of (R1 +R3) is

equal to the area of R2. Thus A = 2
∫∫
R2

1 dA = 2
∫ 3

√
2

0

∫ 0

−√
36−2x2 1 dy dx = 2

√
2
∫ 3

√
2

0

√
18− x2 dx =

2
√
2
(

1
2x

√
18− x2 + 9 sin−1

(
x

3
√
2

)) ∣∣∣3√2

0
= 9

√
2π.

c. Again by symmetry R1 + R3 will be equivalent to R2 but with opposite sign. xy > 0 in Quadrant I
and III and xy < 0 in Quadrant II and IV. By symmetry about the origin we can deduce equivalent
components of surface above the xy-plane over regions R1 and R3 as below the xy-plane in R2. Thus∫∫
R

xy dA = 0.

13.2.93
∫∞
1

∫ e−x

0
xy dy dx =

∫∞
1

(
1
2xy

2
) ∣∣∣ e−x

0
dx =

∫∞
1

1
2x e

−2x dx = limb→∞
∫ b

1
1
2x e

−2x dx =

limb→∞ 1
2

(
e−2x

(− 1
2x− 1

4

)) ∣∣∣ b
1
= 1

4 limb→∞
(
e−2b

(−b− 1
2

)
+ e−2

(
3
2

))
= 1

4

(
0 + 3

2e
−2
)
= 3

8e2 .

13.2.94
∫∞
1

∫ 1/x2

0
2y
x dy dx =

∫∞
1

(
y2

x

) ∣∣∣1/x2

0
dx =

∫∞
1

1
x5 dx = limb→∞

∫ b

1
1
x5 dx =

limb→∞
(− 1

4x4

) ∣∣∣ b
1
= limb→∞

(− 1
4b4 + 1

4

)
= 0 + 1

4 = 1
4 .

13.2.95
∫∞
0

∫∞
0

e−x−y dy dx =
∫∞
0

(
limb→∞

∫ b

0
e−x−y dy

)
dx =

∫∞
0

(
limb→∞ (−e−x−y)

∣∣∣b
0

)
dx =∫∞

0

(
limb→∞

(
e−x − e−x−b

))
dx =

∫∞
0

e−x dx = limb→∞
∫ b

0
−e−x dx = limb→∞ (−e−x)

∣∣∣b
0
=

limb→∞
(
1− e−b

)
= 1.

13.2.96 First compute
∫∞
−∞

1
u2+1 du. This is equal to

∫ 0

−∞
1

u2+1 du+
∫∞
0

1
u2+1 du = lima→−∞

∫ 0

a
1

u2+1 du+

limb→∞
∫ b

0
1

u2+1 du = lima→−∞

(
tan−1u

∣∣∣u=0

u=a

)
+ limb→∞

(
tan−1u

∣∣∣u=b

u=0

)
=

lima→−∞ −tan−1a+ limb→∞ tan−1b = π
2 + π

2 = π

Now use this result to compute the inner integral:
∫∞
−∞

1
(x2+1)(y2+1) dy = 1

x2+1

∫∞
−∞

1
y2+1 dy = π

x2+1 , so

the integral is
∫∞
−∞

∫∞
−∞

1
(x2+1)(y2+1) dy dx =

∫∞
−∞

π
x2+1 dx = π2.

13.2.97 V =
∫∫
R

f (x, y) dA (orient y-axis vertically) =
∫∫
R

(ytop − ybottom) dzdx =
∫ 5

0

∫ 2

0

[
(z + 1) −(−z−1

2

)]
dz dx =

∫ 5

0

∫ 2

0

(
3
2z +

3
2

)
dz dx =

∫ 5

0

(
3
4z

2 + 3
2z
) ∣∣∣2

0
dx =

∫ 5

0
6 dx = (6x)

∣∣∣5
0
= 30.

13.2.98 The equation of the top plane can be found by using z− z0 = mx (x− x0)+my (y − y0), where mx

(slope in the x direction)= − d
a and my (slope in the y direction)= −d(b−a)

ac . Use (x0, y0, z0) = (0, 0, d) to

get z = d − d
ax + d(b−a)

ac y. Then V =
∫∫
R

(
d− d

ax+ d(b−a)
ac y

)
dA = d

∫ c

0

∫ b−a
c y+a

cy/b

(
1− x

a + (b−a)
ac y

)
dx dy =

cd
12ab2

(
2a2b2 + 2ab3 + 2b4 − 2abc2 − 4b2c2 + 2c4

)
.

13.2.99 V =
∫∫
R

(4− x− y) dA =
∫ 1

−1

∫ 1

−1
(4− x− y) dy dx =

∫ 1

−1

(
(4− x) y − 1

2y
2
) ∣∣∣1

−1
dx =∫ 1

−1
2 (4− x) dx = 2

(
4x− 1

2x
2
) ∣∣∣1

−1
= 16.

13.2.100 V =
∫∫
R

((1− x)− (x− 1)) dA = 2
∫ 1

−1

∫√
1−x2

−√
1−x2 (1− x) dy dx =

∫ 1

−1

[
(1− x) y

]∣∣∣√1−x2

−√
1−x2

dx = 4
∫ 1

−1
(1− x)

√
1− x2 dx = 4

∫ 1

−1

(√
1− x2 − x

√
1− x2

)
dx =[

2
(
x
√
1− x2 + sin−1 x

)
+ 4

3

(
1− x2

)3/2]∣∣∣1
−1

= 2
(
sin−1 (1)− sin−1 (−1)

)
= 2π.
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13.2.101 V =
∫∫
R

(a (2− x)− a (x− 2)) dA = 2a
∫ 1

−1

∫√
1−x2

−√
1−x2 (2− x) dy dx =

2a
∫ 1

−1

[
(2− x) y

]∣∣∣√1−x2

−√
1−x2

dx = 4a
∫ 1

−1
(2− x)

√
1− x2 dx = 4a

∫ 1

−1

(
2
√
1− x2 − x

√
1− x2

)
dx =[

4a
(
x
√
1− x2 + sin−1 x

)
+ 4a

3

(
1− x2

)3/2]∣∣∣1
−1

= 4a
(
sin−1 (1)− sin−1 (−1)

)
= 4aπ.

13.2.102 Consider the inner integral. If m > 0, the inner integral is
∫ 1/x

0
ym

xn dy = ym+1

(m+1)xn

∣∣∣1/x
0

=

1
(m+1)xn+m+1 . Ifm < 0 andm �= −1 then the inner integral is improper:

∫ 1/x

0
ym

xn dy = lim a→0+
∫ 1/x

a
ym

xn dy =

lim a→0+

(
ym+1

(m+1)xn

∣∣∣1/x
a

)
= lim a→0+

(
1

(m+1)xn+m+1 − am+1

(m+1)xn

)
. This limit exists and equals 1

(m+1)xn+m+1

when m > −1. If m = −1, the inner integral is improper and diverges. Thus the inner integral
∫ 1/x

0
ym

xn dy =
1

(m+1)xn+m+1 for m > −1. Now consider the double integral:
∫∞
1

∫ 1/x

0
ym

xn dy dx =
∫∞
1

1
(m+1)xn+m+1 dx =

lima→∞
∫ a

1
x−n−m−1

m+1 dx = lima→∞ x−n−m

(m+1)(−n−m)

∣∣∣a
1
= lima→∞ a−n−m−1

(m+1)(−n−m) =
1

(m+1)(n+m) when n+m > 0. If

n+m < 0, the integral diverges. If n+m = 0, the integral is improper and diverges. Thus
∫∞
1

∫ 1/x

0
ym

xn dy dx =
1

(m+1)(n+m) when m > −1 and n+m > 0.

13.2.103
∫∫
R1

x−n dA =
∫∞
1

∫ 2

1
x−n dy dx = limb→∞

∫ b

1

∫ 2

1
x−n dy dx = limb→∞

∫ b

1
(2− 1)x−n dx =

limb→∞
∫ b

1
x−n dx which converges if n > 1.

∫∫
R2

x−n dA =
∫∞
1

∫ 2

1
x−n dx dy = limb→∞

∫ b

1

(
x−n+1

1−n

) ∣∣∣2
1
dy =

limb→∞
∫ b

1

(
21−n−1
1−n

)
dy = limb→∞

(
21−n−1
1−n

)
y
∣∣∣ b
1
= limb→∞

(
21−n−1
1−n

)
(b− 1), which diverges when n > 1.

13.3 Double Integrals in Polar Coordinates

13.3.1 It is called a polar rectangle because it is analogous to a cartesian rectangle; they both have each
variable constrained by constants.

13.3.2
∫∫
R

f (x, y) dA =
∫ β

α

∫ b

a
f (r cos θ, r sin θ) r dr dθ.

13.3.3 R =
{
(r, θ) : 1

2 ≤ r ≤ cos 2θ, −π
6 ≤ θ ≤ π

6

}
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13.3.4 Geometrically dx dy represents the length times width of a rectangular subsection of the region of
integration. For equal partitions with respect to x and y each subsection has equivalent area. In polar
coordinates each partition is a portion of a circular sector. For equal partitions with respect to r and θ the
areas of the subsections are proportional to the distance from the origin, or r.

13.3.5 For R =
{
(r, θ) : g (θ) ≤ r ≤ f (θ) , α ≤ θ ≤ β

}
, the area of R given by

∫∫
R

(1) dy dx converts to

polar coordinates
∫ β

α

∫ f(θ)

g(θ)
r dr dθ.

13.3.6 For R =
{
(r, θ) : g (θ) ≤ r ≤ f (θ) , α ≤ θ ≤ β

}
the average value of a function f (x, y) is given by

f = 1
area of R

∫∫
R

f (x, y) dy dx which converts to polar coordinates 1
area of R

∫ β

α

∫ f(θ)

g(θ)
f (r cos θ, r sin θ) r dr dθ.

13.3.7 13.3.8

13.3.9 13.3.10

13.3.11 V =
∫∫
R

f (r cos θ, r sin θ) r dr dθ =
∫ 2π

0

∫ 1

0

(
4− r2

)
r dr dθ =

∫ 2π

0

(
2r2 − 1

4r
4
) ∣∣∣1

0
dθ =

∫ 2π

0

(
7
4

)
dθ

= 7π
2 .

13.3.12 V =
∫∫
R

f (r cos θ, r sin θ) r dr dθ =
∫ 2π

0

∫ 2

0

(
4− r2

)
rdr dθ =

∫ 2π

0

(
2r2 − 1

4r
4
) ∣∣∣2

0
dθ =

∫ 2π

0
4 dθ = 8π.

13.3.13 V =
∫∫
R

f (r cos θ, r sin θ) r dr dθ =
∫ 2π

0

∫ 2

1

(
4− r2

)
r dr dθ =

∫ 2π

0

(
2r2 − 1

4r
4
) ∣∣∣2

1
dθ =

∫ 2π

0
9
4 dθ =

9π
2 .
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13.3.14 V =
∫∫
R

f (r cos θ, r sin θ) r dr dθ =
∫ π/2

−π/2

∫ 2

1

(
4− r2

)
r dr dθ =

∫ π/2

−π/2

(
2r2 − 1

4r
4
) ∣∣∣2

1
dθ =∫ π/2

−π/2
9
4 dθ = 9π

4 .

13.3.15 V =
∫∫
R

(
5−
√

1 + x2 + y2
)

dA =
∫ 2π

0

∫ 2

0

(
5−√

1 + r2
)
r dr dθ =∫ 2π

0

(
5
2r

2 − 1
3

(
1 + r2

)3/2) ∣∣∣2
0
dθ =

∫ 2π

0

(
10− 5

√
5−1
3

)
dθ =

(
31−5

√
5

3

)
· θ
∣∣∣θ=2π

θ=0
= 2π

(
31−5

√
5

3

)
=

(62−10
√
5)π

3 .

13.3.16 V =
∫∫
R

(
5−
√

1 + x2 + y2
)

dA =
∫ π

0

∫ 1

0

(
5−√

1 + r2
)
r dr dθ =∫ π

0

(
5
2r

2 − 1
3

(
1 + r2

)3/2) ∣∣∣1
0
dθ =

∫ π

0

(
5
2 + 1−2

√
2

3

)
dθ =

(17−4
√
2)π

6 .

13.3.17 V =
∫∫
R

(
5−
√

1 + x2 + y2
)

dA =
∫ 2π

0

∫ 2
√
2√

3

(
5−√

1 + r2
)
r dr dθ =

∫ 2π

0

(
5
2r

2 − 1
3

(
1 + r2

)3/2) ∣∣∣2√2

√
3

dθ =
∫ 2π

0
(20− 9− (15/2− 8/3)) dθ =

∫ 2π

0
(37/6) dθ = 37π/3.

13.3.18 V =
∫∫
R

(
5−
√

1 + x2 + y2
)

dA =
∫ π

−π/2

∫√
15√
3

(
5−√

1 + r2
)
r dr dθ =

∫ π

−π/2

(
5
2r

2 − 1
3

(
1 + r2

)3/2) ∣∣∣√15

√
3

dθ =
∫ π

−π/2
(75/2− 64/3− (15/2− 8/3)) dθ =

∫ π

−π/2
(34/3) dθ =(

34
3 · 3π

2

)
= 17π.

13.3.19 Let x = r cos θ and y = r sin θ. V =
∫∫
R

((2−x2−y2)−(x2+y2)) dA =
∫ 2π

0

∫ 1

0
((2−r2)−(r2))r dr dθ =∫ 2π

0

∫ 1

0
(2r − 2r3) dr dθ =

∫ 2π

0
(r2 − r4/2)

∣∣∣1
0
dθ = 1

2 · 2π = π.

13.3.20 Let x = r cos θ and y = r sin θ. V =
∫∫
R

((27−x2−2y2)− (2x2+y2)) dA =
∫ 2π

0

∫ 3

0
(27−3r2)r dr dθ =∫ 2π

0

∫ 3

0
(27r − 3r3) dr dθ =

∫ 2π

0
(27r2/2− 3r4/4)

∣∣∣3
0
dθ = ((243/2)− (243/4)) · 2π = 243π

2 .

13.3.21 Let x = r cos θ and y = r sin θ. V =
∫∫
R

(2 − x2 − y2 − 1) dA =
∫ 2π

0

∫ 1

0
(1 − r2)r dr dθ =

∫ 2π

0

∫ 1

0
(r −

r3) dr dθ =
∫ 2π

0
(r2/2− r4/4)

∣∣∣1
0
dθ = (1/4) · 2π = π

2 .

13.3.22 Let x = r cos θ and y = r sin θ. V =
∫∫
R

(8 − x2 − 3y2 − x2 + y2) dA =
∫ 2π

0

∫ 2

0
(8 − 2r2)r dr dθ =∫ 2π

0

∫ 1

0
(8r − 2r3) dr dθ =

∫ 2π

0
(4r2 − r4/2)

∣∣∣2
0
dθ = 8 · 2π = 16π.

13.3.23
∫∫
R

(
x2 + y2

)
dA =

∫ 2π

0

∫ 4

0

(
r2
)
r dr dθ =

∫ 2π

0

∫ 4

0
r3 dr dθ =

∫ 2π

0

(
1
4r

4
) ∣∣∣4

0
dθ =

∫ 2π

0
64 dθ = 128π.
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13.3.24
∫∫
R

(2xy) dA =
∫ π/2

0

∫ 3

1
2 (r cos θ) (r sin θ) r dr dθ =

∫ π/2

0

∫ 3

1
2r3 sin θ cos θ dr dθ =∫ π/2

0
sin θ cos θ

(
1
2r

4
) ∣∣∣3

1
dθ =

∫ π/2

0
40 sin θ cos θ dθ =

(
20 sin2 θ

) ∣∣∣θ=π/2

θ=0
= 20.

13.3.25
∫∫
R

(2xy) dA =
∫ π

0

∫ 3

0
2 (r cos θ) (r sin θ) r dr dθ =

∫ π

0

∫ 3

0
2r3 sin θ cos θ dr dθ =∫ π

0
cos θ sin θ

(
1
2r

4
) ∣∣∣3

0
dθ = (81/2)

∫ π

0
cos θ sin θ dθ =

(
81
4 sin2 θ

) ∣∣∣θ=π

θ=0
= 0.

�4 �2 0 2 x

1

2

3

y

13.3.26
∫∫
R

1
1+x2+y2 dA =

∫ π

0

∫ 2

1

(
1

1+r2

)
r dr dθ =

∫ π

0

∫ 2

1
r

1+r2 dr dθ =
∫ π

0

(
1
2 ln
(
1 + r2

)) ∣∣∣2
1
dθ =∫ π

0
1
2 (ln 5− ln 2) dθ = π

2 ln
(
5
2

)
.

13.3.27
∫∫
R

1√
16−x2−y2

dA =
∫ π/2

0

∫ 2

0
1√

16−r2
r dr dθ =

∫ π/2

0

∫ 2

0
r√

16−r2
dr dθ =

∫ π/2

0

(−√
16− r2

) ∣∣∣2
0
dθ =∫ π/2

0

(−2
√
3 + 4

)
dθ = π

(
2−√

3
)
.
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13.3.28
∫∫
R

e−x2−y2

dA =
∫ 2π

0

∫ 3

0
e−r2 r dr dθ =

∫ 2π

0

(
− 1

2e
−r2
) ∣∣∣3

0
dθ =

∫ 2π

0

(− 1
2e

−9 + 1
2

)
dθ

= π
(
1− e−9

)
.

13.3.29 Setting z ≥ 0, gives x2 + y2 ≤ 16, and thus 0 ≤ r ≤ 4 and 0 ≤ θ ≤ 2π. It follows that

V =
∫ 2π

0

∫ 4

0

(
e−r2/8 − e−2

)
r dr dθ =

∫ 2π

0

∫ 4

0

(
r e−r2/8 − r e−2

)
dr dθ =

∫ 2π

0

(
−4 e−r2/8 − 1

2r
2 e−2

) ∣∣∣4
0
dθ =∫ 2π

0

(−12e−2 + 4
)
dθ = 8π

(
1− 3e−2

)
.

13.3.30 Setting z ≥ 0 gives x2 + y2 ≤ 25, and thus 0 ≤ r ≤ 5 and 0 ≤ θ ≤ 2π. It follows that V =∫ 2π

0

∫ 5

0

(
100− 4r2

)
r dr dθ =

∫ 2π

0

∫ 5

0

(
100r − 4r3

)
dr dθ =

∫ 2π

0

(
50r2 − r4

) ∣∣∣5
0
dθ =

∫ 2π

0
625 dθ = 1250π.

13.3.31 Setting z ≥ 0 gives x2 + y2 ≤ 625, and thus 0 ≤ r ≤ 25 and 0 ≤ θ ≤ 2π. It follows that V =∫ 2π

0

∫ 25

0

(
25−

√
r2
)
r dr dθ =

∫ 2π

0

∫ 25

0

(
25r − r2

)
dr dθ =

∫ 2π

0

(
25
2 r2 − 1

3r
3
) ∣∣∣25

0
dθ =

∫ 2π

0
15625

6 dθ = 15625π
3 .

13.3.32 Setting z ≥ 0 gives x2 + y2 ≤ 9, and thus thus 0 ≤ r ≤ 3 and 0 ≤ θ ≤ 2π. It follows that

V =
∫ 2π

0

∫ 3

0

(
20

1+r2 − 2
)
r dr dθ =

∫ 2π

0

∫ 3

0

(
20r
1+r2 − 2r

)
dr dθ =

∫ 2π

0

(
10 ln

(
1 + r2

)− r2
) ∣∣∣3

0
dθ =∫ 2π

0
(10 ln 10− 9) dθ = 2π (10 ln 10− 9).

13.3.33
∫∫
R

f (r, θ) dA ==
∫ 2π

0

∫ 1+ 1
2 cos θ

0
f (r, θ) r dr dθ.

13.3.34
∫∫
R

f (r, θ) dA ==
∫ π/2

0

∫ 2 sin(2θ)

0
f (r, θ) r dr dθ.
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13.3.35
∫∫
R

f (r, θ) dA ==
∫ π/2

0

∫√2 sin(2θ)

0
f (r, θ) r dr dθ.

13.3.36
∫∫
R

f (r, θ) dA ==
∫ 5π/6

π/6

∫ 4 sin θ

2
f (r, θ) r dr dθ.

13.3.37
∫∫
R

f (r, θ) dA ==
∫ 5π/18

π/18

∫ 2 sin(3θ)

1
f (r, θ) r dr dθ.

13.3.38
∫∫
R

f (r, θ) dA ==
∫ 2π/3

−2π/3

∫ 1+cos θ

1/2
f (r, θ) r dr dθ.
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13.3.39 A =
∫∫
R

1 dA =
∫ π

0

∫ 2

1
r dr dθ =

∫ π

0

(
1
2r

2
) ∣∣∣2

1
dθ =

∫ π

0

(
3
2

)
dθ =

(
3
2θ
) ∣∣∣θ=π

θ=0
= 3π

2 .

13.3.40 A =
∫∫
R

1 dA =
∫ 2π

0

∫ 2(1−sin θ)

0
r dr dθ =

∫ 2π

0

(
1
2r

2
) ∣∣∣2(1−sin θ)

0
dθ = 1

2

∫ 2π

0
4
(
1− 2 sin θ + sin2 θ

)
dθ

= 2
∫ 2π

0

(
3
2 − 2 sin θ − 1

2 cos 2θ
)
dθ = 2

(
3
2θ + 2 cos θ − 1

4 sin 2θ
) ∣∣∣θ=2π

θ=0
= 6π.

13.3.41 A =
∫∫
R

1 dA =
∫ π

0

∫ 2 cos(3θ)

0
r dr dθ =

∫ π

0

(
1
2r

2
) ∣∣∣2 cos(3θ)

0
dθ =

∫ π

0

(
2 cos2 (3θ)

)
dθ =∫ π

0
(1 + cos (6θ)) dθ =

(
θ + 1

6 sin (6θ)
) ∣∣∣θ=π

θ=0
= π.
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13.3.42 A =
∫∫
R

1 dA =
∫ π/2

−π/2

∫ 1−cos θ

0
r dr dθ +

∫ 3π/2

π/2

∫ 1

0
r dr dθ. By symmetry this is equal to

2
(∫ π/2

0

∫ 1−cos θ

0
r dr dθ +

∫ π

π/2

∫ 1

0
r dr dθ

)
=
∫ π/2

0

(
r2
) ∣∣∣1−cos θ

0
dθ +

∫ π

π/2

(
r2
) ∣∣∣1

0
dθ =

∫ π/2

0
(1− cos θ)

2
dθ +∫ π

π/2
(1) dθ =

∫ π/2

0

(
3
2 − 2 cos θ + 1

2 cos 2θ
)
dθ +

∫ π

π/2
(1) dθ =

(
3
2θ − 2 sin θ + 1

4 sin 2θ
) ∣∣∣θ=π/2

θ=0
+ (θ)

∣∣∣θ=π/2

θ=0
=(

3π
4 − 2

)
+
(
π
2

)
= 5π

4 − 2..

13.3.43 A =
∫∫
R

1 dA =
∫ π/4

−3π/4

∫ 1+sin θ

0
r dr dθ +

∫ 5π/4

π/4

∫ 1+cos θ

0
r dr dθ. By symmetry this is equal to

2
∫ 5π/4

π/4

∫ 1+cos θ

0
r dr dθ =

∫ 5π/4

π/4

(
r2
) ∣∣∣1+cos θ

0
dθ =

∫ 5π/4

π/4

(
1 + 2 cos θ + cos2 θ

)
dθ =∫ 5π/4

π/4

(
3
2 + 2 cos θ + 1

2 cos 2θ
)
dθ =

(
3
2θ + 2 sin θ + 1

4 sin 2θ
) ∣∣∣θ=5π/4

θ=π/4
= 3π

2 − 2
√
2.

13.3.44 A =
∫∫
R

1 dA =
∫ π

0

∫ 2θ

0
r dr dθ =

∫ π

0

(
1
2r

2
) ∣∣∣2θ

0
dθ =

∫ π

0

(
2θ2
)
dθ =

(
2
3θ

3
) ∣∣∣θ=π

θ=0
= 2π3

3 .

13.3.45 f = 1
area of R

∫∫
R

f (r, θ) dA = 1
πa2

∫ 2π

0

∫ a

0
(r) r dr dθ = 1

πa2

∫ 2π

0

(
1
3r

3
) ∣∣∣a

0
dθ = 1

πa2

∫ 2π

0

(
1
3a

3
)
dθ =

a
3π (θ)

∣∣∣θ=2π

θ=0
= 2a

3 .
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13.3.46 A =
∫ 2π

0

∫ 1+cos θ

0
r dr dθ =

∫ 2π

0

(
1
2r

2
) ∣∣∣1+cos θ

0
dθ = 1

2

∫ 2π

0

(
3
2 + 2 cos θ + 1

2 cos 2θ
)
dθ =

1
2

(
3
2θ + 2 sin θ + 1

4 sin 2θ
) ∣∣∣θ=2π

θ=0
= 3π

2 .

f = 1
area of R

∫∫
R

f (r, θ) dA = 1
3π/2

∫ 2π

0

∫ 1+cos θ

0
(r) r dr dθ = 2

3π

∫ 2π

0

(
1
3r

3
) ∣∣∣1+cos θ

0
dθ =

2
9π

∫ 2π

0

(
1 + 3 cos θ + 3 cos2 θ + cos3 θ

)
dθ = 2

9π

∫ 2π

0

(
5
2 + 4 cos θ + 3

2 cos 2θ − sin2 θ cos θ
)
dθ =

2
9π

(
5
2θ + 4 sin θ + 3

4 sin 2θ − 1
3 sin

3 θ
) ∣∣∣θ=2π

θ=0
= 10

9 .

13.3.47 The square of the distance from a point to (1, 1) is (x− 1)
2
+ (y − 1)

2
= x2 − 2x+ y2 − 2y + 2 =

r2 − 2r cos θ − 2r sin θ + 2.

f = 1
area of R

∫∫
R

(
x2 − 2x+ y2 − 2y + 2

)
dA = 1

π

∫ 2π

0

∫ 1

0

(
r2 − 2r cos θ − 2r sin θ + 2

)
r dr dθ =

1
π

∫ 2π

0

(
1
4r

4 − 2
3r

3 cos θ − 2
3r

3 sin θ + r2
) ∣∣∣1

0
dθ = 1

π

∫ 2π

0

(
5
4 − 2

3 cos θ − 2
3 sin θ

)
dθ =

1
π

(
5
4θ − 2

3 sin θ +
2
3 cos θ

) ∣∣∣θ=2π

θ=0
= 5

2 .

13.3.48 f = 1
area of R

∫∫
R

f (r, θ) dA = 1
12π

∫ 2π

0

∫ 4

2
1
r2 r dr dθ = 1

12π

∫ 2π

0

∫ 4

2
1
r dr dθ = 1

12π

∫ 2π

0
(ln |r|)

∣∣∣4
2
dθ =

1
12π

∫ 2π

0
(ln 4− ln 2) dθ = ln 2

6 .

13.3.49

a. False.
∫∫
R

(
x2 + y2

)
dA =

∫ 2π

0

∫ 1

0

(
r2
)
rdr dθ.

b. True. The distance from every point on a hemisphere with radius 2 to the origin is 2.

c. True.
∫ 1

0

∫√1− y2

0
ex

2+y2

dx dy converts to
∫ π/2

0

∫ r

0
r er

2

dr dθ.

13.3.50
∫ 3

0

∫√
9− x2

0

√
x2 + y2 dy dx =

∫ π/2

0

∫ 3

0

√
r2 r dr dθ =

∫ π/2

0

(
1
3r

3
) ∣∣∣3

0
dθ =

∫ π/2

0
(9) dθ =

(9θ)
∣∣∣θ=π/2

θ=0
= 9π

2 .

13.3.51
∫ 1

−1

∫√
1− x2

−√
1− x2 (x

2 + y2)3/2 dy dxy =
∫ 2π

0

∫ 1

0
(r2)3/2 r dr dθ =

∫ 2π

0

(
1
5r

5
) ∣∣∣1

0
dθ =

∫ 2π

0

(
1
5

)
dθ =(

1
5θ
) ∣∣∣θ=2π

θ=0
= 2π

5 .
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13.3.52
∫ 4

−4

∫√16− y2

0
(16− x2 − y2) dx dy =

∫ π/2

−π/2

∫ 4

0
(16− r2) r dr dθ =

∫ π/2

−π/2

(
8r2 − 1

4r
4
) ∣∣∣4

0
dθ =∫ π/2

−π/2
64 dθ = (64θ)

∣∣∣θ=π/2

θ=−π/2
= 64π.

13.3.53
∫ π/4

0

∫ sec θ

0
r3 dr dθ =

∫ 1

0

∫ x

0
(x2 + y2) dy dx =

∫ 1

0

(
x2y + 1

3y
3
) ∣∣∣x

0
dx =

∫ 1

0

(
4
3x

3
)
dx =

(
1
3x

4
) ∣∣∣1

0
= 1

3 .

13.3.54 Let x = cos θ and y = sin θ. We have
∫ π/4

0

∫ sec θ

0
r2 dr dθ =

∫ π/4

0
(r3/3)

∣∣∣sec θ
0

dθ = 1
3

∫ π/4

0
sec3 θ dθ =

1
6 (sec θ tan θ + ln |sec θ + tan θ|

∣∣∣π/4
0

= 1
6 (
√
2 + ln(

√
2 + 1)).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

13.3.55 Let x = cos θ and y = sin θ. The we have
∫ 2π

0

∫ 2

1
r2 dr dθ =

∫ 2π

0
(r3/3)

∣∣∣2
1
dθ = 7

3 · 2π = 14π
3 .
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13.3.56
∫∫
R

x−y
x2+y2+1 dA =

∫ 2π

0

∫ 1

0
r cos θ−r sin θ

r2+1 r dr dθ =
∫ 2π

0

∫ 1

0
r2 (cos θ−sin θ)

r2+1 dr dθ =(∫ 2π

0
(cos θ − sin θ)

(∫ 1

0

(
1− 1

r2+1

)
dr
)
dθ
)
=
∫ 2π

0
(cos θ − sin θ)

((
r − tan−1r

) ∣∣∣1
0

)
dθ =∫ 2π

0
(cos θ − sin θ)

(
1− tan−1 (1)

)
dθ =

(
1− π

4

) ∫ 2π

0
(cos θ − sin θ) dθ =

(
1− π

4

)
(sin θ + cos θ)

∣∣∣2π
θ=0

dθ =(
1− π

4

) · 0 = 0

13.3.57
∫∫
R

1

4+
√

x2+y2
dA =

∫ 3π/2

π/2

∫ 2

0
1

4+r r dr dθ =
∫ 3π/2

π/2

∫ 2

0

(
1− 4

r+4

)
dr dθ =∫ 3π/2

π/2
(r − 4 ln |r + 4|)

∣∣∣2
0
dθ = 2

∫ 3π/2

π/2

(
1− 2 ln

(
3
2

))
dθ = 2

(
θ
(
1− 2 ln

(
3
2

))) ∣∣∣θ=3π/2

θ=π/2
= 2π

(
1− 2 ln

(
3
2

))
.

13.3.58 For r = 2a cos θ: A =
∫∫
R

1 dA =
∫ π

0

∫ 2a cos θ

0
r dr dθ =

∫ π

0

(
1
2r

2
) ∣∣∣2a cos θ

0
dθ =

∫ π

0
2a2 cos2 θ dθ.

=
∫ π

0
a2 (1 + cos 2θ) dθ = a2

(
θ + 1

2 sin 2θ
) ∣∣∣θ=π

θ=0
= πa2.

For r = 2a sin θ: A =
∫∫
R

1 dA =
∫ π

0

∫ 2a sin θ

0
r dr dθ =

∫ π

0

(
1
2r

2
) ∣∣∣2a sin θ

0
dθ =

∫ π

0
2a2 sin2 θ dθ

=
∫ π

0
a2 (1− cos 2θ) dθ = a2

(
θ − 1

2 sin 2θ
) ∣∣∣θ=π

θ=0
= πa2.
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13.3.59 Paraboloid: V =
∫∫
R

(
4− (x2 + y2)

)
dA =

∫ 2π

0

∫ 2

0

(
4− r2

)
r dr dθ =

∫ 2π

0

∫ 2

0
(4r − r3) dr dθ =∫ 2π

0

(
2r2 − 1

4r
4
) ∣∣∣2

0
dθ =

∫ 2π

0
4 dθ = 8π.

Cone: V =
∫∫
R

(4−
√

x2 + y2) dA =
∫ 2π

0

∫ 4

0
(4r − r2) dr dθ =

∫ 2π

0

(
2r2 − r3/3

) ∣∣∣4
0
dθ =

∫ 2π

0
32
3 dθ = 64π

3 .

Hyperboloid: V =
∫∫
R

(
5−
√

1 + x2 + y2
)
dA =

∫ 2π

0

∫√
24

0

(
5−√

1 + r2
)
r dr dθ =

∫ 2π

0

∫√
24

0

(
5r − r

√
1 + r2

)
dr dθ =

∫ 2π

0

(
5r2/2− 1

3

(
1 + r2

)3/2) ∣∣∣√24

0
dθ =

∫ 2π

0
56
3 dθ = 112π

3 .

The bowl that holds the most water is the hyperboloid.

13.3.60 Paraboloid: V =
∫ 2π

0

∫√
h

0

(
r2
)
r dr dθ =

∫ 2π

0

∫√
h

0
r3 dr dθ =

∫ 2π

0

(
1
4r

4
) ∣∣∣√h

0
dθ =

∫ 2π

0
h2

4 dθ = πh2

2 .

Setting this equal to 176π
3 and solving gives h =

√
352
3 ≈ 10.83 units.

Cone: V =
∫ 2π

0

∫ h

0
r · r dr dθ =

∫ 2π

0

∫ h

0
r2 dr dθ =

∫ 2π

0

(
1
3r

3
) ∣∣∣h

0
dθ =

∫ 2π

0
h3

3 dθ = 2πh3

3 . Setting this equal

to 176π
3 and solving gives h = 3

√
88 ≈ 4.45 units.

13.3.61

a. z ≥ 0 implies that x2 − y2 ≥ 0, which in turn implies that x2 ≥ y2. Thus x ≥ |y| or x ≤ − |y| so
R =

{
(r, θ) |−π

4 ≤ θ ≤ π
4 or 3π

4 ≤ θ ≤ 5π
4

}
.

b. V =
∫∫
R

(
x2 − y2

)
dA =

∫ π/4

−π/4

∫ a

0

(
r2 cos2 θ − r2 sin2 θ

)
r dr dθ =

∫ π/4

−π/4

∫ a

0

(
cos2 θ − sin2 θ

)
r3 dr dθ

=
∫ π/4

−π/4

(
cos2 θ − sin2 θ

) (
1
4r

4
) ∣∣∣a

0
dθ =

(
1
4a

4
) ∫ π/4

−π/4
cos 2θ dθ =

(
1
4a

4
) (

1
2 sin 2θ

) ∣∣∣θ=π/4

θ=−π/4
= a4

4 .

13.3.62

a. V =
∫∫
R

√
16− x2 − y2 dA =

∫ π/4

0

∫ 4

0

√
16− r2 r dr dθ =

∫ π/4

0

(
− 1

3

(
16− r2

)3/2) ∣∣∣4
0
dθ =

∫ π/4

0
64
3 dθ

= 16π
3 . Because this slice is 1

8 of the hemispherical cake, the formula for the volume of a sphere can be
used to confirm that the volume of the slice is V = 1

8 · 1
2 · 4

3π · 43 = 16π
3 .

b. V =
∫∫
R

√
16− x2 − y2 dA =

∫ φ

0

∫ 4

0

√
16− r2 r dr dθ =

∫ φ

0

(
− 1

3

(
16− r2

)3/2) ∣∣∣4
0
dθ =

∫ φ

0
64
3 dθ = 64φ

3 .

By geometry, this slice is φ
2π of 1

2 of a complete sphere of radius 4, thus V = φ
2π

(
4
3π 43

)
= 64φ

3 .

13.3.63
∫ π/2

0

∫∞
1

cos θ
r3 r drdθ = limb→∞

∫ π/2

0

∫ b

1
cos θ
r2 dr dθ = limb→∞

∫ π/2

0

(− cos θ
r

) ∣∣∣b
1
dθ =

limb→∞
∫ π/2

0
cos θ

(
1− 1

b

)
dθ = limb→∞

(
sin θ

(
1− 1

b

)) ∣∣∣θ=π/2

θ=0
= limb→∞

(
1− 1

b

)
= 1.

13.3.64
∫∫
R

dA
(x2+y2)5/2

=
∫ 2π

0

∫∞
1

1
(r2)5/2

r dr dθ = limb→∞
∫ 2π

0

∫ b

1
1
r4 dr dθ = limb→∞

∫ 2π

0

(− 1
3r3

) ∣∣∣b
1
dθ =

limb→∞
∫ 2π

0
1
3

(
1− 1

b3

)
dθ = limb→∞

(
1
3 θ
(
1− 1

b3

)) ∣∣∣θ=2π

θ=0
= limb→∞ 2π

3

(
1− 1

b3

)
= 2π

3 .

13.3.65
∫∫
R

e−x2−y2

dA =
∫ π/2

0

∫∞
0

e−r2 r dr dθ =
∫ π/2

0

(
limb→∞

∫ b

0
e−r2 r dr

)
dθ =∫ π/2

0

(
limb→∞

(
− 1

2e
−r2
) ∣∣∣b

0

)
dθ =

∫ π/2

0

(
limb→∞ 1

2

(
1− e−b2

))
dθ =

∫ π/2

0

(
1
2

)
dθ = π

4 .

13.3.66
∫∫
R

1
(1+x2+y2)2

dA =
∫ π/2

0

∫∞
0

1
(1+r2)2

r dr dθ =
∫ π/2

0

(
limb→∞

∫ b

0
r

(1+r2)2
dr
)
dθ =∫ π/2

0

(
limb→∞

(
− 1

2(1+r2)

) ∣∣∣b
0

)
dθ =

∫ π/2

0

(
limb→∞ 1

2

(
1− 1

1+b2

))
dθ =

∫ π/2

0
( 12 ) dθ = π

4 .
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13.3.67

a. A =
∫∫
R

1 dA =
∫ 2π

0

∫ 2+cos θ

0
r dr dθ =

∫ 2π

0

(
1
2r

2
) ∣∣∣2+cos θ

0
dθ = 1

2

∫ 2π

0
(2 + cos θ)

2
dθ =

1
2

∫ 2π

0

(
4 + 4 cos θ + cos2 θ

)
dθ = 1

2

(
4θ + 4 sin θ + 1

2θ +
1
4 sin 2θ

) ∣∣∣θ=2π

θ=0
= 9π

2 .

b. When r = 0, we have cos θ = − 1
2 . The outer loop is sketched for − 2π

3 ≤ θ ≤ 2π
3 and the inner loop is

sketched for 2π
3 ≤ θ ≤ 4π

3 .

Thus,

A =

∫∫
R

1 dA =

∫ 2π/3

−2π/3

∫ 1+2 cos θ

0

r dr dθ −
∫ 4π/3

2π/3

∫ 1+2 cos θ

0

r dr dθ

=
1

2

∫ 2π/3

−2π/3

(1 + 2 cos θ)
2
dθ − 1

2

∫ 4π/3

2π/3

(1 + 2 cos θ)
2
dθ

=
1

2

∫ 2π/3

−2π/3

(
1 + 4 cos θ + 4 cos2 θ

)
dθ − 1

2

∫ 4π/3

2π/3

(
1 + 4 cos θ + 4 cos2 θ

)
dθ

=
1

2

∫ 2π/3

−2π/3

(3 + 4 cos θ − 2 cos 2θ) dθ − 1

2

∫ 4π/3

2π/3

(3 + 4 cos θ − 2 cos 2θ) dθ

=
1

2
(3θ + 4 sin θ + sin 2θ)

∣∣∣2π/3
−2π/3

− 1

2
(3θ + 4 sin θ + sin 2θ)

∣∣∣4π/3
2π/3

=
1

2

(
2π +

3
√
3

2

)
− 1

2

(
−2π − 3

√
3

2

)
−
(
1

2

(
4π − 3

√
3

2

)
− 1

2

(
2π +

3
√
3

2

))
= π + 3

√
3

c. A =
∫∫
R

1 dA =
∫ 4π/3

2π/3

∫ 1+2 cos θ

0
r dr dθ =

∫ 4π/3

2π/3

(
1
2r

2
) ∣∣∣1+2 cos θ

0
dθ = 1

2

∫ 4π/3

2π/3

(
1 + 4 cos θ + 4 cos2 θ

)
dθ

= 1
2 (3θ + 4 sin θ + sin 2θ)

∣∣∣θ=4π/3

θ=2π/3
= 1

2

(
2π − 4

√
3 +

√
3
)
= π − 3

√
3

2 .

13.3.68 The mass m =
∫∫
R

ρ (r, θ) dA where ρ (r, θ) estimates the density at each point on the plate.

Approximate m =
∫∫
R

ρ (r, θ) dA ≈ ∑m
i=1

∑n
j=1 ρ (ri, θj) · ri�r�θ. Let �r = 1, �θ = π

4 , then sum the

upper right (clockwise outermost) corner for each subsection of region. We have (2.0 + 2.1 + 2.2 + 2.3) · (1) ·
(1) · (π4 )+ (2.5 + 2.7 + 2.9 + 3.1) · (2) · (1) · (π4 ) (3.2 + 3.4 + 3.5 + 3.6) · (2) · (1) · (π4 ) ≈ 56.6 grams.

13.3.69 m =
∫∫
R

ρ (r, θ) dA =
∫ π

0

∫ 4

1
(4 + r sin θ) r dr dθ =

∫ π

0

(
2r2 + 1

3r
3 sin θ

) ∣∣∣4
1
dθ =∫ π

0
(30 + 21 sin θ) dθ = (30θ − 21 cos θ)

∣∣∣θ=π

θ=0
= 30π + 42

13.3.70 R = {(r, θ) |0 ≤ r ≤ g (θ) , α ≤ θ ≤ β}, A =
∫∫
R

1 dA =
∫ β

α

∫ g(θ)

0
r dr dθ =

∫ β

α

(
1
2r

2
) ∣∣∣g(θ)

0
dθ. Thus

A = 1
2

∫ β

α
(g (θ))

2
dθ.

13.3.71

a.
∫∞
−∞
∫∞
−∞ e−x2−y2

dx dy =
∫ 2π

0

∫∞
0

e−r2 r dr dθ =∫ 2π

0

(
limb→∞

∫ b

0
e−r2 r dr

)
dθ =

∫ 2π

0

(
limb→∞

(
− 1

2e
−r2
) ∣∣∣b

0

)
dθ =

∫ 2π

0

(
limb→∞ 1

2

(
1− e−b2

))
dθ

=
∫ 2π

0
1
2 dθ = π.
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Thus
∫∞
−∞
∫∞
−∞ e−x2−y2

dx dy = π
∫∞
−∞
∫∞
−∞ e−x2−y2

dx dy =
∫∞
−∞
∫∞
−∞
(
e−x2 · e−y2

)
dx dy =(∫∞

−∞ e−x2

dx
)
·
(∫∞

−∞ e−y2

dy
)

=
(∫∞

−∞ e−x2

dx
)2

= π. Thus
∫∞
−∞ e−x2

dx =
√
π. Note that the

possibility

∫ ∞

−∞
e−x2

dx = −√
π is rejected because the integrand is everywhere positive and the integral

of a positive function is positive.

b. i.
∫∞
0

e−x2

dx = 1
2

∫∞
−∞ e−x2

dx =
√
π
2 .

ii. Let u = −x2. Then −du
2 = x dx, and the integral becomes 1

2

∫ 0

−∞ eudu =
(
1
2

)
limb→−∞

∫ 0

b
eudu =(

1
2

)
limb→−∞ (eu)

∣∣∣u=0

u=b
=
(
1
2

)
limb→−∞

(
1− eb

)
= 1

2 (1− 0) = 1
2 .

iii.
∫∞
0

x2 e−x2

dx = limb→∞
∫ b

0
x2 e−x2

dx By parts: let u = x, dv = xe−x2

, then du = dx, v =

− 1
2e

−x2

. We have limb→∞

(
− 1

2x e
−x2
∣∣∣b
u=0

+ 1
2

∫ b

0
e−x2

dx

)
= 0 + 1

2 ·
√
π
2 =

√
π
4 from (i).

13.3.72

a.
∫∫
R

k
(x2+y2)p dA =

∫ 2π

0

∫∞
1

k
(r2)p r dr dθ =

∫ 2π

0

(
limb→∞

∫ b

1
k r
r2p dr

)
dθ =

∫ 2π

0

(
limb→∞

∫ b

1
k

r2p−1 dr
)
dθ

which converges if 2p− 1 > 1 or p > 1.

b.
∫∫
R

k
(x2+y2)p dA =

∫ 2π

0

∫ 1

0
k

(r2)p r dr dθ =
∫ 2π

0

(
limb→0

∫ 1

b
k r
r2p dr

)
dθ =

∫ 2π

0

(
limb→0

∫ 1

b
k

r2p−1 dr
)
dθ which

converges if 2p− 1 ≤ 1 or p < 1.

13.3.73

a.
∫ 1

0

∫ 1

0
1

(1+x2+y2)2
dy dx =

∫ π/4

0

∫ sec θ

0
1

(1+r2)2
r dr dθ +

∫ π/2

π/4

∫ csc θ

0
1

(1+r2)2
r dr dθ = 1

2

∫ π/4

0
sec2 θ

1+sec2 θdθ +

1
2

∫ π/2

π/4
csc2 θ

1+csc2 θ dθ = 1
2

∫ π/4

0
sec2 θ

2+tan2 θ dθ +
1
2

∫ π/2

π/4
csc2 θ

2+cot2 θdθ = 1
2

∫ 1

0
du

2+u2 + 1
2

∫ 1

0
du

2+u2 =
∫ 1

0
du

2+u2 =

1√
2
tan−1

(
u√
2

) ∣∣∣u=1

u=0
= 1√

2
tan−1

(
1√
2

)
.

b.
∫ 1

0

∫ a

0
1

(1+x2+y2)2
dy dx =

∫ tan−1(a)

0

∫ sec θ

0
1

(1+r2)2
r dr dθ +

∫ π/2

tan−1(a)

∫ a csc θ

0
1

(1+r2)2
r dr dθ =

1
2

∫ tan−1(a)

0
sec2 θ

1+sec2 θdθ +
1
2

∫ π/2

tan−1(a)
a2csc2 θ

1+a2csc2 θdθ = 1
2

∫ tan−1(a)

0
sec2 θ

2+tan2 θdθ +
1
2

∫ π/2

tan−1(a)
csc2 θ(

1+a2

a2

)
+cot2 θ

dθ =

1
2

∫ 1

0
du

2+u2+
1
2

∫ 1/a

0
du(

1+a2

a2

)
+u2

= 1
2
√
2
tan−1

(
u√
2

) ∣∣∣u=1

u=0
+ a

2
√
1+a2

tan−1
(

a−u√
1+a2

) ∣∣∣u=1/a

u=0
= 1

2
√
2
tan−1

(
a√
2

)
+ a

2
√
1+a2

tan−1
(

1√
1+a2

)
.

c. lima→∞
∫ 1

0

∫ a

0
1

(1+x2+y2)2
dy dx = lima→∞

[
1

2
√
2
tan−1

(
a√
2

)
+ a

2
√
1+a2

tan−1
(

1√
1+a2

)]
=

1
2
√
2

(
π
2

)
+ 1

2 (1) (0) =
π
√
2

8 .

13.3.74

a. A =
∫∫
R

1 dA =
∫ 2π

0

∫ a(1−e2)
1+e cos θ

0 r dr dθ.

b. A =
∫ 2π

0

∫ a(1−e2)
1+e cos θ

0 r dr dθ =
∫ 2π

0

(
1
2r

2
) ∣∣∣ a(1−e2)

1+e cos θ

0
dθ = 1

2

∫ 2π

0
a2(1−e2)2

(1+e cos θ)2
dθ =

a2
(
1− e2

)2 ∫ π

0
1

(1+e cos θ)2
dθ.

If t = tan
(
θ
2

)
then cos θ = 1−t2

1+t2 and dθ = 2
1+t2 dt for −π < θ < π. Applying this substitution we ob-

tain A = 2
(
a2
(
1− e2

)2) ∫∞
0

1+t2

(1+e+t2−e t2)2
dt = 2

(
a2
(
1− e2

)2)
limb→∞

∫ b

0
1+t2

(1+e+t2−e t2)2
dt. Apply

partial fractions to separate the rational expression:
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A = 2a2
(
1− e2

)2
limb→∞

∫ b

0

[ 2e
e−1

(1+e+t2−et2)2
−

1
e−1

1+e+t2−e t2

]
dt =

4a2e(1−e2)
2

e−1 limb→∞
∫ b

0
1

(1+e+t2−e t2)2
dt

− 2a2(1−e2)
2

e−1 limb→∞
∫ b

0
1

1+e+t2−e t2 dt. To evaluate these integrals, use a trigonometric substitution with

t =
√

1+e
1−e tan θ. The details are omitted. The first integral is

limb→∞
∫ b

0
1

(1+e+t2−e t2)2
dt = limb→∞

[
t

2(1+e)(1+e+t2−e t2) +
1

2(1+e)
√
1−e2

tan−1
(
t
√

1−e
1+e

) ∣∣∣t=b

t=0

]
=

limb→∞
[

t
2(1+e)(1+e+b2−e b2) +

1
2(1+e)

√
1−e2

tan−1
(
b
√

1−e
1+e

)]
= π

4(1+e)
√
1−e2

. The second integral is

limb→∞
∫ b

0
1

1+e+t2−e t2 dt = limb→∞

[
1√

1−e2
tan−1

(
t
√

1−e
1+e

) ∣∣∣t=b

t=0

]
= limb→∞

[
1√

1−e2
tan−1

(
b
√

1−e
1+e

)]
=

π
2
√
1−e2

. Thus, A =
4a2e(1−e2)

2

e−1 limb→∞
∫ b

0
1

(1+e+t2−e t2)2
dt − 2a2(1−e2)

2

e−1 limb→∞
∫ b

0
1

1+e+t2−e t2 dt =

4a2e(1−e2)
2

e−1 · π
4(1+e)

√
1−e2

− 2a2(1−e2)
2

e−1 · π
2
√
1−e2

= −πa2e(1−e2)
2

(1−e2)3/2
+

πa2(1−e2)
2

(1−e)(1−e2)1/2
=

−πa2e(1−e2)
2
+πa2(1−e2)

2
(1+e)

(1−e2)3/2
=

πa2(1−e2)
2
(−e+1+e)

(1−e2)3/2
= πa2

(
1− e2

)1/2
= πa

(
a2
(
1− e2

))1/2
= πab.

13.4 Triple Integrals

13.4.1

13.4.2
∫∫∫
D

f (x, y, z) dV =
∫ 4

0

∫ 6

0

∫ 3

0
f (x, y, z) dx dy dz.

13.4.3
∫∫∫
D

f (x, y, z) dV =
∫ 9

−9

∫√
81−x2

−√
81−x2

∫√81−x2−y2

−
√

81−x2−y2
f (x, y, z) dz dy dx.

13.4.4

13.4.5
∫ 1

0

∫√
1−z2

0

∫√
1−x2−z2

0
f (x, y, z) dy dx dz.

13.4.6 f = 1
volume of D

∫∫∫
D

f (x, y, z) dV = 1
volume of D

∫ 3

−3

∫√
9−x2

−√
9−x2

∫ 9−x2−y2

0
xyz dz dy dx.

13.4.7
∫ 2

−2

∫ 6

3

∫ 2

0
dx dy dz =

∫ 2

−2

∫ 6

3
(x)
∣∣∣2
0
dy dz =

∫ 2

−2

∫ 6

3
2 dy dz =

∫ 2

−2
(2y)

∣∣∣6
3
dz =

∫ 2

−2
6 dz =

(6z)
∣∣∣2
−2

= 24.
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13.4.8
∫ 1

−1

∫ 2

−1

∫ 1

0
6xyz dy dx dz =

∫ 1

−1

∫ 2

−1

(
3xy2z

) ∣∣∣1
0
dx dz =

∫ 1

−1

∫ 2

−1
3xz dx dz =

∫ 1

−1

(
3
2x

2z
) ∣∣∣2

−1
dz =∫ 1

−1
9
2z dz =

(
9
4z

2
) ∣∣∣1

−1
= 0.

13.4.9
∫ 2

−2

∫ 2

1

∫ e

1
xy2

z dz dx dy =
∫ 2

−2

∫ 2

1
xy2
(
xy2 ln |z|

∣∣∣e
1

)
dx dy =

∫ 2

−2

∫ 2

1
xy2 dx dy =

∫ 2

−2

(
1
2x

2y2
) ∣∣∣2

1
dy

=
∫ 2

−2
3
2y

2 dy =
(
1
2y

3
) ∣∣∣2

−2
= 8.

13.4.10
∫ ln 4

0

∫ ln 3

0

∫ ln 2

0
e−x+y+z dx dy dz =

∫ ln 4

0

∫ ln 3

0
−e−x+y+z

∣∣∣ln 2

0
dy dz =∫ ln 4

0

∫ ln 3

0
((−1/2)(ey+z) + ey+z) dy dz = 1

2

∫ ln 4

0

∫ ln 3

0
ey+z dy dz = 1

2

∫ ln 4

0
ey+z

∣∣∣ln 3

0
dz = 1

2

∫ ln 4

0
(3ez − ez) dz =∫ ln 4

0
ez dz = 4− 1 = 3.

13.4.11
∫ π/2

0

∫ 1

0

∫ π/2

0
sinπx · cos y · sin 2z dy dx dz =

∫ π/2

0

∫ 1

0
sinπx sin 2z

(
(sin y)

∣∣∣π/2
0

)
dx dz =∫ π/2

0

∫ 1

0
sinπx sin 2z (1− 0) dx dz =

∫ π/2

0

∫ 1

0
sinπx sin 2z dx dz =

∫ π/2

0
sin 2z

((− 1
π cosπx

) ∣∣∣1
0

)
dz =∫ π/2

0
sin 2z

(
1
π + 1

π

)
dz = 2

π

∫ π/2

0
sin 2z dz = 2

π

(− 1
2 cos 2z

) ∣∣∣π/2
0

= 2
π

(
1
2 + 1

2

)
= 2

π .

13.4.12
∫ 2

0

∫ 2

1

∫ 1

0
yz ex dx dz dy =

∫ 2

0

∫ 2

1
yz

(
(ex)

∣∣∣1
0

)
dz dy =

∫ 2

0

∫ 2

1
yz (e− 1) dz dy =

(e− 1)
∫ 2

0
y
(
1
2z

2
) ∣∣∣2

1
dy = (e− 1)

∫ 2

0
3
2y dy = 3(e−1)

2

(
1
2y

2
) ∣∣∣2

0
= 3 (e− 1).

13.4.13
∫∫∫
D

(xy + xz + yz) dV =
∫ 1

−1

∫ 2

−2

∫ 3

−3
(xy + xz + yz) dz dy dx =∫ 1

−1

∫ 2

−2

(
xyz + 1

2xz
2 + 1

2yz
2
) ∣∣∣3

−3
dy dx =

∫ 1

−1

∫ 2

−2
(6xy) dy dx =

∫ 1

−1

(
3xy2

) ∣∣∣2
−2

dx =
∫ 1

−1
(0) dx = 0.

13.4.14
∫∫∫
D

xyze−x2−y2

dV =
∫√

ln 2

0

∫√
ln 4

0

∫ 1

0
xyze−x2−y2

dz dy dx =
∫√

ln 2

0

∫√
ln 4

0
1
2xyz

2e−x2−y2
∣∣∣1
0
dy dx

= 1
2

∫√
ln 2

0

∫√
ln 4

0
xye−x2−y2

dy dx = 1
2

∫√
ln 2

0

∫√
ln 4

0
xye−x2

e−y2

dy dx

= 1
2

∫√
ln 2

0
xe−x2

(
− 1

2e
−y2
) ∣∣∣√ln 4

0
dx = 1

2

∫√
ln 2

0
xe−x2 ( 1

2

(
1− 1

4

))
dx = 3

16

∫√
ln 2

0
xe−x2

dx =

3
16

((
− 1

2e
−x2
) ∣∣∣√ln 2

0

)
= 3

16

(
1
2

(
1− 1

2

))
= 3

64 .

13.4.15 V =
∫∫∫
D

1 dV =
∫ 6

0

∫ 4−2x/3

0

∫ 2−x/3−y/2

0
1 dz dy dx =

∫ 6

0

∫ 4−2x/3

0
(z)
∣∣∣2−x/3−y/2

0
dy dx =∫ 6

0

∫ 4−2x/3

0

(
2− 1

3x− 1
2y
)
dy dx =

∫ 6

0

(
2y − 1

3xy − 1
4y

2
) ∣∣∣ 4−2x/3

0
dx =∫ 6

0

(
1
9x

2 − 4
3x+ 4

)
dx =

(
1
27x

3 − 2
3x

2 + 4x
) ∣∣∣6

0
= 8.

13.4.16 V =
∫∫∫
D

1 dV =
∫ π

0

∫ π

x

∫ sin y

0
1 dz dy dx =

∫ π

0

∫ π

x
(z)
∣∣∣sin y

0
dy dx =

∫ π

0

∫ π

x
(sin y) dy dx =∫ π

0
(− cos y)

∣∣∣π
x
dx =

∫ π

0
(1 + cosx) dx = (x+ sinx)

∣∣∣π
0
= π.

13.4.17 V =
∫∫∫
D

1 dV =
∫ 2

−2

∫√
4−x2

−√
4−x2

∫√8−x2−y2√
x2 + y2

1 dz dy dx =
∫ 2

−2

∫√
4−x2

−√
4−x2 (z)

∣∣∣√8−x2−y2

√
x2 + y2

dy dx =∫ 2

−2

∫√
4−x2

−√
4−x2

(√
8− x2 − y2 −

√
x2 + y2

)
dy dx. Converting to polar coordinates gives
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∫ 2π

0

∫ 2

0

(√
8− r2 −

√
r2
)
r drdθ =

∫ 2π

0

∫ 2

0

(
r
√
8− r2 − r2

)
dr dθ =

∫ 2π

0

(
− 1

3

(
8− r2

)3/2 − 1
3r

3
) ∣∣∣2

0
dθ =∫ 2π

0

(
−16+16

√
2

3

)
dθ = 32π

3

(√
2− 1

)
.

13.4.18 V =
∫∫∫
D

1 dV =
∫ 1/2

0

∫ 8

0

∫ 2−4x

0
1 dz dy dx =

∫ 1/2

0

∫ 8

0
(z)
∣∣∣2−4x

0
dy dx =

∫ 1/2

0

∫ 8

0
(2− 4x) dy dx =∫ 1/2

0
((2− 4x) y)

∣∣∣8
0
dx =

∫ 1/2

0
(16− 32x) dx =

(
16x− 16x2

) ∣∣∣1/2
0

= 4.

13.4.19 V =
∫∫∫
D

1 dV =
∫ 2

−2

∫ 0

−√
4−x2

∫ −y

0
1 dz dy dx =

∫ 2

−2

∫ 0

−√
4−x2 (z)

∣∣∣−y

0
dy dx =∫ 2

−2

∫ 0

−√
4−x2 (−y) dy dx =

∫ 2

−2

(− 1
2y

2
) ∣∣∣0

−√
4−x2

dx = 1
2

∫ 2

−2

(
4− x2

)
dx = 1

2

(
4x− 1

3x
3
) ∣∣∣2

−2
= 16

3 .

13.4.20 V =
∫∫∫
D

1 dV =
∫√

3

−√
3

∫ 3

x2

∫ 3−y

0
1 dz dy dx =

∫√
3

−√
3

∫ 3

x2 (z)
∣∣∣3−y

0
dy dx =

∫√
3

−√
3

∫ 3

x2 (3− y) dy dx =

∫√
3

−√
3

(
3y − 1

2y
2
) ∣∣∣3

x2
dx =

∫√
3

−√
3

(
9
2 − 3x2 + 1

2x
4
)
dx =

(
9
2x− x3 + 1

10x
5
) ∣∣∣√3

−√
3
= 24

√
3

5 .

13.4.21 V =
∫∫∫
D

1 dV =
∫ 3

−3

∫√
9−x2

−√
9−x2

∫√19−x2−y2√
1+ x2 + y2

1 dz dy dx =
∫ 3

−3

∫√
9−x2

−√
9−x2 (z)

∣∣∣√19−x2−y2

√
1+ x2 + y2

dy dx =∫ 3

−3

∫√
9−x2

−√
9−x2

(√
19− x2 − y2 −

√
1 + x2 + y2

)
dy dx. Converting to polar coordinates gives∫ 2π

0

∫ 3

0

(√
19− r2 −√

1 + r2
)
r dr dθ =

∫ 2π

0

∫ 3

0

(
r
√
19− r2 − r

√
1 + r2

)
dr dθ =∫ 2π

0

(− 1
3

) ((
19− r2

)3/2
+
(
1 + r2

)3/2) ∣∣∣3
0
dθ =

(− 1
3

) ∫ 2π

0

(
20
√
10− 19

√
19− 1

)
dθ =

1+19
√
19−20

√
10

3

∫ 2π

0
dθ = 2π

3

(
1 + 19

√
19− 20

√
10
)
.

13.4.22 V =
∫∫∫
D

1 dV =
∫ ln 2

0

∫ 1

0

∫ ey

1
1 dz dx dy =

∫ ln 2

0

∫ 1

0
(z)
∣∣∣ey
1

dx dy =
∫ ln 2

0

∫ 1

0
(ey − 1) dx dy =∫ ln 2

0
(ey − 1)x

∣∣∣1
0
dy =

∫ ln 2

0
(ey − 1) dy = (ey − y)

∣∣∣ln 2

0
= 1− ln 2.

13.4.23 V =
∫∫∫
D

1 dV =
∫ 2

−2

∫ 1
2

√
4−x2

− 1
2

√
4−x2

∫ 3−x

x−3
1 dz dy dx =

∫ 2

−2

∫ 1
2

√
4−x2

− 1
2

√
4−x2

(z)
∣∣∣3−x

x−3
dy dx =

∫ 2

−2

∫ 1
2

√
4−x2

− 1
2

√
4−x2

(6− 2x) dy dx =
∫ 2

−2
(6− 2x) y

∣∣∣ 12√4−x2

− 1
2

√
4−x2

dx =
∫ 2

−2

(
6
√
4− x2 − 2x

√
4− x2

)
dx =(

3x
√
4− x2 + 12 sin−1

(
x
2

)
+ 2

3

√
4− x2

) ∣∣∣2
−2

= 12π.

13.4.24 V =
∫∫∫
D

1 dV =
∫ 1

0

∫ 1−z

0

∫ √(1−z)2−y2

1−y−z
1 dx dy dz =

∫ 1

0

∫ 1−z

0
(x)
∣∣∣√(1−z)2−y2

1−y−z
dy dz =∫ 1

0

∫ 1−z

0

(√
(1− z)

2 − y2 − 1 + y + z

)
dy dz =∫ 1

0

(
1
2y

√
(1− z)

2 − y2 + 1
2 (1− z)

2
sin−1

(
y
2

)
+ 1

2y
2 − (1− z) y

) ∣∣∣1−z

0
dz =∫ 1

0

(
1
2 (1− z)

2
sin−1

(
1−z
2

)− 1
2 (1− z)

2
)
dz. After a substitution, we have 1

2

∫ 1

0

(
u2 sin−1

(
u
2

)− u2
)
dz. In-

tegration by parts yields 1
2

(
1
3u

3 sin−1
(
u
2

)
+ 1

9

(
8 + u2

)√
4− u2 − 1

3u
3
) ∣∣∣u=1

u=0
= π

12 − 1
6 .

13.4.25
∫ 1

0

∫√
1−x2

0

∫√
1−x2

0
dz dy dx =

∫ 1

0

∫√
1−x2

0
(z)
∣∣∣√1−x2

0
dy dx =

∫ 1

0

∫√
1−x2

0

√
1− x2 dy dx =∫ 1

0
y
√
1− x2

∣∣∣√1−x2

0
dx =

∫ 1

0

(
1− x2

)
dx =

(
x− 1

3x
3
) ∣∣∣1

0
= 2

3 .
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13.4.26
∫ 1

0

∫√
1−x2

0

∫√1−x2−y2

0
2xz dz dy dx =

∫ 1

0

∫√
1−x2

0

(
xz2
) ∣∣∣√1−x2−y2

0
dy dx =∫ 1

0

∫√
1−x2

0

(
x− x3 − xy2

)
dy dx. Switching the order of integration yields

∫ 1

0

∫√1−y2

0

(
x− x3 − xy2

)
dx dy =∫ 1

0

(
1
2x

2 − 1
4x

4 − 1
2x

2y2
) ∣∣∣√1−y2

0
dy =

∫ 1

0

(
1
4 − 1

2y
2 + 1

4y
4
)
dy =

(
1
4y − 1

6y
3 + 1

20y
5
) ∣∣∣1

0
= 2

15 .

13.4.27
∫ 4

0

∫ 2
√

16−y2

−2
√

16−y2

∫ 16−(x2/4)−y2

0 dz dx dy =
∫ 4

0

∫ 2
√

16−y2

−2
√

16−y2
(z)
∣∣∣16−(x2/4)−y2

0
dx dy =∫ 4

0

∫ 2
√

16−y2

−2
√

16−y2

(
16− x2

4 − y2
)
dx dy =

∫ 4

0

(
16x− 1

12x
3 − xy2

) ∣∣∣2√16−y2

−2
√

16−y2
dy =∫ 4

0

(
64
√

16− y2 − 4
3

(
16− y2

)3/2 − 4y2
√
16− y2

)
dy =

(
32y
√
16− y2 + 512 sin−1

(
y
4

)−
40
3

√
16− y2 + y3

3

√
16− y2 − 128 sin−1

(
y
4

)
+ 8y

√
16− y2 − y3

√
16− y2 − 128 sin−1

(
y
4

))∣∣∣4
0
=(

80y
3

√
16− y2 − 2

3y
2
√
16− y2 + 256 sin−1

(
y
4

)) ∣∣∣4
0
= 128π.

13.4.28
∫ 6

1

∫ 4−2y/3

0

∫ 12−2y−3z

0
1
y dx dz dy =

∫ 6

1

∫ 4−2y/3

0

(
x
y

) ∣∣∣12−2y−3z

0
dz dy =

∫ 6

1

∫ 4−2y/3

0
12−2y−3z

y dz dy =∫ 6

1
1
y

(
(12− 2y) z − 3

2z
2
) ∣∣∣4−2y/3

0
dy =

∫ 6

1
1
y

(
24− 8y + 2

3y
2
)
dy =

∫ 6

1

(
24
y − 8 + 2

3y
)
dy =(

24 ln |y| − 8y + 1
3y

2
) ∣∣∣6

1
= 24 ln 6 + 85

3 .

13.4.29
∫ 3

0

∫√
9−z2

0

∫√
1+x2+z2

0
dy dx dz =

∫ 3

0

∫√
9−z2

0

√
1 + x2 + z2 dz dy (Use polar with x2 + z2 = r2) =∫ π/2

0

∫ 3

0

√
1 + r2 r dr dθ =

∫ π/2

0

(
1
3

(
1 + r2

)3/2) ∣∣∣3
0
dθ =

∫ π/2

0
1
3

(
103/2 − 1

)
dθ = π

6

(
10
√
10− 1

)
.

13.4.30
∫ π

0

∫ π

0

∫ sin x

0
sin y dz dx dy =

∫ π

0

∫ π

0
sinx · sin y dx dy =

∫ π

0
(− cosx · sin y)

∣∣∣π
0
dy =

∫ π

0
2 sin y dy =

(−2 cos y)
∣∣∣π
0
= 4.

13.4.31
∫ ln 8

1

∫√
z

1

∫ ln(2y)

ln y
ex+y2−z dx dy dz =

∫ ln 8

1

∫√
z

1
ex+y2−z

∣∣∣ln(2y)
ln y

dy dz =∫ ln 8

1

∫√
z

1

(
2yey

2−z − yey
2−z
)
dy dz =

∫ ln 8

1

∫√
z

1
yey

2−z dy dz =
∫ ln 8

1

(
1
2 e

y2−z
) ∣∣∣√z

1
dz =

1
2

∫ ln 8

1

(
1− e1−z

)
dz = 1

2

(
z + e1−z

) ∣∣∣ln 8

1
= 1

2

(
ln 8 + e

8 − (1 + 1)
)
= 1

2 ln 8 +
e
16 − 1.

13.4.32
∫ 1

0

∫√
1−x2

0

∫ 2−x

0
4yz dz dy dx =

∫ 1

0

∫√
1−x2

0

(
2yz2

) ∣∣∣2−x

0
dy dx =

∫ 1

0

∫√
1−x2

0
2y (2− x)

2
dy dx =∫ 1

0
y2 (2− x)

2
∣∣∣√1−x2

0
dx =

∫ 1

0

(
1− x2

)
(2− x)

2
dx =

∫ 1

0

(
4− 4x− 3x2 + 4x3 − x4

)
dx =(

4x− 2x2 − x3 + x4 − 1
5x

5
) ∣∣∣1

0
= 9

5 − 0 = 9
5 .

13.4.33
∫ 2

0

∫ 4

0

∫ 4

y2

√
x dz dx dy =

∫ 2

0

∫ 4

0
z
√
x
∣∣∣4
y2

dx dy =
∫ 2

0

∫ 4

0

(
4− y2

)√
x dx dy =∫ 2

0

(
4− y2

) (
2
3x

3/2
) ∣∣∣4

0
dy = 16

3

∫ 2

0

(
4− y2

)
dy = 16

3

(
4y − 1

3y
3
) ∣∣∣ 2

0
= 256

9 .

13.4.34
∫ 1

0

∫ 2−y

y

∫ 2−x−y

0
xy dz dx dy =

∫ 1

0

∫ 2−y

y
(xyz)

∣∣∣2−x−y

0
dx dy =

∫ 1

0

∫ 2−y

y

(
2xy − x2y − xy2

)
dx dy =∫ 1

0

(
x2y − 1

3x
3y − 1

2x
2y2
) ∣∣∣2−y

y
dy =

∫ 1

0

(
(2− y)

2
y − 1

3 (2− y)
3
y − 1

2 (2− y)
2
y2 − y3 + 1

3y
4 + 1

2y
4
)
dy =∫ 1

0

(
4
3y − 2y2 + 2

3y
4
)
dy =

(
2
3y

2 − 2
3y

3 + 2
15y

5
) ∣∣∣1

0
= 2

15 .
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13.4.35 V =
∫ 1

0

∫ 1−z2

0

∫ 1−z

0
1 dy dx dz =

∫ 1

0

∫ 1−z2

0
y
∣∣∣1−z

0
dx dz =

∫ 1

0

∫ 1−z2

0
(1− z) dx dz =

∫ 1

0
(1− z)x

∣∣∣1−z2

0
=∫ 1

0
(1− z)(1− z2) dz =

∫ 1

0
(1− z − z2 + z3) dz =

(
z − z2

2 − z3

3 + z4

4

) ∣∣∣1
0
= 5

12 .

13.4.36 V =
∫ 1

0

∫ 2

0

∫ e−z

0
1 dy dx dz =

∫ 1

0

∫ 2

0
y
∣∣∣e−z

0
dx dz =

∫ 1

0

∫ 2

0
e−z dx dz =

∫ 1

0
2e−z dz = (−2e−z)

∣∣∣1
0
= 2− 2

e .

13.4.37 V =
∫ 2

0

∫ 4

0

∫ z+1

z
1 dy dz dx =

∫ 2

0

∫ 4

0
y
∣∣∣z+1

z
dz dx =

∫ 2

0

∫ 4

0
1 dz dx =

∫ 2

0
4 dx = 8.

13.4.38 V =
∫ 1

0

∫ 2−z−z2

0

∫ 2−x−z

z2 1 dy dx dz =
∫ 1

0

∫ 2−z−z2

0
y
∣∣∣2−x−z

z2
dx dz =

∫ 1

0

∫ 2−z−z2

0
(2−x−z−z2) dx dz =∫ 1

0

(
2x− x2

2 − zx− z2x
) ∣∣∣2−z−z2

0
dz =

∫ 1

0

(
z4

2 + z3 − 3z2

2 − 2z + 2
)
dz =

(
z5

10 + z4

4 − z3

2 − z2 + 2z
) ∣∣∣1

0
= 17

20 .

13.4.39 We can rewrite
∫ 5

0

∫ 0

−1

∫ 4x+4

0
dy dx dz as

∫ 4

0

∫ 0

(y−4)/4

∫ 5

0
dz dx dy. This is then evaluated as∫ 4

0

∫ 0

(y−4)/4
5 dx dy =

∫ 4

0
− 5

4 (y − 4) dy = − 5
4

(
1
2y

2 − 4y
) ∣∣∣4

0
= 10.

13.4.40 We can rewrite
∫ 1

0

∫ 2

−2

∫√4−y2

0
dz dy dx as

∫ 1

0

∫ 2

0

∫√
4−z2

−√
4−z2 dy dz dx. This can then be evaluated as∫ 1

0

∫ 2

0
2
√
4− z2 dz dx =

∫ 1

0

(
z
√
4− z2 + 4 sin−1

(
z
2

)) ∣∣∣2
0
dx =

∫ 1

0
(2π) dx = (2πx)

∣∣∣1
0
= 2π.

13.4.41 We can rewrite
∫ 1

0

∫√
1−x2

0

∫√
1−x2

0
dy dz dx as

∫ 1

0

∫√
1−x2

0

∫√
1−x2

0
dz dy dx. This is then evaluated

as
∫ 1

0

∫√
1−x2

0

√
1− x2 dy dx =

∫ 1

0

(√
1− x2

) (√
1− x2

)
dx =

∫ 1

0

(
1− x2

)
dx =

(
x− 1

3x
3
) ∣∣∣1

0
= 2

3 .

13.4.42 We can rewrite
∫ 4

0

∫√
16−x2

0

∫√16−x2−y2

0
dy dz dx as

∫ 4

0

∫√
16−z2

0

∫√16−y2−z2

0
dx dy dz. This can then

be evaluated as
∫ 4

0

∫√
16−z2

0

√
16− y2 − z2 dy dz. Converting to polar coordinates gives∫ π/2

0

∫ 4

0

√
16− r2 r dr dθ =

∫ π/2

0

(
− 1

3

(
16− r2

)3/2) ∣∣∣4
0
dθ =

∫ π/2

0
64
3 dθ = 32π

3 .

13.4.43 The average value is 1
volume of D

∫∫∫
D

T (x, y, z) dV . This can be written as

1
ln 2·ln 4·ln 8

∫ ln 2

0

∫ ln 4

0

∫ ln 8

0
128 e−x−y−z dz dy dx = 128

6(ln 2)3

∫ ln 2

0

∫ ln 4

0

∫ ln 8

0
e−xe−ye−z dz dy dx =

64
3(ln 2)3

∫ ln 2

0

∫ ln 4

0
e−xe−y (−e−z)

∣∣∣ln 8

0
dy dx = 64

3(ln 2)3

∫ ln 2

0

∫ ln 4

0
e−xe−y

(
1− 1

8

)
dy dx =

56
3(ln 2)3

∫ ln 2

0

∫ ln 4

0
e−xe−y dy dx = 56

3(ln 2)3

∫ ln 2

0
e−x (−e−y)

∣∣∣ln 4

0
dx = 56

3(ln 2)3

∫ ln 2

0
e−x

(
1− 1

4

)
dx =

14
(ln 2)3

∫ ln 2

0
e−x dx = 14

(ln 2)3
(−e−x)

∣∣∣ln 2

0
= 14

(ln 2)3

(
1− 1

2

)
= 7

(ln 2)3
.

13.4.44 The average value is given by 1
volume of D

∫∫
D

∫
f (x, y, z) dV which can be written

1
1
2 (

4
3π·43)

∫ 4

−4

∫√
16−x2

−√
16−x2

∫√16−x2−y2

0
6xyz dz dy dx = 9

64π

∫ 4

−4

∫√
16−x2

−√
16−x2

(
1
2xyz

2
) ∣∣∣√16−x2−y2

0
dy dx =

9
128π

∫ 4

−4

∫√
16−x2

−√
16−x2 xy

(
16− x2 − y2

)
dy dx = 9

128π

∫ 4

−4

(
8xy2 − x3y2

2 − xy4

4

) ∣∣∣√16−x2

−√
16−x2

dx =

9
128π

∫ 4

−4

(
8x
(
16− x2

)− x3

2

(
16− x2

)− x
4

(
16− x2

)2 − 8x
(
16− x2

)
+ x3

2

(
16− x2

)
+

x
4

(
16− x2

)2)
dx = 9

128π

∫ 4

−4
0 dx = 0.

13.4.45 The average value is given by 1
volume of D

∫∫∫
D

f (x, y, z) dV . This can be written as

1
(π·22·2)

∫ 2

−2

∫√
4−x2

−√
4−x2

∫ 2

0

(
x2 + y2 + z2

)
dz dy dx = 1

8π

∫ 2

−2

∫√
4−x2

−√
4−x2

((
x2 + y2

)
z + 1

3z
3
) ∣∣∣2

0
dy dx =
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1
8π

∫ 2

−2

∫√
4−x2

−√
4−x2

(
2
(
x2 + y2

)
+ 8

3

)
dy dx = 1

8π

∫ 2

−2

(
2x2y + 2

3y
3 + 8

3y
) ∣∣∣√4−x2

−√
4−x2

dx =

1
2π

∫ 2

−2

(
x2

√
4− x2 + 1

3

(
4− x2

)3/2
+ 4

3

√
4− x2

)
dx = 1

2π

(
−x

4

(
x2 − 2

)√
4− x2+2 sin−1

(
x
2

)
+ x

12

(
x2 − 10

)
+

2 sin−1
(
x
2

)
+ x

6

√
4− x2 + 8

3 sin
−1
(
x
2

))∣∣∣2
−2

= 1
2π

(
10π
3 + 10π

3

)
= 10

3 .

13.4.46 The average value is given by 1
volume of D

∫∫∫
D

f (x, y, z) dV . The volume of D is V =
∫∫∫
D

(1) dV =∫ 2

−2

∫√
4−x2

−√
4−x2

∫ 4−x2−y2

0
(1) dz dy dx =

∫ 2

−2

∫√
4−x2

−√
4−x2

(
4− x2 − y2

)
dy dx. Converting to polar coordinates gives∫ 2π

0

∫ 2

0

(
4− r2

)
r dr dθ =

∫ 2π

0

∫ 2

0

(
4r − r3

)
dr dθ =

∫ 2π

0

(
2r2 − 1

4r
4
) ∣∣∣2

0
dθ =

∫ 2π

0
4 dθ = 8π Thus, the average

value is 1
8π

∫ 2

−2

∫√
4−x2

−√
4−x2

∫ 4−x2−y2

0

(
x2 + y2 + z2

)
dz dy dx. This can be computed as

1
8π

∫ 2

−2

∫√
4−x2

−√
4−x2

((
x2 + y2

)
z + 1

3z
3
) ∣∣∣ 4−x2−y2

0
dy dx =

1
8π

∫ 2

−2

∫√
4−x2

−√
4−x2

((
x2 + y2

) (
4− x2 − y2

)
+ 1

3

(
4− x2 − y2

)3)
dy dx. Converting to polar coordinates gives

1
8π

∫ 2π

0

∫ 2

0

(
r2
(
4− r2

)
+ 1

3

(
4− r2

)3)
r dr dθ = 1

8π

∫ 2π

0

∫ 2

0

(
4r3 − r5 + 1

3r
(
4− r2

)3)
dr dθ =

1
8π

∫ 2π

0

(
r4 − 1

6r
6 − 1

24

(
4− r2

)4) ∣∣∣2
0
dθ = 1

8π

∫ 2π

0

(
16− 32

3 − 0 + 32
3

)
dθ = 2

π

∫ 2π

0
dθ = 4.

13.4.47 The average value is

1

volume of D

∫∫∫
D

f (x, y, z) dV =
1

1
2

(
4
3π · 43)

∫ 4

−4

∫ √
16−x2

−√
16−x2

∫ √
16−x2−y2

0

z dz dy dx

=
3

128π

∫ 4

−4

∫ √
16−x2

−√
16−x2

(
1

2
z2
) ∣∣∣√16−x2−y2

0
dy dx

=
3

256π

∫ 4

−4

∫ √
16−x2

−√
16−x2

(
16− x2 − y2

)
dy dx.

Converting to polar coordinates gives

3

256π

∫ 2π

0

∫ 4

0

(
16− r2

)
r dr dθ =

3

256π

∫ 2π

0

∫ 4

0

(
16r − r3

)
dr dθ

=
3

256π

∫ 2π

0

(
8r2 − 1

4
r4
) ∣∣∣4

0
dθ =

3

256π

∫ 2π

0

(128− 64) dθ

=
3

4π

∫ 2π

0

dθ =
3

2
.

13.4.48 The average value is given by 1
volume of D

∫∫∫
D

f (x, y, z) dV , which can be evaluated by

1
1
3π·42·8

∫ 4

−4

∫√
16−x2

−√
16−x2

∫ 8

2
√

x2+y2

(
x2 + y2

)
dz dy dx = 3

128π

∫ 4

−4

∫√
16−x2

−√
16−x2

(
x2 + y2

)
z
∣∣∣8
2
√

x2+y2
dy dx =

3
128π

∫ 4

−4

∫√
16−x2

−√
16−x2

(
8
(
x2 + y2

)− 2
(
x2 + y2

)3/2)
dy dx. Converting to polar coordinates gives

3
128π

∫ 2π

0

∫ 4

0

(
8r2 − 2r3

)
r dr dθ = 3

128π

∫ 2π

0

∫ 4

0

(
8r3 − 2r4

)
dr dθ = 3

128π

∫ 2π

0

(
2r4 − 2

5r
5
) ∣∣∣4

0
dθ =

3
128π

∫ 2π

0

(
512− 2048

5

)
dθ = 12

5π

∫ 2π

0
dθ = 24

5 .

13.4.49

a. False. Only six iterations are possible.

b. False. The outermost limits of integration must be constants.
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c. False. D is the intersection of two cylinders in first octant.

13.4.50
∫ 4

1

∫ 4z

z

∫ π2

0

sin
√
yz

x3/2 dy dx dz =
∫ π2

0

∫ 4

1

∫ 4z

z

sin
√
yz

x3/2 dx dz dy =
∫ π2

0

∫ 4

1

(
− 2 sin

√
yz√

x

) ∣∣∣4z
z

dz dy =∫ π2

0

∫ 4

1

(
− sin

√
yz√
z

+
2 sin

√
yz√

z

)
dz dy =

∫ π2

0

∫ 4

1

(
sin

√
yz√
z

)
dz dy.

Let u =
√
yz, du = 1

2 (yz)
−1/2 · y dz. Substituting gives

∫ π2

0

∫ 2
√
y√

y

(
2√
y sinu

)
du dy =∫ π2

0

(
− 2√

y cosu
) ∣∣∣u=2

√
y

u=
√
y

dy =
∫ π2

0

(
− 2 cos(2

√
y)√

y +
2 cos(

√
y)√

y

)
dy Let v =

√
y so that 2 dv = dy√

y . Then we

have 4
∫ π

0
(− cos (2v) + cos v) dv = 4

(− 1
2 sin (2v) + sin v

) ∣∣∣v=π

v=0
= 0.

13.4.51 V =
∫ 1

0

∫ z+1

z

∫ 1

0
dx dy dz =

∫ 1

0

∫ z+1

z
1 dy dz =

∫ 1

0
1 dz = 1.

13.4.52 V =
∫ 1

0

∫ 2

z

∫ 2

0
dx dy dz =

∫ 1

0

∫ 2

z
2 dy dz =

∫ 1

0
(4− 2z) dz =

(
4z − z2

) ∣∣∣1
0
= 3.

13.4.53 V =
∫ 2

0

∫ 4−2y

0

∫ (4−z)/2

0
1 dx dz dy =

∫ 2

0

∫ 4−2y

0

(
4−z
2

)
dz dy =

∫ 2

0

(
2z − 1

4z
2
) ∣∣∣4−2y

0
dy =∫ 2

0

(
4− y2

)
dy =

(
4y − 1

3y
3
) ∣∣∣2

0
= 16

3 .

13.4.54 The surfaces intersect when z1 = z2 =⇒sinx =sin y =⇒ x = y or x = π − y. By symmetry, the
volume equals 4 times the volume over the region, bounded by y = x and y = π − x from x = 0 to x = π

2

under z =sin y. V = 4
∫ π/2

0

∫ π−x

x

∫ sin y

0
1 dzd y dx = 4

∫ π/2

0

∫ π−x

x
sin y dy dx = 4

∫ π/2

0
(− cos y)

∣∣∣π−x

x
dx =

4
∫ π/2

0
(cosx− cos (π − x)) dx = 4

∫ π/2

0
(2 cosx) dx = 8 (sinx)

∣∣∣π/2
0

= 8

13.4.55 V =
∫ 0

−1

∫ x+1

−x−1

∫ 1−x−y

0
1 dz dy dx +

∫ 1

0

∫ −x+1

x−1

∫ 1−x−y

0
1 dz dy dx =

∫ 0

−1

∫ x+1

−x−1
(1− x− y) dy dx +∫ 1

0

∫ −x+1

x−1
(1− x− y) dy dx =

∫ 0

−1

(
(1− x) y − 1

2y
2
) ∣∣∣x+1

−x−1
dx+

∫ 1

0

(
(1− x) y − 1

2y
2
) ∣∣∣−x+1

x−1
dx =∫ 0

−1

(
2− 2x2

)
dx+

∫ 1

0

(
2− 4x+ 2x2

)
dx =

(
2x− 2

3x
3
) ∣∣∣0

−1
+
(
2x− 2x2 + 2

3x
3
) ∣∣∣1

0
=
(
2− 2

3

)
+ 2− 2 + 2

3 = 2.

13.4.56

a. V =
∫∫∫
D1

1 dV =
∫ 1

0

∫ z

0

∫ y

0
1 dx dy dz =

∫ 1

0

∫ z

0
y dy dz =

∫ 1

0
1
2z

2 dz =
(
1
6z

3
) ∣∣∣1

0
= 1

6 .

b. Let D2 = {(x, y, z) : 0 ≤ y ≤ x ≤ z ≤ 1}. Then V =
∫∫∫
D2

1 dV =
∫ 1

0

∫ z

0

∫ x

0
1 dy dx dz = 1

6 , by swapping

x and y from part a. Likewise all other “cousins” have volume 1
6 .

c. The union includes all points with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1, which is the unit cube.

13.4.57

i.
∫ 1

0

∫ 2

0

∫ 1−y

0
dz dx dy.

ii.
∫ 2

0

∫ 1

0

∫ 1−z

0
dy dz dx.

iii.
∫ 1

0

∫ 2

0

∫ 1−z

0
dy dx dz.

iv.
∫ 1

0

∫ 1−z

0

∫ 2

0
dx dy dz.

v.
∫ 1

0

∫ 1−y

0

∫ 2

0
dx dz dy.
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13.4.58

i.
∫ 1

0

∫ 1

x

∫ 1−y2

0
dz dy dx.

ii.
∫ 1

0

∫ y

0

∫ 1−y2

0
dz dx dy.

iii.
∫ 1

0

∫ 1−x2

0

∫√
1−z

x
dy dz dx.

iv.
∫ 1

0

∫√
1−z

0

∫√
1−z

x
dy dx dz.

v.
∫ 1

0

∫√
1−z

0

∫ y

0
dx dy dz.

vi.
∫ 1

0

∫ 1−y2

0

∫ y

0
dx dz dy.

It is a good exercise to see that each of these evaluate to be 1
4 .

13.4.59 Mass is given by
∫∫∫
D

ρ (x, y, z) dV .

m1 =
∫ 4

0

∫ 4−x

0

∫ 4−x−y

0
(8− z) dz dy dx =

∫ 4

0

∫ 4−x

0

(
8z − 1

2z
2
) ∣∣∣4−x−y

0
dy dx =∫ 4

0

∫ 4−x

0

(
24− 4x− x2

2 − 4y − xy − y2

2

)
dy dx =

∫ 4

0

(
24y − 4xy − x2

2 y − 2y2 − 1
2xy

2 − y3

6

) ∣∣∣4−x

0
dx =∫ 4

0

(
160
3 − 24x+ 2x2 + x3

6

)
dx =

(
160x
3 − 12x2 + 2

3x
3 + x4

24

) ∣∣∣4
0
= 224

3 .

m2 =
∫ 4

0

∫ 4−x

0

∫ 4−x−y

0
(4 + z) dz dy dx =

∫ 4

0

∫ 4−x

0

(
4z + 1

2z
2
) ∣∣∣4−x−y

0
dy dx =∫ 4

0

∫ 4−x

0

(
24− 8x− x2

2 − 8y + xy − y2

2

)
dy dx =

∫ 4

0

(
24y − 8xy − x2y

2 − 4y2 + 1
2xy

2 − y3

6

) ∣∣∣4−x

0
dx =∫ 4

0

(
128
3 − 24x+ 4x2 − x3

6

)
dx =

(
128x
3 − 12x2 + 4

3x
3 − x4

24

) ∣∣∣4
0
= 160

3 .

Solid 1 has greater mass Because the density is greater near the bottom where the tetrahedron is wider.

13.4.60 The volume of the cheese is
∫ 4

0

∫ 4

0

∫ y

0
1 dz dy dx =

∫ 4

0

∫ 4

0
y dy dx =

∫ 4

0

(
1
2y

2
) ∣∣∣4

0
dx =

∫ 4

0
8 dx =

(8x)
∣∣∣4
0
= 32 1

2 (32) =
∫ 4

0

∫ a

0

∫ y

0
1 dz dy dx =

∫ 4

0

∫ a

0
y dy dx =∫ 4

0

(
1
2y

2
) ∣∣∣a

0
dx =

∫ 4

0

(
1
2a

2
)
dx =

((
1
2a

2
)
x
) ∣∣∣4

0
= 2a2. Thus, 16 = 2a2, so a = 2

√
2.

13.4.61 The equation of a cone with height h and whose base is centered at the origin with radius r

in the xy-plane is z = h − h
r

√
x2 + y2. The volume is V =

∫ r

−r

∫√
r2−x2

−√
r2−x2

∫ h−h
r

√
x2+y2

0
1 dz dy dx =∫ r

−r

∫√
r2−x2

−√
r2−x2

(
h− h

r

√
x2 + y2

)
dy dx. We switch to polar coordinates, using x2 + y2 = a2 in order to

avoid confusion with the constant r. Then we have
∫ 2π

0

∫ r

0

(
h− h

r a
)
a da dθ =

∫ 2π

0

∫ r

0

(
ha− h

r a
2
)
da dθ =∫ 2π

0

(
1
2ha

2 − h
3ra

3
) ∣∣∣a=r

a=0
dθ =

∫ 2π

0

(
1
2r

2h− hr3

3r

)
dθ =

∫ 2π

0
1
6r

2h dθ = 1
3πr

2h.

13.4.62 The equation of the plane through (a, 0, 0), (0, b, 0) and (0, 0, c) is x
a + y

b + z
c = 1. The volume is∫ a

0

∫ b(1−x/a)

0

∫ c(1−x/a−y/b)

0
1 dz dy dx =

∫ a

0

∫ b(1−x/a)

0
c
(
1− x

a − y
b

)
dy dx =

c
∫ a

0

((
1− x

a

)
y − y2

2b

) ∣∣∣b(1−x/a)

0
dx = bc

2

∫ a

0

(
1− x

a

)2
dx = bc

2

(
x− x2

a + x3

3a2

) ∣∣∣a
0
= bc

2

(
a− a+ a

3

)
= abc

6 .

13.4.63 The equation of a sphere with radius R is x2 + y2 + z2 = R2. The volume is given by

∫ √
2Rh−h2

−√
2Rh−h2

∫ √
2Rh−h2−x2

−√
2Rh−h2−x2

∫ √
R2−x2−y2

R−h

1 dz dy dx

=

∫ √
2Rh−h2

−√
2Rh−h2

∫ √
2Rh−h2−x2

−√
2Rh−h2−x2

(√
R2 − x2 − y2 − (R− h)

)
dy dx.
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Converting to polar coordinates gives
∫ 2π

0

∫√
2Rh−h2

0

(√
R2 − r2 − (R− h)

)
r dr dθ =∫ 2π

0

∫√
2Rh−h2

0

(
r
√
R2 − r2 − r (R− h)

)
dr dθ =

∫ 2π

0

((
− 1

3

(
R2 − r2

)3/2 − 1
2r

2 (R− h)
)) ∣∣∣√2Rh−h2

0
dθ =∫ 2π

0

[
− 1

3 (R− h)
3 − 1

2

(
2Rh− h2

)
(R− h) + 1

3R
3
]
dθ =

∫ 2π

0

(
h2

6 (3R− h)
)
dθ = 1

3πh
2 (3R− h) .

13.4.64 There are two volumes to consider: the volume V1 of the cylinder of radius r inside the frus-
tum, and the volume V2 that remains when that cylinder is removed. The first volume can be com-
puted without calculus: V1 = πr2h. Note that the base of the volume V2 is the annulus centered at
the origin with inner radius r and outer radius R. Polar coordinates may be used (with a as the ra-
dius to avoid confusion with r) to show that the equation of the given frustrum is z = h

R−r (R− a) . The

volume V2 is
∫ 2π

0

∫ R

r

∫ h
R−r (R−a)

0 a dz da dθ =
∫ 2π

0

∫ R

r
ha

R−r (R− a) da dθ = h
R−r

∫ 2π

0

∫ R

r

(
Ra− a2

)
da dθ =

h
R−r

∫ 2π

0

(
Ra2

2 − a3

3

) ∣∣∣a=R

a=r
dθ = h

R−r

∫ 2π

0

(
R3

6 − Rr2

2 + r3

3

)
dθ = h

R−r · 2π ·
(

R3

6 − Rr2

2 + r3

3

)
=

h
R−r · π R3−3π R r2+2π r3

3 . The total volume V is V = V1 + V2 = πr2h + h
R−r · π R3−3π R r2+2π r3

3 = π h
3 ·

3r2(R−r)+R3−3Rr2+r3

R−r = π h
3 · R3−r3

R−r = π h
3

(
R2 +Rr + r2

)
.

13.4.65 The equation of the given ellipsoid is x2

a2 + y2

b2 + z2

c2 = 1. Using symmetry, the volume V of
the ellipsoid is eight times the volume of the portion of the ellipsoid in the first octant. Thus V =

8
∫ a

0

∫ b
√

1−x2/a2

0

∫ c
√

1−x2/a2−y2/b2

0
1 dz dy dx = 8c

∫ a

0

∫ b
√

1−x2/a2

0

√
1− x2

a2 − y2

b2 dy dx =

8c
∫ a

0

(
y
2

√
1− x2

a2 − y2

b2 +
b(a2−x2)

2a2 sin−1
(

ay

b
√
a2−x2

)) ∣∣∣b√1−x2/a2

0
dx = 8c

∫ a

0

bπ(a2−x2)
4a2 dx =

2πbc
a2

(
a2x− x3

3

) ∣∣∣a
0
= 2πbc

a2 · 2a3

3 = 4
3πabc

13.4.66

a. p (0.75) =
∫ 0.75

0
0.8e−0.8t dt =

(−e−0.8t
) ∣∣∣t=0.75

t=0
= 0.4512.

b. p (0.75) =
∫ 0.75

0

∫ 0.75

0

(
0.8e−0.8t

) (
0.1e−0.1s

)
dt ds =

∫ 0.75

0

(
0.1e−0.1s

) (−e−0.8t
) ∣∣∣t=0.75

t=0
ds =∫ 0.75

0

(
0.1e−0.1s

)
(0.4512) ds = (0.4512)

(−e−0.1s
) ∣∣∣s=0.75

s=0
= (0.4512) (0.0723) = 0.0326.

c. p (0.75) =
∫ 0.75

0

∫ 0.75

0

∫ 0.75

0

(
0.8e−0.8t

) (
0.1e−0.1s

) (
0.05e−0.05u

)
dt ds du =∫ 0.75

0

∫ 0.75

0

(
0.1e−0.1s

) (
0.05e−0.05u

) (−e−0.8t
) ∣∣∣t=0.75

t=0
ds du =

(0.4512)
∫ 0.75

0

∫ 0.75

0

(
0.1e−0.1s

) (
0.05e−0.05u

)
ds du = (0.4512)

∫ 0.75

0

(
0.05e−0.05u

) (−e−0.1s
) ∣∣∣s=0.75

s=0
du =

(0.4512) (0.0723)
∫ 0.75

0

(
0.05e−0.05u

)
du = (0.4512) (0.0723)

(−e−0.05u
) ∣∣∣u=0.75

u=0
=

(0.4512) (0.0723) (0.0368) = 0.0012.

13.4.67 The Hypervolume is given by
∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

∫ 1−x−y−z

0
1 dw dz dy dx. This can be computed as∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
(1− x− y − z) dz dy dx =

∫ 1

0

∫ 1−x

0

(
(1− x− y) z − 1

2z
2
) ∣∣∣−x−y

0
dy dx =∫ 1

0

∫ 1−x

0

(
(1− x− y)

2 − 1
2 (1− x− y)

2
)
dy dx = 1

2

∫ 1

0

∫ 1−x

0
(1− x− y)

2
dy dx =

1
2

∫ 1

0
[− 1

3 (1− x− y)
3
]
∣∣∣1−x

0
dx = 1

6

∫ 1

0
(1− x)

3
dx = 1

6

(
− 1

4 (1− x)
4
) ∣∣∣1

0
= 1

24 .

13.4.68 The region of integration for the integral
∫ 1

0

∫ 1

x

∫ y

x
f (x) f (y) f (z) dz dy dx is the set of points

(x, y, z) such that 0 < x < z < y < 1. This region is one sixth of the unit cube. By rearranging x,
y, and z, the other five sixths of the unit cube may be generated. Thus the integral of f (x) f (y) f (z)
over the unit cube is the sum of the integrals over these six regions. Now notice that the integrand
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f (x) f (y) f (z) does not change as x, y, and z are rearranged, so the integral over each of the six re-

gions is the same. Thus
∫ 1

0

∫ 1

0

∫ 1

0
f (x) f (y) f (z) dz dy dx = 6

∫ 1

0

∫ 1

x

∫ y

x
f (x) f (y) f (z) dz dy dx. The inte-

gral of f (x) f (y) f (z) over the unit cube can be calculated as follows:
∫ 1

0

∫ 1

0

∫ 1

0
f (x) f (y) f (z) dz dy dx =∫ 1

0

∫ 1

0
f (x) f (y)

(∫ 1

0
f (z) dz

)
dy dx =

(∫ 1

0
f (z) dz

) ∫ 1

0

∫ 1

0
f (x) f (y) dy dx =(∫ 1

0
f (z) dz

) ∫ 1

0
f (x)

(∫ 1

0
f (y) dy

)
dx =

(∫ 1

0
f (z) dz

)(∫ 1

0
f (y) dy

)(∫ 1

0
f (x) dx

)
.

Because the name of the variable is immaterial, we have
∫ 1

0

∫ 1

0

∫ 1

0
f (x) f (y) f (z) dz dy dx =(∫ 1

0
f (z) dz

)(∫ 1

0
f (y) dy

)(∫ 1

0
f (x) dx

)
=
(∫ 1

0
f (x) dx

)3
.

Thus,
∫ 1

0

∫ 1

x

∫ y

x
f (x) f (y) f (z) dz dy dx= 1

6

∫ 1

0

∫ 1

0

∫ 1

0
f (x) f (y) f (z) dz dy dx = 1

6

(∫ 1

0
f (x) dx

)3
.

13.5 Triple Integrals in Cylindrical and Spherical Coordinates

13.5.1 r measures the distance from the point to the z axis, θ is the angle that the segment from the point
to the z-axis makes with the positive xz-plane, and z is the directed distance from the point to the xy-plane.

13.5.2 The triple (ρ, ϕ, θ) describes a point whose distance from the origin is ρ, such that the line from
the origin to the point makes an angle of ϕ with the z-axis, and such that the projection of this line to the
xy-plane makes an angle of θ with the positive x-axis.

13.5.3 A double cone (opening both upwards and downwards), where the radius is always 4 times the
distance to the xy-plane.

13.5.4 A cone opening upwards making an angle of π
4 radian with the z-axis.

13.5.5 It approximates the volume of the cylindrical wedge formed by the changes Δr, Δθ, and Δz.

13.5.6 It approximates the volume formed by the changes Δρ, Δφ, and Δθ.

13.5.7
∫∫∫
D

f (r, θ, z) dV =
∫ β

α

∫ h(θ)

g(θ)

∫H(r, θ)

G(r, θ)
f (r, θ, z) dz r dr dθ.

13.5.8
∫∫∫
D

f (ρ, ϕ, θ) dV =
∫ β

α

∫ b

a

∫ h(ϕ, θ)

g(ϕ, θ)
f (ρ, ϕ, θ) ρ2 sin ϕdρ dϕdθ.

13.5.9 Cylindrical coordinates, because in cylindrical coordinates x2 + y2 simplifies to r2.

13.5.10 Spherical coordinates, because in spherical coordinates x2 + y2 + z2 simplifies to ρ2.

13.5.11 This is a wedge of a cylinder of radius 3 from z = 1 to z = 4, where the wedge angle is π
3 .

13.5.12 This is the first quadrant of the plane z = 1 for x, y ≥ 0.
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13.5.13 This is the solid upward pointing cone given by z = 2r from z = 0 to z = 4.

13.5.14 This is a solid downward-pointing cone with vertex at (0, 0, 8) between z = 8 and z = 0. Its
intersection with the xy-plane is the circle x2 + y2 = 16.

13.5.15
∫ 2π

0

∫ 1

0

∫ 1

−1
dz r dr dθ =

∫ 2π

0

∫ 1

0
r z
∣∣∣1
−1

dr dθ =
∫ 2π

0

∫ 1

0
2r dr dθ =

∫ 2π

0
1 dθ = 2π.

13.5.16 This is the integral over half of the cone whose equation is z = 9 − 3r, 0 ≤ r ≤ 3. Thus∫ 3

0

∫√9−y2

−
√

9−y2

∫ 9−3
√

x2+y2

0
dz dx dy =

∫ π

0

∫ 3

0

∫ 9−3r

0
r dz dr dθ =

∫ π

0

∫ 3

0
r z
∣∣∣9−3r

0
dr dθ =

∫ π

0

∫ 3

0

(
9r − 3r2

)
dr dθ =∫ π

0

(
9
2r

2 − r3
) ∣∣∣3

0
dθ =

∫ π

0

(
81
2 − 27

)
dθ = 27

2 π.

13.5.17 This is the integral of
(
x2 + y2

)3/2
over a cylinder with radius 1 from z = −1 to z = 1. We

convert to cylindrical coordinates, so the integrand becomes r3 Because x2 + y2 = r2. The integral is thus∫ 2π

0

∫ 1

0

∫ 1

−1
r3 dz r dr dθ =

∫ 2π

0

∫ 1

0
2 r4 dr dθ = 2

5

∫ 2π

0
r5
∣∣∣1
0
= 4π

5 .

13.5.18 Converting to cylindrical coordinates, the integrand becomes 1
1+r2 ; the region of integration is

the half-cylinder shown, so the integral is
∫ π

0

∫ 3

0

∫ 2

0
1

1+r2 dz r dr dθ =
∫ π

0

∫ 3

0
2r

1+r2 dr dθ =
∫ π

0
ln
(
1 + r2

) ∣∣∣3
0
=∫ π

0
ln (10) dθ = π ln (10) .

13.5.19 The region of integration is a wedge from θ = π
4 to θ = π

2 with radius 1, between z = 0 and z = 4.
This can be seen by noting that the limits of integration for y range from x to the boundary of the unit circle

(y-coordinate
√
1− x2 ) and that x =

√
2
2 corresponds to π

4 . Thus the integral is
∫ π/2

π/4

∫ 1

0

∫ 4

0
e−r2 dz r dr dθ =∫ π/2

π/4

∫ 1

0
4r e−r2 dr dθ = −2

∫ π

0
e−r2

∣∣∣1
0
= −2

∫ π

0

(
e−1 − 1

)
dθ = π

2

(
1− e−1

)
.

13.5.20 The region of integration is the volume between the cone x2 + y2 = z2 and the plane z = 4. To
see this, note that x and y vary over the disk x2 + y2 = 16 and that z varies from the boundary of the cone

to 4. Converting to cylindrical coordinates, we then have
∫ 2π

0

∫ 4

0

∫ 4

r
1 dz r dr dθ =

∫ 2π

0

∫ 4

0
r (4− r) dr dθ =∫ 2π

0

(
2r2 − 1

3r
3
) ∣∣∣4

0
=
∫ 2π

0
32
3 dθ = 64π

3 .
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13.5.21 The region of integration is below the cone x2 + y2 = z2 in the first octant, so the integral is∫ π/2

0

∫ 3

0

∫ r

0
1
r dz r dr dθ =

∫ π/2

0

∫ 3

0
r dr dθ =

∫ π/2

0
9
2 dθ = 9π

4 .

13.5.22 The region of integration is a wedge from θ = 0 to θ = π
6 with radius 1, between z = −1 and z = 1.

The integral is then
∫ π/6

0

∫ 1

0

∫ 1

−1
r dz r dr dθ =

∫ π/6

0

∫ 1

0

∫ 1

−1
r2 dz dr dθ =

∫ π/6

0
2
3 dθ = π

9 .

13.5.23
∫ 2π

0

∫ 4

0

∫ 10

0

(
1 + z

2

)
dz r dr dθ =

∫ 2π

0

∫ 4

0

(
z + z2

4

) ∣∣∣10
0

r dr dθ =
∫ 2π

0

∫ 4

0
35r dr dθ = 560π.

13.5.24
∫ 2π

0

∫ 3

0

∫ 2

0
5e−r2 dz r dr dθ = −5

∫ 2π

0

∫ 3

0

(
−2re−r2

)
dr dθ = 10π

(
1− e−9

)
.

13.5.25
∫ 2π

0

∫ 6

0

∫ 6−r

0
(7− z) dz r dr dθ =

∫ 2π

0

∫ 6

0

(
7z − 1

2z
2
) ∣∣∣6−r

0
r dr dθ =∫ 2π

0

∫ 4

0

(
7r (6− r)− r

2 (6− r)
2
)
dr dθ = 396π.

13.5.26
∫ 2π

0

∫ 3

0

∫ 9−r2

0

(
1 + z

9

)
dz r dr dθ =

∫ 2π

0

∫ 3

0

(
z + z2

18

) ∣∣∣9−r2

0
r dr dθ =∫ 2π

0

∫ 3

0

(
r
(
9− r2

)− r
18

(
9− r2

)2)
dr dθ = 54π.

13.5.27 The base of both surfaces in the xy-plane is the area bounded by the unit circle r = 1. The

mass of the solid bounded by the xy-plane and z = 4 − 4r is given by
∫ 2π

0

∫ 1

0

∫ 4−4r

0
(10− 2z) dz r dr dθ =∫ 2π

0

∫ 1

0

(
10z − z2

) ∣∣∣4−4r

0
r dr dθ =

∫ 2π

0

∫ 1

0

(
10r (4− 4r)− r (4− 4r)

2
)
dr dθ = 32π

3 . The mass of the solid

bounded by the xy-plane and z = 4− 4r2 is given by
∫ 2π

0

∫ 1

0

∫ 4−4r2

0
(10− 2z) dz r d rdθ =∫ 2π

0

∫ 1

0

(
10z − z2

) ∣∣∣4−4r2

0
r dr dθ =

∫ 2π

0

∫ 1

0

(
10r
(
4− 4r2

)− r
(
4− 4r2

)2)
dr dθ = 44π

3 . Thus the mass of the

solid bounded by the paraboloid is larger. This can also be seen by noting that for r ≤ 1, r2 ≤ r so that
4− 4r2 ≥ 4− 4r, so that the cone is contained in the paraboloid.

13.5.28 By the argument given above, again the solid bounded by the paraboloid will have greater mass. For

the solid bounded by the cone, the mass is
∫ 2π

0

∫ 1

0

∫ 4−4r

0

(
8
π e

−z
)
dz r dr dθ = 8

π

∫ 2π

0

∫ 1

0
−r
(
e4r−4 − 1

)
dr dθ =

5−e−4. The mass of the solid bounded by the xy-plane and z = 4−4r2 is
∫ 2π

0

∫ 1

0

∫ 4−4r2

0

(
8
π e

−z
)
dz r dr dθ =

8
π

∫ 2π

0

∫ 1

0
−r
(
e4r

2−4 − 1
)
dr dθ = 6 + 2e−4.

13.5.29 The base of this solid in the xy-plane is given by
√
17 =

√
1 + x2 + y2 so is the area bounded by the

circle x2 + y2 = 16 or r = 4. Thus V =
∫ 2π

0

∫ 4

0

∫√
17−√

1+r2

0
1 dz r dr dθ =

∫ 2π

0

∫ 4

0

(
r
√
17− r

√
1 + r2

)
dr dθ =

π(14
√
17+2)
3 .

13.5.30 This solid sits over the circle r = 5 in the xy-plane, so the volume is
∫ 2π

0

∫ 5

0

∫ 25

r2
1 dz r dr dθ =∫ 2π

0

∫ 5

0

(
25r − r3

)
dr dθ = 625π

2 .

13.5.31 This solid sits over the circle r = 5 in the xy-plane, so the volume is
∫ 2π

0

∫ 5

0

∫√
29√
4+r2

1 dz r d rdθ =∫ 2π

0

∫ 5

0

(
r
√
29− r

√
4 + r2

)
dr dθ =

π(17
√
29+16)
3 .

13.5.32 The base is swept out completely as θ ranges from 0 to π, so the volume is
∫ π

0

∫ 2 cos θ

0

∫ 4

0
1 dz r dr dθ =∫ 2π

0

∫ 2 cos θ

0
4r dr dθ = 4π, which is in fact the volume of a right circular cylinder of height 4 whose base is a

unit circle.

13.5.33 The first octant is determined by 0 ≤ θ ≤ π
2 , 0 ≤ z, and the condition z = x in cylindrical coordi-

nates becomes z = r cos θ, so the volume of the solid is
∫ π/2

0

∫ 1

0

∫ r cos θ

0
1 dz r dr dθ =

∫ π/2

0

∫ 1

0
r2 cos θ dr dθ =

1
3 .
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13.5.34 The volume is
∫ 2π

0

∫ 2

1

∫ 4−r(cos θ+sin θ)

0
1 dz r dr dθ =

∫ 2π

0

∫ 2

1

(
4r − r2 (cos θ + sin θ)

)
dr dθ =∫ 2π

0

(
2r2 − 1

3r
3 (cos θ + sin θ)

) ∣∣∣2
1
dθ =

∫ 2π

0

(
6− 7

3 (cos θ + sin θ)
)
dθ = 12π

13.5.35 This is a spherical shell centered at the origin with outer radius 3 and inner radius 1.

13.5.36 Because ρ = 2 cscϕ, ρ sinϕ = 2. Now x2 + y2 = ρ2sin2ϕ cos2θ+ ρ2sin2ϕ sin2θ = ρ2sin2ϕ = 4. Thus
any point on the surface satisfies x2 + y2 = 4, so that the surface is a cylinder of radius 2 oriented along the
z-axis.

13.5.37 This is a sphere of radius 2 centered at (0, 0, 2). To see this, note that ρ = 4 cosϕ implies that
ρ2 = 4ρ cosϕ. Converting to rectangular coordinates gives x2 + y2 + z2 = 4z, and completing the square
yields x2 + y2 + (z − 2)

2
= 4.

13.5.38 This is the plane z = 2, Because ρ = 2 secϕ implies that z = ρ cosϕ = 2.
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13.5.39
∫∫∫
D

(
x2 + y2 + z2

)5/2
dV =

∫ 1

0

∫ 2π

0

∫ π

0
ρ5 ρ2 sinϕ dϕdθ dρ =

∫ 1

0

∫ 2π

0

∫ π

0
ρ7 sinϕ dϕdθ dρ =∫ 1

0

∫ 2π

0
2ρ7 dθ dρ = 4π

∫ 1

0
ρ7 dρ = π

2 .

13.5.40
∫∫∫
D

e−(x
2+y2+z2)

−3/2

dV =
∫ 2π

0

∫ π

0

∫ 1

0
e−ρ3

ρ2 sinϕ dρ dϕdθ = − 1
3

∫ 2π

0

∫ π

0
e−ρ3

∣∣∣1
0
sinϕ dϕdθ =

− (e−1−1)
3

∫ 2π

0

∫ π

0
sinϕdϕdθ = −4π

3

(
e−1 − 1

)
.

13.5.41
∫∫∫
D

(
x2 + y2 + z2

)−3/2
dV =

∫ 2π

0

∫ π

0

∫ 2

1
ρ−3 ρ2 sinϕ dρ dϕdθ =

∫ 2π

0

∫ π

0

∫ 2

1
ρ−1 sinϕdρ dϕdθ =

ln 2
∫ 2π

0

∫ π

0
sinϕdϕdθ = 4π ln 2.

13.5.42
∫ 2π

0

∫ π/3

0

∫ 4 secϕ

0
ρ2 sinϕ dρ dϕdθ = 64

3

∫ 2π

0

∫ π/3

0
sec3 ϕ sinϕdϕdθ = 64π.

13.5.43
∫ π

0

∫ π/6

0

∫ 4

2 secϕ
ρ2 sinϕ dρ dϕdθ = 1

3

∫ π

0

∫ π/6

0

(
64− 8 sec3 ϕ

)
sinϕ dϕdθ =

(
188
9 − 32

3

√
3
)
π.

13.5.44
∫ 2π

0

∫ π/4

0

∫ 2 secϕ

1

(
ρ−3
)
ρ2 sinϕdρ dϕdθ =

∫ 2π

0

∫ π/4

0
sinϕ ln (2 secϕ) dϕ dθ =

2π
(
ln 2

(
1− 3

√
2

4

)
+ 1−

√
2
2

)
.

13.5.45
∫ 2π

0

∫ π/3

π/6

∫ 2 cscϕ

0
ρ2 sinϕ dρ dϕdθ = 8

3

∫ 2π

0

∫ π/3

π/6
csc3 ϕ sinϕ dϕdθ = 32

9 π
√
3.

13.5.46 A ball of radius a around the origin has volume given by
∫ 2π

0

∫ π

0

∫ a

0
ρ2 sinϕ dρ dϕdθ =

a3

3

∫ 2π

0

∫ π/4

0
sinϕ dϕdθ = 4

3a
3.

13.5.47 The two spheres intersect where 2 cosϕ = 1, i.e. when ϕ = π
3 . That circle is then at z = 1

2 (again
looking at cosϕ = 1

2 and using the fact that the lower sphere has radius 1). The volume in question is the
sum of the volumes above and below that circle of intersection; because the circle is at height 1

2 and both
spheres have radius 1, the volumes above and below are identical. Thus we need only compute the upper

volume and double it: 2
∫ π/3

0

∫ 1

(secϕ)/2

∫ 2π

0
ρ2 sinϕdθ dρ dϕ = 4π

3

∫ π/3

0

(
1− sec3 ϕ

8

)
sinϕdθ = 5

12π.

13.5.48
∫ 2π

0

∫ π

0

∫ 1+cosϕ

0
ρ2 sinϕdρ dϕdθ = 1

3

∫ 2π

0

∫ π

0
(1 + cosϕ)

3
sinϕdϕdθ = − 1

12

∫ 2π

0
(1 + cosϕ)

4
∣∣∣ϕ=π

ϕ=0
dθ

= 4
3

∫ 2π

0
dθ = 8

3π.

13.5.49 The portion of the sphere is determined by π
4 ≤ ϕ ≤ π

2 , so the integral is∫ 2π

0

∫ π/2

π/4

∫ 4 cosϕ

0
ρ2 sinϕ dρ dϕdθ = 64

3

∫ π/3

0

∫ π/2

π/4
cos3 ϕ sin ϕdϕdθ = 8

3π.

13.5.50
∫ 2π

0

∫ π/3

π/6

∫ 2 cscϕ

cscϕ
ρ2 sinϕ dρ dϕdθ = 7

3

∫ 2π

0

∫ π/3

π/6
csc2 ϕdϕdθ = − 7

3

∫ 2π

0
cotϕ

∣∣∣ϕ=π/3

ϕ=π/6
dθ =

− 7
3

∫ 2π

0

(
1√
3
−√

3
)
dθ = 28

9 π
√
3.

13.5.51 The value of ϕ corresponding to the circle of intersection of the sphere ρ and the plane z = 2
√
3 is

found by noting that cosϕ = 2
√
3

4 =
√
3
2 , so that ϕ = π

6 . Similarly, the intersection with the plane z = 2 is
where cosϕ = 2

4 = 1
2 so that ϕ = π

3 . We can find the volume of the required region by determining the volume

of the regions above z = 2 and z = 2
√
3 and subtracting. The volume of the region above the plane z = 2

is
∫ 2π

0

∫ π/3

0

∫ 4

2 secϕ
ρ2 sinϕdρ dϕdθ = 1

3

∫ 2π

0

∫ π/3

0

(
64− 8 sec3 ϕ

)
sin ϕdϕdθ = 40

3 π, and the volume of the

region above z = 2
√
3 is

∫ 2π

0

∫ π/6

0

∫ 4

2
√
3 secϕ

ρ2 sinϕdρ dϕdθ = 1
3

∫ 2π

0

∫ π/3

0

(
64− 24

√
3 sec3 ϕ

)
sin ϕdϕdθ =

128
3 π − 24

√
3π, so that the volume of the region between the two planes is

(
24
√
3− 88

3

)
π.

13.5.52 This cone makes an angle of π
4 with the z-axis. We thus want

∫ 2π

0

∫ π/4

0

∫ 2 secϕ

secϕ
ρ2 sinϕdρ dϕdθ =

7
3

∫ 2π

0

∫ π/3

0
sec3 ϕ sin ϕdϕdθ = 7

3π. A simpler method of arriving at this result is to recall that the volume

of a cone is 1
3Ah, where A is the area of the base and h is the height, so in this case the volume of the larger

cone is 1
3 · 4π · 2 and of the smaller 1

3 · π · 1, so the difference is as above.
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13.5.53

a. True. In either set of coordinates, any value of θ may be chosen.

b. True. Note that r = z if and only if ρ sinϕ = ρ cosϕ, which happens if and only if ϕ = π
4 .

13.5.54 ρ2 = sec (2ϕ) implies that 1 = ρ2cos(2ϕ) = ρ2
(
cos2 ϕ− sin2 ϕ

)
= z2−x2−y2 which is a hyperboloid

of two sheets.

13.5.55 ρ2 = − sec (2ϕ) implies that −1 = ρ2cos(2ϕ) = ρ2
(
cos2 ϕ− sin2 ϕ

)
= z2−x2− y2 so that x2+ y2−

z2 = 1, which is a hyperboloid of one sheet. Because π
4 < ϕ < 3π

4 , we only have the upper sheet.

13.5.56
∫ 2π

0

∫ π

0

∫ 4

0
(1 + ρ) ρ2 sinϕdρ dϕdθ =

∫ 2π

0

∫ π

0

(
1
3ρ

3 + 1
4ρ

4
) ∣∣∣4

0
sinϕdϕdθ =

∫ 2π

0

∫ π

0
256
3 sinϕdϕdθ

= 1024
3 π.

13.5.57
∫ 2π

0

∫ π

0

∫ 8

0
2e−ρ3

ρ2 sinϕdρ dϕdθ = − 2
3

∫ 2π

0

∫ π

0
e−ρ3

∣∣∣8
0
sin ϕdϕdθ =

− 2
3

(
e−512 − 1

) ∫ 2π

0

∫ π/3

0
sinϕdϕdθ = 8

3

(
1− e−512

)
π.

13.5.58 The mass is∫ 2π

0

∫ 4
√
3

0

∫ 4

r/
√
3

(5− z)r dz dr dθ =

∫ 2π

0

∫ 4
√
3

0

(5z − z2/2)r

∣∣∣∣4
r/

√
3

dr dθ

=

∫ 2π

0

∫ 4
√
3

0

((20− 8)− (5r/
√
3− r2/6))r dr dθ

=

∫ 2π

0

∫ 4
√
3

0

(12r − 5r2/
√
3 + r3/6) dr dθ

=

∫ 2π

0

(6r2 − 5r3/3
√
3 + r4/24)

∣∣∣∣4
√
3

0

dθ

= 2π(288− 320 + 96) = 128π

13.5.59 Note that because of the absolute value sign, the mass is symmetric around the xy-plane, so we
can compute the mass for 0 ≤ z ≤ 1 and double it. Using cylindrical coordinates, the mass is then

2
∫ 1

0

∫ 2π

0

∫ 2

0
(2− z) (4− r) r dr dθ dz = 2

∫ 1

0

∫ 2π

0

∫ 2

0
(2− z)

(
4r − r2

)
dr dθ dz =

2
∫ 1

0

∫ 2π

0
(2− z)

(
2r2 − 1

3r
3
) ∣∣∣2

0
dθ dz = 64π

3

∫ 1

0
(2− z) dz = 32π.

13.5.60 The cylinder r = 1 intersects the sphere ρ = 5 along the circle x2+y2 = 1, z = 2
√
6. Note also that

for any point (r, θ, z) on the sphere r2+z2 = x2+y2+z2 = 25. We have
∫ 2π

0

∫ 5

1

∫√
25−r2

0
f (r, θ, z) r dz dr dθ =∫ 2π

0

∫ 2
√
6

0

∫√
25−z2

1
f (r, θ, z) r dr dz dθ =

∫ 5

1

∫√
25−r2

0

∫ 2π

0
f (r, θ, z) r dθ dz dr.

13.5.61
∫ 2π

0

∫√
2

0

∫√
4−r2

r
f (r, θ, z) r dz dr dθ =∫ 2π

0

∫√
2

0

∫ z

0
f (r, θ, z) r dr dz dθ +

∫ 2π

0

∫ 2√
2

∫√
4−z2

0
f (r, θ, z) r dr dz dθ =

∫√
2

0

∫√
4−r2

r

∫ 2π

0
f (r, θ, z) r dθ dz dr.
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13.5.62 The region of integration is a cone with vertex at the origin making an angle of π
4 with the positive

z-axis, from z = 0 to z = 4.

We have
∫ π/4

0

∫ 2π

0

∫ 4 secϕ

0
f (ρ, ϕ, θ) ρ2sin ϕdρ dθ dϕ =

∫ π/4

0

∫ 4 secϕ

0

∫ 2π

0
f (ρ, ϕ, θ) ρ2sin ϕdθ dρ dϕ.

13.5.63 The region of integration is the solid between the upper half-sphere of radius 2 centered at the
origin and a cylinder of radius 1 oriented along the z-axis.

We have
∫ π/2

π/6

∫ 2π

0

∫ 2

cscϕ
f (ρ, ϕ, θ) ρ2 sinϕdρ dθ dϕ =

∫ π/2

π/6

∫ 2

cscϕ

∫ 2π

0
f (ρ, ϕ, θ) ρ2 sinϕdθ dρ dϕ.

13.5.64 Using spherical coordinates, this volume is
∫ π/2

π/4

∫ 1

0

∫ 2π

0
ρ2 sinϕdθ dρ dϕ = 2π

3

∫ π/2

π/4
sin ϕdϕ = 2π

3 ·
√
2
2 =

√
2
3 π.

13.5.65 This region is symmetric about the xy-plane, so we compute the volume of the region inside the solid
cylinder for z ≥ 0 that is below the cone ϕ = π

3 and double it. Use spherical coordinates. For a given value of

ϕ, we have 0 ≤ r ≤ 2 csc ϕ, so the volume is 2
∫ π/2

π/3

∫ 2 cscϕ

0

∫ 2π

0
ρ2 sinϕdθ dρ dϕ = 32π

3

∫ π/2

π/3
csc3 ϕ sinϕdϕ =

32
9 π

√
3.

13.5.66 This region is symmetric about the xy-plane, so we compute the volume of the region inside the
upper half-sphere of radius 2 and below the cone ϕ = π

3 and double it. The volume is thus

2
∫ π/2

π/3

∫ 2

0

∫ 2π

0
ρ2 sinϕdθ dρ dϕ = 32π

3

∫ π/2

π/3
sinϕdϕ = 16π

3 .

13.5.67 Use cylindrical coordinates. Note that x+y ≥ 0 for −π
4 ≤ θ ≤ 3π

4 , so this is the range of integration

for θ.
∫ 1

0

∫ 3π/4

−π/4

∫ r cos θ+r sin θ

0
r dz dθ dr =

∫ 1

0

∫ 3π/4

−π/4
r2 (cos θ + sin θ) dθ dr =

∫ 1

0
r2 (sin θ − cos θ)

∣∣∣θ=3π/4

θ=−π/4
=

2
√
2
∫ 1

0
r2 dr = 2

√
2

3 .

13.5.68 Use cylindrical coordinates. The region is traced out for 0 ≤ θ ≤ π; however, it is symmetric
around the xz-plane, so compute the volume for 0 ≤ θ ≤ π

2 to avoid negative values of r, and double it.

2
∫ π/2

0

∫ 2 cos θ

0

∫ 4−r cos θ

0
r dz dr dθ = 2

∫ π/2

0

∫ 2 cos θ

0
r (4− r cos θ) dr dθ =

2
∫ π/2

0

∫ (
2r2 − 1

3r
3 cos θ

) ∣∣∣2 cos θ

0
dθ = 2

∫ 1

0

(
8 cos2 θ − 8

3 cos
4 θ
)
dθ = 3π.
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13.5.69 The planes z = x− 2 and z = 2− x intersect when x = 2, which is at the boundary of the cardioid,

so we can simply integrate between those two planes. Thus the volume is
∫ 2π

0

∫ 1+cos θ

0

∫ 2−r cos θ

r cos θ−2
r dz dr dθ =∫ 2π

0

∫ 1+cos θ

0
r (4− 2r cos θ) dθ dr = 7π

2 .

13.5.70 Use cylindrical coordinates.
∫ 2

1

∫√
4−r2

0

∫ 2π

0
r dθ dz dr = 2π

∫ 2

1
r
√
4− r2 dr = 2π

√
3.

13.5.71 Due to symmetry, this region is made up of eight identical pieces, one in each octant. Consider
the piece in the first octant. A particle moving through this region parallel to the positive y-axis would
start on the xz-plane (y = 0)within the unit circle x2 + z2 = 1 and would end on the cylinder that

runs parallel to the x-axis (y2 + z2 = 1). The total volume is thus V = 8
∫ 1

0

∫√
1−z2

0

∫√
1−z2

0
1 dy dx dz =

8
∫ 1

0

∫√
1−z2

0

√
1− z2 dx dz = 8

∫ 1

0

(
1− z2

)
dz = 16

3 .

13.5.72 Due to symmetry, this region is made up of eight identical pieces, one in each octant. Con-
sider the piece in the first octant. A particle moving through this region parallel to the positive y-axis
would start on the xz-plane (y = 0) within the unit circle x2 + z2 = 1 and would either end on the
cylinder that runs parallel to the x-axis (y2 + z2 = 1) or the cylinder that runs parallel to the z-axis
(x2 + y2 = 1). If the particle starts at a point on the xz-plane for which x < z, then

√
1− z2 <√

1− x2 and the particle ends on the cylinder y2 + z2 = 1. If the particle starts at a point on the
xz-plane for which z < x, then

√
1− x2 <

√
1− z2 and the particle ends on the cylinder x2 + y2 =

1. The total volume is thus V = 8
(∫√

2/2

0

∫√
1−x2

x

∫√
1−z2

0
1 dy dz dx+

∫√
2/2

0

∫√
1−z2

z

∫√
1−x2

0
1 dy dx dz

)
=

8
(∫√

2/2

0

∫√
1−x2

x

√
1− z2 dz dx+

∫√
2/2

0

∫√
1−z2

z

√
1− x2 dx dz

)
= 8
((

1−
√
2
2

)
+
(
1−

√
2
2

))
= 8
(
2−√

2
)
.

13.5.73
∫ 2π

0

∫ 2

0

∫ 8

0
r
(
1− 0.05e−0.01r2

)
dz dr dθ ≈ 95.60362.

13.5.74

a.
∫∞
1

∫ π

0

∫ 2π

0
2·10−4

ρ4 ρ2 sinϕdθ dϕ dρ = 4π · 10−4
∫∞
1

∫ π

0
ρ−2 sinϕdϕdρ = 8π · 10−4

∫∞
1

ρ−2 dρ =

limb→∞
(
8π · 10−4

∫ b

1
ρ−2 dρ

)
= 8π · 10−4 limb→∞

(−ρ−1
) ∣∣∣b

1
= 8π · 10−4 limb→∞

(−1
b + 1

)
= 8π · 10−4.

b. 2 · 10−4
∫∞
0

∫ π

0

∫ 2π

0
e−0.01ρ3

ρ2 sin ϕdθ dϕ dρ = 4π · 10−4
∫∞
0

∫ π

0
ρ2 e−0.01ρ3

sinϕdϕdρ =

limb→∞
(
−8π · 10−4

∫ b

0
ρ2 e−0.01ρ3

dρ
)
= limb→∞

(
−8π · 10−4

(
− 100

3 e−0.01ρ3
) ∣∣∣b

0

)
=

limb→∞
(

8π
3 · 10−6

(
1− e−0.01b3

))
= 8π

3 · 10−6

13.5.75

a. With x = cosϕ we have sinϕ =
√
1− x2 and dx = − sinϕdϕ so that dϕ = − 1√

1−x2
dx. The limits of

integration for ϕ become 1 to −1, so the integral then becomes

F (d) = −GMm

4π

∫ 2π

0

∫ 1

−1

(d−Rx)
√
1− x2

(R2 + d2 − 2Rdx)
3/2 (−√

1− x2
) dx dθ

=
GMm

4π

∫ 1

−1

∫ 2π

0

d−Rx

(R2 + d2 − 2Rdx)
3/2

dθ dx

=
GMm

2

∫ 1

−1

[
d

(R2 + d2 − 2Rdx)
3/2

− Rx

(R2 + d2 − 2Rdx)
3/2

]
dx

=
GMm

2

(
1

R
√
R2 + d2 − 2Rdx

− R2 + d2 −Rdx

Rd2
√
R2 + d2 − 2Rdx

) ∣∣∣1
−1

=
GMm

2

Rdx−R2

Rd2
√
R2 + d2 − 2Rdx

∣∣∣1
−1

.

Assuming d > R, this simplifies to F (d) = GMm
2

(
Rd−R2

Rd2(d−R) +
Rd+R2

Rd2(d+R)

)
= GMm

2

(
1
d2 + 1

d2

)
= GMm

d2 .
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b. Suppose d < R. Then we have F (d) = GMm
2

Rdx−R2

Rd2
√
R2+d2−2Rdx

∣∣∣1
−1

= GMm
2

(
Rd−R2

Rd2(R−d) +
Rd+R2

Rd2(R+d)

)
=

GMm
2

(− 1
d2 + 1

d2

)
= 0.

13.5.76 Use cylindrical coordinates with the origin in the center of one of the tank ends, the z-axis parallel to
the long axis of the tank and the y-axis parallel to the surface of the water such that the positive x-axis points
through the water. The lines from the origin to the point where the water meets the tank make angles of
±π

3 with the x-axis Because each of these angles has cosine 1
2 (the height of the water is one half the radius).

Thus the volume of water (in cubic feet) is
∫ π/3

−π/3

∫ 1

(sec θ)/2

∫ 2

0
r dz dr dθ =

∫ π/3

−π/3

(
1− 1

4 sec
2 θ
)
dθ = 2π

3 −
√
3
2 .

This integral is perhaps just as easy to work in Cartesian coordinates: the area of the region of one end

of the tank that contains water is simply
∫ 1

1/2

∫√
1−x2

−√
1−x2 (1) dy dx = π

3 −
√
3
4 , which gets multiplied by 2 for

the length of the tank.

13.5.77 Assume the base of the cone lies in the xy-plane and that the center of the base is at the origin,
with the vertex of the cone on the positive z-axis. Then the equation of the cone in cylindrical coordinates

(a, θ, z) is z = h− h
r a where h and r are the given constants. Thus the volume is

∫ r

0

∫ h−h
r a

0

∫ 2π

0
a dθ dz da =

2π
∫ r

0
a
(
h− h

r a
)
da = 2π

(
hr2

2 − hr2

3

)
= 1

3πhr
2.

13.5.78 In spherical coordinates, 0 ≤ ϕ ≤ cos−1
(
R−h
R

)
.
∫ cos−1((R−h)/R)

0

∫ R

(R−h) secϕ

∫ 2π

0
ρ2 sinϕdθ dρ dϕ =

2
3

∫ cos−1((R−h)/R)

0

(
R3 − (R− h)

3
sec3 ϕ

)
sinϕdϕ = 1

3πh
2 (3R− h).

13.5.79 Using similar triangles, if the frustum is extended to a complete cone, the height of the cone is Rh
R−r .

Thus the equation of the cone (in cylindrical coordinates(a, θ, z) is z = Rh
R−r − h

R−ra so that a = R − zR−r
h

and the volume of the frustum is
∫ h

0

∫ R−zR−r
h

0

∫ 2π

0
a dθ da dz = π

∫ r

0

(
R− zR−r

h

)
dz = π

3

(
R2 + rR+ r2

)
h.

13.5.80 The easiest way to do this problem is using Cartesian coordinates with a change of variable. The
volume of the ellipsoid is 8 times the volume of the first-octant portion, so we have

8
∫ 1

0

∫√1−x2/a2

0

∫√1−x2/a2−y2/b2

0
1 dz dy dx. Now make a change of variables x = au, y = bv, z = cw so that

dx = a du, dy = b dv, dz = c dw to get 8
∫ 1

0

∫√
1−u2

0

∫√1−u2−v2

0
abc dw dv du =

8abc
∫ 1

0

∫√
1−u2

0

∫√1−u2−v2

0
dw dv du, which is just abc times the first-octant volume of a sphere of radius 1,

so is equal to 4
3πabc.

13.5.81 The two spheres are x2 + y2 + z2 = R2, x2 + y2 + (z − r)
2
= r2. The equation of the second sphere

simplifies to x2+ y2+ z2− 2zr = 0, so the two spheres meet when R2− 2zr = 0 or z = R2

2r . This is the plane
of intersection of the spheres. The volume in question now consists of two spherical caps, one on either side

of this plane. The upper one is a spherical cap of the sphere of radius R with height R − R2

2r = 2Rr−R2

2r ,

so by problem 78 has volume π
3

(
2Rr−R2

2r

)2 (
3R− 2Rr−R2

2r

)
. The lower one is a spherical cap of the sphere

of radius r with height R2

2r , so again by problem 78 it has volume π
3

R4

4r2

(
3r − R2

2r

)
. Adding these two and

simplifying gives for the volume πR3(8r−3R)
12r .

13.6 Integrals for Mass Calculations

13.6.1 By definition, the system will balance when the pivot is located at the center of mass of the two
people.

13.6.2 Its mass is 1 · 50 + 2 · 50 = 150 g. Its center of mass is given by 1
150

(∫ 50

0
x dx+

∫ 100

50
2x dx

)
=

1
150 (1250 + 7500) = 175

3 . So the center of mass is 175
3 cm from the less dense end of the rod.

Copyright c© 2015 Pearson Education, Inc.



464 Chapter 13. Multiple Integration

13.6.3 Integrate the density function over the region to find the mass; then integrate x times the density
function and divide by the mass to get the y-coordinate and integrate y times the density function and divide
by the mass to get the x-coordinate.

13.6.4 Because to compute Mx, we need to compute a weighted average of distances from the x-axis, which
is y.

13.6.5 Integrate the density function over the region to find the mass. To find Myz, integrate x times the

density function over the region; the x-coordinate is then
Myz

M . Similarly for the other coordinates.

13.6.6 Because to compute Mxz we are finding a weighted sum of distances from the xz-plane, which is y.

13.6.7 The center of mass is 1
13 (10 · 3 + 3 (−1)) = 27

13 .

13.6.8 The center of mass is 1
8+4+1 (8 · 2 + 4 · (−4) + 1 · 0) = 0.

13.6.9 The mass is
∫ π

0
(1 + sinx) dx = π + 2, and the center of mass is then 1

π+2

∫ π

0
x (1 + sinx) dx =

1
π+2

(
1
2π

2 + π
)
= π

2

13.6.10 The mass is
∫ 1

0

(
1 + x3

)
dx = 5

4 , so the center of mass is 1
5/4

∫ 1

0
x
(
1 + x3

)
dx = 4

5

(
1
2 + 1

5

)
= 14

25 .

13.6.11 The mass is
∫ 4

0

(
2− x2

16

)
dx = 8 − 4

3 = 20
3 , so the center of mass is 1

20/3

∫ 4

0
x
(
2− x2

16

)
dx =

3
20 (16− 4) = 9

5 .

13.6.12 The mass is
∫ π

0
(2 + cosx) dx = 2π, so the center of mass is 1

2π

∫ π

0
x (2 + cosx) dx = π2−2

2π .

13.6.13 The mass is 1·2+∫ 4

2
(1 + x) dx = 10 so that the center of mass is 1

10

(∫ 2

0
x dx+

∫ 4

2
x (1 + x) dx

)
= 8

3 .

13.6.14 The mass is
∫ 1

0
x2 dx+

∫ 2

1
x (2− x) dx = 1, so the center of mass is

∫ 1

0
x3 dx+

∫ 2

1
x2 (2− x) dx = 7

6 .

13.6.15 The region is symmetric with respect to x = π
2 and y = 1

2 , so its center of mass is at
(
π
2 ,

1
2

)
.

13.6.16 Assume density 1. ClearlyMx = My, so we need only compute one of them. The mass is one quarter

the area of the circle, or 4π. Then using polar coordinates we have x =
My

M = 1
4π

∫ 4

0

∫ π/2

0
(r sin θ) r dθ dr =

1
4π

∫ 4

0
r2 dr = 16

3π , so that y = 16
3π as well.

13.6.17 Assume density 1. By symmetry, x = 0. The mass of the region is 1, Because the two triangles

together make a unit square. Thus y = Mx

M =
∫ 0

−1

∫ 1+x

0
y dy dx+

∫ 1

0

∫ 1−x

0
y dy dx = 1

3
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13.6.18 Assume density 1. The mass is
∫ ln 2

0

∫ ex

e−x 1 dy dx =
∫ ln 2

0
(ex − e−x) dx = (ex + e−x)

∣∣∣ln 2

0
= 1

2 . Then

x =
My

M = 1
1/2

∫ ln 2

0

∫ ex

e−x x dy dx = 2
∫ ln 2

0
x (ex − e−x) dx = 5 ln (2)− 3. Also, y = Mx

M = 1
1/2

∫ ln 2

0

∫ ex

e−x y dy dx

=
∫ ln 2

0

(
e2x − e−2x

)
dx = 9

8 , so the center of mass is
(
5 ln (2)− 3, 9

8

)
.

13.6.19 Assume density 1. The mass is
∫ e

1

∫ ln x

0
1 dy dx =

∫ e

1
lnx dx = 1. Then x =

My

M = 1
1

∫ e

1

∫ ln x

0
x dy dx

=
∫ e

1
x lnx dx = 1

4

(
e2 + 1

)
and y = Mx

M = 1
1

∫ e

1

∫ ln x

0
x dy dx = 1

2

∫ e

1
(lnx)

2
dx = 1

2e− 1, so that the center of

mass is
(
1
4

(
e2 + 1

)
, 1
2e− 1

)
.

13.6.20 Assume density 1. The mass is
∫ π

0

∫ 3

1
r dr dθ = 4π. Then clearly x = 0 by symmetry, and y = Mx

M =
1
4π

∫ π

0

∫ 3

1
r2 sin θ dr dθ = 13

6π

∫ π

0
sin θ dθ = 13

3π , so the center of mass is
(
0, 13

3π

)
.

13.6.21 The mass is
∫ 4

0

∫ 2

0

(
1 + x

2

)
dy dx = 2

∫ 4

0

(
1 + x

2

)
dx = 16. Then x =

My

M = 1
16

∫ 4

0

∫ 2

0

(
x+ x2

2

)
dy dx

= 1
8

∫ 4

0

(
x+ x2

2

)
dx = 7

3 , and y = Mx

M = 1
16

∫ 4

0

∫ 2

0
y
(
1 + x

2

)
dy dx = 1

8

∫ 4

0

(
1 + x

2

)
dx = 1. Thus, the center

of mass is at
(
7
3 , 1
)
.The density of the plate increases as you move toward the right.

13.6.22 The mass is
∫ 5

0

∫ 1

0
2e−y/2 dx dy = 2

∫ 5

0
2e−y/2 dy = 4− 4e−5/2. So we have

x =
My

M = 1
4−4e−5/2

∫ 5

0

∫ 1

0
2xe−y/2 dx dy = 1

4−4e−5/2

∫ 5

0
e−y/2 dy = 1

2 . y = Mx

M = 1
4−4e−5/2

∫ 5

0

∫ 1

0
2ye−y/2 dx dy

= 1
4−4e−5/2

∫ 5

0
2ye−5y/2 dy = 2e5/2−7

e5/2−1
, so that the center of mass is at

(
1
2 ,

2e5/2−7
e5/2−1

)
. The density of the plate

decreases as you move up the plate.
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13.6.23 The mass is
∫ 4

0

∫ 4−x

0
(1 + x+ y) dy dx =

∫ 4

0

(
4− x+ x (4− x) + (4−x)2

2

)
dx = 88

3 . By symme-

try, x = y (both the region and the density function are symmetric around x = y), and x =
My

M =
1

88/3

∫ 4

0

∫ 4−x

0

(
x+ x2 + xy

)
dy dx = 3

88

∫ 4

0

(
x (4− x) + x2 (4− x) + x (4−x)2

2

)
dx = 16

11 , so the center of mass

is
(
16
11 ,

16
11

)
. The density of the plate increases as you move right and/or up.

13.6.24 The mass is
∫ π

0

∫ 2

0

(
r + 1

2r
2 sin θ

)
dr dθ = 6π+8

3 . The density function does not depend on x, and the

region is symmetric about the y-axis, so x = 0. Then y = Mx

M = 1
(6π+8)/3

∫ π

0

∫ 2

0
r sin θ

(
1 + 1

2r sin θ
)
r dr dθ =

3π+16
6π+8 , so the center of mass is

(
0, 3π+16

6π+8

)
. The density increases as you move up the plate.

13.6.25 The mass is
∫ 3

−3

∫√
9−x2/3

0
(1 + y) dy dx =

∫ 3

−3

(√
9−x2

3 + 9−x2

18

)
dx = 3

2π + 2 = 3π+4
2 . The density

function does not depend on x, and the region is symmetric about the y-axis, so x = 0. Then y = Mx

M =

1
(3π+4)/2

∫ 3

−3

∫√
9−x2/3

0

(
y + y2

)
dy dx = 3π+16

12π+16 , so the center of mass is
(
0, 3π+16

12π+16

)
. The density increases

as you move up the plate.

13.6.26 The mass is
∫ π/2

0

∫ 2

0
r
(
1 + r2

)
dr dθ = 3π. Because both the density function and the region are

symmetric around x = y, x = y. We have x =
My

M = 1
3π

∫ π/2

0

∫ 2

0
r2
(
1 + r2

)
cos θ dr dθ = 1

3π

∫ π/2

0
136
15 cos θ dθ

= 136
45π , so that the center of mass is

(
136
45π ,

136
45π

)
. The density of the plate increases as you move away from

the origin.

13.6.27 Assuming density 1, the mass is the volume of a half-sphere of radius 4, which is 1
2 · 4

3π · 43 = 128π
3 .

By symmetry, x = y = 0. Also, z = 1
(128π)/3

∫ 4

0

∫ 2π

0

∫ π/2

0
ρ cosϕ · ρ2 sinϕdϕdθ dρ =

3
128π

∫ 4

0

∫ 2π

0

∫ π/2

0
ρ3 cosϕ sinϕdϕdθ dρ = 3

128

∫ 4

0
ρ3 dρ = 3

2 , so the center of mass is at
(
0, 0, 3

2

)
.

13.6.28 Assuming density 1, the mass is
∫ 2π

0

∫ 5

0

∫ 25

r2
r dz dr dθ = 2500π. By symmetry, x = y = 0, and

z = 1
2500π

∫ 2π

0

∫ 5

0

∫ 25

r2
r z dz dr dθ = 1

2500π · 312500π
7 = 125

7 , so that the center of mass is at
(
0, 0, 125

7

)
.

13.6.29 Assuming density 1, the mass is the volume of a pyramid with height 1 and base area 1
2 , so

the volume is 1
6 . The region is symmetric with respect to the line x = y = z, x = y = z, and z =

1
1/6

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
z dz dy dx = 3

∫ 1

0

∫ 1−x

0
(1− x− y)

2
dy dx = 1

4 , so the center of mass is
(
1
4 ,

1
4 ,

1
4

)
.

13.6.30 Assuming density 1, the mass is the volume of a cone with base area 256π and height 16, so is
4096π

3 . By symmetry, x = y = 0, and z = 1
(4096π)/3

∫ 16

0

∫ 16−r

0

∫ 2π

0
rz dθ dz dr = 3

4096

∫ 16

0
r (16− r)

2
dr = 4, so

the center of mass is (0, 0, 4).

13.6.31 Assuming density 1, the mass is
∫ 1

0

∫ 2π

0

∫ 1−r sin θ

0
r dz dθ dr =

∫ 1

0

∫ 2π

0
r (1− r sin θ) dθ dr = π. The

region is symmetric around the yz-plane, so x = 0. We have y = 1
π

∫ 1

0

∫ 2π

0

∫ 1−r sin θ

0
r2 sin θ dz dθ dr =

1
π

∫ 1

0

∫ 2π

0
r2 (1− r sin θ) sin θ dθ dr = − 1

4 . z = 1
π

∫ 1

0

∫ 2π

0

∫ 1−r sin θ

0
rz dz dθ dr = 1

2π

∫ 1

0

∫ 2π

0
r (1− r sin θ)

2
dθ dr

= 5
8 , so that the center of mass is

(
0, − 1

4 ,
5
8

)
.

13.6.32 Assuming density 1, the mass is
∫ 2

0

∫ 2π

0

∫ 2
√
4−r2

0
r dz dθ dr = 4π

∫ 2

0
r
√
4− r2 dr = 32π

3 . By symme-

try, x = y = 0, and z = 1
(32π/3)

∫ 2

0

∫ 2π

0

∫ 2
√
4−r2

0
rz dz dθ dr = 3

8

∫ 2

0
r
(
4− r2

)
dr = 3

2 , so that the center of

mass is
(
0, 0, 3

2

)
.

13.6.33 The mass is
∫ 4

0

∫ 1

0

∫ 1

0

(
1 + x

2

)
dz dy dx =

∫ 4

0

(
1 + x

2

)
dx = 8. By symmetry, Because the density

depends only on x, y = z = 1
2 , while x = 1

8

∫ 4

0

∫ 1

0

∫ 1

0

(
x+ x2

2

)
dz dy dx = 1

8

∫ 4

0

(
x+ x2

2

)
dx = 7

3 , so the

center of mass is
(
7
3 ,

1
2 ,

1
2

)
.
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13.6.34 The mass is
∫ 4

0

∫√
4−z

0

∫ 2π

0
r (5− z) dθ dr dz = 2π

∫ 4

0

∫√
4−z

0
r (5− z) dr dz = π

∫ 4

0
(5− z) (4− z) dz

= 88π
3 . By symmetry, because the density depends only on z, x = y = 0, while

z = 1
(88π)/3

∫ 4

0

∫√
4−z

0

∫ 2π

0
rz (5− z) dθ dr dz = 3

44

∫ 4

0

∫√
4−z

0
rz (5− z) dr dz = 3

88

∫ 4

0
(5− z) (4− z) dz = 12

11 ,

so the center of mass is
(
0, 0, 12

11

)
.

13.6.35 The mass of the sphere is given by
∫ 6

0

∫ π/2

0

∫ 2π

0

(
1 + ρ

4

)
ρ2 sinϕdθ dϕ dρ = 2π

∫ 6

0

(
1 + ρ

4

)
ρ2 dρ =

306π. By symmetry, because the density function depends only on ρ, x = y = 0. Also,

z = 1
306π

∫ 6

0

∫ π/2

0

∫ 2π

0

(
1 + ρ

4

)
ρ2 sinϕ · ρ cosϕdθ dϕ dρ = 1

153

∫ 6

0

∫ π/2

0
ρ3
(
1 + ρ

4

)
sinϕ cosϕdϕdρ =

1
306

∫ 6

0
ρ3
(
1 + ρ

4

)
dρ = 198

85 , so the center of mass is
(
0, 0, 198

85

)
.

13.6.36 The mass of the cube is given by
∫ 1

0

∫ 1

0

∫ 1

0
(2 + x+ y + z) dz dy dx =

∫ 1

0

∫ 1

0

(
5
2 + x+ y

)
dy dx =∫ 1

0
(3 + x) dx = 7

2 . Both the region and the density function are symmetric with respect to the line x =

y = z, so x = y = z, and x = 1
7/2

∫ 1

0

∫ 1

0

∫ 1

0

(
2x+ x2 + xy + xz

)
dz dy dx = 2

7

∫ 1

0

∫ 1

0

(
5
2x+ x2 + xy

)
dy dx =

2
7

∫ 1

0

(
3x+ x2

)
dx = 11

21 , so that the center of mass is
(
11
21 ,

11
21 ,

11
21

)
.

13.6.37 The mass is
∫ 1

0

∫ 4

0

∫ x

0
(2 + y) dz dy dx =

∫ 1

0

∫ 4

0
(2x+ xy) dy dx =

∫ 1

0
16x dx = 8. Then x =

1
8

∫ 1

0

∫ 4

0

∫ x

0
(2x+ xy) dz dy dx = 1

8

∫ 1

0

∫ 4

0
x2 (y + 2) dy dx = 2

∫ 1

0
x2 dx = 2

3 . y = 1
8

∫ 1

0

∫ 4

0

∫ x

0

(
2y + y2

)
dz dy dx

= 1
8

∫ 1

0

∫ 4

0
x
(
y + 2y2

)
dy dx = 14

3

∫ 1

0
x dx = 7

3 . z = 1
8

∫ 1

0

∫ 4

0

∫ x

0
(2z + yz) dz dy dx = 1

8

∫ 1

0

∫ 4

0

(
x2 + x2y

2

)
dy dx

= 1
8

∫ 1

0
8x2 dx = 1

3 , so that the center of mass is
(
2
3 ,

7
3 ,

1
3

)
.

13.6.38 The mass is
∫ 9

0

∫ 9−r

0

∫ 2π

0
r (1 + z) dθ dz dr = 2π

∫ 9

0
r
(
9− r + (9−r)2

2

)
dr = 3159π

4 . By symmetry

and the fact that the density depends only on z, we have x = y = 0. We also have

z = 1
(3159π)/4

∫ 9

0

∫ 9−r

0

∫ 2π

0
r
(
z + z2

)
dθ dz dr = 8

3159

∫ 9

0
r
(

(9−r)2

2 + (9−r)3

3

)
dr = 207

65 , so that the center of

mass is
(
0, 0, 207

65

)
.

13.6.39

a. False. It has a center of mass with a y-coordinate of zero.

b. True, Because every point is balanced by the corresponding point on the other side of the origin.

c. False. For example, the annulus 1 ≤ r ≤ 3 has center of mass at the origin.

d. False. For example, the solid resulting from revolving the annulus in part (c) about the x-axis is
connected, but its center of mass is at the origin.

13.6.40 The mass of the rod is
∫ L

0
2e−x/3 dx = 6

(
1− e−L/3

)
, so its center of mass is given by

1

6(1−e−L/3)

∫ L

0
2x e−x/3 dx = 18−18e−L/3−6Le−L/3

6(1−e−L/3)
, so that as L → ∞, the center of mass approaches

limL→∞ 18−18e−L/3−6Le−L/3

6(1−e−L/3)
= 3, because all terms involving L approach 0 in the limit.

13.6.41 The mass of the rod is
∫ L

0
10

1+x2 dx = 10 tan−1 (L), so its center of mass is 1
tan−1(L)

∫ L

0
10x
1+x2 dx =

ln(1+L2)
tan−1(L) . As L → ∞, the numerator grows without bound while the denominator approaches π

2 , so x → ∞
as L → ∞.

13.6.42 The mass of the plate is
∫ L

0

∫ e−x

−e−x dy dx =
∫ L

0
2e−x dx = 2− 2e−L, so that

limL→∞ x = limL→∞ 1
2−2e−L

∫ L

0

∫ e−x

−e−x x dy dx = limL→∞ 1
2−2e−L

∫ L

0
2x e−x dx = limL→∞

2−2e−L(L+1)
2−2e−L = 1.

Also, limL→∞ y = limL→∞ 1
2−2e−L

∫ L

0

∫ e−x

−e−x y dy dx = limL→∞ 0 = 0. Thus as L → ∞, the center of mass
approaches (1, 0).
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13.6.43 The mass of the plate, assuming density 1, is 8 + 4 = 12 Because the area of the rectangle is 8 and
the two triangles together to form a 2 × 2 square. By symmetry, x = 0. Compute y by computing Mx for
each of the three pieces. The moments around the x-axis are equal for the two triangles. So we need only

compute Mx for one of the triangles. This is Mx =
∫ 4

2

∫ 4−x

0
y dy dx =

∫ 4

2
1
2 (4− x)

2
dx = 4

3

The moment around the x-axis for the rectangle is Mx =
∫ 2

−2

∫ 2

0
y dy dx = 8, so that y = 1

12

(
4
3 + 8 + 4

3

)
=

8
9 . Thus the center of mass is at

(
0, 8

9

)
.

13.6.44 Assuming density 1, the mass of the plate is the area of the outer rectangle (48) less the area of the
inner, missing, rectangle (4), so the mass is 44. By symmetry, x = 0. To compute y, compute the moment
around the x-axis by computing the moment for the outer rectangle and that for the missing rectangle, and

subtract one from the other. Thus y = 1
44

(∫ 4

−4

∫ 2

−4
y dy dx− ∫ 2

−2

∫ 0

−1
y dy dx

)
= 1

44 (−48 + 2) = − 23
22 . Thus

the center of mass is at
(
0, − 23

22

)
.

13.6.45 The mass of the region (assuming density 1) is 1
2πr

2 = 2π, by symmetry, x = 0, and y =
1
2π

∫ π

0

∫ 2

0
r2 sin θ dr dθ = 1

2π

∫ π

0
8
3 sin θ dθ = 8

3π , so the center of mass is at
(
0, 8

3π

)
.

13.6.46 The mass of the region is π; by symmetry, x = y, and x = 1
π

∫ π/2

0

∫ 2

0
r2 cos θ dr dθ = 8

3π

∫ π/2

0
cos θ dθ

= 8
3π , thus the center of mass is at

(
8
3π ,

8
3π

)
.

13.6.47 The mass of the cardioid is
∫ 2π

0

∫ 1+cos θ

0
r dr dθ = 1

2

∫ 2π

0
(1 + cos θ)

2
dθ = 3π

2 . By symmetry, y = 0,

and x = 1
(3π)/2

∫ 2π

0

∫ 1+cos θ

0
r2 cos θ dr dθ = 2

9π

∫ 2π

0
(1 + cos θ)

3
cos θ dθ = 5

6 , so that the center of mass is at(
5
6 , 0
)
.

13.6.48 The mass of the cardioid is
∫ 2π

0

∫ 3−3 cos θ

0
r dr dθ = 9

2

∫ 2π

0
(1− cos θ)

2
dθ = 27π

2 . By symmetry,

y = 0, and x = 1
(27π)/2

∫ 2π

0

∫ 3−3 cos θ

0
r2 cos θ dr dθ = 2

3π

∫ 2π

0
(1− cos θ)

3
cos θ dθ = − 5

2 , so that the center of

mass is at
(− 5

2 , 0
)
.

13.6.49 The mass of the leaf is
∫ π/2

0

∫ sin 2θ

0
r dr dθ = 1

2

∫ π/2

0
sin2 2θ dθ = π

8 . By symmetry, x = y, and x =
1

π/8

∫ π/2

0

∫ sin 2θ

0
r2 cos θ dr dθ = 8

3π

∫ π/2

0
sin3 2θ cos θ dθ = 128

105π , so that the center of mass is at
(

128
105π ,

128
105π

)
.

13.6.50 The mass of the limacon is
∫ 2π

0

∫ 2+cos θ

0
r dr dθ = 1

2

∫ 2π

0
(2 + cos θ)

2
dθ = 9π

2 . By symmetry, y = 0,

and x = 1
(9π)/2

∫ 2π

0

∫ 2+cos θ

0
r2 cos θ dr dθ = 1

2

∫ 2π

0
(2 + cos θ)

3
cos θ dθ = 17

18 , so that the center of mass is at(
17
18 , 0

)
.

13.6.51 Assume the origin is at the midpoint of the diameter with the y-axis pointing up. Assume the
density is one. The mass is πa (the length of the wire). The moment is

∫ π

0
(a sin θ) dθ = 2a. Therefore

y = 2a
π , while x = 0 by symmetry.

13.6.52 The line y = b intersects the parabola at x = ±
√

b
a , so the mass of the plate (assuming density 1) is∫√ b

a

−
√

b
a

∫ b

ax2 1 dy dx =
∫√ b

a

−
√

b
a

(
b− ax2

)
dx = 4b

3

√
b
a . By symmetry, x = 0, and y = 1(

4b
3

√
b
a

)
∫√ b

a

−
√

b
a

∫ b

ax2 y dy dx

= 3
8b

√
a
b

∫√ b
a

−
√

b
a

(
b2 − a2x4

)
dx = 3b

5 , so that the center of mass is at
(
0, 3b

5

)
and is independent of a.

13.6.53 The mass of the region, assuming density 1, is a2 − π
4 a

2 = 4−π
4 a2. By symmetry, x = y, and

x = 1
a2(4−π)/4

∫ a

0

∫ a√
a2−x2 x dy dx = 4

a2(4−π)

∫ a

0
x
(
a−√

a2 − x2
)
dx = 2a

3(4−π) , so that the center of mass is

at
(

2a
3(4−π) ,

2a
3(4−π)

)
.

13.6.54 Clearly the center of mass is at the center of the box - halfway between each opposite pair of
faces. The easiest way to see this is to place the origin at the center of the box; then (for example)

x = 1
m

∫ c/2

−c/2

∫ b/2

−b/2

∫ a/2

−a/2
x dx dy dz = 1

m

∫ c/2

−c/2

∫ b/2

−b/2
1
2x

2
∣∣∣a/2
−a/2

dy dz = 0.
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13.6.55 Place the origin at the vertex of the cone and let the z-axis be the axis of the cone. Then the cone
has equation (in cylindrical coordinates (a, θ, z)) z = h

r a. The mass of the cone is 1
3πr

2h, and by symmetry

x = y = 0. Now z = 1
πr2h/3

∫ r

0

∫ (h/r)a

0

∫ 2π

0
az dθ dz da = 3h

r4

∫ r

0
a3 da = 3h

4 , so that the center of mass is one

quarter of the way from the base to the vertex.

13.6.56 Place the origin at the center of the sphere. The sphere has mass 2
3πa

3, so (in spherical coordinates)

z = 1
(2πa3)/3

∫ a

0

∫ π/2

0

∫ 2π

0
ρ3 sinϕ cosϕdθ dϕ dρ = 3

a3

∫ a

0

∫ π/2

0
ρ3 sinϕ cosϕdϕdρ = 3

8a, so that the center of

mass is 3
8 of the way from the origin to the top of the sphere.

13.6.57 Place the origin at the middle of the base of the triangle. Then the y-coordinate of the center
of mass can be determined. If h is the height of the triangle, its area is bh

2 , x = 0 by symmetry, and

y = 1
(bh)/2

∫ h

0

∫ −b(y−h)/(2h)

b(y−h)/(2h)
y dx dy = 2

bh

∫ h

0
−b(y−h)

h dy = − 2
h2

∫ h

0

(
y2 − hy

)
dy = h

3 , so that the center of

mass is 1
3 of the way from the base to the vertex.

13.6.58 The tetrahedron has height a, and the base has area a2

2 , so the volume of the tetrahedron is a3

6 . By

symmetry, x = y = z, and x = 1
a3/6

∫ a

0

∫ a(1−x/a)

0

∫ a(1−x/a−y/a)

0
x dz dy dx. Make the change of variable u =

x
a ., v = y

a , w = z
a ; then dx = a du, du = a dv, dz = a dw and then x = 1

a3/6

∫ a

0

∫ 1−u

0

∫ 1−u−v

0
a4u dw dv du =

6a
∫ 1

0

∫ 1−u

0
u (1− u− v) dv du = a

4 , so the center of mass is
(
a
4 ,

a
4 ,

a
4

)
.

13.6.59 Place the origin at the center of the ellipse with the circular base of radius r in the xy-plane, so
that the top of the ellipsoid is on the positive z-axis, at (0, 0, a). Use cylindrical coordinates (ρ, θ, z);

then the equation for the top half of the ellipsoid is z = a
√
1− ρ2

r2 . We know (Problem 80, Section 13.5)

that the volume of the top half of this ellipsoid is 2πr2a
3 , so z = 1

(2πr2a)/3

∫ r

0

∫ a
√

1−ρ2/r2

0

∫ 2π

0
ρz dθ dz dρ =

3a
2r2

∫ r

0
ρ
(
1− ρ2

r2

)
dρ = 3

8a, so the center of mass is 3
8 of the way from the base to the top of the ellipsoid.

13.6.60 The area of the country is (adding up the large rectangle and the two small squares) 48+2 ·4 = 56.
x = 0 by symmetry. To compute y, we subtract the moment of the missing small rectangle around the
x-axis from that of the large rectangle. But the large rectangle is symmetric around the x-axis, so its

moment is zero and thus y = 1
56

(
0− ∫ −2

−4

∫ 2

−2
y dx dy

)
= − 1

14

∫ −2

−4
y dy = 3

7 , so that the geographical

center is at
(
0, 3

7

)
. The population center is a discrete computation. Count population in thousands: x =

10·(−2)+15·2+20·2+5·4+15·(−2)
10+15+20+5+15 = 40

65 = 8
13y = 10·2+15·3+20·0+5·(−4)+15·(−2)

10+15+20+5+15 = 15
65 = 3

13 , so that the population

center is at
(

8
13 ,

3
13

)
.

13.6.61

a. The mass of the plate is the difference of the area of the two semicircles, so is 1
2π
(
1− a2

)
. The

y-coordinate of the center of mass is then y = 1
π(1−a2)/2

∫ 1

a

∫ π

0
r2 sin θ dθ dr = 4

3π(1−a2)

∫ 1

a
r2 dr =

4(1−a3)
3π(1−a2) =

4(a2+a+1)
3(a+1)π .

b. The center of mass always has x coordinate 0, so it lies on the edge of the plate exactly when 4(a2+a+1)
3(a+1)π =

a or 1. Solving for equality with 1 gives no solutions in the range 0 ≤ a ≤ 1. Solving for equality with

a gives a = − 1
2

(
1−
√

3(π+4)
3π−4

)
≈ 0.49366 while the other solution is outside of the range 0 ≤ a ≤ 1.

Copyright c© 2015 Pearson Education, Inc.



470 Chapter 13. Multiple Integration

13.6.62

a. The mass of the solid is the difference of the volumes of the two hemispheres, so is 2
3π
(
1− a3

)
.

The z-coordinate of the center of mass is then z = 1
2π(1−a3)/3

∫ 1

0

∫ π/2

0

∫ 2π

0
r3 cosϕ sinϕdθ dϕ dr =

3
2(1−a3)

∫ 1

0
r3 dr =

3(1−a4)
8(1−a3) .

b. The center of mass always has x and y-coordinates 0, so it lies on the edge of the plate exactly when
3(1−a4)
8(1−a3) = a or 1. Solving for equality with 1 gives no solutions in the range 0 ≤ a ≤ 1; solving for

equalitywith a gives a =
(1450+450

√
11)

2/3−5(1450+450
√
11)

1/3−50

15(1450+450
√
11)

1/3 ≈ 0.38936.

13.6.63 Place the origin at the center of the bottom of the soda can. If the height of soda in the can is h,
for 0 ≤ h ≤ 12, the mass of the can is 16πh+ 16

1000π (12− h) = 6
125π (333h+ 4). To compute z, compute the

moments around the x-axis separately for the soda and the air:

z = 1
6π(333h+4)/125

∫ 4

0

∫ 2π

0

(
1

1000

∫ 12

h
zr dz +

∫ h

0
zr dz

)
dθ dr =

125
6π(333h+4)

∫ 4

0

∫ 2π

0

(
1

2000

(
144− h2

)
r + 1

2h
2r
)
dθ dr = 125

6π(333h+4) ·
π(144+999h2)

125 = 3
2 · 111h2+16

333h+4 . The center of

mass is at its lowest point when the derivative of this function is zero, i.e. when 333h
333h+4 −

999(16+111h2)
2(333h+4)2

= 0.

Placing over a common denominator, setting the numerator to zero and solving gives h = 40
√
10−4

333 ≈ 0.3678
cm.

13.6.64

a. There are two cases: either 0 < a ≤ b or 0 < b ≤ a. In either case, the area of the triangle is 1
2bh.

Case 1: 0 < a ≤ b.

x = 1
bh/2

(∫ a

0

∫ (h/a)x

0
x dy dx+

∫ b

a

∫ (h/(a−b))(x−b)

0
x dy dx

)
=

2
bh

(
h
a

∫ a

0
x2 dx+ h

a−b

∫ b

a

(
x2 − bx

)
dx
)
= 2

bh

(
h
3aa

3 +
h(b2+ab−2a2)

6

)
= a+b

3 .

y = 1
bh/2

(∫ a

0

∫ (h/a)x

0
y dy dx+

∫ b

a

∫ (h/(a−b))(x−b)

0
y dy dx

)
=

2
bh

(
h2

2a2

∫ a

0
x2 dx+ h2

2(a−b)2

∫ b

a
(x− b)

2
dx
)
= 2

bh

(
ah2

6 − h2(a−b)
6

)
= 2

bh · bh2

6 = h
3 .

Case 2: 0 < b ≤ a.

x = 1
bh/2

(∫ b

0

∫ (h/a)x

0
x dy dx+

∫ a

b

∫ (h/a)x

(h/(a−b))(x−b)
x dy dx

)
=

2
bh

(
h
a

∫ b

0
x2 dx+

∫ a

b
x
(

h
ax− h

a−b (x− b)
)
dx
)
= 2

bh

(
hb3

3a +
(a2+ab−2b2)bh

6a

)
= a+b

3 .

y = 1
bh/2

(∫ b

0

∫ (h/a)x

0
y dy dx+

∫ b

a

∫ (h/a)x

(h/(a−b))(x−b)
y dy dx

)
=

1
bh

(
h2

a2

∫ b

0
x2 dx+

∫ a

b
h2

a2 x
2 − h2

(a−b)2
(x− b)

2
dx
)
= 1

bh

(
h2b3

3a2 +
h2b(a2−b2)

3a2

)
= h

3 .

In either case, the centroid is at
(
a+b
3 , h

3

)
.

b. Because each median bisects the triangle, the centroid must lie on each median Because the triangle
will be balanced with respect to the axis determined by the median. Because this is true of each
median, the centroid must be at the intersection of the medians.

13.6.65

a. Place the origin at Q, with the circles to the right of the y-axis. Then using polar coordinates (a, θ),
the equation of the circles are a = 2R cos θ and a = 2r cos θ for 0 ≤ θ ≤ π. The mass of the earring is
π
(
R2 − r2

)
, and y = 0.
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x = 1
π(R2−r2)

∫ π

0

∫ 2R cos θ

2r cos θ
a2 cos θ da dθ =

8(R3−r3)
3π(R2−r2)

∫ π

0
cos4 θ dθ = R2+Rr+r2

R+r .

With the origin instead at the center of the large circle, the equations of the circles are x2 + y2 = R2

and (x− (R− r))
2
+ y2 = r2. Then the moment around the y-axis of the large circle is zero, so

to compute x for the earring, we compute x = 1
π(R2−r2)

(
0− ∫ R

R−2r

∫√r2−(x−(R−r))2

−
√

r2−(x−(R−r))2
x dy dx

)
=

− 1
π(R2−r2)

∫ R

R−2r
x

√
r2 − (x− (R− r))

2
dx = − r2

R+r .

b. With the origin at the center of the large circle, point P is (R− 2r, 0), so we want R − 2r = − r2

R+r .

Multiplying both sides by R + r, dividing by r2 and letting x = R
r , we find that x = 1

x−1 or

x2 − x − 1 = 0, which has roots 1±√
5

2 . Because R, r > 0, it must be the positive value, so x = 1+
√
5

2
satisfies the condition.

13.7 Change of Variables in Multiple Integrals

13.7.1 It is the square with vertices (0, 0), (2, 0), (2, 2), and (0, 2).

13.7.2 The Jacobian is J (u, v) =

∣∣∣∣∣ ∂g∂u ∂g
∂v

∂h
∂u

∂h
∂v

∣∣∣∣∣.
13.7.3 The Jacobian is

∣∣∣∣∣1 1

1 −1

∣∣∣∣∣ = −2, so
∫∫
R

f (x, y) dA =
∫∫
S

f (u+ v, u− v) |J (u, v)| dA =∫∫
S

2f (u+ v, u− v) dA =
∫ 1

0

∫ 1

0
2f (u+ v, u− v) dv du.

13.7.4 It is the cube of side length 1
2 in the first octant with one vertex at the origin.

13.7.5 u = x
2 , so 0 ≤ u ≤ 1 means 0 ≤ x

2 ≤ 1 or 0 ≤ x ≤ 2. v = 2y, so 0 ≤ v ≤ 1 means 0 ≤ 2y ≤ 1, or
0 ≤ y ≤ 1

2 . Thus the image is the region
{
0 ≤ x ≤ 2, 0 ≤ y ≤ 1

2

}
, which is a rectangle in the first quadrant

with vertices (0, 0), (2, 0),
(
2, 1

2

)
,
(
0, 1

2

)
.

13.7.6 0 ≤ u ≤ 1 ⇒ 0 ≤ −x ≤ 1 ⇒ 0 ≥ x ≥ −1, and 0 ≤ v ≤ 1 ⇒ 0 ≤ −y ≤ 1 ⇒ 0 ≥ y ≥ −1, so we get a
unit square in the third quadrant with one vertex at the origin.

13.7.7 Solving for u and v gives u = x + y and v = x − y. The region is thus the square bounded by the
lines x+ y = 0, x+ y = 1, x− y = 0, and x− y = 1.

13.7.8 Solving for u and v gives u = y
2 and v = x− y. The region is thus the parallelogram bounded by the

lines y = 0, y = 2, x− y = 0, and x− y = 1.

13.7.9 From (0, 0) to (1, 0), x = u2 and y = 0, so this traces out the segment from (0, 0) to (1, 0). Similarly,
from (0, 1) to (0, 0), x = −v2 and y = 0, so this traces out the segment from (−1, 0) to (0, 0). From (1, 0)
to (1, 1), (x, y) =

(
1− v2, 2v

)
, so that (x, y) satisfies the equation y2 = 4 − 4x. From (1, 1) to (0, 1),

(x, y) =
(
u2 − 1, 2u

)
, so that (x, y) satisfies the equation y2 = 4 + 4x. So the result is the region enclosed

by the x-axis and the parabolas y2 = 4− 4x and y2 = 4 + 4x.

13.7.10 This is the result of interchanging x and y in the previous exercise, so the result is the region
enclosed by the y-axis and the parabolas x2 = 4− 4y and x2 = 4 + 4y.

13.7.11 As (u, v) goes from (0, 0) to (1, 0), (x, y) goes from (0, 0) to (1, 0) along the x-axis. As (u, v)
goes from (1, 0) to (1, 1), (x, y) traces out the upper half of the unit circle. As (u, v) goes from (1, 1) to
(0, 1), (x, y) goes from (−1, 0) to (0, 0) along the x-axis. Finally, as (u, v) goes from (0, 1) to (0, 0), (x, y)
is stationary at the origin. Thus the region swept out is the upper half of the unit circle.
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13.7.12 As (u, v) goes from (0, 0) to (1, 0), (x, y) is stationary at the origin. As (u, v) goes from (1, 0) to
(1, 1), (x, y) traces out the segment from (0, 0) to (0, −1). As (u, v) goes from (1, 1) to (0, 1), (x, y) traces
out the right half of the unit circle. Finally, as (u, v) goes from (0, 1) to (0, 0), (x, y) traces out the segment
from (1, 0) to (0, 0). The result is the right half of the unit circle.

13.7.13 R =
{
(x, y) :

√
y ≤ 1− x, x ≥ 0, y ≥ 0

}
=
{
(x, y) : y ≤ (1− x)

2
, x ≥ 0, y ≥ 0

}
.

13.7.14 R =
{
(x, y) :

(
x
2

)2
+
(
y
4

)2 ≤ 1
}
=
{
(x, y) : 4x2 + y2 ≤ 16

}
.

13.7.15 R = {(x, y) : 1 ≤ xy ≤ 3, 2 ≤ y ≤ 4} =
{
(x, y) : 2 ≤ y ≤ 4, 1

y ≤ x ≤ 3
y

}
.

13.7.16 R = {(x, y) : 2 ≤ x ≤ 3, 3 ≤ xy ≤ 6} =
{
(x, y) : 2 ≤ x ≤ 3, 3

x ≤ y ≤ 6
x

}
.
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13.7.17 J =

∣∣∣∣∣3 0

0 −3

∣∣∣∣∣ = −9.

13.7.18 J =

∣∣∣∣∣ 0 4

−2 0

∣∣∣∣∣ = 8.

13.7.19 J =

∣∣∣∣∣2v 2u

2u −2v

∣∣∣∣∣ = −4
(
u2 + v2

)
.

13.7.20 J =

∣∣∣∣∣cos (πv) −uπ sin (πv)

sin (πv) uπ cos (πv)

∣∣∣∣∣ = uπ.

13.7.21 J =

∣∣∣∣∣∣
1√
2

1√
2

1√
2

− 1√
2

∣∣∣∣∣∣ = −1.

13.7.22 J =

∣∣∣∣∣v−1 −uv−2

0 1

∣∣∣∣∣ = 1
v .

13.7.23 Add the two equations to get 3x = u + v, so x = u+v
3 , and y = u − u+v

3 = 2u−v
3 . The Jacobian is

then J =

∣∣∣∣∣ 13 1
3

2
3 − 1

3

∣∣∣∣∣ = − 1
3

13.7.24 x = v, so y = u
v . The Jacobian is then J =

∣∣∣∣∣ 0 1

v−1 −uv−2

∣∣∣∣∣ = − 1
v .

13.7.25 Add twice the second equation to the first to get −y = u + 2v so that y = −u − 2v, and then

x = −u− 3v. The Jacobian is J =

∣∣∣∣∣−1 −3

−1 −2

∣∣∣∣∣ = −1.

13.7.26 Subtract twice the second equation from the first to get u− 2v = −5x so that x = 2v−u
5 , and then

2y = v − 3x = v − 32v−u
5 = 3u−v

5 , so that y = 3u−v
10 . The Jacobian is J =

∣∣∣∣∣− 1
5

2
5

3
10 − 1

10

∣∣∣∣∣ = − 1
10 .
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13.7.27

a.

b. The region S is the first-quadrant unit square with one vertex at the origin, so the limits of integration
are 0 ≤ u, v ≤ 1.

c. The Jacobian of the transformation is

∣∣∣∣∣1 1

1 −1

∣∣∣∣∣ = −2.

d.
∫∫
R

xy dA =
∫ 1

0

∫ 1

0
u+v
2 · u−v

2 |−2| dv du = 1
2

∫ 1

0

∫ 1

0

(
u2 − v2

)
dv du = 1

2

∫ 1

0

(
u2 − 1

3

)
du = 0.

13.7.28

a. S = {(u, v) : 0 ≤ 2u ≤ 2, 2u ≤ 4v + 2u ≤ 2u+ 4} = {(u, v) : 0 ≤ u ≤ 1, u ≤ 2v + u ≤ u+ 2} =
{(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}.

b. From the above computation, the new integration limits are 0 ≤ u, v ≤ 1.

c. The Jacobian is

∣∣∣∣∣2 0

2 4

∣∣∣∣∣ = 8.

d.
∫∫
R

x2y dA = 64
∫ 1

0

∫ 1

0
u2 (2v + u) dv du = 64

∫ 1

0

(
u2 + u3

)
du = 112

3 .

13.7.29

a. S = {(u, v) : 0 ≤ 2u ≤ 2, −u ≤ v − u ≤ 1− 2u} = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u}
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b. From the above, the new limits of integration are 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u.

c. The Jacobian is

∣∣∣∣∣ 2 0

−1 1

∣∣∣∣∣ = 2.

d.
∫∫
R

x2
√
x+ 2y dA = 8

∫ 1

0

∫ 1−u

0
u2

√
2v dv du = 16

√
2

3

∫ 1

0
u2 (1− u)

3/2
du = 256

√
2

945 .

13.7.30

a. Under the given transformation, 9x2 + 4y2 = 36 becomes 9 (2u)
2
+ 4 (3v)

2
= 36u2 + 36v2 = 36, which

is the unit circle u2 + v2 = 1.

b. The limits of integration over the unit circle are −1 ≤ u ≤ 1, −√
1− u2 ≤ v ≤ √

1− u2.

c. The Jacobian is

∣∣∣∣∣2 0

0 3

∣∣∣∣∣ = 6.

d.
∫∫
R

xy dA = 36
∫ 1

−1

∫√
1−u2

−√
1−u2 uv dv du = 0.

13.7.31 Use the substitution y = v, x = u + v. Then S = {(u, v) : 0 ≤ v ≤ 1, v ≤ u+ v ≤ v + 2} =
{(u, v) : 0 ≤ v ≤ 1, 0 ≤ u ≤ 2}.

The Jacobian of this transformation is J (u, v) =

∣∣∣∣∣1 1

0 1

∣∣∣∣∣ = 1 so that

∫ 1

0

∫ y+2

y

√
x− y dx dy =

∫ 1

0

∫ 2

0

√
u du dv =

2

3
23/2 =

4
√
2

3
.
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13.7.32 Use the substitution x = u − v, y = u + v. Then S becomes the unit square in the first quadrant
with one vertex at the origin, as can be seen by tracing each edge.

The Jacobian of this transformation is J (u, v) =

∣∣∣∣∣1 −1

1 1

∣∣∣∣∣ = 2 so that

∫∫
R

√
y2 − x2 dA = 2

∫ 1

0

∫ 1

0

√
(u+ v)

2 − (u− v)
2
dv du = 2

∫ 1

0

∫ 1

0

√
4uv dv du = 16

9 .

13.7.33 The points of intersection of the given lines are
(− 1

3 ,
2
3

)
,
(− 2

3 ,
4
3

)
,
(
2
3 ,

8
3

)
, and (1, 2). Setting

u = y − x, v = y + 2x sends these points into the rectangle with vertices (1, 0), (2, 0), (2, 4), and (1, 4).

So use the transformation (solving for x, y) x = v−u
3 , y = v+2u

3 , J (u, v) =

∣∣∣∣∣− 1
3

1
3

2
3

1
3

∣∣∣∣∣ = − 1
3 , so that

∫∫
R

(
y−x

y+2x+1

)4
dA = 1

3

∫ 2

1

∫ 4

0

(
u

v+1

)4
dv du = 1

3

∫ 2

1
124
375u

4 du = 3844
5625 .

13.7.34 Use the transformation u = xy, v = y
x , so that x =

√
u
v , y =

√
uv . The Jacobian is∣∣∣∣∣u

−1/2v−1/2

2 −u−1/2v−3/2

2
u−1/2v1/2

2
u1/2v−1/2

2

∣∣∣∣∣ = 1
2v , and the new region is the square with vertices (1, 1), (1, 3), (4, 1), and

(4, 3), so that
∫∫
R

exy dA =
∫ 4

1

∫ 3

1
eu 1

2v dv du = ln 3
2

∫ 4

1
eu du = ln 3

2

(
e4 − e

)
.
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13.7.35 Use the transformation u = xy, v = y, so that x = u
v , y = v. The new region is the square with

vertices (1, 1), (4, 1), (4, 3), and (1, 3). The Jacobian of the transformation is

∣∣∣∣∣ 1v − u
v2

0 1

∣∣∣∣∣ = 1
v .

Thus
∫∫
R

xy dA =
∫ 4

1

∫ 3

1
u
v dv du =

∫ 4

1
u ln 3 du = 15 ln 3

2 .

13.7.36 R is the interior of the triangle with vertices (0, 0), (1, 0), and (2, 1). Looking at the form of the
integrand, try u = x− 2y, v = y so that x = u+2v, y = v. Then S is the triangle bounded by (0, 0), (1, 0),
and (0, 1).

The Jacobian of this transformation is

∣∣∣∣∣1 2

0 1

∣∣∣∣∣ = 1, and the integral is equal to
∫∫
R

(x− y)
√
x− 2y dA =∫ 1

0

∫ 1−u

0
(u+ v)

√
u dv du = 4

21 .

13.7.37 J (u, v, w) =

∣∣∣∣∣∣∣∣
0 1 1

1 0 1

1 1 0

∣∣∣∣∣∣∣∣ = 2.

13.7.38 J (u, v, w) =

∣∣∣∣∣∣∣∣
1 1 −1

1 −1 1

−1 1 1

∣∣∣∣∣∣∣∣ = −4.
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13.7.39 J (u, v, w) =

∣∣∣∣∣∣∣∣
0 w v

w 0 u

2u −2v 0

∣∣∣∣∣∣∣∣ = 2w
(
u2 − v2

)
.

13.7.40 Solving for x, y, and z gives x = u+v+w
2 , y = −u+v+w

2 , z = u−v+w
2 , so that

J (u, v, w) =

∣∣∣∣∣∣∣∣
1
2

1
2

1
2

− 1
2

1
2

1
2

1
2 − 1

2
1
2

∣∣∣∣∣∣∣∣ =
1
2 .

13.7.41 Let u = y − x, v = z − y, w = z; then x = w − v − u, y = w − v, z = w and the Jacobian is

J (u, v, w) =

∣∣∣∣∣∣∣∣
−1 −1 1

0 −1 1

0 0 1

∣∣∣∣∣∣∣∣ = 1. The new region is clearly 0 ≤ u ≤ 2, 0 ≤ v ≤ 1, 0 ≤ w ≤ 3, so we obtain

∫∫∫
D

xy dV =
∫ 2

0

∫ 1

0

∫ 3

0
(w − v − u) (w − v) dw dv du = 5.

13.7.42 Let u = y − 2x, v = z − 3y, w = z − 4x. Then x = − 3
2u − 1

2v + 1
2w, y = −2u − v + w,

z = −6u − 2v + 3w, so the Jacobian is J (u, v, w) =

∣∣∣∣∣∣∣∣
−3

2 − 1
2

1
2

−2 −1 1

−6 −2 3

∣∣∣∣∣∣∣∣ =
1
2 , and the new region of integration

is 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 3. Thus
∫∫∫
D

dV =
∫ 3

0

∫ 1

0

∫ 1

0
1
2 du dv dw = 3

2 .

13.7.43 Using the given change of variables, the Jacobian is

∣∣∣∣∣∣∣∣
4 cos v − 4u sin v 0

2 sin v2u cos v 0

0 0 1

∣∣∣∣∣∣∣∣ = 8u, and the new range

of integration is 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π, 0 ≤ w ≤ 16−16u2. Thus
∫∫∫
D

z dV =
∫ 1

0

∫ 2π

0

∫ 16−16u2

0
8uw dw dv du =∫ 1

0
2048π u

(
u2 − 1

)2
du = 1024π

3 .
(Note that this change of variables is essentially cylindrical coordinates, with an adjustment for the fact

that we are integrating over a paraboloid with differently sized axes.)

13.7.44 Using the given change of variables, the Jacobian is

∣∣∣∣∣∣∣∣
3 0 0

0 2 0

0 0 1

∣∣∣∣∣∣∣∣ = 6. In uvw-coordinates, the equation

becomes u2 + v2 + w2 = 1, so the integral is half the volume of the unit sphere, or 2π
3 . Multiplying by the

Jacobian gives 4π.

13.7.45

a. True. This is because g (u, v) and h (u, v) are of the form au + bv so their partial derivatives are
constants.

b. True. This is because the transformation maps lines to lines.

c. True. It simply halves lengths and reflects in the x axis.

13.7.46 Expand the determinant about the third row. J (r, θ, Z) =

∣∣∣∣∣∣∣∣
cos θ r sin θ 0

sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣∣ = rcos2θ+rsin2θ = r.
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13.7.47 Expand the determinant about the third row. J (ρ, ϕ, θ) =

∣∣∣∣∣∣∣∣
sinϕ cos θ ρ cosϕ cos θ −ρ sinϕ sin θ

sinϕ sin θ ρ cosϕ sin θ ρ sinϕ cos θ

cosϕ −ρ sinϕ 0

∣∣∣∣∣∣∣∣
= cosϕ

(
ρ2 sinϕ cosϕ cos2 θ + ρ2 sinϕ cosϕ sin2 θ

)
+ ρ sinϕ

(
ρ sin2 ϕ cos2 θ + ρ sin2 ϕ sin2 θ

)
=

ρ2 sinϕ cos2 ϕ+ ρ2 sin3 ϕ = ρ2 sinϕ.

13.7.48 Under T , the ellipse becomes u2 + v2 = 1, the unit circle, with area π. The Jacobian of the
transformation is ab, so the ellipse area is πab.

13.7.49 This integral is four times the integral over the first quadrant. This is 4ab
∫ 1

0

∫√
1−u2

0
abuv dv du =

2a2b2
∫ 1

0
u
(
1− u2

)
du = a2b2

2 .

13.7.50 The area of R is given by Exercise 48 (πab2 ), and x = 0 by symmetry. To find y, we compute using the

same change of variables (where R+ is the upper half) 1
(πab)/2

∫ 1

−1

∫√
1−u2

0
ab2v dv du = b

π

∫ 1

−1

(
1− u2

)
du =

4b
3π .

13.7.51 The distance of a point from the origin is
√
x2 + y2 =

√
a2u2 + b2v2, so the average squared distance

is 1
πab

∫ 1

−1

∫√
1−u2

−√
1−u2 ab

(
a2u2 + b2v2

)
dv du = a2+b2

4 .

13.7.52 The distance of a point in the upper half of R and the x-axis is simply the point’s y-coordinate, so

the average distance is 1
(πab)/2

∫ 1

−1

∫√
1−u2

0
ab2v dv du = 4b

3π .

13.7.53 Under the given transformation, the equation becomes u2 + v2 + w2 = 1, the unit sphere. The
Jacobian of the transformation is abc, so the volume of D is abc times the volume of the unit sphere, or
4
3πabc.

13.7.54 This integral is eight times the integral over the first octant, so it is

8abc
∫ 1

0

∫√
1−u2

0

∫√
1−u2−v2

0
abcuvw dw dv du = a2b2c2

6 .

13.7.55 The mass of the upper half is 2πabc
3 by Problem 53, and x = y = 0 by symmetry.

z = 1
(2πabc)/3

∫ 1

−1

∫√
1−u2

−√
1−u2

∫√
1−u2−v2

0
abc2w dw dv du = 3c

2π

∫ 1

−1

∫√
1−u2

−√
1−u2

(
1− u2 − v2

)
dv du = 3c

8 .

13.7.56 The distance of a point from the origin is
√
x2 + y2 + z2 =

√
a2u2 + b2v2 + c2w2, so the average

squared distance is 3
4πabc

∫ 1

−1

∫√
1−u2

−√
1−u2

∫√
1−u2−v2

−√
1−u2−v2

(
a2u2 + b2v2 + c2w2

)
abc dw dv du

To evaluate this integral, switch to cylindrical coordinates; we obtain
3
2π

∫ 1

0

∫ 2π

0

∫√
1−r2

0
r
(
a2r2 cos2 θ + b2r2 sin2 θ + c2z2

)
dz dθ dr =

1
2π

∫ 1

0

∫ 2π

0
r
√
1− r2

(
c2 − c2r2 + 3b2r2 + 3a2r2 cos2 θ − 3b2r2 cos2 θ

)
dθ dr = a2+b2+c2

5 .

13.7.57

a. The line u = a is the set {(a, v)}, which maps under T to
{(

a2 − v2, 2av
)}

. But points of this form
satisfy the equation a2−x = 1

4a2 y
2, or x = − 1

4a2 y
2+a2, which is a parabola opening in the negative x

direction. The vertex of the parabola x = Ay2+By+C is at
(
C − B2

4A , − B
2A

)
, which for this parabola

is
(
a2, 0

)
, which lies on the positive x-axis.

b. The line v = b is the set {(u, b)}, which maps under T to
{(

u2 − b2, 2ub
)}

. But points of this form
satisfy the equation b2 + x = 1

4b2 y
2, or x = 1

4b2 y
2 − b2, which is a parabola opening in the positive x

direction. The vertex of the parabola x = Ay2+By+C is at
(
C − B2

4A , − B
2A

)
, which for this parabola

is
(−b2, 0

)
, which lies on the negative x-axis.
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c. J (u, v) =

∣∣∣∣∣2u −2v

2v 2u

∣∣∣∣∣ = 4
(
u2 + v2

)
.

d. Use the transformation x = v2 − u2, y = 2uv. The Jacobian of this transformation is

∣∣∣∣∣−2u 2v

2v 2u

∣∣∣∣∣ =
−4
(
u2 + v2

)
. x = 4− 1

16y
2 corresponds to the lines u = ±2 (by an analysis similar to part (a)), while

x = 1
4y

2 − 1 corresponds to the line v = ±1, so that the rectangle with vertices (−2, −1), (−2, 1),
(2, 1), (2, −1) is mapped to the region bounded by the parabolas. However, note that the area of that
rectangle to the left of the v-axis and the area to the right of the v-axis are each mapped onto that
region (that is, the map is 2 : 1; it is a simple computation to see that (a, b) and (−a, −b) map to
the same xy point). Thus to determine the area of the original region, we want to integrate over only

(say) the right half of the rectangle. So the area is
∫ 2

0

∫ 1

−1
4
(
u2 + v2

)
dv du = 80

3 .

e. As in part (d), use the transformation x = v2 − u2, y = 2uv, with Jacobian −4
(
u2 + v2

)
. The

correspondences are: x = y2

4 − 1 ⇔ u = 1x = y2

64 − 16 ⇔ u = 4x = 9 − y2

36 ⇔ v = ±3x =

4− y2

16 ⇔ v = ±2. Because we are looking at the positive portion of the bounded piece, the new range

of integration is 1 ≤ u ≤ 4, 2 ≤ v ≤ 3. Thus the area is
∫ 4

1

∫ 3

2
4
(
u2 + v2

)
dv du = 160.

f. This simply reverses the roles of x and y in parts (a) and (b). Thus lines u = a in the uv plane map
to parabolas in the xy plane that open in the negative y direction with vertices on the positive y-axis,
while lines v = b in the uv plane map to parabolas in the xy plane that open in the positive y direction
with vertices on the positive y-axis.

13.7.58

a. Here is the effect of the shear transformation with a = 1, b = 2, c = 3 (x = u+ 2v; y = 3v):

The y coordinates are all multiplied by c, while the x coordinates are gotten by expanding by a and
then adding b times the y coordinate. This has the effect of pushing the square further and further to
the right as the y coordinate increases.

b. J (u, v) =

∣∣∣∣∣a b

0 c

∣∣∣∣∣ = ac

c. R is a parallelogram with vertices (0, 0), (a, 0), (a+ b, c), and (b, c), so it has base a and height c, so
has area ac (which is exactly what we would expect because the Jacobian is ac).

d. By symmetry, y = c
2 and x = a+b

2 .

e. The analogous shear transformation is x = au, y = bu+ cv.
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13.7.59

a. The z coordinate remains constant, while the other coordinates are stretched by an amount depending
on all three coordinates. The result is thus a parallelepiped with its base in the xy plane.

b. J (u, v, w) =

∣∣∣∣∣∣∣∣
a b c

0 d e

0 0 1

∣∣∣∣∣∣∣∣ = ad

c. D has a height of 1 Because S and the z coordinate remains unchanged. Its base is in the xy plane,
and is the parallelogram that is the result of the shear transformation x = au+ by, y = dv (set w = 0
in the original equations to see this). The area of this parallelogram, from Problem 58, is ad, so the
total volume is ad (again what we would expect from the Jacobian).

d. By symmetry, the center of mass is
(
a+b+c

2 , d+e
2 , 1

2

)
.

13.7.60

a. J (u, v) =

∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad− bc

b. R is the parallelogram with vertices (0, 0), (a, c), (b, d), and (a+ b, c+ d). Compute its area by think-
ing of (a, c) and (b, d) as vectors in 3-space with zero z coordinate; then the area of the parallelogram

is the cross-product
∣∣∣〈a, c, 0〉× 〈b, d, 0〉∣∣∣ = ∣∣∣〈0, 0, ad− bc

〉∣∣∣ = |ad− bc| = |J (u, v)|

c. Let P = (q, r) and let � be the line given by (q + et, r + ft); 0 ≤ t ≤ 1 so that Q = (q + e, r + f).
Then T (P ) = (aq + br, cq + dr), while T (Q) = (aq + ae+ br + bf, cq + ce+ dr + df). Then
T ((q + et, r + ft)) = (aq + br, (ae+ bf) t, cq + dr + (ce+ df) t) =
(aq + br, cq + dr) + (ae+ bf, ce+ df) t = T (P ) + (ae+ bf, ce+ df) t. Now, when t = 1, this is T (Q),
so that � maps to a line from T (P ) to T (Q).

d. By moving and reflecting the x and y axes if necessary, we may assume that the vertices of the par-
allelogram are (0, 0), (r, 0), (s, t), and (r + s, t) for r, s, t > 0. The area of this parallelogram
is then rt (base times height). Then the vertices of S are (0, 0), (ar, cr), (as+ bt, cs+ dt), and
(ar + as+ bt, cr + cs+ dt). Again regarding (ar, cr) and (as+ bt, cs+ dt) as vectors in 3-space, the

area of the parallelogram is
∣∣∣〈ar, cr, 0〉× 〈as+ bt, cs+ dt, 0

〉∣∣∣ = ∣∣∣〈0, 0, ar (cs+ dt)− cr (as+ bt)
〉∣∣∣ =∣∣∣〈0, 0, (ad− bc) rt

〉∣∣∣ = |J (u, v)| rt = |J (u, v)| area (S).

13.7.61

a. This is just the definition of the transformation T , which is given by x = g (u, v), y = h (u, v), so that
the image of (x, y) is T ((x, y)) = (g (u, v) , h (u, v)). Apply this to the coordinates of the points O,
P , Q.

b. The Taylor expansions of g and h at (0, 0) are

g (u, v) = g (0, 0) + u gu (0, 0) + v gv (0, 0) + terms involving higher derivatives

rh (u, v) = h (0, 0) + uhu (0, 0) + v hv (0, 0) + terms involving higher derivatives.

Substituting the two points (�u, 0) and (0, �v) into these equations and considering only the terms
up through the first derivative gives the desired result.

c. From part (b),
P ′ ≈ (g (0, 0) + gu (0, 0)�u, h (0, 0) + hu (0, 0)�u)

Q′ ≈ (g (0, 0) + gv (0, 0)�v, h (0, 0) + hv (0, 0)�v) ,
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so that
−−−→
O′P ′ ≈ �u

〈
gu (0, 0) , hu (0, 0)

〉
and

−−−→
O′Q′ ≈ �v

〈
gv (0, 0) , hv (0, 0)

〉
. The area of the paral-

lelogram determined by
−−−→
O′P ′ and

−−−→
O′Q′ is the magnitude of the cross product of these vectors (consid-

ered as vectors in 3-space with zero z coordinate), so the area of the resulting region is approximately

∣∣∣�u
〈
gu (0, 0) , hu (0, 0) , 0

〉
×�v

〈
gv (0, 0) , hv (0, 0) , 0

〉∣∣∣
= �u�v

∣∣∣〈gu (0, 0) , hu (0, 0) , 0
〉
×
〈
gv (0, 0) , hv (0, 0) , 0

〉∣∣∣
= �u�v |gu (0, 0) hv (0, 0)− gv (0, 0)hu (0, 0)|
= |J (u, v)|�u�v.

d. Because the area of R is �u�v, the ratio is approximately |J (u, v)|.
13.7.62

a. Let n1 =
〈
at, bt, 0

〉
, n2 =

〈
ct, 0, dt

〉
, n3 =

〈
0, et, ft

〉
for t ∈ R. Then n1 is normal to the first pair,

n2 to the second pair, and n3 to the third pair.

b. The triple scalar product of any three vectors is the volume of the parallelepiped that they determine.
This volume is zero if and only if they are coplanar.

c. The triple scalar product is
〈
at, bt, 0

〉 · (〈ct, 0, dt〉× 〈0, et, ft〉) =
〈
at, bt, 0

〉 · t2〈−de, cf, ce
〉

=
t3 (−ade− bcf), so the normal vectors are coplanar if and only if ade+ bcf = 0.

d. If the three vectors are coplanar, then the cross product of any two of them is perpendicular to the
plane they determine. Thus, for example, from part (c), N = t (de, cf, −ce) is normal to the plane.
So any line in the direction of N is parallel to all six planes. By choosing the line appropriately, we can
ensure that it does not lie in any of the six planes, and thus it does not intersect any of them. Thus
the six planes do not form a bounded region if ade+ bcf = 0.

e. The Jacobian is

∣∣∣∣∣∣∣∣
a b 0

c 0 d

0 e f

∣∣∣∣∣∣∣∣ = −ade− bcf . The Jacobian is zero if R is unbounded.

Chapter Thirteen Review

1

a. False. For example, if g (x, y) = 2, then
∫ d

c

∫ b

a
2 dx dy = 2 (b− a) (d− c) while

(∫ d

c
2 dy
)(∫ b

a
2 dx

)
=

4 (b− a) (d− c).

b. True. The first set is the set whose ϕ coordinate is π
2 ; ϕ is the angle the line to the point makes with

the z-axis, so this is the set of points in the xy-plane.

c. False. The integrand doesn’t change.

d. False. For example, it maps the standard unit square into the square with vertices (0, 0), (0, −1),
(1, −1), (1, 0).

2
∫ 2

1

∫ 4

1
xy

(x2+y2)2
dx dy = 1

2

∫ 2

1

∫ 4

1
(2x)y

(x2+y2)2
dx dy = − 1

2

∫ 2

1
y

x2+y2

∣∣∣4
1
dy = − 1

2

∫ 2

1

(
y

y2+16 − y
y2+1

)
dy = 1

4 ln 17 −
3
4 ln 2.

3
∫ 3

1

∫ ex

1
x
y dy dx =

∫ 3

1
x ln y

∣∣∣ex
1

dx =
∫ 3

1
x2dx = 26

3 .
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4
∫ 2

1

∫ ln x

0
x3ey dy dx =

∫ 2

1
x3ey

∣∣∣ln x

0
dx =

∫ 2

1

(
x4 − x3

)
dx = 49

20 .

5
∫ 1

0

∫√
y

−√
y
f (x, y) dx dy.

6
∫ 1

−1

∫ x+1

0
f (x, y) dy dx.

7
∫ 1

0

∫√
1−x2

0
f (x, y) dy dx.

8
∫ 0

−2

∫ x

−x−4
1 dy dx+

∫ 4

0

∫ x

2x−4
1 dy dx =

∫ 0

−2
(2x+ 4) dx+

∫ 4

0
(4− x) dx = 12.

9 2
∫ 4

0

∫ 20−x2

x
1 dy dx = 2

∫ 4

0

(
20− x2 − x

)
dx = 304

3 .

10
∫ 1

−1/2

∫ 1+x−x2

x2 1 dy dx =
∫ 1

−1/2

(
1 + x− 2x2

)
dx = 9

8 .

11
∫ 2

1

∫ x3/2

0
2y√
x4+1

dy dx =
∫ 2

1
x3√
x4+1

dx =
√
17−√

2
2 .

12
∫ 4

1

∫√
x

0
x−1/2eydy dx =

∫ 4

1
x−1/2

(
ex

1/2 − 1
)
dx = 2e2 − 2e− 2.

13
∫ π

0

∫ 4 sin θ

0
r2 (cos θ + sin θ) dr dθ = 64

3

∫ π

0
sin3 θ (cos θ + sin θ) dθ = 8π.
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14
∫ 2

0

∫ x

0

(
x2 + y2

)
dy dx =

∫ 2

0
4
3x

3 dx = 16
3 .

15
∫ 1

0

∫ 1

y1/3 x
10 cos

(
πx4y

)
dx dy =

∫ 1

0

∫ x3

0
x10 cos

(
πx4y

)
dy dx =

∫ 1

0
x10

πx4 sin
(
πx7
)
dx =

1
π

∫ 1

0
x6 sin

(
πx7
)
dx = 2

7π2 .

16
∫ 2

0

∫ 4

y2 x
8y
√

1 + x4y2 dx dy =
∫ 4

0

∫√
x

0
x8y
√

1 + x4y2 dy dx = 1
3

∫ 4

0
x4
(
−1 +

(
1 + x5

)3/2)
dx =

420250
3

√
41− 5122

25 .

17
∫ 1

0

∫ π/2

0
3 (r cos θ)

2
r sin θ r dθ dr =

∫ 1

0

∫ π/2

0
3r4 cos2 θ sin θ dθ dr =

∫ 1

0
r4 dr = 1

5 .

18
∫ 4

1

∫ π

0
1

(1+r2)2
r dθ dr = π

∫ 4

1
r

(1+r2)2
dr = 15

68π.

19 The area is four times the area of one leaf, so is 4
∫ π/4

−π/4

∫ 3 cos 2θ

0
r dr dθ = 18

∫ π/4

−π/4
cos2 2θ dθ = 9π

2 .

20 The area is twice the area of the region above the x-axis. The two circles intersect above the x

axis at cos θ = 1
2 , or θ = π

3 . Thus the area of the region is 2
(∫ π/3

0

∫ 2

0
r dr dθ +

∫ π/2

π/3

∫ 4 cos θ

0
r dr dθ

)
=

2
(∫ π/3

0
2 dθ +

∫ π/2

π/3
8 cos2 θ dθ

)
= 4π

3 + 4π
3 − 2

√
3 = 8π

3 − 2
√
3.

21 The area is four times the area bounded by the cardioid 2 − 2 cos θ and the y-axis for positive x (i.e.

for 0 ≤ θ ≤ π
2 ), Because all four portions of the area are congruent. Thus it is 4

∫ π/2

0

∫ 2−2 cos θ

0
r dr dθ =

8
∫ π/2

0
(1− cos θ)

2
dθ = 6π − 16.
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22 The area of the disk is π · 42 = 16π. Using polar coordinates, the average value is then
1

16π

∫ 4

0

∫ 2π

0
r
√
16− r2 dθ dr = 1

8

∫ 4

0
r
√
16− r2 dr = 8

3 .

23 The volume of the cone is 1
3 times the area of the base times the height. The base (at z = 8) is a circle

of radius 4, so the volume is 1
3π · 42 · 8 = 128π

3 . Use cylindrical coordinates to integrate; then the distance to

the z-axis is r and the average is 1
(128π)/3

∫ 8

0

∫ z/2

0

∫ 2π

0
r2 dθ dr dz = 1

64

∫ 8

0
z3

8 dz = 2.

24
∫ 1

0

∫√
1−x2

0

∫√
1−x2

0
f (x, y, z) dz dy dx.

25
∫ 4

0

∫√
16−z2

0

∫√16−y2−z2

0
f (x, y, z) dx dy dz.

26
∫ 2

0

∫ 2

y

∫ 9−x2

0
f (x, y, z) dz dx dy.

27
∫ 1

0

∫ z

−z

∫√
1−x2

−√
1−x2 dy dx dz = 2

∫ 1

0

∫ z

−z

√
1− x2 dx dz = 2

∫ 1

0

(
z
√
1− z2 + arcsin (z)

)
dz = π − 4

3 .

28
∫ π

0

∫ y

0

∫ sin x

0
dz dx dy =

∫ π

0

∫ y

0
sinx dx dy =

∫ π

0
(1− cos y) dy = π.

29 The region in the xy-plane can be restated as 0 ≤ x ≤ 2, 0 ≤ y ≤ x
2 . Reordering the integral gives∫ 9

1

∫ 2

0

∫ x/2

0

4 sin(x2)√
z

dy dx dz = 2
∫ 9

1

∫ 2

0

x sin(x2)√
z

dx dz = (1− cos 4)
∫ 9

1
z−1/2 dz = 4− 4 cos 4.

30 This is the integral of a function over the right half of the ellipse x2

2 + y2 = 2. Change the order of inte-

gration of x and y so that −√
2 ≤ y ≤ √

2, 0 ≤ x ≤
√

4− 2y2. We have
∫√

2

−√
2

∫√4−2y2

0

∫ 8−x2−y2

x2+3y2 dz dx dy =∫√
2

−√
2

∫√4−2y2

0

(
8− 2x2 − 4y2

)
dx dy =

∫√
2

−√
2

((
8− 4y2

)√
4− 2y2 − 2

3

(
4− 2y2

)3/2)
dy = 4π

√
2.

31 Reorder to integrate with respect to x last. Because 0 ≤ y ≤ 2, we have 0 ≤ x ≤ 4. The integral is∫ 4

0

∫ 2√
x

∫ y1/3

0
yz5
(
1 + x+ y2 + z6

)2
dz dy dx = 1

18

∫ 4

0

∫ 2√
x

(
7y7 + 9y5 + 9xy5 + 3y3 + 6xy3 + 3x2y3

)
dy dx =

1
18

∫ 4

0

(
332− 25

8 x4 − 3x3 + 45
4 x2 + 120x

)
dx = 848

9 .

32
∫ 1

0

∫ 3−3x

0

∫ 2

0
1 dz dy dx =

∫ 1

0
(6− 6x) dx = 3.

33
∫ 2

0

∫ π

0

∫ r sin θ

0
r dz dθ dr =

∫ 2

0

∫ π

0
r2 sin θ dθ dr =

∫ 2

0
2r2 dr = 16

3 .

34 Note that 2 − x2 − (1 + y2) = 1 − (x2 + y2). Note also that the projection of the intersection of the

surfaces to the plane z = 0 is the unit circle. We use cylindrical coordinates to obtain
∫ 2π

0

∫ 1

0
(1−r2)r dr dθ =∫ 2π

0

∫ 1

0
(r − r3) dr dθ = 2π

(
r2

2 − r4

4

) ∣∣∣1
0
= π

2 .

35 Look at the intersection of the cylinders from the positive z-axis. The vertical sides of the region
lie on the cylinder x2 + y2 = 4, and the top and bottom lie on x2 + z2 = 4. Thus the region is{
(x, y, z) : x2 + y2 ≤ 4, −√

4− x2 ≤ z ≤ √
4− x2

}
. Thus the volume is

∫ 2

−2

∫√
4−x2

−√
4−x2

∫√
4−x2

−√
4−x2 1 dz dy dx =∫ 2

−2

∫√
4−x2

−√
4−x2 2

√
4− x2 dy dx =

∫ 2

−2
4
(
4− x2

)
dx = 128

3 .

36
∫ 1

0

∫ x

0

∫ y

0
1 dz dy dx =

∫ 1

0

∫ x

0
y dy dx =

∫ 1

0
x2

2 dx = 1
6 .

37 Rewrite the integral as
∫ 1/2

0

∫ sin−1 2x

sin−1 x
1 dy dx and then change the order of integration. This results in the

integral breaking up into two integrals, and we obtain∫ π/6

0

∫ sin y

(sin y)/2
1 dx dy +

∫ π/2

π/6

∫ 1/2

(sin y)/2
1 dx dy =

∫ π/6

0
sin y
2 dy +

∫ π/2

π/6

(
1
2 − sin y

2

)
dy = 1−√

3
2 + π

6 .
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38 The plane of the slanted surface of the tetrahedron is 6x+ 3y + 2z = 6, so the possibilities are∫ 1

0

∫ 2−2x

0

∫ (6−6x−3y)/2

0

dz dy dx =

∫ 1

0

∫ 3−3x

0

∫ (6−6x−2z)/3

0

dy dz dx

=

∫ 2

0

∫ (2−y)/2

0

∫ (6−6x−3y)/2

0

dz dx dy

=

∫ 2

0

∫ 2−2x

0

∫ (6−3y−2z)/6

0

dx dz dy

=

∫ 3

0

∫ (3−z)/3

0

∫ (6−6x−2z)/3

0

dy dx dz

=

∫ 3

0

∫ 2(3−z)/3

0

∫ (6−3y−2z)/6

0

dx dy dz.

39

a.
∫ 2

0

∫ z3

0

∫ y2

0
1 dx dy dz =

∫ 2

0

∫ z3

0
y2 dy dz = 1

3

∫ 2

0
z9 dz = 512

15 .

b. In theory, there are a total of six arrangements of dx, dy and dz. Thus there are five possible integration

orders other than this one. For example, using dx dz dy:
∫ 8

0

∫ 2
3
√
y

∫ y2

0
1 dx dz dy =

∫ 8

0

∫ 2
3
√
y
y2 dz dy =∫ 8

0
y2
(
2− 3

√
y
)
dy = 512

15 .

c.
∫ 2

0

∫ zq

0

∫ yp

0
1 dx dy dz =

∫ 2

0

∫ zq

0
yp dy dz = 1

p+1

∫ 2

0
zq(p+1) dz = 2q(p+1)+1

(p+1)(q(p+1)+1) .

40 Use cylindrical coordinates. The volume of the paraboloid is
∫ 2

0

∫ 2π

0

∫ 4−r2

0
r dz dθ dr =

2π
∫ 2

0

(
4r − r3

)
dr = 8π. The distance of a point from the origin is

√
r2 + z2, so the average squared distance

is 1
8π

∫ 2

0

∫ 2π

0

∫ 4−r2

0
r
(
r2 + z2

)
dz dθ dr = 1

4

∫ 2

0

(
1
3r
(
4− r2

)3
+ r3

(
4− r2

))
dr = 4.

41 The volume of the prism is
∫ 1

0

∫ 3−3x

0

∫ 2

0
1 dz dy dx =

∫ 1

0
(6− 6x) dx = 3. Thus the average x coordinate

is 1
3

∫ 1

0

∫ 3−3x

0

∫ 2

0
x dz dy dx = 1

3

∫ 1

0
2x (3− 3x) dx = 1

3 .

42 This is a quarter of a cylinder of radius 3 and length 3 oriented along the z-axis, so
∫ 3

0

∫ π/2

0

∫ 3

0
r3 ·

r dz dθ dr = 3π
2

∫ 3

0
r4 dr = 729π

10 .

43 Use cylindrical coordinates. We have
∫ 2

−2

∫ π/2

−π/2

∫ 1

0
1

(1+r2)2 r dr dθ dz. This can be written as (2 − (−2)) ·(
π
2 − (−π

2

)) ∫ 1

0
r

(1+r2)2 dr = 4π
∫ 2

1
1
2

(
1
u2

)
du = 2π

(− 1
u

) ∣∣∣2
1
= π.

44 z =
√
29 when x2 + y2 = 25, so 0 ≤ r ≤ 5. The volume is

∫ 5

0

∫ 2π

0

∫√
29√
4+r2

r dz dθ dr =

2π
∫ 5

0
r
(√

29−√
4 + r2

)
dr = 1

3π
(
17
√
29 + 16

)
.

45
∫ 4

0

∫ π

0

∫ 2 cos θ

0
r dr dθ dz = 2

∫ 4

0

∫ π

0
cos2 θ dθ dz = 4π.

46
∫ 2π

0

∫ π/2

0

∫ 2 cosϕ

0
ρ2 sinϕdρ dϕdθ = 8

3

∫ 2π

0

∫ π/2

0
cos3 ϕ sinϕdϕdθ = 4π

3 .

47
∫ π

0

∫ π/4

0

∫ 4 sec ϕ

2 secϕ
ρ2 sinϕdρ dϕdθ = 56

3

∫ π

0

∫ π/4

0
sec3 ϕ sinϕdϕdθ = 28π

3 .

48
∫ π

0

∫ (1−cosϕ)/2

0

∫ 2π

0
ρ2 sinϕdθ dρ dϕ = π

12

∫ π

0
(1− cosϕ)

3
sinϕdρ dϕ = π

3 .

49
∫ π/2

0

∫ 4 sin 2ϕ

0

∫ 2π

0
ρ2 sinϕdθ dρ dϕ = 128π

3

∫ π/2

0
sin3 2ϕ sinϕdϕ = 2048π

105 .
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50
∫ π/4

0

∫ 4 cosϕ

0

∫ 2π

0
ρ2 sinϕdθ dρ dϕ = 128π

3

∫ π/4

0
cos3 ϕ sinϕdϕ = 8π.

51

The mass of the plate is
∫ π

0
sinx dx = − cosπ+cos 0 = 2. By symmetry, x = π

2 , y = 1
2

∫ π

0

∫ sin x

0
y dy dx =

1
4

∫ 4

0
sin2 x dx = π

8 . The center of mass is
(
π
2 ,

π
8

)
.

52

The mass of the plate is
∫ 1

0

∫ x2

x3 1 dy dx =
∫ 1

0

(
x2 − x3

)
dx = 1

12 , so that x = 1
1/12

∫ 1

0

∫ x2

x3 x dy dx =

12
∫ 1

0

(
x3 − x4

)
dx = 3

5y = 1
1/12

∫ 1

0

∫ x2

x3 y dy dx = 6
∫ 1

0

(
x4 − x6

)
dx = 12

35 . The center of mass is at
(
3
5 ,

12
35

)
.

53

By symmetry, x = 0. The mass of the region is 8π − 2π = 6π, so y = 1
6π

∫ π

0

∫ 4

2
r2 sin θ dr dθ =

28
9π

∫ π

0
sin θ dθ = 56

9π . The center of mass is at
(
0, 56

9π

)
.

54

By symmetry, x = 0. The two parabolas intersect where x2 = a2 − x2, so where x = ± a√
2
. The mass

is then
∫ a/

√
2

−a/
√
2

∫ a2−x2

x2 1 dy dx =
∫ a/

√
2

−a/
√
2

(
a2 − 2x2

)
dx = 2

3a
3
√
2 so that y = 1

2a3
√
2/3

∫ a/
√
2

−a/
√
2

∫ a2−x2

x2 y dy dx =

3
4a3

√
2

∫ a/
√
2

−a/
√
2

((
a2 − x2

)2 − x4
)
dx = 1

2a
2. The center of mass is at

(
0, 1

2a
2
)
.
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55 By symmetry, x = y = 0. The mass (using cylindrical coordinates) is∫ 6

0

∫ 36

r2

∫ 2π

0

r dθ dz dr = 2π

∫ 6

0

r
(
36− r2

)
dr = 648π,

so z = 1
648π

∫ 6

0

∫ 36

r2

∫ 2π

0
rz dθ dz dr = 1

648

∫ 6

0
r
(
1296− r4

)
dr = 24. The center of mass is (0, 0, 24).

56 The mass is 1
3 times the area of the base (4) times the height (4), so is 16

3 . The plane intersects
the x-axis at x = 4, the y-axis at y = 2, and the z-axis at z = 4, so by symmetry, x = z. Then

x = 1
16/3

∫ 2

0

∫ 4−2y

0

∫ 4−x−2y

0
x dz dx dy = 3

16

∫ 2

0

∫ 4−2y

0

(
4x− x2 − 2xy

)
dx dy = 1

32

∫ 2

0
(4− 2y)

3
dy = 1. y =

1
16/3

∫ 2

0

∫ 4−2y

0

∫ 4−x−2y

0
y dz dx dy = 3

16

∫ 2

0

∫ 4−2y

0

(
4y − xy − 2y2

)
dx dy = 3

16

∫ 2

0

(
8y − 8y2 + 2y3

)
dy = 1

2 , so

the center of mass is
(
1, 1

2 , 1
)
.

57 Use spherical coordinates. The mass is
∫ π/2

0

∫ 16

0

∫ 2π

0

(
1 + ρ

4

)
ρ2 sinϕdθ dρ dϕ =

2π
∫ π/2

0

∫ 16

0

(
ρ2 + ρ3

4

)
sinϕdρ dϕ = 32768π

3

∫ π/2

0
sinϕdϕ = 32768π

3 . By symmetry of the region and of the den-

sity function around the z axis, we have x = y = 0. z = 1
32768π/3

∫ π/2

0

∫ 16

0

∫ 2π

0
ρ cosϕ

(
1 + ρ

4

)
ρ2 sinϕdθ dρ dϕ

= 3
32768

∫ π/2

0

∫ 16

0

(
ρ3 + ρ4

4

)
cosϕ sinϕdρ dϕ = 3

32768

∫ π/2

0
16384·21

5 cosϕ sinϕdϕ = 63
10 , so the center of mass

is
(
0, 0, 63

10

)
.

58 The mass is
∫ 2

0

∫ 2

0

∫ 2

0
(1 + x+ y + z) dz dy dx = 32. By symmetry, x = y = z, and

x = 1
32

∫ 2

0

∫ 2

0

∫ 2

0
x (1 + x+ y + z) dz dy dx = 13

12 , so the center of mass is
(
13
12 ,

13
12 ,

13
12

)
.

59 Place the vertex at the origin with the paraboloid opening upwards along the positive z-axis. Then

the equation of the paraboloid is z = h
R2 r

2. Its mass is
∫ R

0

∫ 2π

0

∫ h

hr2/R2 r dz dθ dr = 2π
∫ R

0

(
r − h

R2 r
2
)
dr =

1
2πhR

2. Then z = 1
πhR2/2

∫ R

0

∫ 2π

0

∫ h

hr2/R2 rz dz dθ dr = 2
hR2

∫ R

0
rh2R4−r4

R4 dr = 2
3h, so that the center of mass

is 1
3 of the way from the base to the vertex.

60 Place one vertex at the origin and another at (s, 0) so that the third is at
(

s
2 ,

s
√
3

2

)
.Then the equations

of the two sides of the triangle to that third vertex are y = x
√
3 and y = −√

3 (x− s). The area of the trian-

gle is s2
√
3

4 (one half the base times the height), so y = 1
s2

√
3/4

∫ s/2

0

∫√
3x

0
y dy dx+

∫ s

s/2

∫ −√
3(x−s)

0
y dy dx =

2
s2

√
3

(∫ s/2

0
3x2 dx+

∫ s

s/2
3 (x− s)

2
dx
)
= 6

s2
√
3

(
s3

24 + s3

24

)
=

√
3
6 s, which is one third the height of the trian-

gle.

61 Place one of the vertices of the base at the origin and the other at (b, 0). Some simple right triangle

analysis shows that the third vertex is at

(
b
2 ,
√

s2 − b2

4

)
. The area of the triangle is half the base times the

height, or b
2 · 1

2

√
4s2 − b2 = b

√
4s2−b2

4 .

Then y = 1
b
√
4s2−b2/4

(∫ b/2

0

∫ x
√
4s2−b2/b

0
y dy dx+

∫ b

b/2

∫ −(x−b)
√
4s2−b2/b

0
y dy dx

)
=

2
b
√
4s2−b2

(∫ b/2

0
4s2−b2

b2 x2 dx+
∫ b

b/2
4s2−b2

b2 (x− b)
2
dx
)
= 2

√
4s2−b2

b3

(
b3

24 + b3

24

)
=

√
4s2−b2

6 , which is one third

the height of the triangle.

62 The projection of the tetrahedron on the xy-plane is the triangle with vertices (0, 0), (1, 0), and (0, 2);
the height of the tetrahedron is 3. Thus its volume is 1

3 · 3 · 1 = 1.

Then x =
∫ 1

0

∫ 2−2x

0

∫ 3(1−x−y/2)

0
x dz dy dx =

∫ 1

0

∫ 2−2x

0
3x
(
1− x− y

2

)
dy dx =

∫ 1

0

(
3x− 6x2 + 3x3

)
dx =

1
4 . y =

∫ 1

0

∫ 2−2x

0

∫ 3(1−x−y/2)

0
y dz dy dx =

∫ 1

0

∫ 2−2x

0
3y
(
1− x− y

2

)
dy dx =

∫ 1

0

(
2− 6x+ 6x2 − 2x3

)
dx = 1

2 .

z =
∫ 1

0

∫ 2−2x

0

∫ 3(1−x−y/2)

0
z dz dy dx = 9

2

∫ 1

0

∫ 2−2x

0

(
1− x− y

2

)2
dy dx = 3

∫ 1

0
(1− x)

3
dx = 3

4 , so the center

of mass is at
(
1
4 ,

1
2 ,

3
4

)
.
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63 The equation of the cone in cylindrical coordinates is z = 2 − 1
2r. The volume of the cone is one third

the area of the base times the height, or 32π
3 .

a. The volume of a slice of π
4 radians is

∫ 4

0

∫ π/4

0

∫ 2−r/2

0
r dz dθ dr = π

4

∫ 4

0
r
(
2− r

2

)
dr = 4π

3 . The volume
of the wedge is in fact one eighth the volume of the entire cone (π4 radians is an eighth-circle).

b. The volume of a slice of Q radians is
∫ 4

0

∫ Q

0

∫ 2−r/2

0
r dz dθ dr = Q

∫ 4

0
r
(
2− r

2

)
dr = 16

3 Q. Geometrically,

Q radians is Q
2π of a circle, and indeed the volume of the slice is Q

2π times the volume of the cone.

64 Compute the volume of empty space, using spherical coordinates with the center of the tank at the
origin. The water level is at ϕ = π

3 (Pythagorean theorem), so the volume of the empty spherical cap is∫ π/3

0

∫ 1

secϕ/2

∫ 2π

0
ρ2 sinϕdθ dρ dϕ = 2π

3

∫ π/3

0

(
1− sec3 ϕ

8

)
sinϕdϕ = 5π

24 cubic feet. The total volume of the

sphere is 4π
3 cubic feet.

a. The volume of water is 4π
3 − 5π

24 = 27π
24 = 9π

8 cubic feet and it weighs 1.125 · 62.5 · π ≈ 220.893 pounds.

b. The amount of water that must be added to fill the tank is the volume of empty space, or 5π
24 cubic

feet.

65 The transformation just switches the coordinates, so the image is again the unit square.

66 T = {(x, y) : 0 ≤ v ≤ 1, 0 ≤ u ≤ 1} = {(x, y) : 0 ≤ −x ≤ 1, 0 ≤ y ≤ 1} =
{(x, y) : −1 ≤ x ≤ 0, 0 ≤ y ≤ 1} so that T is the unit square in the second quadrant with one vertex at the
origin.

67 As (u, v) goes from (0, 0) to (1, 0), (x, y) goes from (0, 0) to
(
1
2 ,

1
2

)
; as (u, v) goes from (1, 0) to (1, 1),

(x, y) goes from
(
1
2 , − 1

2

)
to (1, 0); as (u, v) goes from (1, 1) to (0, 1), (x, y) goes from (1, 0) to

(
1
2 ,

1
2

)
.

Thus the image of S is the diamond with vertices (0, 0),
(
1
2 ,

1
2

)
, (1, 0), and

(
1
2 , − 1

2

)
.

68 The transformation leaves the x coordinate alone and stretches and translates the y coordinate. So the
new region is the rectangle with vertices (0, 2), (1, 2), (1, 4), (0, 4).

69 J (u, v) =

∣∣∣∣∣ 4 −1

−2 3

∣∣∣∣∣ = 10.

70 J (u, v) =

∣∣∣∣∣1 1

1 −1

∣∣∣∣∣ = −2.

71 J (u, v) =

∣∣∣∣∣3 0

0 2

∣∣∣∣∣ = 6.

72 J (u, v) =

∣∣∣∣∣2u −2v

2v 2u

∣∣∣∣∣ = 4
(
u2 + v2

)
.
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73

a.

b. S =
{
(u, v) : v

3 ≤ u+ v
3 ≤ v+6

3 , 0 ≤ v ≤ 3
}
= {(u, v) : 0 ≤ u ≤ 2, 0 ≤ v ≤ 3}.

c. J (u, v) =

∣∣∣∣∣1 1
3

0 1

∣∣∣∣∣ = 1

d.
∫∫
R

xy2 dA =
∫ 2

0

∫ 3

0

(
u+ v

3

)
v2 dv du = 63

2 .

74

a.

b. S = {(u, v) : 0 ≤ 2u ≤ 2, 2u ≤ 4v + 2u ≤ 2u+ 4} = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}.

c. J (u, v) =

∣∣∣∣∣2 0

2 4

∣∣∣∣∣ = 8.

d.
∫∫
R

3xy2 dA =
∫ 1

0

∫ 1

0
24 (2u) (4v + 2u)

2
dv du = 192

∫ 1

0

∫ 1

0
u (2v + u)

2
dv du = 304.
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75

a.

b. S =
{
(u, v) : 0 ≤ 2u ≤ 2, − 2u

2 ≤ v − u ≤ 1− 2u
}
= {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u}.

c. J (u, v) =

∣∣∣∣∣ 2 0

−1 1

∣∣∣∣∣ = 2.

d. Switch the order of integration:∫∫
R

x2
√
x+ 2y dA = 2

∫ 1

0

∫ 1−v

0
(2u)

2 √
2v du dv = 8

√
2

3

∫ 1

0
(1− v)

3 √
v dv = 256

√
2

945 .

76

a.

b. xy = 1 becomes u = 1 while xy = 4 becomes u = 4; y = 1 becomes v = 1; y = 4 becomes v = 4. So
S = {(u, v) : 1 ≤ u ≤ 4, 1 ≤ v ≤ 4}.

c. J (u, v) =

∣∣∣∣∣v−1 −uv−2

0 1

∣∣∣∣∣ = v−1.

d.
∫∫
R

xy2 dA =
∫ 4

1

∫ 4

1
u
v v2 v−1 dv du =

∫ 4

1

∫ 4

1
u dv du = 45

2 .

77 Use the transformation u = xy; v = y
x so that x =

√
u
v , y =

√
uv.Then xy = u and y

x = v, so
the new region S is {(u, v) : 1 ≤ u ≤ 4, 1 ≤ v ≤ 3}. The Jacobian of this transformation is J (u, v) =∣∣∣∣∣u

−1/2v−1/2

2 −u1/2v−3/2

2
v1/2u−1/2

2
u1/2v−1/2

2

∣∣∣∣∣ = 1
2v so that

∫∫
R

y4 dA = 1
2

∫ 4

1

∫ 3

1
u2v dv du = 42.
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78 Let x = u − v, y = u + 2v; then y = x becomes v = 0, y = x − 3 becomes v = −1, y =
−2x + 3 becomes u = 1, and y = −2x − 3 becomes u = −1. So the new region of integration is S =

{(u, v) : −1 ≤ u ≤ 1, −1 ≤ v ≤ 0}. The Jacobian is J (u, v) =

∣∣∣∣∣1 −1

1 2

∣∣∣∣∣ = 3, so that
∫∫
R

(
y2 + xy − 2x2

)
dA

= 3
∫ 1

−1

∫ 0

−1

(
(u+ 2v)

2
+ (u− v) (u+ 2v)− 2 (u− v)

2
)
dv du = 3

∫ 1

−1

∫ 0

−1
9uv dv du = 0.

79 Use the transformation u = x+2y, v = x−z, w = 2y−z; solving for x, y, z gives x = u+v−w
2 , y = u−v+w

4 ,
z = u−v−w

2 .
The new range of integration becomes 1 ≤ u ≤ 2, 0 ≤ v ≤ 2, 0 ≤ w ≤ 3. The Jacobian is J (u, v, w) =∣∣∣∣∣∣∣∣

1
2

1
2 − 1

2
1
4 − 1

4
1
4

1
2 − 1

2 − 1
2

∣∣∣∣∣∣∣∣ =
1
4 so that

∫∫∫
D

yz dV = 1
32

∫ 2

1

∫ 2

0

∫ 3

0
(u− v + w) (u− v − w) dw dv du = − 7

16 .

80 Use the transformation u = y − 2x, v = z − 3y, w = z − 4x; solving for x, y, z gives x = −3u−v+w
2 ,

y = −2u−v+w, z = −6u−2v+3w. The new range of integration becomes 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 3.

The Jacobian is J (u, v, w) =

∣∣∣∣∣∣∣∣
−3

2 − 1
2

1
2

−2 −1 1

−6 −2 3

∣∣∣∣∣∣∣∣ =
1
2 so that

∫∫∫
D

x dV =
1

4

∫ 1

0

∫ 1

0

∫ 3

0

(−3u− v + w) dw dv du = −3

8
.
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Chapter 14

Vector Calculus

14.1 Vector Fields

14.1.1 A vector field describes the motion of the air as a vector at each point in the room.

14.1.2

�4 �2 2 4
x

�4

�2

2

4

y

14.1.3 At selected points (a, b), plot the vector 〈f(a, b), g(a, b)〉.

14.1.4 The gradient of a function at a point is a vector describing the direction in which the value of the
function is increasing most rapidly. The collection of these vectors over all points is a vector field.

14.1.5 The gradient field gives, at each point, the direction in which the temperature is increasing most
rapidly and the amount of increase.

14.1.6

�4 �2 2 4
x

�4

�2

2

4

y

14.1.7

493
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14.1.8

�4 �2 2 4
x

�4

�2

2

4

y
14.1.9

14.1.10

�4 �2 2 4
x

�2

�1

1

2

3

4

y

14.1.11

14.1.12

�4 �2 2 4
x

�4

�2

2

4

y

14.1.13
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14.1.14

�4 �2 2 4
x

�4

�2

2

4

y

14.1.15

14.1.16 (a) corresponds to (D), since (D) has zero x component, and the y component increases as y does.
(b) corresponds to (C), since the x component appears to be zero along the line y = x. (c) corresponds to
(B) since the y component is zero on the x-axis and the x component is zero on the y axis. Finally, (d)
corresponds to (A) since the x component is zero on the x-axis and the y component is zero on the y-axis.

14.1.17 Here C is the circle of radius 2, so a vector tangent to the circle is
〈−y, x

〉
. So F is normal to C at

(x, y) since
〈−y, x

〉 · 〈x, y〉 = 0.

14.1.18 C is the circle of radius 1, so a vector tangent at (x, y) is
〈−y, x

〉
. Then F is a scalar multiple of

the tangent vector, so it is tangent to C at all points.

14.1.19 C is the vertical line at x = 1, so the tangent vector is a multiple of
〈
0, y
〉
at all points. Then〈

x, y
〉
is never a multiple of (0, y) for any point on C (since x = 1 there), and

〈
x, y
〉 · 〈0, y〉 = y2 is zero for

y = 0, so that F is normal to C at (1, 0).
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14.1.20 C is the circle of radius 1, so a vector tangent at (x, y) is
〈−y, x

〉
. F is a multiple of the tangent

vector for y = 0 or for x = 0, so that F is tangent to C at (±1, 0) and at (0, ±1). F·〈−y, x
〉
= x2 − y2, so

that F is normal to C at
(
±

√
2
2 , ±

√
2
2

)
.

14.1.21 14.1.22

14.1.23 14.1.24
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14.1.25 The gradient field is
〈
ϕx, ϕy

〉
=
〈
2x, 2y

〉
.

14.1.26 The gradient field is
〈
ϕx, ϕy

〉
=
〈

x√
x2+y2

, y√
x2+y2

〉
.

14.1.27 The gradient field is
〈
ϕx, ϕy

〉
=
〈
1, 1
〉
.

�3 �2 �1 1 2 3 x

�3

�2

�1

1

2

3
y

14.1.28 The gradient field is
〈
ϕx, ϕy

〉
=
〈
2y, 2x

〉
.
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14.1.29 ∇ϕ =
〈
ϕx, ϕy

〉
=
〈
2xy − y2, x2 − 2xy

〉
.

14.1.30 ∇ϕ =
〈
ϕx, ϕy

〉
=
〈

y
2
√
xy ,

x
2
√
xy

〉
= 1

2
√
xy

〈
y, x
〉
.

14.1.31 ∇ϕ =
〈
ϕx, ϕy

〉
=
〈
1/y,−x/y2

〉
.

14.1.32 ∇ϕ =
〈
ϕx, ϕy

〉
= 1

x2+y2

〈−y, x
〉
= 1

|r|2
〈−y, x

〉
.

14.1.33 ∇ϕ =
〈
x, y, z

〉
= r.

14.1.34 ∇ϕ =
〈

2x
1+x2+y2+z2 ,

2y
1+x2+y2+z2 ,

2z
1+x2+y2+z2

〉
= 2 r

|r|2+1
.

14.1.35 ∇ϕ = − (x2 + y2 + z2
)−3/2 〈

x, y, z
〉
= − r

|r|3 .

14.1.36 ∇ϕ =
〈
e−z cos (x+ y) , e−z cos (x+ y) , −e−z sin (x+ y)

〉
.

14.1.37

a. The gradient field is
〈
2, 3
〉
.

b. The equipotential curve at (1, 1) is 2x+3y = 5, which is a line of slope − 2
3 so has a tangent vector at

(x, y) parallel to
〈
1, − 2

3

〉
. But

〈
2, 3
〉 · 〈1, − 2

3

〉
= 0, so the gradient field is normal to the equipotential

line through (1, 1).

c. The equipotential curve at any point is a line of slope − 2
3 and thus has a tangent vector at (x, y)

parallel to
〈
x, − 2

3y
〉
. The same argument as in part (b) shows that this is normal to the gradient field.

d.

�=10

�=5

�=0

� =�5

� =�10

�4 �2 2 4

�4

�2

2

4

y

x

14.1.38

a. The gradient field is
〈
1, 2y

〉
.

b. At (1, 1), the tangent vector is parallel to
〈−ϕy (1, 1) , ϕx (1, 1)

〉
=
〈−2, 1

〉
, which is normal to the

gradient at (1, 1) (which is
〈
1, 2
〉
).

c. At (x, y), the tangent vector is parallel to
〈−2y, 1

〉
, and

〈
1, 2y

〉 · 〈−2y, 1
〉
= 0, so the gradient is

everywhere normal to the equipotential curves.

Copyright c© 2015 Pearson Education, Inc.



14.1. Vector Fields 499

d.

14.1.39

a. The gradient field is
〈
ex−y, −ex−y

〉
.

b. At (1, 1), the tangent vector is parallel to
〈−ϕy (1, 1) , ϕx (1, 1)

〉
=
〈
1, 1
〉
, which is normal to the

gradient
〈
1, −1

〉
at (1, 1).

c. At (x, y), the tangent vector is parallel to
〈
ex−y, ex−y

〉
, and

〈
ex−y, −ex−y

〉 · 〈ex−y, ex−y
〉
= 0, so the

gradient is everywhere normal to the equipotential curves.

d.

14.1.40

a. The gradient field is
〈
2x, 4y

〉
.

b. At (1, 1), the tangent vector is parallel to
〈−ϕy (1, 1) , ϕx (1, 1)

〉
=
〈−4, 2

〉
, which is normal to the

gradient
〈
2, 4
〉
at (1, 1).

c. At (x, y), the tangent vector is parallel to
〈−4y, 2x

〉
, which is normal to the gradient field.
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d.

14.1.41

a. True. (ϕ1)x = (ϕ2)x = 3x2, and (ϕ1)y = (ϕ2)y = 1.

b. False. It is constant in magnitude (magnitude 1) but not direction.

c. True. For example, it points outwards along the line y = x but horizontally along the line x = 0.

14.1.42

a. The magnitude of the vector field is
√

x2 + y2. Thus on C, the magnitude is 1 on the boundary of C
and less than 1 elsewhere. On S, the magnitude is a maximum at the corners of S, where it is

√
2.

Finally, on D, the magnitude is a maximum at the corners, where it is 1.

b. The vector field is everywhere directed outwards.

14.1.43

a. This is a rotational field with magnitude
√

x2 + y2 at (x, y). Thus the answer to this question is the
same as for the previous question: on C, the magnitude is 1 on the boundary of C and less than 1
elsewhere. On S, the magnitude is a maximum at the corners of S, where it is

√
2. Finally, on D, the

magnitude is a maximum at the corners, where it is 1.
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b. For S andD the field is directed out of the region on line segments between any vertex and the midpoint
of the boundary line when proceeding in a counterclockwise direction; on C the vector field is tangent
to the boundary curve everywhere.

14.1.44 For example, F =
〈
y, 0
〉
.

14.1.45 For example, F =
〈−y, x

〉
or F =

〈−1, 1
〉
.

14.1.46 For example, F =
〈−y, x

〉
. The magnitude is

√
x2 + y2.

14.1.47 For example, F = 1√
x2+y2

〈
x, y
〉
= r

|r| , F (0, 0) = 0.

14.1.48

a. V (x, y) = k
(
x2 + y2

)−1/2
, so E = −∇V = −〈Vx, Vy

〉
= k

(
x2 + y2

)−3/2 〈
x, y
〉
.

b. From the above formula, the field is a varying multiple of
〈
x, y
〉
, which is a radial field point-

ing away from the origin. The radial component of E is thus |E| = k
(
x2 + y2

)−3/2 ∣∣〈x, y〉∣∣ =

k
(
x2 + y2

)−3/2 (
x2 + y2

)1/2
= k

r2 .

c. The equipotential curves are curves of the form
k√

x2 + y2
= C so that

√
x2 + y2 = k

C and the

equipotential curves are circles. Thus the tangent vectors to the equipotential curves are proportional
to
∣∣〈−y, x

〉∣∣ and thus are normal to E, which is proportional to
∣∣〈x, y〉∣∣.

14.1.49

a. Vx =
c
√

x2+y2

r0
· (− 1

2r0
(
x2 + y2

))
and similarly, Vy = − cy

x2+y2 , so that E = −∇V = c
x2+y2

〈
x, y
〉
=

c
|r|2 r = c

|r| · r
|r| .

b. From the above formula, the field is a varying multiple of
〈
x, y
〉
, which is a radial field pointing away

from the origin. The radial component of E is thus |E| = c

x2 + y2

√
x2 + y2 =

c√
x2 + y2

.

c. The equipotential curves are curves of the form c ln

(
r0√
x2+y2

)
= K, so are solutions to r0√

x2+y2
=

ecK = C and thus of the form
√

x2 + y2 = K0 for some constant K0. Hence the equipotential curves
are circles, so have tangent vectors proportional to

〈−y, x
〉
; these are clearly normal to E, which is

proportional to
〈
x, y
〉
.

14.1.50

a. Ux =
(
GMm

(
x2 + y2 + z2

)−1/2
)
x
=

− 1
2GMm

(
x2 + y2 + z2

)−3/2
(2x) = −GMmx

(
x2 + y2 + z2

)−3/2
and similarly for Uy and Uz. Thus

F = −∇U = GMm
(
x2 + y2 + z2

)−3/2 〈
x, y, z

〉
.

Copyright c© 2015 Pearson Education, Inc.



502 Chapter 14. Vector Calculus

b. From the above formula the field is a varying multiple of
〈
x, y, z

〉
, which is a radial field pointing away

from the origin. The radial component of F is thus |F| = GMm
(
x2 + y2 + z2

)−3/2√
x2 + y2 + z2 =

GMm
r2 .

c. The equipotential surfaces are solutions to GMm
√
x2 + y2 + z2 = K and so are spheres. The tangent

plane at (x0, y0, z0) is Ux (x0, y0, z0) (x− x0) +Uy (x0, y0, z0) (y − y0) +Uz (x0, y0, z0) (z − z0) and so a
normal to the plane is

〈
Ux, Uy, Uz

〉
, which is proportional to F.

14.1.51 The flow curve y (x) of the vector field F at (x, y) is defined to be a continuous curve through (x, y)
that is aligned with the vector field, i.e. whose tangent at (x, y) is given by F (x, y) =

〈
f (x, y) , g (x, y)

〉
.

The slope of the tangent line is then g(x,y)
f(x,y) , so this is y′ (x).

14.1.52 The streamlines satisfy y′ (x) = x, so that y (x) = 1
2x

2 + C.

14.1.53 The streamlines satisfy y′(x) = 1, so that y (x) = x+ C.

14.1.54 The streamlines satisfy y′(x) = x
y . But also

d

dx

(
y2
)
= 2yy′(x) , so that y′(x) =

d
dx

(
y2
)

2y
and

thus
d

dx

(
y2
)
= 2x . Thus y2 = x2 + C and the streamlines are the hyperbolas x2 − y2 = K.
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14.1.55 The streamlines satisfy y′(x) = −x
y . Because d

dx

(
y2
)
= 2yy′(x), we have y′(x) =

d
dx (y

2)
2y and thus

d
dx

(
y2
)
= −2x. Thus y2 = −x2 + C and the streamlines are the circles x2 + y2 = C.

y

x

14.1.56 ur is the unit vector forming an angle of θ with i, so it is of unit length and proportional to〈
cos θ, sin θ

〉
. But cos2 (θ)+sin2 (θ) = 1, so this is in fact the unit vector. Thus ur = cos (θ) i+sin (θ) j. Simi-

larly, uθ forms an angle of θ+ π
2 with i, so it is the unit vector

〈
cos
(
θ + π

2

)
, sin

(
θ + π

2

)〉
=
〈− sin (θ) , cos (θ)

〉
.

The other two formulas can be found by solving these for i, j as linear equations. For example, ur =
cos (θ) i+ sin (θ) j,uθ = − sin (θ) i+ cos (θ) j. Multiply the first equation by sin (θ) and the second by cos (θ)
and add to obtain ur sin (θ) + uθ cos (θ) = sin2 (θ) j+ cos2 (θ) j = j.

14.1.57 For θ = 0, ur is coincident with i, and uθ with j. From the formula ur = cos (0) i + sin (0) j = i,
uθ = − sin (0) i+cos (0) j = j. For θ = π

2 , the picture implies that we should have ur = j, uθ = −i. From the
formulas, ur = cos

(
π
2

)
i+sin

(
π
2

)
j = j, uθ = − sin

(
π
2

)
i+cos

(
π
2

)
j = −i. For θ = π, ur is coincident with −i,

and uθ with −j. From the formula ur = cos (π) i+sin (π) j = −i, uθ = − sin (π) i+cos (π) j = −j. For θ = 3π
2 ,

the picture implies that we should have ur = −j, uθ = i. From the formulas, ur = cos
(
3π
2

)
i+sin

(
3π
2

)
j = −j,

uθ = − sin
(
3π
2

)
i+ cos

(
3π
2

)
j = i.

14.1.58 F (r, θ) = ur = cos (θ) i+ sin (θ) j =
x√

x2 + y2
i+

y√
x2 + y2

j =
1√

x2 + y2
(xi+ yj) .

14.1.59 F (r, θ) = uθ = − sin (θ) i+ cos (θ) j = − y√
x2 + y2

i+
x√

x2 + y2
j =

1√
x2 + y2

(−yi+ xj) .
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14.1.60 F (r, θ) = r uθ =
√
x2 + y2 (− sin (θ) i+ cos (θ) j) =

√
x2 + y2

1√
x2 + y2

(−yi+ xj) =
〈−y, x

〉
.

14.1.61 F (x, y) = −y (ur cos (θ)− uθ sin (θ)) + x (ur sin (θ) + uθ cos (θ)) =
− r sin (θ) (cos (θ)ur − sin (θ)uθ) + r cos (θ) (sin (θ) cos (θ)ur + cos (θ)uθ) = r

(
sin2 (θ) + cos2 (θ)

)
uθ = ruθ.

14.2 Line Integrals

14.2.1 A single-variable integral integrates along a segment while a line integral integrates along an arbitrary
curve.

14.2.2 The integral is evaluated by evaluating the integral off · |r′ (t)| wherer′ (t) expresses the velocity of
the parameterization with respect to arc length.

14.2.3 |r′ (t)| =
√
(r′x)

2
+
(
r′y
)2

=
√
1 + 4t2

14.2.4 Choose a parameterization r (t) for C; then T = r′(t)
|r′(t)| and

∫
C
F ·T ds becomes

∫ b

a
F · r′ (t) dt.

14.2.5 Because T= 〈x′ (t) , y′ (t) , z′ (t)〉, ∫ b

a
(f(t)x′ (t) + g(t)y′ (t) + h(t)z′ (t)) dt is simply a rewriting of the

dot product.

14.2.6 The circulation measures the degree to which the vector field is positively aligned with (has a positive
dot product with) the curve C as C is traversed with a particular orientation.

14.2.7 Take the line integral of F ·T along the curve using arc length parameterization.

14.2.8 The flux measures the degree to which the vector field is outwards normal to the curve C as C is
traversed with a particular orientation.

14.2.9 Take the line integral of F · n along the curve using arc length parameterization.

14.2.10 One parameterization for the curve is 〈cos t, sin t〉, 0 ≤ t ≤ π
2 .
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14.2.11 r (s) is an arc length parameterization, so we have
∫
C
xy ds =

∫ 2π

0
cos (s) sin (s) ds = 0.

14.2.12 Choose the arc length parameterization r (s) = 〈cos (s) , sin (s)〉 then we have
∫
C
(x+ y) ds =∫ 2π

0
(cos (s) + sin (s)) ds = (sin (s)− cos (s))

∣∣2π
0

= 0.

14.2.13 With r (s) = 〈 s√
2
, s√

2
〉, |r′ (t)| = 1, so that we have

∫
C

(
x2 − 2y2

)
ds =

∫ 4

0

(
s2

2 − 2 s2

2

)
ds =

− ∫ 4

0
s2

2 ds = − s3

6

∣∣4
0
= − 32

3 .

14.2.14 With r (s) = 〈 s√
2
, 1 − s√

2
〉, |r′ (t)| = 1, so that

∫
C
x2y ds =

∫ 4

0
s2

2

(
1− s√

2

)
ds =

(
s3

6 − s4

8
√
2

) ∣∣∣4
0
=

32
3 − 16

√
2.

14.2.15

a. r (t) = 〈4 cos t, 4 sin t〉, 0 ≤ t ≤ 2π.

b. |r′ (t)| =
√
(−4 sin t)

2
+ (4 cos t)

2
= 4.

c.
∫
C

(
x2 + y2

)
ds =

∫ 2π

0
4
(
16 cos2 t+ 16 sin2 t

)
dt =

∫ 2π

0
64 dt = 128π.

14.2.16

a. r (t) = 〈5t, 5t〉, 0 ≤ t ≤ 1.

b. |r′ (t)| =
√
(5)

2
+ (5)

2
= 5

√
2.

c.
∫
C

(
x2 + y2

)
ds =

∫ 1

0
50t2 · 5√2 dt = 250

√
2
∫ 1

0
t2 dt = 250

√
2

3 .

14.2.17

a. r (t) = 〈t, t〉, 1 ≤ t ≤ 10.

b. |r′ (t)| =
√
(1)

2
+ (1)

2
=

√
2.

c.
∫
C

x
x2+y2 ds =

∫ 10

1
t

t2+t2 · √2 dt =
√
2
2

∫ 10

1
1
t dt =

√
2
2 ln 10.

14.2.18

a. r (t) = 〈t, t2〉, 0 ≤ t ≤ 1.

b. |r′ (t)| =
√
(1)

2
+ (2t)

2
=

√
1 + 4t2.

c.
∫
C
(xy)

1/3
ds =

∫ 1

0

(
t3
)1/3 √

1 + 4t2 dt =
∫ 1

0
t
√
1 + 4t2 dt = 5

√
5−1
12 .
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14.2.19

a. r (t) = 〈2 cos t, 4 sin t〉, 0 ≤ t ≤ π/2.

b. |r′ (t)| =
√
4 sin2 t+ 16 cos2 t =

√
4 + 12 cos2 t = 2

√
1 + 3 cos2 t.

c.
∫
C
xy ds =

∫ π/2

0
16 sin t cos t

√
1 + 3 cos2 t dt. Let u = (1 + 3 cos2 t) dt so that du = −6 cos t sin t dt.

Substituting gives 8
3

∫ 4

1
u1/2 du = 16

9

(
u3/2

)∣∣4
1
= 16

9 (8− 1) = 112
9 .

14.2.20

a. r1 (t) = 〈t− 1, t〉, r2 (t) = 〈t, 1− t〉, 0 ≤ t ≤ 1.

b. |r′1 (t)| =
√
2,|r′2 (t)| =

√
2.

c.
∫
C
(2x− 3y) ds =

∫ 1

0
(2 (t− 1)− 3t)

√
2 dt+

∫ 1

0
(2t− 3 (1− t))

√
2 dt =

√
2
∫ 1

0
(4t− 5) dt = −3

√
2.

14.2.21 Let r (t) = 〈t+ 1, 4t+ 1〉, 0 ≤ t ≤ 1. Then |r′ (t)| = √
17 and

∫
C
(x+ 2y) ds =∫ 1

0
((t+ 1) + 2 (4t+ 1)) · √17 dt =

√
17
∫ 1

0
(9t+ 3) dt = 15

2

√
17. The length of the line segment is

√
17, so

the average value is 15
2 .

14.2.22 Let r (t) = 〈9 cos t, 9 sin t〉, 0 ≤ t ≤ 2π. Then |r′ (t)| = 9, and∫
C

(
x2 + 4y2

)
ds =

∫ 2π

0

(
81 cos2 t+ 4 · 81 sin2 t) 9 dt = 3645π.

The circumference of the circle is 2π · 9 = 18π, so the average value is 3645
18 = 405

2 .

14.2.23 Let r(t) = 〈t, t3/2〉 for 0 ≤ t ≤ 5. Then |r′(t)| =√1 + 9t/4 and∫
C

√
4 + 9y2/3ds =

∫ 5

0

√
4 + 9t

√
1 + 9t/4 dt =

1

2

∫ 5

0

(4 + 9t) dt =
1

2

(
4t+ 9t2/2

)∣∣5
0
=

265

4
.

The length of the curve is
∫ 5

0

√
1 + 9x/4 dx = 335

27 so the average value is 1431
268 .

14.2.24 Let r (t) = 〈cos t, sin t〉, 0 ≤ t ≤ 2π. Then |r′ (t)| = 1 and
∫
C
(x ey) ds =

∫ 2π

0
cos t esin t dt = 0. Thus,

the average value is 0.

14.2.25 |r′ (t)| =
√
4 sin2 t+ 0 + 4 cos2 t = 2, so

∫
C
(x+ y + z) ds = 2

∫ 2π

0
(2 cos (t) + 2 sin t) dt = 0.

14.2.26 |r′ (t)| =
√
0 + 9 sin2 t+ 9 cos2 t = 3, so

∫
C
(x− y + 2z) ds = 3

∫ 2π

0
(1− 3 cos (t) + 6 sin t) dt = 6π.

14.2.27 Let r (t) = 〈t, 2t, 3t〉, 0 ≤ t ≤ 1. Then |r′ (t)| = √
14, so

∫
C
(xyz) ds =

√
14
∫ 1

0
6t3 dt =

√
14
(

3t4

2

) ∣∣∣1
0
= 3

2

√
14.

14.2.28 Let r (t) = 〈2t + 1, 2t + 4, 2t + 1〉, 0 ≤ t ≤ 1. Then |r′ (t)| =
√
12 = 2

√
3, so

∫
C

xy
z ds =

2
√
3
∫ 1

0
(2t+1)(2t+4)

(2t+1) dt = 2
√
3
∫ 1

0
(2t+ 4) dt = 10

√
3.

14.2.29 |r′ (t)| = √
10, so

∫
C

(y − z) ds =
√
10
∫ 2π

0
(3 sin t− t) dt = −2

√
10π2.

14.2.30 |r′ (t)| = √
21, so

∫
C
xeyz ds =

√
21
∫ 2

1
t e−8t2 dt =

√
21(e24−1)
16e32 .
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14.2.31 The length of the curve is the line integral of 1 along the curve. Then r′ (t) simplifies to
〈5 cos(t/4),−5 sin(t/4), 1

2 〉, and then

|r′ (t)| =
√
25 +

1

4
=

1

2

√
101

so that the arc length is 1
2

∫ 2

0

√
101 dt =

√
101.

14.2.32 The length of the curve is the line integral of 1 along the curve.

|r′ (t)| =
√
900 cos2 (t) + 1600 cos2 t+ 2500 sin2 t = 50 so that

∫
C
1 ds = 50

∫ 2π

0
dt = 100π.

14.2.33 r′ (t) = 〈4, 2t〉, and F · r′ (t) = 〈4t, t2〉 · 〈4, 2t〉 = 16t+ 2t3, so that∫
C

F ·T ds =

∫ 1

0

F · r′ (t) dt =
∫ 1

0

(
16t+ 2t3

)
dt =

17

2
.

14.2.34 r′ (t) = 〈−4 sin t, 4 cos t〉, so F · r′ (t) = 〈−4 sin t, 4 cos t〉 · 〈−4 sin t, 4 cos t〉 = 16. Then
∫
C
F ·T ds =∫ π

0
F · r′ (t) dt = ∫ π

0
16 dt = 16π.

14.2.35 Let r (t) = 〈4t+1, 9t+1〉, 0 ≤ t ≤ 1; then r′ (t) = 〈4, 9〉 and F·r′ (t) = 〈9t+1, 4t+1〉·〈4, 9〉 = 72t+13.

Then
∫
C
F ·T ds =

∫ 1

0
(72t+ 13) dt = 49.

14.2.36 Let r(t) = 〈t, t2〉, 0 ≤ t ≤ 1; then r′(t) = 〈1, 2t〉 and F · r′ (t) = 〈−t2, t〉 · 〈1, 2t〉 = t2. Then∫
C
F ·T ds =

∫ 1

0
t2 dt = 1

3 .

14.2.37 r′ (t) = 〈2t, 6t〉; then F · r′ (t) = (10t4)−3/2 〈t2, 3t2〉 · 〈2t, 6t〉 = 20t3

10
√
10 t6

= 2√
10

t−3 and
∫
C
F ·T ds =

2√
10

∫ 2

1
t−3 dt = 3

40

√
10.

14.2.38 r′ (t) = 〈1, 4〉, so that F · r′ (t) = 1
17t2 〈t, 4t〉 · 〈1, 4〉 = 1

t . Then
∫
C
F ·T ds =

∫ 10

1
1
t dt = ln (10) .

14.2.39 r1 (t) = 〈1 − t, 2 − 2t〉, r2 (t) = 〈0, 4t〉, 0 ≤ t ≤ 1. Then r′1 (t) = 〈−1,−2〉, r′2 (t) = 〈0, 4〉, so that∫
C
F · r′ (t) dt = ∫ 1

0
〈2− 2t, 1− t〉 · 〈−1,−2〉 dt+ ∫ 1

0
〈4t, 0〉 · 〈0, 4〉 dt = ∫ 1

0
0 dt = 0.

14.2.40 r1 (t) = 〈t − 1, 8t〉, r2 (t) = 〈2t, 8〉, 0 ≤ t ≤ 1. Then r′1 (t) = 〈1, 8〉, r′2 (t) = 〈2, 0〉, so that∫
C
F · r′ (t) dt = ∫ 1

0
〈t− 1, 8t〉 · 〈1, 8〉 dt+ ∫ 1

0
〈2t, 8〉 · 〈2, 0〉 dt = ∫ 1

0
(69t− 1) dt = 67

2 .

14.2.41 r (t) = 〈2t, 8t2〉, 0 ≤ t ≤ 1. Then r′ (t) = 〈2, 16t〉, so ∫
C
F · r′ (t) dt =

∫ 1

0
〈8t2, 2t〉 · 〈2, 16t〉 dt =∫ 1

0
48t2 dt = 16.

14.2.42 r (t) = 〈2t + 1, 8 − 4t〉, 0 ≤ t ≤ 1. Then r′ (t) = 〈2,−4〉, so ∫
C
F · r′ (t) dt = ∫ 1

0
〈8 − 4t,−1 − 2t〉 ·

〈2,−4〉 dt = ∫ 1

0
20 dt = 20.

14.2.43 r′(t) = 〈−4 sin t, 4 cos t,−4 sin t〉. Thus we have
∫
C
F · r′(t) dt =∫ 2π

0
〈4 cos t, 4 sin t, 4 cos t〉 · 〈−4 sin t, 4 cos t,−4 sin t〉 dt = ∫ 2π

0
−16 sin t cos (t) dt = 0.

14.2.44 r′(t) = 〈−2 sin t, 2 cos t, 1
2π 〉, so

∫
C
F · r′t dt =

∫ 2π

0
〈−2 sin t, 2 cos t, t

2π 〉 · 〈−2 sin t, 2 cos t, 1
2π

〉
dt =∫ 2π

0

(
4 + t

4π2

)
dt = 1

2 + 8π.

14.2.45 Let r (t) = 〈t + 1, t + 1, t + 1〉, 0 ≤ t ≤ 9, so that r′(t) = 〈1, 1, 1〉. Then
∫
C
F · r′ (t) dt =∫ 9

0
1

(3(t+1)2)
3/2 〈t+ 1, t+ 1, t+ 1〉 · 〈1, 1, 1〉 dt = 1√

3

∫ 9

0
1

(t+1)3
(t+ 1) dt = 1√

3

∫ 9

0
1

(t+1)2
dt = 3

10

√
3.

14.2.46 Let r (t) = 〈7t + 1, 3 t + 1, t + 1〉, 0 ≤ t ≤ 1, so that r′(t) = 〈7, 3, 1〉. Then
∫
C
F · r′ (t) dt =∫ 1

0
1

(7t+1)2+(3t+1)2+(t+1)2
〈7t + 1, 3 t + 1, t + 1〉 · 〈7, 3, 1〉 dt = ∫ 1

0
59t+11

(7t+1)2+(3t+1)2+(t+1)2
dt = ln (2) + 1

2 ln (7) =

ln
(
2
√
7
)
.
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14.2.47

a. Looking at the vector field, it appears that the vector field points counterclockwise just as much as it
points clockwise at the boundary of the region, so we would expect the circulation to be zero.

b. r′ (t) = 〈−2 sin t, 2 cos t〉, so
∫
C
F · r′ (t) dt =

∫ 2π

0
〈2 (sin t− cos t) , 2 cos t〉 · 〈−2 sin (t) , 2 cos t〉 dt =

−4
∫ 2π

0

(
cos2 t+ sin t cos t− sin2 t

)
dt = 0.

14.2.48

a. Looking at the vector field, it appears that the vector field points counterclockwise just as much as it
points clockwise at the boundary of the region, so we would expect the circulation to be zero.

b. Parameterize the boundary by four paths: r1 (t) = 〈2,−2+4t〉, r2 (t) = 〈2−4t, 2〉, r3 (t) = 〈−2, 2−4t〉,
r4 (t) = 〈−2 + 4t,−2〉, all with 0 ≤ t ≤ 1. Then r′1 (t) = 〈0, 4〉, r′2 (t) = 〈−4, 0〉, r′3 (t) = 〈0,−4〉,
r′4 (t) = 〈4, 0〉. Then

∫
C
F · r′ (t) dt =

∫ 1

0
1√

8−16t+16t2
· 〈2,−2 + 4t〉 · 〈0, 4〉 dt + ∫ 1

0
1√

8−16t+16t2
· 〈2 −

4t, 2〉 · 〈−4, 0〉 dt+ ∫ 1

0
1√

8−16t+16t2
· 〈−2, 2− 4t〉 · 〈0,−4〉 dt+ ∫ 1

0
1√

8−16t+16t2
· 〈−2 + 4t,−2〉 · 〈4, 0〉 dt =∫ 1

0
1√

8−16t+16t2
(−8 + 16t− 8 + 16t− 8 + 16t− 8 + 16t) dt =

∫ 1

0
64t−32√

8−16t+16t2
dt = 0.

14.2.49

a. Looking at the vector field, the inward-pointing vectors (in quadrants II and IV) appear larger than
the outward-pointing vectors (in quadrants I and III). Thus we would expect the flux to be negative.

b. r′ (t) = 〈−2 sin t, 2 cos t〉, so that
∫
C
F · n ds =

∫ 2π

0
(2 (sin t− cos t) · 2 cos t− 2 cos t · (−2 sin t)) dt =

−4
∫ 2π

0

(
cos2 t− 2 sin t cos t

)
dt = −4π.

14.2.50

a. The vector field points outwards everywhere, so we would expect the flux to be positive.

b. Parameterize the boundary by four paths: r1 (t) = 〈2,−2 + 4t〉, r2 (t) = 〈2 − 4t, 2〉, r3 (t) = 〈−2, 2 −
4t〉, r4 (t) = 〈−2 + 4t,−2〉, all with 0 ≤ t ≤ 1. Then r′1 (t) = 〈0, 4〉, r′2 (t) = 〈−4, 0〉, r′3 (t) =

〈0,−4〉, r′4 (t) = 〈4, 0〉. Then ∫
C
F ·n ds =

∫ 1

0
1√

8−16t+16t2
(2 · 4− 0) dt+

∫ 1

0
1√

8−16t+16t2
(0 + 2 · 4) dt+∫ 1

0
1√

8−16t+16t2
((−2) (−4)− 0) dt+

∫ 1

0
1√

8−16t+16t2
(0 + 2 · 4) dt = ∫ 1

0
32√

8−16t+16t2
dt = 8 ln

(
2
√
2 + 3

)
≈ 14.1.

14.2.51

a. True. This is the definition of an arc length parameterization.

b. True. Let r (t) = 〈cos t, sin t〉. Then r′(t) = 〈− sin t, cos t〉, and
∫
C
F · r′ (t) dt =

∫ 2π

0
〈sin t, cos t〉 ·

〈− sin t, cos t〉 dt =
∫ 2π

0

(
cos2 t− sin2 t

)
dt = 0.

∫
C
F · n ds =

∫ 2π

0
(sin t · cos t− cos t (− sin t)) dt =

2
∫ 2π

0
sin t cos t dt = 0.

c. True.

d. True. It is the line integral
∫
C
F · nds.

14.2.52 The work done on either path is simply
∫
C
F · r′ (t) dt.

a. Here r (t) = 〈−t, 50〉, for −100 ≤ t ≤ 100, so r′(t) = 〈−1, 0〉 and ∫
C
F ·r′ (t) dt = ∫ 100

−100
−150 dt = 30000

b. Here r (t) = 〈100 cos t, 100 sin t〉 and r′(t) = 〈−100 sin t, 100 cos t〉, so ∫
C
F·r′ (t) dt = ∫ π

0
−15000 sin t dt

= 30000. The same amount of work is done along each path.
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14.2.53

a. For the first path, the work done is
∫
C
F · r′ (t) dt = ∫ 100

−100
−141 dt = 28200, and for the second path∫

C
F · r′ (t) dt = ∫ π

0
(−14100 sin t− 5000 cos (t)) dt = 28200,

so again they are equal.

b. For the first path, the work done is
∫
C
F · r′ (t) dt = ∫ 100

−100
−141 dt = 28200, while for the second path,∫

C
F · r′ (t) dt = ∫ π

0
(−14100 sin t− 5000 cos t) dt = 28200, so the amount of work is still equal along

the two paths.

14.2.54

a. Let r(t) = 〈cos t, sin t〉 for 0 ≤ t ≤ 2π so that|r′ (t)| = 1. Then
∫
C
f ds =

∫ 2π

0
(cos t+ 2 sin (t)) dt = 0.

b. Let r(t) = 〈cos t,− sin t
〉
for 0 ≤ t ≤ 2π so that|r′ (t)| = 1. Note that this parameterization traces out

the unit circle, but clockwise. Then
∫
C
f ds =

∫ 2π

0
(cos t− 2 sin (t)) dt = 0.

c. The two integrals are equal.

14.2.55

a. Let r(t) = 〈t, t2〉 for 0 ≤ t ≤ 1 so that|r′ (t)| = √
4t2 + 1, and

∫
C
f ds =

∫ 1

0
t
√
4t2 + 1 dt = 5

√
5−1
12 .

b. r(t) = 〈1 − t, (1− t)
2〉 for 0 ≤ t ≤ 1. Then |r′ (t)| =

√
(−1)

2
+ (−2 (1− t))

2
=

√
4t2 − 8t+ 5 and∫

C
f ds =

∫ 1

0
(1− t)

√
4t2 − 8t+ 5 dt = 5

√
5−1
12 .

c. The two integrals are equal.

14.2.56 Letting r(t) = 〈cos t, sin t〉 and r′(t) = 〈− sin t, cos t〉 as usual, we have
∫
C
F · r′ (t) dt =∫ 2π

0

(−b sin2 t+ c cos2 t
)
dt = π (c− b), so that the circulation is zero only for b = c.

14.2.57 Let r(t) = 〈r cos t, r sin t〉 for a circle of radius r, so that r′(t) = 〈−r sin t, r cos (t)〉. Then∫
C
F · r′ (t) dt = ∫ 2π

0
((ar cos t+ br sin t) (−r sin t) + (cr cos t+ dr sin t) (r cos t)) dt =

r2
∫ 2π

0

(−a sin t cos t− b sin2 t+ c cos2 t+ d sin t cos t
)
dt = π (c− b) r2, so that the circulation is zero pro-

vided b = c.

14.2.58 Let r(t) = 〈cos t, sin t〉; then the flux is
∫
C
F · n ds =

∫ 2π

0
(a cos t cos t− d sin t (− sin t)) dt =

(a+ d)π, so the flux is zero if a = −d.

14.2.59 Let r(t) = 〈r cos t, r sin t〉 for a circle of radius r; then the flux is∫
C
F · n ds =

∫ 2π

0
((ar cos t+ br sin t) (r cos t)− (cr cos t+ dr sin t) (−r sin t)) dt =

r2
∫ 2π

0

(
a cos2 t+ b sin t cos t+ c sin t cos t+ d sin2 t

)
dt = r2 (a+ d)π, so the flux is zero provided that

a = −d.

14.2.60 Parameterize C1 by r(t) = 〈1 − t, t〉 for 0 ≤ t ≤ 1. Then r′(t) = 〈−1, 1〉, and
∫
C1

F · T ds =∫ 1

0
((−t) (−1) + (1− t) (1)) dt =

∫ 1

0
1 dt = 1.

Parameterize C2 by r(t) = 〈cos t, sin t〉 for 0 ≤ t ≤ π
2 . Then r′(t) = 〈− sin t, cos t〉, and ∫

C2
F · T ds =∫ π/2

0
((− sin t) (− sin t) + (cos t)(cos t)) dt =

∫ π/2

0
1 dt = π

2 .
Finally, parameterize C3 by the two paths r1 (t) = 〈1−t, 0〉 and r2 (t) = 〈0, t〉 for 0 ≤ t ≤ 1, so that r′1 (t) =

〈−1, 0〉 and r′2 (t) = 〈0, 1〉. Then ∫
C3

F ·T ds =
∫ 1

0
((0) (−1) + (1− t) (0)) dt+

∫ 1

0
((−t) (0) + (0) (1)) dt = 0.

None of the three path integrals are equal.

14.2.61 Using the same parameterizations as for the previous problem, we have
∫
C1

F ·T ds =∫ 1

0
((t) (−1) + (1− t) (1)) dt =

∫ 1

0
(1− 2t) dt = 0,

∫
C2

F · T ds =
∫ π/2

0
((sin t) (− sin t) + (cos t) (cos t)) dt =∫ π/2

0

(
cos2 t− sin2 t

)
dt = 0,

∫
C3

F ·T ds =
∫ 1

0
((0) (−1) + (1− t) (0)) dt +

∫ 1

0
(t · 0 + 0 · 1) dt = 0. All three

are equal to zero.
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14.2.62 r′(θ) = 〈− sin θ, cos θ〉, so that|r′ (θ)| = 1 and
∫
C
ρ ds =

∫ π

0

(
2θ
π + 1

)
dθ = 2π.

14.2.63 Parameterize C by r(t) = 〈t, 2t2〉 for 0 ≤ t ≤ 3. Then |r′ (t)| =
√
1 + 16t2 and

∫
C
ρ ds =∫ 3

0

(
1 + 2t3

) √
1 + 16t2 dt ≈ 409.5.

14.2.64

a.

b. The gradient is −50i− 25j.

c. F = 50i+ 25j.

d. Parameterize the boundary C by r(t) = 〈1, t〉 for 0 ≤ t ≤ 1. Then r′(t) = 〈0, 1〉 and
∫
C
F · n ds =∫ 1

0
(50 · 1− 25 · 0) dt = 50.

e. Parameterize the boundary C by r(t) = 〈1− t, 1〉 for 0 ≤ t ≤ 1 (note: we do not use 〈t, 1〉 because we

need counterclockwise orientation). Then r′(t) = 〈−1, 0〉 and ∫
C
F · n ds =

∫ 1

0
(50 · 0− 25 · (−1)) dt =

25.

14.2.65 r′(t) = 〈1, 1, 1〉 and |r (t)| = t
√
3, so the work is

∫
C
F ·T ds =

∫ a

1
3t

(t
√
3)

p dt = 31−p/2
∫ a

1
t1−p dt

a. For p = 2, we have
∫ a

1
1
t dt = ln a.

b. The work is not finite.

c. For p = 4, we have 1
3

∫ a

1
t−3 dt = − 1

6t2

∣∣a
1
= 1

6 − 1
6a2 .

d. As a → ∞, the work approaches 1
6 .

e. For the general p > 1, the analysis above shows that the integral is (for p �= 2) 31−p/2 1
2−p t

2−p
∣∣a
1
=

31−p/2

2−p

(−1 + a2−p
)
while for p = 2 the integral is (from part (a)) ln a.

e. This approaches a limit only for p > 2 (when 2− p < 0). This limit is 3
1−p/2

p−2 .

14.2.66

a. r′(t) = 〈−2 sin t, 2 cos t〉, so the flux along the quarter circle is
∫
C
F · n ds =∫ π/2

0
((2 sin t) (2 cos t)− (2 cos t) (−2 sin t)) dt =

∫ π/2

0
8 sin t cos t dt = 4.

b. With r′(t) as above, the flux is
∫
C
F · n ds =

∫ π

π/2
(8 sin t cos t) dt = −4.

c. Both the normal vectors and the vector field F in the third quadrant are the negatives of their values
in the first quadrant, so their dot product is the same. Thus the flux is identical.
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d. Both the normal vectors and the vector field F in the fourth quadrant are the negatives of their values
in the second quadrant, so their dot product is the same. Thus the flux is identical.

e. The total flux is 4− 4 + 4− 4 = 0.

14.2.67 We use four line segment parameterizations for the rectangle, all for 0 ≤ t ≤ 1: r1 (t) = 〈at, 0〉, so
r′1 (t) = 〈a, 0〉. r2 (t) = 〈a, bt〉, so r′2 (t) = 〈0, b〉. r3 (t) = 〈a − at, b〉, so r′3 (t) = 〈−a, 0〉. r4 (t) = 〈0, b − bt〉,
so r′4 (t) = 〈0,−b〉. Then ∫

C
x dy =

∫ 1

0
(at · 0 + a · b+ (a− at) · 0 + 0 · (−b)) dt =

∫ 1

0
ab dt = ab.

14.2.68 Parameterize C by r(t) = 〈a cos t, a sin t〉, so that r′(t) = 〈−a sin t, a cos t〉. Then − ∫
C
y dx =

− ∫ 2π

0
(a sin t · (−a sin t)) dt = a2

∫ 2π

0
sin2 t dt = πa2.

14.3 Conservative Vector Fields

14.3.1 A simple curve has no self-intersections; the initial and terminal points of a closed curve are identical.

14.3.2 A region is connected, roughly speaking, if it consists of one piece. A simply connected region has
the property that every closed loop can be contracted to a point.

14.3.3 If F = 〈f, g〉 is a vector field in R
2 and if ∂f

∂y = ∂g
∂x , then F is conservative.

14.3.4 If F = 〈f, g, h〉 is a vector field in R
3 and if ∂f

∂y = ∂g
∂x and ∂f

∂z = ∂h
∂x and ∂g

∂z = ∂h
∂y , then F is

conservative.

14.3.5 Integrate f with respect to x to get an answer where the “constant” is actually a function of y. Take
the partial with respect to y and equate with g to compute the constant.

14.3.6 The integral is ϕ (B)− ϕ (A) where ∇ϕ =F.

14.3.7 The integral is zero.

14.3.8

• There exists a potential function ϕ such that F = ∇ϕ.

• ∫
C
F · dr = ϕ(B) − ϕ(A) for all points A and B in R and all smooth oriented curves C from A to B

(path independence).

• ∮
C
F · dr = 0 on all simple smooth closed oriented curves C in R.

14.3.9 Yes, because 1y = 1x = 0.

14.3.10 Yes, because xy = yx = 0.

14.3.11 Yes, because −yy = −xx = −1.

14.3.12 No. −yy = −1, but (x+ y)x = 1.

14.3.13 Yes. ∂
∂y e

−x cos (y) = −e−x sin (y) = ∂
∂xe

−x sin (y).

14.3.14 Yes. ∂
∂y

(
2x3 + xy2

)
= 2xy, and ∂

∂x

(
2y3 + x2y

)
= 2xy.

14.3.15 Yes. ∂
∂y (x) = ∂

∂x (y) = 0. A potential function is x2+y2

2 .

14.3.16 Yes. ∂
∂y (−y) = ∂

∂x (−x) = −1. A potential function is −xy.

14.3.17 No. ∂
∂y

(
x3 − xy

)
= −x, and ∂

∂x

(
x2

2 + y
)
= x.
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14.3.18 Yes. ∂
∂y

(
x

x2+y2

)
= −2xy

(x2+y2)2
= ∂

∂x

(
y

x2+y2

)
. Integrating x

x2+y2 with respect to x, we see that a

potential function is 1
2 ln
(
x2 + y2

)
.

14.3.19 Yes. ∂
∂y

(
x√

x2+y2

)
= −xy

(x2+y2)3/2
= ∂

∂x

(
y√

x2+y2

)
. Integrating x√

x2+y2
with respect to x, we obtain

a potential function of
√
x2 + y2.

14.3.20 Yes. ∂
∂y (y) = ∂

∂x (x) = 1, ∂
∂z (y) = ∂

∂x (1) = 0 and ∂
∂z (y) = ∂

∂y (1) = 0. A potential function is

xy + z. To see this, integrate y with respect to x to get xy + f (y, z); differentiating with respect to y gives
x + fy (y, z) = x, so that f (y, z) is actually a function of z, say g (z). But then differentiating xy + g (z)
with respect to z gives g′ (z) = 1, so g (z) = z.

14.3.21 Yes, because the mixed partials are pairwise equal. A potential function is xz + y.

14.3.22 Yes, because the mixed partials are pairwise equal. A potential function is xyz.

14.3.23 Yes, because the mixed partials are pairwise equal. To find the potential function, integrate y + z
with respect to x to get x (y + z) + f (y, z); differentiating with respect to y gives x + z = x + fy (y, z) so
that fy (y, z) = z andf (y, z) = yz. Thus a potential function is xy + yz + xz.

14.3.24 Yes, because the mixed partials are pairwise equal. As in problem 18, a potential function is
1
2 ln
(
x2 + y2 + z2

)
.

14.3.25 Yes, because the mixed partials are pairwise equal. As in problem 19, a potential function is√
x2 + y2 + z2.

14.3.26 Yes, because the mixed partials are pairwise equal (and zero). A potential function is 1
4x

4+y2− 1
4z

4.

14.3.27

a. ∇ϕ = 〈y, x〉, so ∫
C
∇ϕ · r′ (t) dt = ∫ π

0
〈sin t, cos t〉 · 〈− sin t, cos t

〉
dt =

∫ π

0
cos (2t) dt = 0.

b. Since ∇ϕ is obviously conservative, the integral is simply ϕ (cos (π) , sin (π))− ϕ (cos (0) , sin (0)) = 0.

14.3.28

a. ∇ϕ = 〈x, y〉, so ∫
C
∇ϕ · r′ (t) dt = ∫ π

0
〈sin t, cos t〉 · 〈cos t,− sin t

〉
dt =

∫ π

0
0 dt = 0.

b. The integral is ϕ (sin (π) , cos (π))− ϕ (sin (0) , cos (0)) = 1
2 − 1

2 = 0.

14.3.29

a. ∇ϕ = 〈1, 3〉, so ∫
C
∇ϕ · r′ (t) dt = ∫ 2

0
〈1, 3〉 · 〈−1, 1〉 dt = ∫ 2

0
2 dt = 4.

b. The integral is ϕ (0, 2) − ϕ (2, 0) = 6 − 2 = 4. (Note thatϕ (0, 2) is ϕ evaluated at the point where
t = 2).

14.3.30

a. ∇ϕ = 〈1, 1, 1〉, so ∫
C
∇ϕ · r′ (t) dt = ∫ π

0
〈1, 1, 1〉 · 〈cos t,− sin (t) , 1

π 〉 dt =
∫ π

0

(
cos t− sin t+ 1

π

)
dt = −1.

b. The integral is ϕ (0,−1, 1)− ϕ (0, 1, 0) = 0− 1 = −1.
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14.3.31

a. ∇ϕ = 〈x, y, z〉, so ∫
C
∇ϕ · r′ (t) dt = ∫ 2π

0
〈cos t, sin t, t

π 〉 · 〈− sin t, cos t, 1
π 〉 dt =

∫ 2π

0

(
t
π2

)
dt = 2.

b. The integral is ϕ (1, 0, 2)− ϕ (1, 0, 0) = 5
2 − 1

2 = 2.

14.3.32

a. ∇ϕ = 〈y + z, x+ z, x+ y〉, so ∫
C
∇ϕ · r′ (t) dt = ∫ 4

0
〈5t, 4t, 3t〉 · 〈1, 2, 3〉 dt = ∫ 4

0
22t dt = 176.

b. The integral is ϕ (4, 8, 12)− ϕ (0, 0, 0) = 176− 0 = 176.

14.3.33 Parameterize C by r(t) = 〈4 cos t, 4 sin t〉, 0 ≤ t ≤ 2π. Then
∮
C
F · dr =

∫ 2π

0
〈4 cos t, 4 sin t〉 ·

〈−4 sin t, 4 cos t
〉
dt =

∫ 2π

0
0 dt = 0.

14.3.34 Parameterize C by r(t) = 〈8 cos t, 8 sin t〉, 0 ≤ t ≤ 2π. Then
∮
C
F · dr =

∫ 2π

0
〈8 sin t, 8 cos t〉 ·

〈−8 sin t, 8 cos t
〉
dt = 8

∫ 2π

0

(
cos2 t− sin2 (t)

)
dt = 0.

14.3.35 Parameterize C by three paths, all for 0 ≤ t ≤ 1: r1 (t) = 〈t, t−1〉, so r′1 (t) = 〈1, 1〉. r2 (t) = 〈1−t, t〉,
so r′2 (t) = 〈−1, 1〉. r3 (t) = 〈0, 1 − 2t〉, so r′3 (t) = 〈0,−2〉. Then

∮
C
F · dr =

∫ 1

0
〈t, t − 1〉 · 〈1, 1〉 dt + ∫ 1

0
〈1 −

t, t〉 · 〈−1, 1〉 dt+ ∫ 1

0

〈
0, 1− 2t〉 · 〈0,−2〉 dt = ∫ 1

0
(t+ (t− 1) + (t− 1) + t− 2 (1− 2t)) dt =

∫ 1

0
(8t− 4) dt = 0.

14.3.36 Parameterize C by r(t) = 〈3 cos t, 3 sin t〉, 0 ≤ t ≤ 2π. Then
∮
C
F · dr =

∫ 2π

0
〈3 sin t,−3 cos t〉 ·

〈−3 sin t, 3 cos t
〉
dt = −9

∫ 2π

0
1 dt = −18π. This integral is not zero because the vector field 〈y,−x〉 is not

conservative: ∂
∂y (y) = 1, while ∂

∂x (−x) = −1.

14.3.37 Using the given parameterization,∮
C

F · dr =

∫ 2π

0

〈cos t, sin t, 2〉 · 〈− sin t, cos t, 0〉 dt =
∫ 2π

0

0 dt = 0.

14.3.38 Using the given parameterization,∮
C

F · dr =

∫ 2π

0

〈sin t− cos t, 0, cos t− sin t〉 · 〈− sin t, cos t,− sin t〉 dt =
∫ 2π

0

0 dt = 0.

14.3.39

a. False. Parametrize the curve by x = 4 cos t + 1, y = 4 sin t, for 0 ≤ t ≤ 2π. Then
∮
C
F · dr =∫ 2π

0
〈−4 sin t, 4 cos t+ 1〉 · 〈−4 sin t, 4 cos t〉 dt = ∫ 2π

0
(16 sin2 t+ 16 cos2 t+ 4 cos t) dt = 32π �= 0.

b. True. This is because F is conservative.

c. True. If the vector field is 〈a, b〉, then a potential function is ax+ by.

d. True. This is because ∂
∂yf (x) = ∂

∂xg (y) = 0.

e. True. This follows from the definitions.

14.3.40 Write ϕ (x, y, z) = 1 + x2yz. Then using the Fundamental Theorem, this integral is equal to
ϕ (cos (8π) , sin (8π) , 4π)− ϕ (cos (0) , sin (0) , 0) = ϕ (1, 0, 4π)− ϕ (1, 0, 0) = 1− 1 = 0.

14.3.41 Write ϕ (x, y) = e−x cos (y). Then using the Fundamental Theorem, this integral is equal to
ϕ (ln 2, 2π)− ϕ (0, 0) = e− ln 2 cos (2π)− e0 cos (0) = 1

2 − 1 = − 1
2 .

14.3.42 If x = x (t), y = y (t), then
∮
C
e−x (cos y dx+ sin y dy) =

∮
C
F · dr, where F = 〈e−x cos y,e−x sin y〉.

This is a conservative vector field, because ∂
∂y (e−x cos y) = −e−x sin y = ∂

∂x (e−x sin y), so that the integral
around the closed curve is zero.
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14.3.43 F is a conservative vector field; a potential function can be found by integrating x2 with respect to y
to obtain x2y+f (x, z); differentiate with respect to z to get fz (x, z) = 2xz, so thatf (x, z) = xz2+g (x). Thus
the potential function is x2y+xz2+g (x); differentiating with respect to x gives 2xy+z2+gx (x) = 2xy+z2,
so that gx (x) = 0 and we may take g (x) = 0. So if ϕ = x2y + xz2, then ∇ϕ =F and thus the integral is
zero because both sine and cosine, and thus ϕ, have the same values at the two endpoints of C.

14.3.44
∮
C

ds is the length of the curve C, which is 2π. The other two integrals are zero, because they
are the same as integrating the conservative vector fields 〈1, 0, 0〉, and 〈0, 1, 0〉 respectively around a closed
curve.

14.3.45 This is a conservative vector field with potential function ϕ (x, y) = 1
2x

2 + 2y, so the work is
ϕ (2, 4)− ϕ (0, 0) = 10.

14.3.46 This is a conservative vector field with potential function ϕ (x, y) = 1
2

(
x2 + y2

)
, so the work is

ϕ (3,−6)− ϕ (1, 1) = 45
2 − 1 = 43

2 .

14.3.47 This is a conservative vector field with potential function ϕ (x, y, z) = 1
2

(
x2 + y2 + z2

)
, so the work

is ϕ (2, 4, 6)− ϕ (1, 2, 1) = 28− 3 = 25.

14.3.48 This is not a conservative vector field, because for example ∂
∂z (e

x+y) = 0, while ∂
∂x ( zex+y) =

zex+y. Parameterize C by 〈−t, 2t,−4t〉, 0 ≤ t ≤ 1; then
∫
C
F · dr =

∫ 1

0
〈et, et,−4tet〉 · 〈−1, 2,−4〉 dt =∫ 1

0
(et + 16tet) dt = e+ 15.

14.3.49 For C1, the vector field points “against” the curve for most of its length, and with larger magnitude,
so the integral is negative. For C2, the vector field points with the curve for its entire length, so the integral
is positive.

14.3.50 For C1, the vector field points against the curve for its entire length; for C2, the vector field points
with the curve, so the integral over C1 is negative and the integral over C2 is positive.

14.3.51 F = 〈a, b, c〉 is a conservative force field with potential function ϕ (x, y, z) = ax + by + cz, so the

work done is ϕ (B)− ϕ (A) = F ·B − F ·A = F · (B −A) = F · −−→AB.

14.3.52

a. The acceleration is the time derivative of velocity, so Newton’s second law says that mdv
dt = ma = F =

−∇ϕ

b. By the product rule, d
dt (v · v) = dv

dt · v + v · dv
dt = 2dv

dt · v, and the desired equation follows.

c. Multiplying part (a) by v = r′ and using (b), we have (letting C be a path from A to B) mdv
dt · v =

−∇ϕ · r′ = 1
2m

d
dt (v · v).

Thus,
∫
C
−∇ϕ·r′ = 1

2m
∫ B

A
d
dt (v (t) · v (t)) dt, so ϕ (A)−ϕ (B) = 1

2m (|v|)2 ∣∣B
A
. The last equality follows

because the integrand is a conservative vector field. Thus 1
2m |v (B)|2 − 1

2m |v (A)|2 = ϕ (A)− ϕ (B),

so 1
2m |v (B)|2 + ϕ (B) = 1

2m |v (A)|2 + ϕ (A).

14.3.53

a. Away from the origin (where the denominator of the force field equation is undefined), the force field
is conservative because, for example,

∂

∂y
GMm

x

(x2 + y2 + z2)
3/2

= GMm
2xy

(x2 + y2 + z2)
5/2

=
∂

∂x
GMm

y

(x2 + y2 + z2)
3/2

.

b. A potential function for the force field is ϕ (x, y, z) = GMm
(
x2 + y2 + z2

)−1/2
= GMm 1

|r| .
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c. The work done in moving the point from A to B, because the force field is conservative, is ϕ (B) −
ϕ (A) = GMm

(
1

|B| − 1
|A|
)
= GMm

(
1
r2

− 1
r1

)
.

d. Because the field is conservative, the work done does not depend on the path.

14.3.54 This vector field is F = 〈x, y, z〉 (x2 + y2 + z2
)−p/2

, so away from the origin is conservative with

potential function ϕ (x, y, z) = 1
2−p

(
x2 + y2 + z2

)1−p/2
as long as p �= 2. When p = 2, the potential function

is ϕ = 1
2 ln(x

2 + y2 + z2). The field is conservative at the origin if it is defined and if its potential function
is defined, i.e. if both −p

2 and 1− p
2 are nonnegative, which happens only if p ≤ 0.

14.3.55

a. This field is F = 〈−y, x〉 (x2 + y2
)−p/2

, and we have ∂
∂y

(
−y
(
x2 + y2

)−p/2
)

= − (x2 + y2
)−p/2

+

py2
(x2+y2)

−p/2

x2+y2 = − (x2 + y2
)−p/2

+ py2
(
x2 + y2

)−1−p/2
= −x2+(p−1)y2

(x2+y2)1+p/2 .
∂
∂x

(
x
(
x2 + y2

)−p/2
)

=(
x2 + y2

)−p/2 − px2 (x
2+y2)

−p/2

x2+y2 =
(
x2 + y2

)−p/2 − px2
(
x2 + y2

)−1−p/2
= −(p−1)x2+y2

(x2+y2)1+p/2 .

For the force field to be conservative, these two would have to be equal. However, their difference

is ∂N
∂x − ∂M

∂y = 2
(
x2 + y2

)−p/2 − p
(
x2 + y2

) (
x2 + y2

)−1−p/2
= 2

(
x2 + y2

)−p/2 − p
(
x2 + y2

)−p/2
=

(2− p)
(
x2 + y2

)−p/2
which is in general nonzero.

b. From the above formula, if p = 2, then the mixed partials are equal, so that F is conservative.

c. For p = 2, F = 1
x2+y2 〈−y, x〉. Integrating the x component of F with respect to x gives ϕ = tan−1

(
y
x

)
.

14.3.56

a. Because ∂
∂y (ax+ by) = b and ∂

∂x (cx+ dy) = c, the field is conservative when b = c.

b. Because ∂
∂y

(
ax2 − by2

)
= −2by and ∂

∂x (cxy) = cy, the field is conservative when c = −2b.

14.3.57

a.

b. Parameterize C1 by two paths: r1 (t) = 〈t, 0〉, 0 ≤ t ≤ x, and r2 (t) = 〈x, t〉, 0 ≤ t ≤ y. Then∫
C
F ·dr =

∫ x

0
〈2t,−t〉 · 〈1, 0〉 dt+∫ y

0
〈2x− t,−x+2t〉 · 〈0, 1〉 dt = ∫ x

0
2t dt+

∫ y

0
(2t− x) dt = x2+y2−xy.

c. Parameterize C2 by the paths r1 (t) = 〈0, t〉, 0 ≤ t ≤ y, and r2 (t) = 〈t, y〉, 0 ≤ t ≤ x. Then∫
C
F ·dr =

∫ y

0
〈−t, 2t〉 · 〈0, 1〉 dt+ ∫ x

0
〈2t−y,−t+2y〉 · 〈1, 0〉 dt = ∫ y

0
2t dt+

∫ x

0
(2t− y) dt = x2+y2−xy.

14.3.58 Using problem 57, we have the same paths r1, r2, and
∫
C
F · dr =

∫ x

0
〈0,−t〉 · 〈1, 0〉 dt+ ∫ y

0
〈−t,−x〉 ·〈

0, 1〉 dt = ∫ x

0
0dt+

∫ y

0
(−x) dt = −xy.

14.3.59 Using problem 57 and the same paths r1, r2, we have
∫
C
F·dr =

∫ x

0
〈t, 0〉·〈1, 0〉 dt+∫ y

0
〈x, t〉·〈0, 1〉 dt =∫ x

0
t dt+

∫ y

0
t dt = 1

2

(
x2 + y2

)
.

14.3.60 Using problem 57 and the same paths r1, r2, note that F = r
|r| = 〈x, y〉 (x2 + y2

)−1/2
, and

∫
C
F·dr =∫ x

0
〈1, 0〉 · 〈1, 0〉 dt+ ∫ y

0

〈
x√

x2+t2
, t√

x2+t2

〉 · 〈0, 1〉 dt = ∫ x

0
1 dt+

∫ y

0
t√

x2+t2
dt = x+

√
x2 + y2 − x =

√
x2 + y2.

14.3.61 Using problem 57 and the same paths r1, r2, we have
∫
C
F · dr =

∫ x

0
〈2t3, 0〉 · 〈1, 0〉 dt + ∫ y

0
〈2x3 +

xt2, 2t3 + x2t〉 · 〈0, 1〉 dt = ∫ x

0
2t3 dt+

∫ y

0

(
2t3 + x2t

)
dt = 1

2

(
x4 + x2y2 + y4

)
.
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14.4 Green’s Theorem

14.4.1 As with the Fundamental Theorem of Calculus, it allows evaluation of the integral of a derivative
by looking at the value of the underlying function on the boundary of a region (or, in the case of the
Fundamental Theorem, an interval).

14.4.2 The line integral for flux corresponds to the double integral of the divergence; the line integral for
circulation to the double integral of the curl.

14.4.3 The curl is ∂g
∂x − ∂f

∂y = y2 + 4x3 − 4x3 = y2.

14.4.4 The divergence is ∂f
∂x + ∂g

∂y = 12x2y + 2xy.

14.4.5 The area is 1
2

∮
C
(x dy − y dx) where C is the boundary of the region.

14.4.6 Because the curl being zero is an equivalent condition to the field being conservative.

14.4.7 Because the flux is the integrand in Green’s theorem, so the integral vanishes.

14.4.8 A conservative vector field such as 〈x, y〉 will have zero curl:

14.4.9

14.4.10 A conservative and a source-free field each have functions (a potential function in the case of a
conservative field; a stream function in the case of a source-free field) that closely reflect the vector field.
The properties of the partials of these functions are such that the curl (or divergence, for a source-free field)
vanish.

14.4.11

a. The curl is ∂g
∂x − ∂f

∂y = 0− 0 = 0.

b.
∫
C
F · dr =

∫ 2π

0
〈cos t, sin t〉 · 〈− sin t, cos t〉 dt = 0.

∫∫
R

(
∂g
∂x − ∂f

∂y

)
dA =

∫∫
R

0 dA = 0.
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c. The vector field is conservative because its curl is zero.

14.4.12

a. The curl is ∂g
∂x − ∂f

∂y = 1− 1 = 0.

b.
∫
C
F · dr =

∫ 1

0
〈0, t〉 · 〈1, 0〉 dt+ ∫ 1

0
〈t, 1〉 · 〈0, 1〉 dt+ ∫ 1

0
〈1, 1− t〉 · 〈−1, 0〉 dt+ ∫ 1

0
〈1− t, 0〉 · 〈0,−1〉 dt = 0.∫∫

R

(
∂g
∂x − ∂f

∂y

)
dA =

∫∫
R

0 dA = 0.

c. The vector field is conservative because its curl is zero.

14.4.13

a. The curl is ∂g
∂x − ∂f

∂y = −2− 2 = −4.

b.
∫
C
F · dr =

∫ π

0
〈0,−2t〉 · 〈1, 0〉 dt+ ∫ 0

π
〈2 sin t,−2t〉 · 〈1, cos t〉 dt = ∫ 0

π
(2 sin t− 2t cos t) dt = −8.∫∫

R

(
∂g
∂x − ∂f

∂y

)
dA =

∫∫
R

(−4) dA = −4
∫ π

0
sinx dx = −8.

c. It is not conservative because the curl is nonzero.

14.4.14

a. The curl is ∂g
∂x − ∂f

∂y = 3 + 3 = 6.

b.
∫
C
F · dr =

∫ 1

0
〈0, 3t〉 · 〈1, 0〉 dt+ ∫ 1

0
〈−6t, 3− 3t〉 · 〈−1, 2〉 dt+ ∫ 1

0
〈−3 (2− 2t) , 0〉 · 〈0,−2〉 dt =∫ 1

0
(6t+ 6− 6t) dt = 6.∫∫

R

(
∂g
∂x − ∂f

∂y

)
dA =

∫∫
R

6 dA = 6
∫ 1

0
(2− 2x) dx = 6.

c. No, because the curl is nonzero.

14.4.15

a. The curl is ∂g
∂x − ∂f

∂y = 2x− 2x = 0

b.
∫
C
F · dr =

∫ 2

0
〈0, t2〉 · 〈1, 0〉 dt+ ∫ 0

2
〈2t2 (2− t) , t2 − t2 (2− t)

2〉 · 〈1, 2− 2t〉 dt =∫ 0

2

(
2t2 (2− t) + t2

(
1− (2− t)

2
)
(2− 2t)

)
dt = 0.∫∫

R

(
∂g
∂x − ∂f

∂y

)
dA =

∫∫
R

0 dA = 0.

c. Yes, because the curl is zero.

14.4.16

a. The curl is ∂g
∂x − ∂f

∂y = 2x.

b.
∫
C
F · dr =

∫ 2π

0
〈0, sin2 t+ cos2 t〉 · 〈− sin t, cos t〉 dt = ∫ 2π

0
cos t dt = 0.∫∫

R

(
∂g
∂x − ∂f

∂y

)
dA =

∫∫
R

(2x) dA =
∫ 2π

0

∫ 1

0
2r cos θ r dr dθ = 0.

c. No, because the curl is nonzero.

14.4.17 Parameterize the boundary by x = 5 cos t, y = 5 sin t, 0 ≤ t ≤ 2π. Then dx = −5 sin t dt, dy =

5 cos t dt, and the area is 1
2

∮
C
x dy−y dx = 1

2

∫ 2π

0
((5 cos t) · (5 cos t)− (5 sin t) · (−5 sin t)) dt = 25

2

∫ 2π

0
1 dt =

25π.
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14.4.18 Parameterize the boundary by x = 6 cos t, y = 4 sin t, 0 ≤ t ≤ 2π. Then dx = −6 sin t dt, dy =

4 cos t dt, and the area is 1
2

∮
C
x dy−y dx = 1

2

∫ 2π

0
((6 cos t) · (4 cos t)− (4 sin t) · (−6 sin t)) dt = 12

∫ 2π

0
1 dt =

24π.

14.4.19 Parameterize the boundary by x = 4 cos t, y = 4 sin t, 0 ≤ t ≤ 2π. Then dx = −4 sin t dt, dy =

4 cos t dt, and the area is 1
2

∮
C
x dy − y dx = 1

2

∫ 2π

0
((4 cos t) · (4 cos t)− (4 sin t) · (−4 sin t)) dt = 8

∫ 2π

0
1 dt =

16π.

14.4.20 Note that C1 can be parameterized by x = −
√
2
2 (1− t) +

√
2
2 t and y =

√
2
2 , 0 ≤ t ≤ 1 while C2 can

be parametrized by x = cos t and y = sin t for −π
4 ≤ t ≤ π

4 . For C1 we have dy = 0 and dx =
√
2 dt. Thus

1
2

∮
C1

x dy − y dx = 1
2

∫ 1

0
−

√
2
2 · √2 dt = − 1

2 . For C2, we have dx = − sin t dt and dy = cos t dt, and we have
1
2

∮
C2

x dy− y dx = 1
2

∫ π/4

−π/4
dt = π

4 . Thus the area is π
4 − 1

2 . As a quick check, note that the region could be

thought of as a quarter circle of radius one minus a triangle with area 1
2 .

14.4.21 Traverse the first path from −2 to 2, then the second path back from 2 to −2. The area is

then 1
2

∮
C
x dy − y dx = 1

2

∫ 2

−2

(
t · (4 t)− (2t2) · 1) dt + 1

2

∫ −2

2

(
t · (−2 t)− (12− t2

) · 1) dt = 1
2

∫ 2

−2
2t2 dt +

1
2

∫ −2

2

(−2t2 − 12 + t2
)
dt = 32.

14.4.22

�0.4 �0.2 0.2 0.4x

0.2

0.4

0.6

0.8

1.0

y

We have dx =
(
1− t2 + t · (−2t)

)
dt =

(
1− 3t2

)
dt and dy = −2t dt. We parameterize the curve from

t = 1 to t = −1 so that we traverse the region counterclockwise; then the area is 1
2

∮
C
x dy − y dx =

1
2

∫ −1

1

(
t
(
1− t2

)
(−2t)− (1− t2

) (
1− 3t2

))
dt = 8

15 .

14.4.23

a. The divergence is ∂f
∂x + ∂g

∂y = 1 + 1 = 2.

b.
∫
C
F · n ds = 4

∫ 2π

0
(cos t (cos t)− sin t (− sin t)) dt = 8π.∫∫

R

(
∂f
∂x + ∂g

∂y

)
dA =

∫∫
R

(2) dA = 2 · 4π = 8π.

c. It is not source-free because its divergence is nonzero.

14.4.24

a. The divergence is ∂f
∂x + ∂g

∂y = 0 + 0 = 0.

b.
∫
C
F · n ds =

∫ 1

0
(0 (0) + t (1)) dt+

∫ 1

0
(t (1) + 1 (0)) dt+

∫ 1

0
((1) (0) + (1− t) (−1)) dt+∫ 1

0
((1− t) (−1) + 0 (0)) dt =

∫ 1

0
(2t+ t− 1 + t− 1) dt =

∫ 1

0
(4t− 2) dt = 0.∫∫

R

(
∂f
∂x + ∂g

∂y

)
dA =

∫∫
R

0 dA = 0.
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c. Yes, because its divergence is zero.

14.4.25

a. The divergence is ∂f
∂x + ∂g

∂y = 0.

b.
∫
C
F · n ds =

∫ 2

−2
(0 (0) + 3t (1)) dt+

∫ 2

−2

((
4− t2

)
(−2t) + 3t (1)

)
dt = 0.∫∫

R

(
∂f
∂x + ∂g

∂y

)
dA =

∫∫
R

0 dA = 0.

c. Yes, because its divergence is zero.

14.4.26

a. The divergence is 0 + 0 = 0.

b. Parameterize the triangle by the three paths: r1 (t) = 〈3t, 0〉, r2 (t) = 〈3 − 3t, t〉, and r3 (t) = 〈0, 1 −
t〉, all for 0 ≤ t ≤ 1. Then

∫
C
F · n ds =

∫ 1

0
(0 (0) + 9t (3)) dt +

∫ 1

0
(−3t (1) + (9− 9t) (−3)) dt +∫ 1

0
((3t− 3) (−1) − 0 (0)) dt =

∫ 1

0
(27t− 3t− 27 + 27t− 3t+ 3) dt =

∫ 1

0
(48t− 24) dt = 0.∫∫

R

(
∂f
∂x + ∂g

∂y

)
dA =

∫∫
R

0 dA = 0.

c. Yes, because its divergence is zero.

14.4.27

a. The divergence is ∂f
∂x + ∂g

∂y = 2y − 2y = 0.

b. Parameterize the region by r1 (t) = 〈t, 0〉, and r1 (t) = 〈t, t (2− t)〉 for 0 ≤ t ≤ 2; traverse the
second path from t = 2 to t = 0 to make a counterclockwise closed curve. Then

∫
C
F · n ds =∫ 2

0

(
0 (0) − t2 (1)

)
dt+

∫ 0

2

(
2t2 (2− t) (2− 2t)− t2

(
1− (2− t)

2
)
(1)
)
dt = 0.∫∫

R

(
∂f
∂x + ∂g

∂y

)
dA =

∫∫
R

0 dA = 0

c. Yes, because its divergence is zero.

14.4.28

a. The divergence is ∂f
∂x + ∂g

∂y = 2x.

b.
∫
C
F · n ds =

∫ 2π

0

((
sin2 t+ cos2 t

) · cos t+ 0 · sin t) dt = ∫ 2π

0
cos t dt = 0.∫∫

R

(
∂f
∂x + ∂g

∂y

)
dA =

∫∫
R

2x dA =
∫ 2π

0

∫ 1

0
2 cos θ · r dr dθ = 0.

c. No, because its divergence is nonzero.

14.4.29 The line integral, using the flux form of Green’s theorem, is equal to∫∫
R

(
∂
∂x

(
2x+ ey

2
)
+ ∂

∂y

(
4y2 + ex

2
))

dA =
∫∫
R

(2 + 8y) dA =
∫ 1

0

∫ 1

0
(2 + 8y) dx dy =

∫ 1

0
(2 + 8y) dy = 6.

14.4.30 Using the flux form of Green’s theorem, the integral is equal to
∫∫
R

(
∂
∂x (2x− 3y) + ∂

∂y (3x+ 4y)
)
dA

=
∫∫
R

6 dA = 6× area of R = 6π.

14.4.31 Using the flux form of Green’s theorem, the integral is equal to
∫∫
R

(
∂
∂x (0) + ∂

∂y (xy)
)
dA =∫ 2

0

∫ 4−2x

0
x dy dx =

∫ 2

0

(
4x− 2x2

)
dx = 8

3 .
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14.4.32 Using the flux form of Green’s theorem, the integral is equal to (note the leading minus sign to
correct for the orientation)

−
∫∫
R

(
∂

∂x

(
x2
)
+

∂

∂y

(
2y2
))

dA = −
∫ 1

−1

∫ √
1−x2

0

(2x+ 4y) dy dx

= −
∫ 1

−1

(
2xy + 2y2

) ∣∣y=√
1−x2

y=0
dx = −

∫ 1

−1

(
2x
√

1− x2 + 2− 2x2
)
dx = −8

3
.

14.4.33 Using the circulation form of Green’s theorem, the integral is equal to∫∫
R

(
∂

∂x

(
4x+ y3

)− ∂

∂y

(
x2 + y2

))
dA =

∫∫
R

(4− 2y) dA =

∫ π

0

∫ sin(x)

0

(4− 2y) dy dx = 8− π

2
.

14.4.34 Using the flux form of Green’s theorem, the integral is equal to
∫∫
R

(
∂
∂x (ex−y) + ∂

∂y (ey−x)
)
dA =∫∫

R

(ex−y + ey−x) dA =
∫ 1

0

∫ x

0
(ex−y + ey−x) dy dx =

∫ 1

0
(−ex−y + ey−x)

∣∣y=x

y=0
dx =

∫ 1

0
(ex − e−x) dx = e +

e−1 − 2.

14.4.35

a. Using Green’s theorem, the circulation is
∫∫
R

(
∂
∂x (y)− ∂

∂y (x)
)
dA =

∫∫
R

0 dA = 0,

b. Using Green’s theorem, the flux is
∫∫
R

(
∂
∂x (x) + ∂

∂y (y)
)
dA =

∫∫
R

2 dA = 2 ·area ofR = 2 · 12 (4π − π) =

3π.

14.4.36

a. Using Green’s theorem, the circulation is
∫∫
R

(
∂
∂x (x)− ∂

∂y (−y)
)
dA =

∫∫
R

2 dA = 2 · area ofR = 2 ·
(9π − π) = 16π.

b. Using Green’s theorem, the flux is
∫∫
R

(
∂
∂x (−y) + ∂

∂y (x)
)
dA = 0.

14.4.37

a. Using Green’s theorem, the circulation is
∫∫
R

(
∂
∂x (x− 4y)− ∂

∂y (2x+ y)
)
dA =

∫∫
R

(1− 1) dA = 0.

b. Using Green’s theorem, the flux is
∫∫
R

(
∂
∂x (2x+ y) + ∂

∂y (x− 4y)
)
dA =

∫∫
R

(−2) dA = −2·area of R =

−2 · 1
4 (16π − π) = − 15

2 π.

14.4.38

a. Using Green’s theorem, the circulation is
∫∫
R

(
∂
∂x (−x+ 2y)− ∂

∂y (x− y)
)
dA =

∫∫
R

(0) dA = 0.

b. Using Green’s theorem, the flux is
∫∫
R

(
∂
∂x (x− y) + ∂

∂y (−x+ 2y)
)
dA =

∫∫
R

3 dA = 3 · area ofR = 6.

14.4.39

a. True. This is the definition of work along a path.

b. False. Divergence corresponds to flux, so if the divergence is zero throughout a region, the flux is zero
across the boundary.
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c. True. This follows from Green’s theorem.

14.4.40

a. The circulation is
∫∫
R

(
∂
∂x

(
tan−1

(
y
x

))− ∂
∂y

(
ln
(
x2 + y2

)))
dA =

∫∫
R

(
−y

x2+y2 − 2y
x2+y2

)
dA =

− 3
∫∫
R

y
x2+y2 dA = −3

∫ 2π

0

∫ 2

1
r sin θ
r2 r dr dθ = −3

∫ 2π

0

∫ 2

1
2 sin θ dr dθ = −3

∫ 2π

0
sin θ dθ = 0.

b. The flux is
∫∫
R

(
∂
∂x

(
ln
(
x2 + y2

))
+ ∂

∂y

(
tan−1

(
y
x

)))
dA =

∫∫
R

3x
x2+y2 dA =∫ 2π

0

∫ 2

1
3r cos θ

r2 r dr dθ =
∫ 2π

0

∫ 2

1
3 cos θ dr dθ =

∫ 2π

0
3 cos (θ) dθ = 0.

14.4.41

a. Because F is conservative, the circulation on the boundary of R is zero.

b. F =
(
x2 + y2

)−1/2 〈x, y〉, so the flux is
∫∫
R

(
∂
∂x

(
x√

x2+y2

)
+ ∂

∂y

(
y√

x2+y2

))
dA =∫∫

R

(
x2 + y2

)−1/2
dA =

∫ π

0

∫ 3

1
1
r r dr dθ =

∫ π

0

∫ 3

1
1 dr dθ = 2π.

14.4.42

a. The circulation is ∫∫
R

(
∂

∂x
(− sinx)− ∂

∂y
(y cosx)

)
dA = 2

∫∫
R

(− cosx) dA

= 2

∫ π/2

0

∫ π/2

0

(− cosx) dy dx =

∫ π/2

0

(−π cosx) dx = −π.

b. The flux is ∫∫
R

(
∂

∂x
(y cosx) +

∂

∂y
(− sinx)

)
dA =

∫∫
R

(−y sinx) dA

=

∫ π/2

0

∫ π/2

0

(− y sinx) dy dx = −1

8
π2.

14.4.43 Note that the region is the area between x = 3y2 andx = 36− y2, which intersect at y = 3.

a. The circulation is
∫∫
R

(
∂
∂x

(
x2 − y

)− ∂
∂y

(
x+ y2

))
dA =

∫∫
R

(2x− 2y) dA =
∫ 3

−3

∫ 36−y2

3y2 (2x− 2y) dx dy

=
∫ 3

−3

(
1296− 72y − 72y2 + 8y3 − 8y4

)
dy = 28512

5 .

b. The flux is
∫∫
R

(
∂
∂x

(
x+ y2

)
+ ∂

∂y

(
x2 − y

))
dA =

∫∫
R

(0) dA = 0.

14.4.44 By Green’s theorem,
∮
C
1 dx =

∮
C
1 dx + 0 dy =

∫∫
R

(
∂0
∂x − ∂1

∂y

)
dA =

∫∫
R

0 dA = 0. Similarly,∮
C
1 dy =

∮
C
0 dx+ 1 dy =

∫∫
R

(
∂1
∂x − ∂0

∂y

)
dA =

∫∫
R

0 dA = 0.

14.4.45 Because ∂f
∂y = ∂g

∂x = 0, the integral is zero (because F is conservative.)
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14.4.46 Let f (x, y) = 0, g (x, y) = xy2 + y4; then∫∫
R

(
2xy + 4y3

)
dA =

∫∫
R

(
∂f

∂x
+

∂g

∂y

)
dA =

∮
C

(0 dy − g dx) = −
∮
C

(
xy2 + y4

)
dx

by Green’s theorem, where C is the boundary of the triangle. To evaluate this line integral, parameterize C
by three paths, all for 0 ≤ t ≤ 1: r1 (t) = 〈t, 0〉, so that r′1 (t) = 〈1, 0〉. r2 (t) = 〈1 − t, t〉, so that r′2 (t) =
〈−1, 1〉. r3 (t) = 〈0, 1 − t〉, so that r′3 (t) = 〈0,−1〉. Then − ∮

C

(
xy2 + y4

)
dx = − ∫ 1

0

(
t
(
02
)− 04

)
dt −∫ 1

0
t2 (1− t) (−1) dt− ∫ 1

0

(
0 (1− t)

2
+ t4 · 0

)
dt =

∫ 1

0

(
t4 − t3 + t2

)
dt = 17

60 .

14.4.47 By Green’s theorem,∮
C

xy2 dx+
(
x2y + 2x

)
dy =

∫∫
R

(
∂

∂x

(
x2y + 2x

)− ∂

∂y

(
xy2
))

dA

=

∫∫
R

(2xy + 2− 2xy) dA =

∫∫
R

2 dA = 2 · area ofA.

14.4.48 Using the circulation form of Green’s theorem, the integral is∮
C

ay dx+ bx dy =

∫∫
R

(b− a) dA = (b− a) · area ofA.

14.4.49

a. The divergence is ∂
∂x (4) + ∂

∂y (2) = 0.

b. ψ = 4y − 2x.

14.4.50

a. The divergence is ∂
∂x

(
y2
)
+ ∂

∂y

(
x2
)
= 0 + 0 = 0.

b. ψ = 1
3

(
y3 − x3

)
.

14.4.51

a. The divergence is ∂
∂x (−e−x sin y) + ∂

∂y (e−x cos y) = e−x sin y − e−x sin y = 0.

b. ψ = e−x cos y.

14.4.52

a. The divergence is ∂
∂x

(
x2
)
+ ∂

∂y (−2xy) = 2x− 2x = 0.

b. ψ = x2y.

14.4.53

a. The curl and divergence are curlF = ∂
∂x (−ex sin y)− ∂

∂y (ex cos y) = −ex sin y + ex sin y = 0. divF =
∂
∂x (ex cos y) + ∂

∂y (−ex sin y) = ex cos y − ex cos y = 0.

b. ϕ (x, y) = ex cos (y). ψ (x, y) = ex sin (y).

c. ϕxx + ϕyy = ∂2

∂x2 (e
x cos y) + ∂2

∂y2 (e
x cos y) = ex cos y − ex cos y = 0. ψxx + ψyy = ∂2

∂x2 (e
x sin y) +

∂2

∂y2 (e
x sin y) = ex sin y − ex sin y = 0.
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14.4.54

a. The curl and divergence are curlF = ∂
∂x

(
y3 − 3x2y

) − ∂
∂y

(
x3 − 3xy2

)
= −6xy + 6xy = 0. divF =

∂
∂x

(
x3 − 3xy2

)
+ ∂

∂y

(
y3 − 3x2y

)
= 3x2 − 3y2 + 3y2 − 3x2 = 0

b. ϕ (x, y) = 1
4

(
x4 + y4

)− 3
2x

2y2. ψ (x, y) = x3y − xy3.

c. ϕxx+ϕyy = ∂2

∂x2

(
1
4

(
x4 + y4

)− 3
2x

2y2
)
+ ∂2

∂y2

(
1
4

(
x4 + y4

)− 3
2x

2y2
)
= ∂

∂x

(
x3 − 3xy2

)
+ ∂

∂y

(
y3 − 3x2y

)
= 3x2 − 3y2 + 3y2 − 3x2 = 0. ψxx + ψyy = ∂2

∂x2

(
x3y − xy3

)
+ ∂2

∂y2

(
x3y − xy3

)
= ∂

∂x

(
3x2y − y3

)
+

∂
∂y

(
x3 − 3xy2

)
= 6xy − 6xy = 0.

14.4.55

a. The curl and divergence are curlF = ∂
∂x

(
1
2 ln
(
x2 + y2

))− ∂
∂y

(
tan−1

(
y
x

))
= 0.

divF = ∂
∂x

(
tan−1

(
y
x

))
+ ∂

∂y

(
1
2 ln
(
x2 + y2

))
= 0.

b. ϕ (x, y) = x tan−1
(
y
x

)− y + 1
2y ln

(
x2 + y2

)
. ψ (x, y) =

∫ − 1
2 ln
(
x2 + y2

)
dy =

y tan−1
(
y
x

)− x
2 ln
(
x2 + y2

)
+ x.

c. ϕxx + ϕyy = ∂2

∂x2

(
x tan−1

(
y
x

)− y + 1
2y ln

(
x2 + y2

))
+ ∂2

∂y2

(
x tan−1

(
y
x

)− y + 1
2y ln

(
x2 + y2

))
=

∂
∂x

(
tan−1

(
y
x

)− xy
x2+y2 + xy

x2+y2

)
+ ∂

∂y

(
x2

x2+y2 − 1 + 1
2 ln
(
x2 + y2

)
+ y2

x2+y2

)
=

∂
∂x

(
tan−1

(
y
x

))
+ ∂

∂y

(
1
2 ln
(
x2 + y2

))
= 0.

ψxx + ψyy = ∂2

∂x2

(
y tan−1

(
y
x

)− x
2 ln
(
x2 + y2

)
+ x
)
+ ∂2

∂y2

(
y tan−1

(
y
x

)− x
2 ln
(
x2 + y2

)
+ x
)
=

∂
∂x

(
− y2

x2+y2 − x2

x2+y2 − 1
2 ln
(
x2 + y2

)
+ 1
)
+ ∂

∂y

(
tan−1

(
y
x

)
+ xy

x2+y2 − xy
x2+y2

)
= ∂

∂x

(
1
2 ln
(
x2 + y2

))
+

∂
∂y

(
tan−1

(
y
x

))
= 0.

14.4.56

a. The curl and divergence are curlF = ∂
∂x

(
y

x2+y2

)
− ∂

∂y

(
x

x2+y2

)
= 0, and

divF = ∂
∂x

(
x

x2+y2

)
+ ∂

∂y

(
y

x2+y2

)
= 0.

b. ϕ (x, y) = 1
2 ln

(
x2 + y2

)
. ψ (x, y) = tan−1

(
y
x

)
.

c. ϕxx + ϕyy = ∂2

∂x2

(
1
2 ln

(
x2 + y2

))
+ ∂2

∂y2

(
1
2 ln

(
x2 + y2

))
= ∂

∂x

(
x

x2+y2

)
+ ∂

∂y

(
y

x2+y2

)
= y2−x2

(x2+y2)2
+

x2−y2

(x2+y2)2
= 0. ψxx+ψyy = ∂2

∂x2

(
tan−1

(
y
x

))
+ ∂2

∂y2

(
tan−1

(
y
x

))
= ∂

∂x

(
−y

x2+y2

)
+ ∂

∂y

(
x

x2+y2

)
= 2xy

(x2+y2)2
−

2xy
(x2+y2)2

= 0.

14.4.57

a. The velocity field is 〈−4 cosx sin y, 4 sinx cos y〉.

Copyright c© 2015 Pearson Education, Inc.



524 Chapter 14. Vector Calculus

b. The field is source-free if its divergence is zero.

divF =
∂

∂x
(−4 cosx sin y) +

∂

∂y
(4 sinx cos y) = 4 sinx sin y − 4 sinx sin y = 0,

so the field is source-free.

c. The field is irrotational if its curl is zero.

curlF =
∂

∂x
(4 sinx cos y)− ∂

∂y
(−4 cosx sin y) = 4 cosx cos y + 4 cosx cos y = 8 cosx cos y,

so the field is not irrotational.

d. Since the field is source-free, it has zero flux across the boundary.

e. The circulation around the boundary of the rectangle is (by Green’s theorem) given by

∫∫
R

8 cosx cos y dA =

∫ π/2

−π/2

∫ π/2

−π/2

8 cosx cos y dy dx =

∫ π/2

−π/2

16 cosx dx = 32.

14.4.58 If f (x) is continuous, then the circulation form of Green’s theorem says that
∮
C

f(x)
c dy = 1

c

∫∫
R

df
dx dA.

The right side of this equation evaluates to 1
c

∫∫
R

df
dx dA = 1

c

∫ b

a

∫ c

0
df
dxdy dx =

∫ b

a
df
dx dx. To evaluate the left

side, parameterize the boundary of R with four paths, each for 0 ≤ t ≤ 1: r1 (t) = 〈a + (b− a) t, 0〉, so
r′1 (t) = 〈b − a, 0〉. r2 (t) = 〈b, c t〉, so r′2 (t) = 〈0, c〉. r3 (t) = 〈b + (a− b) t, c〉, so r′3 (t) = 〈a − b, 0〉.
r4 (t) = 〈a, c − ct〉, so r′4 (t) = 〈0,−c〉. Then we evaluate F · ri for each i and add: 1

c

∮
C
f (x) dy =

1
c

∫ 1

0
(f (a+ (b− a) t) · 0 + f (b) · c+ f (b+ (a− b) t) · 0 + f (a) · (−c)) dt = f (b)− f (a).

14.4.59 If f (x) is continuous, then the flux form of Green’s theorem says that
∮
C

f(x)
c dx = 1

c

∫∫
R

df
dx dA.

The right side of this equation evaluates to 1
c

∫∫
R

df
dx dA = 1

c

∫ b

a

∫ c

0
df
dxdy dx =

∫ b

a
df
dx dx. To evaluate the

left side, parameterize the boundary of R with four paths, each for 0 ≤ t ≤ 1: r1 (t) = 〈a + (b− a) t, 0〉,
so r′1 (t) = 〈b − a, 0〉. r2 (t) = 〈b, c t〉, so r′2 (t) = 〈0, c〉. r3 (t) = 〈b + (a− b) t, c〉, so r′3 (t) = 〈a − b, 0〉.
r4 (t) = 〈a, c − ct〉, so r′4 (t) = 〈0,−c〉. Then we evaluate F · ri for each i and add:

∮
C

f(x)
c dy =

1
c

∫ 1

0
(0 + f (b) · c+ 0 + f (a) · (−c)) dt = f (b)− f (a) so that

∫ b

a
df
dx dx = f (b)− f (a).

14.4.60

a. The curl is ∂
∂x

(
x

x2+y2

)
− ∂

∂y

(
−y

x2+y2

)
= 0.

b. Take a line integral around the unit circle, parameterized as 〈cos t, sin t〉. The circulation is then∮
C

−y
x2+y2 dx+ x

x2+y2 dy =
∫ 2π

0
(− sin t (− sin t) + cos t cos t) dt =

∫ 2π

0
1 dt = 2π.

c. The vector field is not defined everywhere in R; specifically, it is undefined at the origin.
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14.4.61

a. The divergence is ∂
∂x

(
x

x2+y2

)
+ ∂

∂y

(
y

x2+y2

)
= 0.

b. Take a line integral around the unit circle, parameterized as 〈cos t, sin t〉. The flux is then
∮
C

x
x2+y2 dy+

y
x2+y2 dx =

∫ 2π

0
(cos t cos t− sin t (− sin t)) dt =

∫ 2π

0
1 dt = 2π.

c. The vector field is not defined everywhere in R; specifically, it is undefined at the origin.

14.4.62

a. Green’s theorem does not apply to a region including the origin because F is not defined at the origin.

b.
∫∫
R

(
∂
∂x

(
x√

x2+y2

)
+ ∂

∂y

(
y√

x2+y2

))
dA =

∫∫
R

(
x2 + y2

)−1/2
dA =

∫ 2π

0

∫ 1

0
1
r r dr dθ = 2π.

c.
∮
C

x√
x2+y2

dy − y√
x2+y2

dx =
∫ 2π

0
(cos t (cos t)− sin t (− sin t)) dt =

∫ 2π

0
1 dt = 2π.

d. They do agree. Because Green’s theorem does not apply, there is no particular reason why they should.

14.4.63 Because ψ is a stream function, dψ = ψx dx+ ψy dy, so the flux integral is
∫
C
F · n ds =

∫
C
f dy −

g dx =
∫
C
ψy dy − ψx dx =

∫
C
dψ = ψ (B)− ψ (A), so that the integral is independent of the path.

14.4.64 Showing that F is tangent to the level curves of the stream function is the same as showing that
F is normal to the gradient of the stream function. But that gradient is 〈ψx, ψy〉, and F · 〈ψx , ψy〉 =
〈−ψy, ψx〉 · 〈ψx ,ψy〉 = 0.

14.4.65 Showing that the level curves of ϕ and ψ are orthogonal is equivalent to showing that the gradients
of ϕ andψ are orthogonal. But ∇ϕ · ∇ψ = 〈f, g〉 · 〈−g, f〉 = 0.

14.4.66

a. The stream function is found by taking − ∫ (1− x2
)
dx = 1

3x
3 − x. A plot together with some

streamlines is

b. The curl of F is ∂
∂x

(
1− x2

)
= −2x, so the curl on x = 0 is 0; on x = 1

4 it is − 1
2 ; on x = 1

2 , it is −1,
and on x = 1, it is −2.

c. The circulation is (by Green’s theorem)
∫∫
R

(−2x) dA =
∫ 5

−5

∫ 1

−1
(−2x) dx dy =

∫ 5

−5
0 dy = 0.

d. The curl is positive for negative x and negative for positive x. These cancel, giving a net circulation
of zero. This can easily be seen from the picture - any circulation resulting from the top boundary
(y = 1) is cancelled by the circulation in the opposite direction resulting from the bottom boundary.
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14.5 Divergence and Curl

14.5.1 The divergence is ∂f
∂x + ∂g

∂y + ∂h
∂z .

14.5.2 The divergence measures the expansion or contraction of the vector field at each point.

14.5.3 It means that the field has no sources or sinks.

14.5.4 The curl is ∇×F=
(

∂h
∂y − ∂g

∂z

)
i+
(

∂f
∂z − ∂h

∂x

)
j+
(

∂g
∂x − ∂f

∂y

)
k.

14.5.5 The curl indicates the axis and speed of rotation of a vector field at each point.

14.5.6 It means that the vector field is irrotational.

14.5.7 ∇ · (∇× F) = 0; see Theorem 14.10.

14.5.8 Here u is a potential function, so ∇×∇u is the curl of a conservative vector field, which is 0.

14.5.9 ∂
∂x (2x) + ∂

∂y (4y) + ∂
∂z (−3z) = 3.

14.5.10 ∂
∂x (−2y) + ∂

∂y (3x) + ∂
∂z (z) = 1.

14.5.11 ∂
∂x (12x) + ∂

∂y (−6y) + ∂
∂z (−6z) = 0.

14.5.12 ∂
∂x

(
x2yz

)
+ ∂

∂y

(−xy2z
)
+ ∂

∂z

(−xyz2
)
= 2xyz − 2xyz − 2xyz = −2xyz.

14.5.13 ∂
∂x

(
x2 − y2

)
+ ∂

∂y

(
y2 − z2

)
+ ∂

∂z

(
z2 − x2

)
= 2x+ 2y + 2z.

14.5.14 ∂
∂x (ey−x) + ∂

∂y (ez−y) + ∂
∂z (e

x−z) = − (ey−x + ez−y + ex−z).

14.5.15 ∂
∂x

(
x

1+x2+y2

)
+ ∂

∂y

(
y

1+x2+y2

)
+ ∂

∂z

(
z

1+x2+y2

)
= x2+y2+3

(1+x2+y2)2
.

14.5.16 ∂
∂x (yz sin (x)) + ∂

∂y (xz cos (y)) + ∂
∂z (xy cos (z)) = yz cos (x)− xz sin (y)− xy sin (z).

14.5.17 ∂
∂x

(
x

x2+y2+z2

)
+ ∂

∂y

(
y

x2+y2+z2

)
+ ∂

∂z

(
z

x2+y2+z2

)
=

1
(x2+y2+z2)2

((
z2 + y2 − x2

)
+
(
x2 + z2 − y2

)
+
(
x2 + y2 − z2

))
= 1

(x2+y2+z2)2

(
x2 + y2 + z2

)
= 1

|r|2 .

14.5.18 ∂
∂x

(
x

(x2+y2+z2)3/2

)
+ ∂

∂y

(
y

(x2+y2+z2)3/2

)
+ ∂

∂z

(
z

(x2+y2+z2)3/2

)
=

1
(x2+y2+z2)5/2

((
z2 + y2 − 2x2

)
+
(
x2 + z2 − 2y2

)
+
(
x2 + y2 − 2z2

))
= 0.

14.5.19 ∂
∂x

(
x

(x2+y2+z2)2

)
+ ∂

∂y

(
y

(x2+y2+z2)2

)
+ ∂

∂z

(
z

(x2+y2+z2)2

)
=

1
(x2+y2+z2)3

((
z2 + y2 − 3x2

)
+
(
x2 + z2 − 3y2

)
+
(
x2 + y2 − 3z2

))
= −1

(x2+y2+z2)3

(
x2 + y2 + z2

)
= −1

|r|4

14.5.20 ∂
∂x

(
x
(
x2 + y2 + z2

))
+ ∂

∂y

(
y
(
x2 + y2 + z2

))
+ ∂

∂z

(
z
(
x2 + y2 + z2

))
=(

3x2 + y2 + z2
)
+
(
x2 + 3y2 + z2

)
+
(
x2 + y2 + 3z2

)
= 5 |r|2

14.5.21

a. At both P and Q, the arrows going away from the point are larger in both number and magnitude
than those going in, so we would expect the divergence to be positive at both points.

b. The divergence is ∂
∂x (x) + ∂

∂y (x+ y) = 1 + 1 = 2, so is positive everywhere.

c. The arrows all point roughly away from the origin, so we the flux is outward everywhere.
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d. The net flux across C should be positive.

14.5.22

a. At P , the divergence should be positive, while at Q, the larger arrows point in towards Q, so the
divergence should be negative.

b. The divergence is ∂
∂x (x) + ∂

∂y

(
y2
)
= 1 + 2y; at P = (−1, 1), this is 3, while at Q = (−1,−1), it is −1.

c. The flux is outward above the line y = −1 (approximately); below this line, the flux is inward across
C.

d. The size of the arrows pointing outward at the top of the circle seems to roughly equal those pointing
inward at the bottom, so the remaining outward-pointing arrows result in a net positive flux across C.

14.5.23

a. The axis of rotation is 〈1, 0, 0〉, the x-axis. ∇ × F = ∇ ×

∣∣∣∣∣∣∣∣
i j k

1 0 0

x y z

∣∣∣∣∣∣∣∣ = ∇ × (−zj+ yk) = (1 + 1) i +

(0− 0) j+ (0− 0)k = 2i. It is in the same direction as the axis of rotation.

b. The magnitude of the curl is |2i| = 2.

14.5.24

a. The axis of rotation is 〈1,−1, 0〉. ∇×F = ∇×

∣∣∣∣∣∣∣∣
i j k

1 −1 0

x y z

∣∣∣∣∣∣∣∣ = ∇× (−zi− zj + (x+ y) k) = (1 + 1) i +

(−1− 1) j + (0− 0) k = 2〈1,−1, 0〉
and the curl is in the same direction as the axis of rotation.

b. The magnitude of the curl is 2 |〈1,−1, 0〉| = 2
√
2

14.5.25

a. The axis of rotation is 〈1,−1, 1〉.

∇×F = ∇×

∣∣∣∣∣∣∣∣
i j k

1 −1 1

x y z

∣∣∣∣∣∣∣∣ = ∇×(− (y + z) i+ (x− z) j+ (x+ y)k) = (1 + 1) i+(−1− 1) j+(1 + 1)k =

2〈1,−1, 1〉, and the curl is in the same direction as the axis of rotation.

b. The magnitude of the curl is 2 |〈1,−1, 1〉| = 2
√
3.

14.5.26

a. The axis of rotation is 〈1,−2,−3〉.

∇ × F = ∇ ×

∣∣∣∣∣∣∣∣
i j k

1 −2 −3

x y z

∣∣∣∣∣∣∣∣ = ∇ × ((3y − 2z) i+ (−3x− z) j+ (2x+ y)k) = (1 + 1) i + (−2− 2) j +

(−3− 3)k = 2〈1,−2,−3〉, and the curl is in the same direction as the axis of rotation.

b. The magnitude of the curl is 2 |〈1,−2,−3〉| = 2
√
14.

14.5.27 ∇× 〈x2 − y2, xy, z〉 = (0− 0) i+ (0− 0) j+ (y + 2y)k = 3yk.
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14.5.28 ∇× 〈0, z2 − y2,−yz〉 = (−z − 2z) i+ (0− 0) j+ (0− 0)k = −3zi.

14.5.29 ∇× 〈x2 − z2, 1, 2xz〉 = (0− 0) i+ (−2z − 2z) j+ (0− 0)k = −4zj.

14.5.30 ∇× 〈x, y, z〉 = (0− 0) i+ (0− 0) j+ (0− 0)k = 0.

14.5.31 ∇× 1
(x2+y2+z2)3/2

〈
x, y, z〉 = 1

(x2+y2+z2)5/2
((−3yz + 3yz) i+ (−3xz + 3xz) j+ (−3xy + 3xy)k) = 0.

14.5.32 ∇× 1
(x2+y2+z2)1/2

〈
x, y, z〉 = 1

(x2+y2+z2)3/2
((−yz + yz) i+ (−xz + xz) j+ (−xy + xy)k) = 0.

14.5.33 ∇ × 〈z2 sin (y) , xz2 cos (y) , 2xz sin (y)〉 = (2xz cos (y)− 2xz cos (y)) i + (2z sin (y)− 2z sin (y)) j +(
z2 cos (y)− z2 cos (y)

)
k = 0.

14.5.34 ∇× 〈3xz3ey2, 2xz3ey2, 3xz2ey2〉 = (6xyz2ey2 − 6xz2ey2
)
i+
(
9xz2ey2 − 3z2ey2

)
j+(

2z3ey2 − 6xyz3ey2
)
k = z2ey2 ((6xy − 6x) i+ (9x− 3) j+ (2z − 6xyz)k) .

14.5.35 Simply compute it:
〈

∂
∂x

(
1

(x2+y2+z2)3/2

)
, ∂
∂y

(
1

(x2+y2+z2)3/2

)
, ∂
∂z

(
1

(x2+y2+z2)3/2

)〉
=〈 −3x

(x2+y2+z2)5/2
, −3y

(x2+y2+z2)5/2
, −3z
(x2+y2+z2)5/2

〉
= −3r

|r|5 .

14.5.36
〈

∂
∂x

(
1

x2+y2+z2

)
, ∂
∂y

(
1

x2+y2+z2

)
, ∂
∂z

(
1

x2+y2+z2

)〉
=
〈 −2x
(x2+y2+z2)2

, −2y
(x2+y2+z2)2

, −2z
(x2+y2+z2)2

〉
= −2r

|r|4 .

14.5.37 ∇
(

1
|r|2
)
= −2r

|r|4 , from Problem 36; applying Theorem 14.8 we have ∇ · ∇
(

1
|r|2
)
= −2∇ · r

|r|4 =

−2 3−4
|r|4 = 2

|r|4 .

14.5.38 ∇ (ln |r|) = ∇
(
ln
(√

x2 + y2 + z2
))

= 1
2∇
(
ln
(
x2 + y2 + z2

))
= 1

2(x2+y2+z2) 〈2x, 2y, 2z〉 = r
|r|2 .

14.5.39

a. False. For example, F= 〈y, z, x〉 has zero divergence yet is not constant.

b. False. For example, F= 〈x, y, z〉 is a counterexample.

c. False. For example, consider the vector field 〈0, 1− x2〉 from problem 66 in the previous section.

d. False. For example, F= 〈x, 0, 0〉 has divergence 1.

e. False. For example, the curl of 〈z,−z, y〉 is 〈2, 1, 0〉.

14.5.40

a. (F ·∇)u =
(
〈f, g, h〉 · 〈 ∂

∂x ,
∂
∂y ,

∂
∂z 〉
)
u =

(
f ∂

∂x + g ∂
∂y + h ∂

∂z

)
u = f ∂u

∂x + g ∂u
∂y + h∂u

∂z .

b. Because F = 〈1, 1, 1〉, F ·∇ (xy2z3) = ∂
∂x

(
xy2z3

)
+ ∂

∂y

(
xy2z3

)
+ ∂

∂z

(
xy2z3

)
= y2z3+2xyz3+3xy2z2.

14.5.41

a. No; divergence is a concept that applies to vector fields.

b. No; the gradient applies to functions.

c. Yes; this is the divergence of the gradient and is thus a scalar function.

d. No, since ∇ · ϕ does not make sense (part (a)).

e. No; curl applies to vector fields, ∇× ϕ does not make sense.

f. No, since ∇·F is a function, so that applying ∇· to it does not make sense.
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g. Yes, this is the curl of a vector field and is thus a vector field.

h. No, since ∇·F is a function, not a vector field.

i. Yes; this is the curl of the curl of a vector field and is thus a vector field.

14.5.42 Let a = 〈a1, a2, a3〉; then F = a × r = (a2z − a3y) i + (a3x− a1z) j + (a1y − a2x)k, so that
∇ · F = ∂

∂x (a2z − a3y) +
∂
∂y (a3x− a1z) +

∂
∂z (a1y − a2x) = 0.

14.5.43

a. 〈0, 1, 0〉 × 〈0, 1, 1〉 = 〈1, 0, 0〉, so F points in the positive x-direction. 〈0, 1, 0〉 × 〈1, 1, 0〉 = 〈0, 0,−1〉,
so F points in the negative z-direction. 〈0, 1, 0〉 × 〈0, 1,−1〉 = 〈−1, 0, 0〉, so F points in the negative
x-direction. 〈0, 1, 0〉 × 〈−1, 1, 0〉 = 〈0, 0, 1〉, so F points in the positive z-direction.

b. Note that these vectors circle the y-axis in the counterclockwise direction looking along a from head
to tail.

14.5.44 Note that a× r = 〈0, 1, 0〉 × 〈x, y, z〉 = 〈z, 0,−x〉 is a rotational field whose vectors circle the y-axis
in the counterclockwise direction looking along a from head to tail.

14.5.45 Let a = 〈a1, a2, a3〉; then F = a × r = (a2z − a3y) i + (a3x− a1z) j + (a1y − a2x)k, so that
∇× F = ∂

∂x (a1 + a1) i+
∂
∂y (a2 + a2) j+

∂
∂z (a3 + a3)k = 2a.

14.5.46 The field switches from inward-pointing to outward-pointing at points where it is tangent to the
circle x2 + y2 = 2, i.e. where it is orthogonal to the normal to the circle. The normal to the circle at (x, y)
is a multiple of (x, y), so we want to find x, y so that 〈x, y〉 · 〈x2, y〉 = x3 + y2 = 0 with x2 + y2 = 2. Thus
x3 − x2 + 2 = 0. The solutions are x = −1 and y = ±1.

14.5.47 divF = 2x + 2xyz + 2x = 2x (yz + 2); this function clearly achieves its maximum magnitude at
(−1, 1, 1), (−1,−1,−1), (1, 1, 1), and (1,−1,−1), where its magnitude is 6.

14.5.48 For F = 〈z, 0,−y〉, curlF = 〈−1, 1, 0〉.
a. The component of curlF in the direction 〈1, 0, 0〉 is −1.

b. The component of curlF in the direction 〈1,−1, 1〉 is 1√
2
〈−1, 1, 0〉 · 〈1,−1, 1〉 = −√

2.

c. The component of curlF in the direction 〈a, b, c〉 is b−a
a2+b2+c2 ; this has its maximum in the direction

〈1,−1, 0〉.
14.5.49 curlF = 〈0 + 2, 0 + 1, 0− 1〉 = 〈2, 1,−1〉. If n = 〈a, b, c〉, then curlF · n = 0 when 2a+ b− c = 0 so
that c = 2a+ b; thus all such vectors are of the form 〈a, b, 2a+ b〉, where a, b are real numbers.

14.5.50 F = 〈z, 0, 0〉, or F = 〈0, 0,−x〉, so it is not unique.

14.5.51 F = 1
2 〈y2 + z2, 0, 0〉 or F = 〈0,−xy,−xz〉 , so it is not unique.

14.5.52

a. Looking at the picture, it is clear that the distance from P to a is |r|.
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b. The velocity field is a × r, so the speed, which is the magnitude of velocity, is |a× r|. Now |a× r| =
|a| · |r| · sin (θ) · n = R |a|n, where n is a vector normal to the plane determined by a and r. Thus the
motion of the particle is always perpendicular to this plane, so it rotates about the axis a. It is moving

at a speed R |a| around a circle of radius R, so its angular speed is R|a|
R = |a|.

c. Because |∇× v| = 2 |a|, it follows from part (b) that ω = |a| = 1
2 |∇× v|.

14.5.53 The curl of this vector field is 〈0, 1, 0〉. The component of the curl along some unit vector n is
(∇× F) · n.

a. 〈0, 1, 0〉 · 〈1, 0, 0〉 = 0, so the wheel does not spin.

b. 〈0, 1, 0〉 · 〈0, 1, 0〉 = 1, so the wheel spins clockwise (looking towards positive y).

c. 〈0, 1, 0〉 · 〈0, 0, 1〉 = 0, so the wheel does not spin.

14.5.54 The curl of the vector field is ∇× v = 〈−2, 0, 2〉.

a. The wheel is placed with its axis in the direction 〈0, 0, 1〉, so the component of velocity in that direction
is 〈−2, 0, 2〉 · 〈0, 0, 1〉 = 2, and ω = 1

2 · 2 = 1.

b. The wheel is placed with its axis in the direction 〈0, 1, 0〉, so the component of velocity in that direction
is 〈−2, 0, 2〉 · 〈0, 1, 0〉 = 0, and the wheel does not turn.

c. The wheel is placed with its axis in the direction 〈1, 0, 0〉, so the component of velocity in that direction
is 〈−2, 0, 2〉 · 〈1, 0, 0〉 = −2, and ω = 1

2 · |−2| = 1.

14.5.55 The curl of the vector field is ∇×v= 〈−20, 0, 0〉. Because the wheel is placed with its axis normal
to the plane x+ y + z = 1, its axis must point in the direction 〈1, 1, 1〉 (with unit vector 1√

3
〈1, 1, 1〉). Thus,

the component of velocity along that direction is 1√
3
〈−20, 0, 0〉 · 〈1, 1, 1〉 = −20√

3
and then ω is the absolute

value of one half of that amount, or ω = 10√
3
or 5

π
√
3
≈ 0.9189 revolutions per time unit.

14.5.56 F = −100k∇e−
√

x2+y2+z2
= 100ke−

√
x2+y2+z2√

x2+y2+z2
〈x, y, z〉. Looking at the x component, its contribution

to the divergence is 100k ∂
∂x

[
xe−

√
x2+y2+z2√

x2+y2+z2

]
= −100k

(
x2
√

x2+y2+z2−y2−z2
)
e−

√
x2+y2+z2

(x2+y2+z2)3/2
and similarly for the

y and z components. Thus the divergence is the sum of these three terms, which is

−100k e−
√

x2+y2+z2

(x2+y2+z2)3/2

((
x2 + y2 + z2

)3/2 − 2
(
x2 + y2 + z2

))
= 100k e−

√
x2+y2+z2√

x2+y2+z2

(
2−
√

x2 + y2 + z2
)
.

14.5.57 F = −100k∇e−x2+y2+z2

= −200ke−x2+y2+z2〈−x, y, z〉, so the divergence is

− 200k

(
∂

∂x

(
−xe−x2+y2+z2

)
+

∂

∂y

(
ye−x2+y2+z2

)
+

∂

∂z

(
ze−x2+y2+z2

))
= −200k

(
−e−x2+y2+z2

+ 2x2e−x2+y2+z2

+ e−x2+y2+z2

+ 2y2e−x2+y2+z2

+ e−x2+y2+z2

+ 2z2e−x2+y2+z2
)

= −200k
(
e−x2+y2+z2

+ 2
(
x2 + y2 + z2

)
e−x2+y2+z2

)
= −200k

(
2x2 + 2y2 + 2z2 + 1

)
e−x2+y2+z2

.

14.5.58 F = −100k∇
(
1 +
√
1 + x2 + y2 + z2

)
= −100k

(
x2 + y2 + z2

)−1/2 〈x, y, z〉, and thus the diver-

gence is ∇ · F = −200k√
x2+y2+z2
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14.5.59

a. F = −∇ϕ = −GMm
〈

∂
∂x

[
1√

x2+y2+z2

]
, ∂
∂y

[
1√

x2+y2+z2

]
, ∂
∂z

[
1√

x2+y2+z2

]〉
=

−GMm
(
x2 + y2 + z2

)−3/2 〈−x,−y,−z〉 = GMm
(
x2 + y2 + z2

)−3/2 〈x, y, z〉 = GMm r
|r|3 .

b. ∂
∂yx

(
x2 + y2 + z2

)−3/2
= −3xy

(
x2 + y2 + z2

)−5/2
. Applying this pattern in computing the curl gives

∇ × F = GMm
(
x2 + y2 + z2

)−5/2
((−3yz + 3yz) i+ (−3xz + 3xz) j+ (−3xy + 3xy)k) = 0, so the

field is irrotational.

14.5.60 Note: this is identical to the previous problem except for the constant.

a. F = −∇ϕ = − q
4πε0

〈
∂
∂x

[
1√

x2+y2+z2

]
, ∂
∂y

[
1√

x2+y2+z2

]
, ∂
∂z

[
1√

x2+y2+z2

]〉
=

− q
4πε0

(
x2 + y2 + z2

)−3/2 〈−x,−y,−z〉 = q
4πε0

(
x2 + y2 + z2

)−3/2 〈x, y, z〉 = q
4πε0

r
|r|3 .

b. ∂
∂yx

(
x2 + y2 + z2

)−3/2
= −3xy

(
x2 + y2 + z2

)−5/2
. Applying this pattern in computing the curl gives

∇×F = q
4πε0

(
x2 + y2 + z2

)−5/2
((−3yz + 3yz) i+ (−3xz + 3xz) j+ (−3xy + 3xy)k) = 0, so the field

is irrotational.

14.5.61 Using Exercise 40, we have

ρ

(
〈∂u
∂t

,
∂v

∂t
,
∂w

∂t
〉+
(
u
∂

∂t
+ v

∂

∂t
+ w

∂

∂t

)
〈u, v, w〉

)
= −〈∂p

∂t
,
∂p

∂t
,
∂p

∂t
〉+ μ

(
∂2

∂t2
+

∂2

∂t2
+

∂2

∂t2

)
〈u, v, w〉,

so that

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ μ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ μ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ μ

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
.

.

14.5.62

a. ∇× 〈2,−3y, 5z〉 = 0 and ∇× 〈y, x− z,−y〉 = 0 so they are both irrotational.

b. If ψ is defined as stated, then ∇2ψ = ∂2

∂x2ψ + ∂2

∂y2ψ + ∂2

∂z2ψ = − ∂v
∂x + ∂u

∂y = ∂u
∂y − ∂v

∂x while ζ =

k ·∇× 〈u, v, 0〉 = k ·
(
−∂v

∂z i +
∂u
∂z j +

(
∂v
∂x − ∂u

∂y

)
k
)
= ∂v

∂x − ∂u
∂y so that ∇2ψ = −ζ as desired.

c. u = ∂ψ
∂y = sin (x) cos (y) and v = −∂ψ

∂x = − cos (x) sin (y). The velocity field looks like

Copyright c© 2015 Pearson Education, Inc.



532 Chapter 14. Vector Calculus

d. The vorticity function is ζ = −∇2ψ = ∂v
∂x − ∂u

∂y = sin (x) sin (y) + sin (x) sin (y) = 2 sin (x) sin (y)

The diagram shows level curves for ζ at 14 ,
1
2 ,

3
4 , 1 and 3

2 (from outer to inner).

Using implicit differentiation (or from looking at the diagram), ζ achieves its maximum at x = y = π
2 ,

where it has value 2, and its minimum on the boundary, where it is zero.

14.5.63

a. We have ∇×B = − ∂
∂z (A sin (kz − ωt)) i+ 0j+ ∂

∂x (A sin (kz − ωt))k = −Ak cos (kz − ωt) i.

C ∂E
∂t = C ∂

∂t (A sin (kz − ωt) i) = −ω CA cos (kz − ωt) i so that the two are equal when k = ω C, or

ω = k
C .

b.

14.5.64 Let V = 〈xy,− 1
2y

2, 0〉 and W = 〈0, 1
2y

2, 0〉. Then ∇ ·V = 0 and ∇×W = 0.

14.5.65 Let F = 〈f, g, h〉 and G = 〈k,m, n〉. Then
a. ∇ · (F+G) = ∇ · 〈f + k, g+m,h+n〉 = ∂

∂x (f + k) + ∂
∂y (g +m) + ∂

∂z (h+ n) = ∂f
∂x + ∂g

∂y + ∂h
∂z + ∂k

∂x +
∂m
∂y + ∂n

∂z = ∇ · F+∇ ·G.

b. ∇×(F+G) =
(

∂
∂y (h+ n)− ∂

∂z (g +m)
)
i+
(

∂
∂z (f + k)− ∂

∂x (h+ n)
)
j+
(

∂
∂x (g +m)− ∂

∂y (f + k)
)
k =(

∂h
∂y − ∂g

∂z

)
i+
(

∂f
∂z − ∂h

∂x

)
j+
(

∂g
∂x − ∂f

∂y

)
k+
(

∂n
∂y − ∂m

∂z

)
i+
(
∂k
∂z − ∂n

∂x

)
j+
(

∂m
∂x − ∂k

∂y

)
k = ∇×F+∇×G.

c. ∇ · (cF) = ∂
∂x (cf) + ∂

∂y (cg) + ∂
∂z (ch) = c

(
∂f
∂x + ∂g

∂y + ∂h
∂z

)
= c (∇ · F).

d. ∇× (cF) =
(

∂
∂y (ch)− ∂

∂z (cg)
)
i+
(

∂
∂z (cf)− ∂

∂x (ch)
)
j+
(

∂
∂x (cg)− ∂

∂y (cf)
)
k =

c
[(

∂h
∂y − ∂g

∂z

)
i+
(

∂f
∂z − ∂h

∂x

)
j+
(

∂g
∂x − ∂f

∂y

)
k
]
= c (∇× F) .

Copyright c© 2015 Pearson Education, Inc.



14.5. Divergence and Curl 533

14.5.66 The statement is not true. The conditions imply that F − G is irrotational and source-free, but
this can happen with nonconstant vector fields. For example, if F = 〈x2−y2,−2xy〉 and G = 〈2xy, x2−y2〉,
then F−G is irrotational and source-free (i.e. has zero curl and zero divergence); in fact, both F and G do,
but clearly the two vector fields do not differ by a constant.

14.5.67 ∇ ·(ϕF) = ∇ · 〈ϕf, ϕg, ϕh〉 = ∂
∂x (ϕf)+ ∂

∂y (ϕg)+ ∂
∂z (ϕh) = ϕ∂f

∂x +f ∂ϕ
∂x +ϕ∂g

∂y +g ∂ϕ
∂y +ϕ∂h

∂z +h∂ϕ
∂z =

ϕ
(

∂f
∂x + ∂g

∂y + ∂h
∂z

)
+ 〈f, g, h〉〈∂ϕ∂x , ∂ϕ

∂y ,
∂ϕ
∂z 〉 = ϕ∇ · F+∇ϕ · F

14.5.68 ∇ × (ϕF) = ∇ × 〈ϕf, ϕg, ϕh〉 = 〈 ∂
∂y (ϕh) − ∂

∂z (ϕg) ,
∂
∂z (ϕf) − ∂

∂x (ϕh) , ∂
∂x (ϕg) − ∂

∂y (ϕf)〉 =

〈ϕ∂h
∂y + h∂ϕ

∂y − ϕ∂g
∂z − g ∂ϕ

∂z , ϕ
∂f
∂z + f ∂ϕ

∂z − ϕ∂h
∂x − h∂ϕ

∂x , ϕ
∂g
∂x + g ∂ϕ

∂x − ϕ∂f
∂y − f ∂ϕ

∂y 〉 = 〈ϕ∂h
∂y − ϕ ∂g

∂zy , ϕ
∂f
∂z −

ϕ∂h
∂x , ϕ

∂g
∂x − ϕ∂f

∂y 〉+ 〈h∂ϕ
∂y − g ∂ϕ

∂z , f
∂ϕ
∂z − h∂ϕ

∂x , g
∂ϕ
∂x − f ∂ϕ

∂y 〉 = ϕ∇× F+∇ϕ× F

14.5.69 If F = 〈f, g, h〉 and G = 〈k,m, n〉, then

G · (∇× F)− F · (∇×G) = 〈k,m, n〉 · 〈∂h
∂y

− ∂g

∂z
,
∂f

∂z
− ∂h

∂x
,
∂g

∂x
− ∂f

∂y
〉

− 〈f, g, h〉 · 〈∂n
∂y

− ∂m

∂z
,
∂k

∂z
− ∂n

∂x
,
∂m

∂x
− ∂k

∂y
〉

= k
∂h

∂y
− k

∂g

∂z
+m

∂f

∂z
−m

∂h

∂x
+ n

∂g

∂x
− n

∂f

∂y

− f
∂n

∂y
+ f

∂m

∂z
− g

∂k

∂z
+ g

∂n

∂x
− h

∂m

∂x
+ h

∂k

∂y

= n
∂g

∂x
+ g

∂n

∂x
− h

∂m

∂x
−m

∂h

∂x
+ h

∂k

∂y
+ k

∂h

∂y
− f

∂n

∂y
− n

∂f

∂y

+ f
∂m

∂z
+m

∂f

∂z
− g

∂k

∂z
− k

∂g

∂z

=
∂

∂x
(gn− hm) +

∂

∂y
(hk − fn) +

∂

∂z
(fm− gk) = ∇ · (F×G) .

14.5.70 First, (G ·∇)F =
(
k ∂
∂x +m ∂

∂y + n ∂
∂z

)
〈f, g, h〉 = 〈k ∂f

∂x + m∂f
∂y + n∂f

∂z , k
∂g
∂x + m∂g

∂y + n∂g
∂z , k

∂h
∂x +

m∂h
∂y + n∂h

∂z 〉 and similarly for (F ·∇)G. Next, G (∇ · F) =
〈
k,m, n〉

(
∂f
∂x + ∂g

∂y + ∂h
∂z

)
= 〈k ∂f

∂x + k ∂g
∂y +

k ∂h
∂z ,m

∂f
∂x +m∂g

∂y +m∂h
∂z , n

∂f
∂x + n∂g

∂y + n∂h
∂z 〉 and similarly for F (∇ ·G). Thus

(G ·∇)−G (∇ · F)− (F ·∇)G+ F (∇ ·G)

= 〈k∂f
∂x

+m
∂f

∂y
+ n

∂f

∂z
, k

∂g

∂x
+m

∂g

∂y
+ n

∂g

∂z
, k

∂h

∂x
+m

∂h

∂y
+ n

∂h

∂z
〉

− 〈k∂f
∂x

+ k
∂g

∂y
+ k

∂h

∂z
,m

∂f

∂x
+m

∂g

∂y
+m

∂h

∂z
, n

∂f

∂x
+ n

∂g

∂y
+ n

∂h

∂z
〉

− 〈f ∂k
∂x

+ g
∂k

∂y
+ h

∂k

∂z
, f

∂m

∂x
+ g

∂m

∂y
+ h

∂m

∂z
, f

∂n

∂x
+ g

∂n

∂y
+ h

∂n

∂z
〉

+
〈
f
∂k

∂x
+ f

∂m

∂y
+ f

∂n

∂z
, g

∂k

∂x
+ g

∂m

∂y
+ g

∂n

∂z
, h

∂k

∂x
+ h

∂m

∂y
+ h

∂n

∂z
〉

= 〈 ∂

∂y
(fm− gk)− ∂

∂z
(hk − fn) ,

∂

∂z
(gn− hm)− ∂

∂x
(fm− gk) ,

∂

∂x
(hk − fn)− ∂

∂y
(gn− hm) .

But F×G = 〈gn− hm, hk − fn, fm− gk〉, so the above expression is indeed equal to ∇× (F×G).

14.5.71 Use the values of(G ·∇)F and (F ·∇)G from the previous problem. Then G × (∇× F) =
〈k,m, n〉 × 〈∂h∂y − ∂g

∂z ,
∂f
∂z − ∂h

∂x ,
∂g
∂x − ∂f

∂y 〉 = 〈m ∂g
∂x − m∂f

∂y − n∂f
∂z + n∂h

∂x , n
∂h
∂y − n∂g

∂z − k ∂g
∂x + k ∂f

∂y , k
∂f
∂z −

k ∂h
∂x −m∂h

∂y +m∂g
∂z 〉 and similarly for F× (∇×G).
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Thus

(G ·∇)F+ (F ·∇)G+G× (∇× F) + F× (∇×G)

= 〈k∂f
∂x

+m
∂f

∂y
+ n

∂f

∂z
, k

∂g

∂x
+m

∂g

∂y
+ n

∂g

∂z
, k

∂h

∂x
+m

∂h

∂y
+ n

∂h

∂z
〉

+ 〈f ∂k
∂x

+ g
∂k

∂y
+ h

∂k

∂z
, f

∂m

∂x
+ g

∂m

∂y
+ h

∂m

∂z
, f

∂n

∂x
+ g

∂n

∂y
+ h

∂n

∂z
〉

+ 〈m∂g

∂x
−m

∂f

∂y
− n

∂f

∂z
+ n

∂h

∂x
, n

∂h

∂y
− n

∂g

∂z
− k

∂g

∂x
+ k

∂f

∂y
, k

∂f

∂z
− k

∂h

∂x
−m

∂h

∂y
+m

∂g

∂z
〉

+ 〈g ∂m
∂x

− g
∂k

∂y
− h

∂k

∂z
+ h

∂n

∂x
, h

∂n

∂y
− h

∂m

∂z
− f

∂m

∂x
+ f

∂k

∂y
, f

∂k

∂z
− f

∂n

∂x
− g

∂n

∂y
+ g

∂m

∂z
〉

= 〈 ∂

∂x
(fk + gm+ hn) ,

∂

∂y
(fk + gm+ hn) ,

∂

∂z
(fk + gm+ hn)〉 = ∇ (F ·G) .

14.5.72

∇× (∇× F) = ∇× 〈∂h
∂y

− ∂g

∂z
,
∂f

∂z
− ∂h

∂x
,
∂g

∂x
− ∂f

∂y
〉

= 〈 ∂2g

∂y∂x
− ∂2f

∂y2
− ∂2f

∂z2
+

∂2h

∂z∂x
,
∂2h

∂z∂y
− ∂2g

∂z2
− ∂2g

∂x2
+

∂2f

∂x∂y
,
∂2f

∂x∂z
− ∂2h

∂x2
− ∂2h

∂2y
− ∂2g

∂y∂z
〉

and

∇ (∇ · F)− (∇ ·∇)F = ∇
(
∂f

∂x
+

∂g

∂y
+

∂h

∂z

)
−
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
〈f, g, h〉

= 〈∂
2f

∂x2
+

∂2g

∂x∂y
+

∂2h

∂x∂z
,
∂2f

∂y∂x
+

∂2g

∂y2
+

∂2h

∂y∂z
,
∂2f

∂z∂x
+

∂2g

∂z∂y
+

∂2h

∂z2
〉

− 〈∂
2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
,
∂2g

∂x2
+

∂2g

∂y2
+

∂2g

∂z2
,
∂2h

∂x2
+

∂2h

∂y2
+

∂2h

∂z2
〉.

The two expressions are equal after cancellations and noting that mixed partials are equal.

14.5.73

∇ · 〈x, y, z〉
(x2 + y2 + z2)

p/2

=
(1− p)x2 + y2 + z2

(x2 + y2 + z2)
1+p/2

+
x2 + (1− p) y2 + z2

(x2 + y2 + z2)
1+p/2

+
x2 + y2 + (1− p) z2

(x2 + y2 + z2)
1+p/2

=
(3− p)

(
x2 + y2 + z2

)
(x2 + y2 + z2)

1+p/2
=

3− p

(x2 + y2 + z2)
p/2

=
3− p

|r|p

14.5.74 ∇
(

1
|r|p
)
= ∇

(
1

(x2+y2+z2)p/2

)
= − p

(x2+y2+z2)1+p/2 〈x, y, z〉 = − p r
|r|p+2 .

14.5.75 ∇·∇
(

1
|r|p
)
= ∇·

(
− p r

|r|p+2

)
by Exercise 72, and then by Exercise 71, ∇·

(
− p r

|r|p+2

)
= −p∇· r

|r|p+2 =

−p(3−(p+2))

|r|p+2 = p(p−1)

|r|p+2 .

14.6 Surface Integrals

14.6.1 r (u, v) = 〈a cosu, a sinu, v〉 where 0 ≤ u ≤ 2π; 0 ≤ v ≤ h.

14.6.2 r (u, v) = 〈avh cosu, av
h sinu, v〉 where 0 ≤ u ≤ 2π; 0 ≤ v ≤ h.
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14.6.3 r (u, v) = 〈a sinu cos v, a sinu sin v, a cosu〉 where 0 ≤ u ≤ π; 0 ≤ v ≤ 2π.

14.6.4 A cone of height h and radius a has equationa2z2 = h2
(
x2 + y2

)
; thus zx = h2x

a2z and similarly for
zy, so compute

∫∫
S

f (x, y, z) dS =

∫∫
R

f

(
x, y,

h2

a2

√
x2 + y2

)√(
h2x

a2z

)2

+

(
h2y

a2z

)2

+ 1 dA

=

∫∫
R

f

(
x, y,

h2

a2

√
x2 + y2

)√
1 +

h2

a2
dA.

14.6.5 Use the parametric description from problem 3 and compute∫ π

0

∫ 2π

0
a2f (a sinu cos v, a sinu sin v, a cosu) sinu du dv.

14.6.6 For F = 〈f, g, h〉, evaluate the integral ∫∫
S

F ·n dS =
∫∫
R

(−f zx − g zy + h) dA using the explicit form

from problem 4.

14.6.7 Using the parameterization from the text, and the fact that for the sphere (see Example 2(b)),
tu × tv = 〈a2 sin2 u cos v, a2 sin2 u sin v, a2 sinu cosu〉, compute∫∫

S

F · (tu × tv) dS =

∫∫
R

a2 sinu (f sinu cos v + g sinu sin v + h cosu) dA

=

∫ π

0

∫ 2π

0

a2 sinu (f sinu cos v + g sinu sin v + h cosu) dv du.

14.6.8 It means that we can make a consistent choice of normal vectors such that when you walk along the
surface, the direction of the normal vectors does not change discontinuously.

14.6.9 The usual orientation of a closed surface is that the normal vectors point outwards.

14.6.10 Because the vector field is vertical, the same amount of materials goes through the surface as
through its projection on the xy-plane.

14.6.11 〈u, v, 1
3 (16− 2u+ 4v)〉, |u| < ∞, |v| < ∞.

14.6.12 〈4 sinu cos v, 4 sinu sin v, 4 cos v〉, 0 ≤ u ≤ π
4 , 0 ≤ v ≤ 2π.

14.6.13 〈v cosu, v sinu, v〉, 0 ≤ u ≤ 2π, 2 ≤ v ≤ 8.

14.6.14
〈
v
2 cosu,

v
2 sinu, v

〉
, 0 ≤ u ≤ 2π, 0 ≤ v ≤ 4.

14.6.15 〈3 cosu, 3 sinu, v〉, 0 ≤ u ≤ π
2 , 0 ≤ v ≤ 3.

14.6.16 〈v, 6 cosu, 6 sinu〉, 0 ≤ u ≤ 2π, 0 ≤ v ≤ 9.

14.6.17 The segment of the plane z = 2x+ 3y − 1 above [1, 3]× [2, 4].

14.6.18 The segment of the plane z = 2− y above [0, 2]× [0, 4].

14.6.19 The portion of the cone z2 = 16x2 + 16y2 of height 12 and radius 3, where y ≥ 0.

14.6.20 The cylinder y2 + z2 = 36 of radius 6 whose axis is the x-axis, for 0 ≤ x ≤ 2.

14.6.21 Using the standard parametric description of the cylinder, we have r (u, v) = 〈4 cosu, 4 sinu, v〉 for
0 ≤ v ≤ 7, 0 ≤ u ≤ π. Then |tu × tv| = 4 and the area is

∫∫
S

1 dS =
∫∫
R

4 dA =
∫ π

0

∫ 7

0
4 dv du = 28π.
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14.6.22 The plane has the parametric description r (u, v) = 〈u, v, 3 − u − 3v〉, 0 ≤ v ≤ 1, 0 ≤ u ≤ 3 − 3v.
Then tu × tv = 〈1, 0,−1〉 × 〈0, 1,−3〉 = 〈1, 3, 1〉, so that |tu × tv| =

√
11. Then

∫∫
S

1 dS =
√
11
∫∫
R

1 dA =

√
11
∫ 1

0

∫ 3−3v

0
1 du dv =

√
11
∫ 1

0
(3− 3v) dv = 3

√
11
2 .

14.6.23 The plane has parametric description r (u, v) = 〈u, v, 10 − u − v〉, for −2 ≤ u ≤ 2, −2 ≤ v ≤ 2.
Then tu × tv = 〈1, 0,−1〉 × 〈0, 1,−1〉 = 〈1, 1, 1〉, so that

∫∫
S

1 dS =
√
3
∫∫
R

1 dA = 16
√
3.

14.6.24 Using the standard parametric description of the sphere with 0 ≤ u ≤ π
2 , 0 ≤ v ≤ 2π, we have

|tu × tv| = a2 sinu so that
∫∫
S

1 dS =
∫∫
R

100 sinu dA =
∫ π/2

0

∫ 2π

0
100 sinu dv du = 200π

∫ π/2

0
sinu du = 200π.

14.6.25 Parameterize the cone by r (u, v) =
〈
r
hv cosu,

r
hv sinu, v

〉
, for 0 ≤ v ≤ h, 0 ≤ u ≤ 2π; then

tu × tv =
〈
− r

hv sinu,
r
hv cosu, 0

〉
×
〈

r
h cosu, r

h sinu, 1
〉

and |tu × tv| = r
h2 v

√
h2 + r2. Then

∫∫
S

1 dS =

r
√
h2+r2

h2

∫∫
R

v dA = r
√
h2+r2

h2

∫ 2π

0

∫ h

0
v dv du = r

√
h2+r2

h2

∫ 2π

0
1
2h

2 du = 2πr
√
h2+r2

2 = πr
√
h2 + r2.

14.6.26 Using the standard parameterization of the sphere for 1 ≤ 2 cosu ≤ 2, or 0 ≤ u ≤ π
3 , and 0 ≤ v ≤ 2π,

we obtain
∫∫
S

1 dS =
∫∫
R

4 sinu dA = 4
∫ 2π

0

∫ π/3

0
sinu du dv = 4

∫ 2π

0
(− cosu)

∣∣u=π/3

u=0
dv = 4

∫ 2π

0
1
2 dv = 4π.

14.6.27 Using the standard parameterization of the sphere for 0 ≤ u ≤ π
2 , 0 ≤ v ≤ 2π, we obtain∫∫

S

(
x2 + y2

)
dS =

∫ 2π

0

∫ π/2

0
36 sin2 u · 36 sinu du dv = 1296

∫ 2π

0

∫ π/2

0
sin3 u du dv = 1296

∫ 2π

0
2
3 dv = 1728π.

14.6.28 Use the standard parameterization of the cylinder, for 0 ≤ u ≤ 2π, 0 ≤ v ≤ 3; then
∫∫
S

y dS =∫ 2π

0

∫ 3

0
3 sinu · 3 dv du = 27

∫ 2π

0
sinu du = 0.

14.6.29 Use the standard parameterization, for 0 ≤ u ≤ 2π, 0 ≤ v ≤ 3; then
∫∫
S

x dS =
∫ 2π

0

∫ 3

0
cosu ·

1 dv du = 3
∫ 2π

0
cosu du = 0.

14.6.30 Using the standard parameterization (with u = ϕ and v = θ) for 0 ≤ u ≤ π
2 and 0 ≤ v ≤ π

2 , we

have
∫∫
R

cosu dA =
∫ π/2

0

∫ π/2

0
cosu · sinu du dv = π

4 .

14.6.31 2z dz = 8x dx, so zx = 4x
z ; similarly, zy = 4y

z . Thus
√
z2x + z2y + 1 =

√
16x2+16y2+z2

z2 =
√

20(x2+y2)
4(x2+y2)

=
√
5. Further, this cone sits over x2 + y2 = 4. Then

∫∫
S

1 dS =
∫∫
R

√
5 dA = 4π

√
5.

14.6.32 dz = 4x dx so that zx = 4x and similarly zy = 4y. The paraboloid sits over x2 + y2 = 4 Thus∫∫
S

1 dS =
∫∫
R

√
16x2 + 16y2 + 1 dA =

∫ 2π

0

∫ 2

0
r
√
16r2 + 1 dr dθ =

(65
√
65−1)π
24 .

14.6.33 zx = 2x and zy = 0, so that
∫∫
S

1 dS =
∫ 4

0

∫ 2

−2

√
4x2 + 1 dx dy = 8

√
17 + 2 ln

(√
17 + 4

)
.

14.6.34 We have zx = 2x, zy = −2y, so
∫∫
S

1 dS =
∫∫
R

√
4x2 + 4y2 + 1 dA =

∫ π/4

−π/4

∫ 4

0
r
√
4r2 + 1 dr dθ =

(65
√
65−1)π
24 .

14.6.35 zx = zy = −1, so
∫∫
S

xy dS =
√
3
∫∫
R

xy dA =
√
3
∫ 2

0

∫ 2−x

0
xy dy dx = 2

√
3

3 .
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14.6.36 zx = 2x, zy = 2y, and the paraboloid sits over x2 + y2 = 4, so
∫∫
S

(
x2 + y2

)
dS =∫∫

R

(
x2 + y2

)√
4x2 + 4y2 + 1 dA =

∫ 2π

0

∫ 2

0
r3
√
4r2 + 1 dr dθ =

(391
√
17+1)π
60 .

14.6.37 x2 + y2 + z2 = 25, so zx = −− x
z and zy = −y

z . Then
∫∫
S

(
25− x2 − y2

)
dS =∫∫

R

(
25− x2 − y2

)√
x2+y2+z2

z2 dA = 5
∫∫
R

√
25− x2 − y2 dA = 5

∫ 2π

0

∫ 5

0
r
√
25− r2 dr dθ = 1250π

3 .

14.6.38 zx = −1, zy = −2, and the limits of integration are 0 ≤ y ≤ 4, 0 ≤ x ≤ 8 − 2y. Then
∫∫
S

ez dS =∫∫
R

e8−x−2y
√
6 dA =

√
6
∫ 4

0

∫ 8−2y

0
e8−x−2y dx dy =

√
6(e8−9)

2 .

14.6.39 zx = −3, zy = −4, so
√
z2x + z2y + 1 =

√
26. The area of the part of the plane is

∫∫
S

1 dS =

√
26
∫∫
R

1 dA = 4
√
26 and the surface integral of temperature is

∫∫
S

e3x+4y−6 dS =
√
26
∫ 1

−1

∫ 1

−1
e3x+4y−6 dx dy

=
√
26
12

(
e− e−5 − e−7 + e−13

)
. Thus the average temperature is the ratio of the two, or

1
48

(
e− e−5 − e−7 + e−13

)
.

14.6.40 zx = −2x, zy = −2y. The paraboloid sits over x2 + y2 = 4. Thus the area of the paraboloid is∫∫
S

1 dS =
∫∫
R

√
4x2 + 4y2 + 1 dA =

∫ 2π

0

∫ 2

0
r
√
4r2 + 1 dr dθ =

(17
√
17−1)π
6 and the integral of the square of

the distance from the origin is
∫∫
S

(
x2 + y2 + z2

)
dS =

∫∫
R

(
x2 + y2 +

(
4− x2 − y2

)2)√
4x2 + 4y2 + 1 dA =∫ 2π

0

∫ 2

0
r
(
r2 +

(
4− r2

)2)√
4r2 + 1 dr dθ =

(255
√
17−39)π
14 . Thus the average squared distance is

(255
√
17−39)π
14 ·

6

(17
√
17−1)π

=
9(85

√
17−13)

7(17
√
17−1)

.

14.6.41 zx = −x
z and zy = −y

z , so that
√
z2x + z2y + 1 =

√
x2+y2+z2

z2 =
(
1− x2 − y2

)−1/2
. The area of the

sphere is 1
8 · 4π = π

2 , and the integral of the function is∫∫
S

xyz dS =

∫∫
R

xy
(
1− x2 − y2

)1/2 (
1− x2 − y2

)−1/2
dA =

∫ π/2

0

∫ 1

0

r3 sin (θ) cos (θ) dr dθ =
1

8
,

so that the average value is 1
4π .

14.6.42 zx = x
z and zy = y

z so that
√

z2x + z2y + 1 =
√
2. The cone sits over x2 + y2 = 4. The area of the

cone is
∫∫
S

1 dS =
√
2
∫∫
R

dA = 4π
√
2, and the integral of the temperature function is

∫∫
S

(100− 25z) dS =

√
2
∫∫
R

(
100− 25

√
x2 + y2

)
dA =

√
2
∫ 2π

0

∫ 2

0
r (100− 25r) dr dθ = 800π

√
2

3 so that the average temperature

is 200
3 .

14.6.43 zx = zy = −1, so the normal vector is 〈1, 1, 1〉, which points in the positive z-direction. Then∫∫
S

F · n dS =
∫∫
R

(0 · 1 + 0 · 1− 1 · 1) dA =
∫ 4

0

∫ 4−x

0
(−1) dy dx = −8.

14.6.44 zx = −2, zy = −5, so the normal vector is 〈2, 5, 1〉, which points in the positive z-direction.
∫∫
S

F ·

n dS =
∫∫
R

(x · 2 + y · 5 + z · 1) dA =
∫ 2

0

∫ (10−5y)/2

0
(2x+ 5y + (10− 2x− 5y)) dx dy =

∫ 2

0

∫ (10−5y)/2

0
10 dx dy

= 50.
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14.6.45 We have z =
√
x2 + y2; then n =

〈
−x

z ,−y
z , 1
〉
, which points upwards.∫∫

S

F · n dS =
∫∫
R

((−x
z

) · x+
(−y

z

) · y + 1 · z) dA =
∫∫
R

(
z − x2+y2

z

)
dA =

∫∫
R

(z − z) dA = 0.

14.6.46 zx = 0, zy = − sin (y), so an upward-pointing normal is 〈0, sin y, 1〉. We have
∫∫
S

F · n dS =∫∫
R

(2 sin y cos y + xy) dA =
∫ 4

0

∫ π

−π
(2 sin y cos y + xy) dy dx = 0.

14.6.47 An outward-pointing normal is r
|r| . The sphere has radius a, so the vector field is in fact r

|r|3 .∫∫
S

F · n dS =
∫∫
S

r
|r|3 · r

|r| dS =
∫∫
S

1
|r|2 dS =

∫∫
S

1
a2 dS = 1

a2

∫∫
S

1 dS = 1
a2 4π a2 = 4π.

14.6.48 The parametric form is 〈u, u2, v〉 for 0 ≤ u ≤ 1, 0 ≤ v ≤ 4. We have tu = 〈1, 2u, 0〉 and
tv = 〈0, 0, 1〉, so that tu× tv = 〈2u,−1, 0〉; since we want normal vectors to point in the positive y di-
rection, we choose〈−2u, 1, 0〉 for the normal vector. Then

∫∫
S

F · n dS =
∫∫
R

〈−u2, u, 1〉 · 〈−2u, 1, 0
〉
dA =∫∫

R

(
u+ 2u3

)
dA =

∫ 4

0

∫ 1

0

(
u+ 2u3

)
du dv = 4.

14.6.49

a. True. The formula in Theorem 14.12 gives
∫∫
S

f (x, y, z) dS =
∫∫
R

f (x, y, 10)
√
0 + 0 + 1 dA.

b. False. The formula in Theorem 14.12 gives∫∫
S

f (x, y, z) dS =

∫∫
R

f (x, y, x)
√
1 + 0 + 1 dA =

√
2

∫∫
R

f (x, y, x) dA.

c. True. Substituting 2u for u and
√
v for v in the first parameterization gives 〈√v cos 2u,

√
v sin 2u, v〉,

0 ≤ 2u ≤ π, 0 ≤ √
v ≤ 2. Simplifying the bounds conditions gives the second parameterization.

d. True. The standard parameterization is 〈a sinu cos v, a sinu sin v, a cosu〉 for 0 ≤ u ≤ π, 0 ≤ v ≤ 2π.
Then tu×tv = 〈a2 sin2 u cos v, a2 sin2 u sin v, a2 cosu sinu〉, and it is easily seen that these are outward-
pointing vectors, by considering various ranges for u and v.

14.6.50 ∇ ln |r| = ∇ ln
√

x2 + y2 + z2 = 1
|r|2 〈x, y, z〉 = 1

a2 〈x, y, z〉 on the sphere of radius a; using the

explicit description for the sphere, we have n =
〈

x
z ,

y
z , 1
〉
, so that∫∫

S

∇ ln |r| · n dS =

∫∫
R

1

a2
〈x, y, z〉 ·

〈x
z
,
y

z
, 1
〉
dA =

1

a2

∫∫
R

(
x2 + y2

z
+ z

)
dA =

1

a2

∫∫
R

(
x2 + y2 + z2

z

)
dA =

1

a2

∫∫
R

a2

z
dA =

∫∫
R

1

z
dA =

∫ 2π

0

∫ a

0

1√
a2 − r2

r dr dθ = 2πa.

14.6.51 Parameterize the surface by 〈2 cosu, 2 sinu, v〉 for 0 ≤ u ≤ 2π, 0 ≤ v ≤ 8. Then the normal vector
has magnitude 2, and∫∫

S

|r| dS =

∫∫
R

√
x2 + y2 + z2 dA = 2

∫ 2π

0

∫ 8

0

√
4 + v2 dv du = 8π

(
4
√
17 + ln

(
4 +

√
17
))

.

14.6.52 zx = 0, zy = −1, so∫∫
S

xyz dS =

∫∫
R

xyz
√
2 dA =

√
2

∫ 2π

0

∫ 2

0

r · r cos θ · r sin θ · (6− r sin θ) dr dθ =

√
2

∫ 2π

0

∫ 2

0

r3 cos θ sin θ (6− r sin θ) dr dθ = 0.
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14.6.53 The normal vector is 〈x, 0, z〉, so∫∫
S

1√
x2 + z2

〈x, 0, z〉 · 〈x, 0, z〉 dS =

∫∫
R

√
x2 + z2 dA =

∫ 2

−2

∫ 2π

0

a dA = 8πa.

14.6.54 The two curves intersect where x2 + y2 = 16 − x2 − y2, so on the plane z = 2
√
2. The projection

on the xy-plane of the circle of intersection is x2 + y2 = 8. The total surface area of the sphere, of radius 4,
is 64π. Finally, the outward normals to the sphere are

〈
x
z ,

y
z , 1
〉
.

a. From part (b) below and the fact that the total surface area is 64π, we get an answer of 64π − 32π +
16π

√
2 = 16π

(
2 +

√
2
)
.

b.
∫∫
S

1 dS =
∫∫
R

√
x2

z2 + y2

z2 + 1 dA =
∫∫
R

4
z dA =

∫∫
R

4√
16−x2−y2

dA =
∫ 2π

0

∫√
8

0
4r√

16−r2
dr dθ =

16π
(
2−√

2
)
.

c. For the cone z2 = x2+y2, we have
√

z2x + z2y + 1 =
√
2, so

∫∫
S

1 dS =
∫∫
R

√
2 dA =

√
2·π·(√8

)2
= 8π

√
2.

14.6.55

a. The surface of the cylinder inside the sphere is defined parametrically by 〈1 + cosu, sinu, v〉 where
0 ≤ u ≤ 2π and also (because the z-coordinate must stay inside the sphere of radius 2), 0 ≤ v ≤√
4− (1 + sinu)

2 − cos2 u, or 0 ≤ v ≤ √
2− 2 sinu. The normal is 〈cosu, sinu, 0〉, which has magnitude

1, so we have
∫∫
S

1 dS =
∫∫
R

1 dA =
∫ 2π

0

∫√
2−2 sinu

0
1 dv du =

∫ 2π

0

√
2− 2 sinu du = 8.

b. To find a parameterization of the portion of the sphere cut by the cylinder above the z-axis, first
note that it is sufficient to do this for the portion of the sphere in the first octant, and then double
the result. Now, the first octant is determined by 0 ≤ u ≤ π

2 , 0 ≤ v ≤ π
2 in the standard pa-

rameterization 〈2 sinu cos v, 2 sinu sin v, 2 cosu〉. For each point on the boundary of the intersection,

we must have(x− 1)
2
+ y2 = 1 or, substituting from the parameterization, 1 = (2 sinu cos v − 1)

2
+

(2 sinu sin v)
2
= 4 sin2 u cos2 v + 4 sin2 u sin2 v − 4 sinu cos v + 1, so that sin2 u = sinu cos v, and we

must have v = cos−1 (sin (u)) = π
2 − u. Thus, the surface is determined by 0 ≤ u ≤ π

2 , 0 ≤ v ≤ π
2 − u,

and the surface area is
∫∫
S

1 dS =
∫∫
R

|tu × tv| dA =
∫ π/2

0

∫ π/2−u

0
4 sinu dv du = 2π − 4. Doubling this

to account for the other quadrant, we have 4π − 8.

14.6.56 We have z = − c
ax +

(− c
b

)
y + c, so that zx = − c

a , zy = − c
b , and an upward-pointing normal is〈

c
a ,

c
b , 1
〉
. Then

∫∫
S

F · n dS =
∫∫
R

(
c
ax+ c

by + z
)
dA =

∫∫
R

(
c
ax+ c

by +
(− c

ax+
(− c

b

)
y + c

))
dA =

∫∫
R

c dA,

which is c times the area of A. Recall that if the vector field is vertical, then the flux is equal to the area
of the base. As c increases, the slope of the plane gets closer to vertical, so that the x and y components of
the vector field 〈x, y, z〉 contribute more to the flux; also, the values of z get larger. Thus the flux increases
as c does.

14.6.57

a. Using the standard parameterization,
∫∫
S

F · n dS =
∫∫
R

(
−x2

z + −y2

z + z
)
dA =

∫∫
R

0 dA = 0, because

x2 + y2 = z2, so that the flux is zero. This is due to the fact that the field F is aligned with the cone
at all points on the cone.

b. 2z dz =
(
2x
a2

)
dx so that zx = x

a2z . Then
∫∫
S

F ·n dS =
∫∫
R

(
−x2

a2z + −y2

a2z + z
)
dA =

∫∫
R

(
−a2z2

a2z + z
)
dA =

0, so the flux is again zero. This is because the flow is a radial flow, so is always tangent to this surface.
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14.6.58 Parameterize the cone by r (u, v) =
〈
a
hv cosu,

a
hv sinu, v

〉
for 0 ≤ v ≤ h, 0 ≤ u ≤ 2π; then

tu × tv =
〈− a

hv sinu,
a
hv cosu, 0

〉 × 〈 ah cosu, a
h sinu, 1

〉
and |tu × tv| = a

h2 v
√
h2 + a2. Then

∫∫
S

1 dS =

a
√
h2+a2

h2

∫∫
R

v dA = a
√
h2+a2

h2

∫ 2π

0

∫ h

0
v dv du = a

√
h2+a2

h2

∫ 2π

0
1
2h

2 du = 2πa
√
h2+a2

2 = πa
√
h2 + a2.

14.6.59 Because the cap has height h, the circle at the boundary of the cap has radius

√
a2 − (a− h)

2
=√

2ah− h2, so that the equation of the base of the region is x2 + y2 = 2ah − h2. The outward normals

to the sphere are
〈
x
z ,

y
z , 1
〉
. Thus

∫∫
S

1 dS =
∫∫
R

√
x2

z2 + y2

z2 + 1 dA =
∫∫
R

√
a2−z2

z2 + 1 dA =
∫∫
R

a
z dA =∫∫

R

a√
a2−x2−y2

dA =
∫ 2π

0

∫√
2ah−h2

0
ar√

a2−r2
dr dθ = 2πah. (See also problem 54(b)).

14.6.60 Using a parametric description, we have
∫∫
S

F · n dS =
∫∫
R

1
(x2+y2+z2)p/2

〈
x, y, z〉 · (tu × tv) dA =

1
ap

∫∫
R

〈a sinu cos v, a sinu sin v, a cosu〉 · 〈a2 sin2 u cos v, a2 sin2 u sin v, a2 cosu sinu〉 dA =

1
ap

∫∫
R

(
a3 sin3 u cos2 v + a3 sin3 u sin2 v + a3 cos2 u sinu

)
dA = a3−p

∫ π

0

∫ 2π

0

(
sin3 u+ cos2 u sinu

)
dv du =

a3−p
∫ π

0

∫ 2π

0
sinu dv du = 4π

ap−3 . Using an explicit description, compute the flux on the upper half hemisphere
and double it. There, for z ≥ 0, we have zx = −x

z , zy = −y
z , so that∫∫

S

F · n dS =

∫∫
R

1

(x2 + y2 + z2)p/2

(
x2

z
+

y2

z
+ z

)
dA

=
1

ap

∫∫
R

a2

z
dA = a2−p

∫ 2π

0

∫ a

0

r√
a2 − r2

dr dθ =
2π

ap−3
.

After doubling, we get the same answer.

14.6.61 F= −∇T = −〈Tx, Ty, Tz〉 = 〈100e−x−y, 100e−x−y, 0〉. Thus the flow is parallel to the two sides
where z = ±1 so that the flux is zero there. We thus need only compute the flux on the remaining four sides.
Parameterize the sides as

S1 : 〈−1, y, z〉 ty × tz = 〈1, 0, 0〉
S2 : 〈1, y, z〉 ty × tz = 〈1, 0, 0〉
S3 : 〈x,−1, z〉 tx × tz = 〈0,−1, 0〉
S4 : 〈x, 1, z〉 tx × tz = 〈0,−1, 0〉

for −1 ≤ x, y, z ≤ 1.
We are looking for the outward flux, so we must choose outward normals, which are (respectively)

〈−1, 0, 0〉, 〈1, 0, 0〉,〈0,−1, 0〉, and 〈0, 1, 0〉. Then∫∫
S1

F · n dS1 =

∫∫
R

−100e−x−y dA = −100

∫ 1

−1

∫ 1

−1

e1−y dz dy = −200e2 + 200

∫∫
S2

F · n dS2 =

∫∫
R

−100e−x−y dA = 100

∫ 1

−1

∫ 1

−1

e−1−y dz dy = −200e−2 + 200

∫∫
S3

F · n dS3 =

∫∫
R

−100e−x−y dA = −100

∫ 1

−1

∫ 1

−1

e−x+1dz dx = −200e2 + 200

∫∫
S4

F · n dS4 =

∫∫
R

−100e−x−y dA = 100

∫ 1

−1

∫ 1

−1

e−x−1dz dx = −200e−2 + 200

so that the total flux is −400
(
e2 + e−2 − 2

)
= −400

(
e− 1

e

)2
.
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14.6.62 F= −∇T = −〈Tx, Ty, Tz〉 = 〈200e−x2−y2−z2

, 200e−x2−y2−z2

, 200e−x2−y2−z2〉. Thus integrating

over the top half of the sphere gives
∫∫
S

F · n dS =
∫∫
R

〈200xe−x2−y2−z2

, 200ye−x2−y2−z2

, 200ze−x2−y2−z2〉 ·〈
x
z ,

y
z , 1
〉
dA = 200e−a2 ∫∫

R

(
x2

z + y2

z + z
)
dA = 200a2e−a2 ∫∫

R

1
zdA = 200a2e−a2 ∫ 2π

0

∫ a

0
r√

a2−r2
dr dθ =

400πa3e−a2

, and because the vector field is symmetric, the answer is 800πa3e−a2

.

14.6.63 F = −∇T = 2
x2+y2+z2 〈x, y, z〉. Thus integrating on the top half of the sphere gives

∫∫
S

F · n dS =∫∫
R

(
x2

z + y2

z + z
)
dA = 2

∫∫
R

1
zdA = 2

∫ 2π

0

∫ a

0
r√

a2−r2
dr dθ = 4πa, and because the vector field is symmetric,

the answer is 2 · 4πa = 8πa.

14.6.64

a.
∫∫
S

F · n dS =
∫∫
R

〈x, y, 0〉 ·
〈
x, y, 0

〉
dA =

∫∫
R

(
x2 + y2

)
dA = a2

∫ 2π

0

∫ a

0
r dr dθ = πa4.

b. On the cylinder, this field is
(
x2 + y2

)−p/2
= a−p times as large as the field in part (a), so the flux is

4πLa2−p.

c. As a → ∞, this converges for 2− p ≤ 0, or p ≥ 2.

d. As L → ∞, the flux never converges.

14.6.65

a. From problem 60, the outward flux across a sphere of radius b is 4π
bp−3 , so the total flux across the

concentric spheres when p = 0 is 4πb3 − 4πa3 = 4π
(
b3 − a3

)
.

b. For p = 3, the flux across the sphere of radius b is 4π, so the net flux is zero across S.

14.6.66 By symmetry, x = y = 0. Since the shell has constant density, we assume the density is 1; then its

mass is 2πa2, and Mxy =
∫∫
S

z dS =
∫∫
R

z

√(−x
z

)2
+
(−y

z

)2
+ 1 dA =

∫∫
R

z · a
z dA = a

∫ 2π

0

∫ a

0
r dr dθ = π a3 so

that z = a
2 .

14.6.67 The cone is rotationally symmetric around the z axis, so x = y = 0. Parameterize the cone by〈
r
hv cosu,

r
hv sinu, v

〉
. Then from problem 25, the surface area of the cone is πr

√
h2 + r2, so its mass is

ρπr
√
h2 + r2. Using the parameterization from that problem, |tu × tv| = r

h2 v
√
h2 + r2, so that Mxy =

ρ
∫∫
S

z dS = ρ r
√
h2+r2

h2

∫∫
R

vzdA = ρ r
√
h2+r2

h2

∫ 2π

0

∫ h

0
v2 dv du = ρ r

√
h2+r2

h2

∫ 2π

0
1
3h

3 du = ρ 2πrh
√
h2+r2

3 so that

z =
Mxy

m = ρ 2πrh
√
h2+r2

3 · 1
ρπr

√
h2+r2

= 2h
3 .

14.6.68 Assume the shell has density 1. Then the mass of the shell, which is half the area of the entire
cylinder, is ah. Further, by symmetry, x = y = 0. Use the parameterization 〈a cosu, v, a sinu〉; then

|tu × tv| = a and Mxy =
∫∫
S

z dS = a
∫∫
R

z dA = a
∫ h/2

−h/2

∫ π

0
a sinu du dv = 2a2h and z = 2

πa.

14.6.69 Using the standard parameterization, the mass of the shell ism =
∫∫
S

(1 + z) dS = a
∫∫
R

(1 + z) dA =

a
∫ 2π

0

∫ 2

0
(1 + v) dv du = 8πa. The density does not depend on either x or y, and the cylinder is symmetric

about the z axis, so x = y = 0. Then

Mxy =

∫∫
S

z (1 + z) dS = a

∫∫
R

z (1 + z) dA = a

∫ 2π

0

∫ 2

0

v (1 + v) dv du =
28πa

3
.

Then z = 7
6 .
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14.6.70 tu = 〈a cosu cos v, a cosu sin v,−a sinu〉 and tv = 〈−a sinu sin v, a sinu cos v, 0
〉
, and then tu× tv =

〈a2 sin2 u cos v, a2 sin2 u sin v, a2 cosu sinu〉 so that |tu × tv| = a2
∣∣〈sin2 u cos v, sin2 u sin v, cosu sinu〉∣∣ =

a2
√

sin4 u cos2 v + sin4 u sin2 v + cos2 u sin2 u = a2
√
sin4 u+ sin2 u cos2 u = a2 sinu.

14.6.71 The explicit formula z = g (x, y) becomes, on regarding x and y as parameters, the parametric
form 〈x, y, g (x, y)〉, and now tx = 〈1, 0, zx〉 and ty = 〈0, 1, zy〉. Then tx × ty = 〈−zx,−zy, 1〉, so that

|tx × ty| =
√

z2x + z2y + 1. Now the formula
∫∫
S

f (x, y, z) dS =
∫∫
R

f (x, y, g (x, y))
√

z2x + z2y + 1 dA follows

from the definition of the surface integral for parameterized surfaces.

14.6.72

a. Each point on the graph of f on [a, b], say f (x) becomes, in the surface of revolution, a circle
of radius f (x) with center on the x-axis. Letting u = x, that circle is then parameterized by
〈f (u) cos v, f (u) sin v〉 for 0 ≤ v ≤ 2π, so the entire surface is parameterized by
〈u, f (u) cos v, f (u) sin v〉, a ≤ u ≤ b, 0 ≤ v ≤ 2π.

b. tu = 〈1, f ′ (u) cos v, f ′ (u) sin v〉 and tv = 〈0,−f (u) sin v, f (u) cos v〉, and then

tu × tv = 〈f ′ (u) f (u) ,−f (u) cos v,−f (u) sin v〉
and

|tu × tv| =
√
f ′ (u)2 f (u)

2
+ f (u)

2 (
sin2 v + cos2 v

)
= f (u)

√
f ′ (u)2 + 1.

We have ∫∫
S

f (x, y, z) dS =

∫∫
R

f (u)

√
f ′ (u)2 + 1 dA =

∫ b

a

∫ 2π

0

f (u)

√
f ′ (u)2 + 1 dv du

= 2π

∫ b

a

f (u)

√
f ′ (u)2 + 1 du.

c. The area of the surface is 2π
∫ 2

1
x3

√
9x4 + 1 dx = π

27

(
1453/2 − 103/2

)
.

d. The area of the surface is

2π

∫ 4

3

(
25− x2

)1/2√(−x (25− x2)
−1/2

)2
+ 1dx = 2π

∫ 4

3

(
25− x2

)1/2√ x2

25− x2
+ 1 dx

= 2π

∫ 4

3

(
25− x2

)1/2√ 25

25− x2
dx = 2π

∫ 4

3

5 dx = 10π.

14.6.73 We have z = s (x, y), so a normal vector is 〈−zx,−zy, 1〉. Since we are interested in the down-
ward flux, we choose a downward-pointing normal, which is 〈sx (x, y) , sy (x, y) ,−1

〉
. Then

∫∫
S

F · n dS =∫∫
R

〈0, 0,−1〉 ·〈sx (x, y) , sy (x, y) ,−1〉 dA =
∫∫
R

1 dA, which is the area of R. Since the vector field is constant

and pointed downwards vertically, everything that goes through the surface is matched by something going
through R.

14.6.74

a. Imagine the torus as built by starting with a circle of radius R in the xy plane, centered at the
origin. From each point on this circle, parameterize as 〈R cos v,R sin v, 0〉, we can reach a circle of
points on the surface by making it the center of a circle of radius r, parameterized by u. This second
circle is drawn in a vertical plane that includes the z-axis. Each point of this second circle is thus
in the plane determined by 〈R cos v,R sin v, 0〉 and the z-axis; its z-coordinate will be r sinu and
its x and y-coordinates will then be (from its center) r cos v cosu and r sin v cosu. Thus the set of
points on the torus can be parameterized by the sum of these vectors, which is 〈R cos v,R sin v, 0〉 +
〈r cos v cosu, r sin v cosu, r sinu〉 = 〈(R+ r cosu) cos v , (R+ r cosu) sin v, r sinu〉
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b. From the parameterization above, we have

tu = 〈−r sinu cos v,−r sinu sin v, r cosu〉
tv = 〈− (R+ r cosu) sin v, (R+ r cosu) cos v, 0〉

so that

tu × tv = (R+ r cosu) 〈−r cosu cos v,−r cosu sin v,−r sinu〉
and |tu × tv| = (R+ r cosu)

√
r2 cos2 u cos2 v + r2 cos2 u sin2 v + r2 sin2 u = r (R+ r cosu), so that

the area of the torus is
∫∫
S

1 dS =
∫ 2π

0

∫ 2π

0
r (R+ r cosu) du dv = 4π2Rr.

14.6.75 The goal is to start with the surface area formula A =
∫∫
R

√
z2x + z2y + 1 dA of Theorem 14.12 (where

we have set f(x, y, g(x, y)) = 1) and derive the surface area formula A = 2π
∫ b

a
f(x)

√
1 + f ′(x)2 dx of section

6.6. Because S is generated by revolving the graph of f about the x-axis, we can use symmetry and take
R = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}. The resulting surface area is then one-quarter of the desired surface
area. The key observation is that the surface generated is given by z2 = f(x)2 − y2 over the region R. It

follows that 2zzx = 2ff ′, or zx = ff ′

2 and 2zzy = −2y, or zy = −y
z . Substituting, we have that the surface

area is A =
∫∫
R

√
z2x + z2y + 1 dA = 4

∫ b

a

∫ f(x)

0

√(
ff ′
z

)2
+
(−y

z

)2
+ 1 dy dx = 4

∫ b

a

∫ f(x)

0

√
f2f ′2+y2+z2

z2 dy dx =

4
∫ b

a

∫ f(x)

0

√
f2f ′2+f2

f2−y2 dy dx, because z2 = f2 − y2.

Continuing, we have A = 4
∫ b

a

∫ f(x)

0

f(x)
√

1+f ′(x)2√
f(x)2−y

dy dx = 4
∫ b

a
f(x)

√
1 + f ′(x)2

∫ f(x)

0
1√

f(x)2−y
dy dx =

4
∫ b

a
f(x)

√
1 + f ′(x)2

(
sin−1 y

f(x)

∣∣∣f(x)
0

)
dx = 2π

∫ b

a
f(x)

√
1 + f ′(x)2 dx.

14.7 Stokes’ Theorem

14.7.1 It measures the circulation of the vector field F along the closed curve C.

14.7.2 It measures the accumulated rotation of the vector field F over the surface S.

14.7.3 It says that the circulation of a vector field along a closed curve is equal to the net circulation of the
field over a surface whose boundary is that curve, so that either can be calculated from the other.

14.7.4 This is the fundamental theorem of line integrals - the integral of any conservative vector field around
a closed curve is zero.

14.7.5 The line integral is
∮
C
F ·dr =

∫∫
R

〈sin t,− cos t, 10〉·〈− sin t, cos t, 0
〉
dA =

∫ 2π

0
(−1) dt = −2π. For the

surface integral, use the standard parameterization of the sphere; then n= 〈sin2 u cos v, sin2 u sin v, cosu sinu〉
and ∇× F = 〈0, 0,−2〉 so that

∫∫
S

(∇× F) · n dS =
∫ 2π

0

∫ π/2

0
(−2 cosu sinu) du dv = −2π.

14.7.6 The line integral is∮
C

F · dr =

∫∫
R

〈0,−2 cos t, 2 sin t〉 · 〈−2 sin t, 2 cos t, 0〉 dA =

∫ 2π

0

(−4 cos2 t
)
dt = −4π.

∇ × F = 〈1, 0,−1〉. The outward normal to the sphere is
〈
x
z ,

y
z , 1
〉
, so the surface integral is

∫∫
S

(∇× F) ·

n dS =
∫∫
R

〈1, 0,−1〉 · 〈xz , y
z , 1
〉
dA =

∫ 2π

0

∫ 2

0

(
r2 cos θ√
4−r2

− r
)
dr dθ = −4π.
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14.7.7 The line integral is∮
C

F · dr =

∫ 2π

0

〈2
√
2 cos t, 2

√
2 sin t, 0〉 · 〈−2

√
2 sin t, 2

√
2 cos t, 0〉 dt =

∫ 2π

0

0 dt = 0.

For the surface integral, we have ∇× F = 0 so that the surface integral is also zero.

14.7.8 The boundary of the region is the intersection of the sphere with the plane z = 12, which has the

equation x2 + y2 = 25 and z = 12. Thus the line integral is
∮
C
F · dr =

∫ 2π

0
〈24,−4 · 5 cos t, 3 · 5 sin t〉 ·

〈−5 sin t, 5 cos t, 0〉 dt = ∫ 2π

0

(−120 sin t− 100 cos2 t
)
dt = −100π.

The surface sits over x2 + y2 = 25 and the normal to the sphere is
〈
x
z ,

y
z , 1
〉
. ∇ × F = 〈3, 2,−4〉, so the

surface integral is
∫∫
S

(∇× F) · n dS =
∫ 2π

0

∫ 5

0
r
(

3r cos θ√
169−r2

+ 2r sin θ√
169−r2

− 4
)
dr dθ = −100π.

14.7.9 The boundary of the region is the intersection of the sphere with the plane z =
√
7, which has the

equation x2 + y2 = 9 and z =
√
7. Then the line integral is∮

C

F · dr =

∫ 2π

0

〈3 sin t−
√
7,
√
7− 3 cos t, 3 cos t− 3 sin t〉 · 〈−3 sin t, 3 cos t, 0〉 dt

=

∫ 2π

0

(
−9 sin2 t+ 3

√
7 sin t+ 3

√
7 cos t− 9 cos2 t

)
dt =

∫ 2π

0

(
−9 + 3

√
7 sin t+ 3

√
7 cos t

)
dt = −18π.

The surface sits over x2 + y2 = 9 and the normal to the sphere is
〈
x
z ,

y
z , 1
〉
. ∇ × F = 〈−2,−2,−2〉, so

the surface integral is∫∫
S

(∇× F) · n dS = −2

∫ 2π

0

∫ 3

0

r

(
r cos θ√
16− r2

+
r sin θ√
16− r2

+ 1

)
dr dθ = −18π.

14.7.10 The boundary of the region can be parameterized by 〈4 cos t, 4 sin t, 6− 4 sin t〉, so the line integral
is ∮

C

F · dr =

∫ 2π

0

〈−4 sin t, 4 sin t− 4 cos t− 6, 4 sin t− 4 cos t〉 · 〈−4 sin t, 4 cos t,−4 cos t〉 dt

=

∫ 2π

0

(
16 sin2 t+ 16 sin t cos t− 16 cos2 t− 24 cos t− 16 sin t cos t+ 16 cos2 t

)
dt

=

∫ 2π

0

(
16 sin2 t− 24 cos t

)
dt = 16π.

∇ × F = 〈2, 1, 0〉, and an outward pointing normal to the plane is 〈0, 1, 1〉, so the surface integral is∫∫
S

(∇× F) · n dS =
∫∫
R

1 dA =
∫ 2π

0

∫ 4

0
r dr dθ = 16π.

14.7.11 ∇×F = 〈1,−1,−2〉; for S take the disk x2 + y2 ≤ 12 with upward-oriented normal vector 〈0, 0, 1〉.
Then

∫∫
S

(∇× F) · n dS =
∫∫
R

(−2) dA = −24π.

14.7.12 ∇×F = 〈−1−x, 0, z−1
〉
; for S take the region x2+ y2

4 ≤ 1 in the plane z = 1, with normal vector
〈0, 0, 1〉; then ∫∫

S

(∇× F) · n dS =
∫∫
R

(z − 1) dA = 0 because z = 1 on the region of integration.

14.7.13 ∇ × F = 〈0,−4z, 0〉. For S take the plane in the first octant, which sits over 0 ≤ x ≤ 4, 0 ≤ y ≤
4 − x. The upward-pointing normal to this plane is 〈1, 1, 1〉. Then

∫∫
S

(∇× F) · n dS =
∫∫
R

(−4z) dA =∫ 4

0

∫ 4−x

0
(−4) (4− x− y) dy dx = − 128

3 .
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14.7.14 ∇×F = 〈2y − 2z, 0, 2y − 2x〉. Take S to be the square bounded by C, with normal 〈0, 0, 1〉. Then∫∫
S

(∇× F) · n dS =
∫∫
R

(2y − 2x) dA =
∫ 1

−1

∫ 1

−1
(2y − 2x) dy dx = 0.

14.7.15 ∇× F = 〈2z,−1,−2y〉. Take S to be the disk 〈3r cos t, 4r cos t, 5r sin t〉 for 0 ≤ r ≤ 1, 0 ≤ t ≤ 2π.
tr× tt = 〈20r,−15r, 0〉 is a normal vector. Then

∫∫
S

(∇× F) · n dS =
∫∫
R

〈2z,−1,−2y〉 · 〈20r,−15r, 0〉 dA =∫ 2π

0

∫ 1

0
((10r sin t) · 20r + 15r) dr dt = 15π.

14.7.16 ∇× F = 0, so the surface integral is zero.

14.7.17 The boundary of the surface is the ellipse x2

4 + y2

9 = 1, found by setting z = 0. Parameterize the

path by r(t) = 〈2 cos t, 3 sin t, 0〉; then
∮
F · dr =

∫ 2π

0
F · r′ (t) dt =

∫ 2π

0
(−4 cos t sin t+ 9 cos t sin t) dt =∫ 2π

0
5 cos t sin t dt = 0.

14.7.18 The boundary of the surface is on the plane x = 0, and it is the circle y2 + z2 = 9. Parameterize
the circle by r(t) = 〈0, 3 cos t, 3 sin t〉; then r′(t) = 〈0,−3 sin t, 3 cos t〉. F = r

|r| = 1√
x2+y2+z2

〈x, y, z〉, and∮
F · dr =

∫ 2π

0
F · r′ (t) dt = 1

3

∫ 2π

0
(−9 sin t cos t+ 9 sin t cos t) dt = 0.

14.7.19 The boundary of the surface is the intersection of the plane x = 3 with the sphere x2+y2+z2 = 25,
so is the circle y2 + z2 = 16 at x = 3. Parametrize the circle with x = 3, y = 4 cos t and z = 4 sin t. We

have r′(t) = 〈0,−4 sin t, 4 cos t
〉
, so

∮
F · dr =

∫ 2π

0
〈8 cos t,−4 sin t, 3− 4 cos t− 4 sin t〉 · 〈0,−4 sin t, 4 cos t〉 dt =∫ 2π

0

(
16 sin2 t+ 12 cos t− 16 cos2 t− 16 sin t cos t

)
dt = 0.

14.7.20 The boundary of the surface is given in the problem: r(t) = 〈cos t, 2 sin t,√3 cos t
〉
; so r′ (t) =

〈− sin t, 2 cos t,−√
3 sin t〉 and the integral is

∮
F · dr =

∫ 2π

0
〈cos t+ 2 sin t, 2 sin t+

√
3 cos t,

(
1 +

√
3
)
cos t〉 ·

〈− sin t, 2 cos t,−√
3 sin t〉 dt = ∫ 2π

0

(− sin t cos t− 2 sin2 t+ 4 sin t cos t+ 2
√
3 cos2 t− (3 +√

3
)
cos t sin t

)
dt

=
∫ 2π

0

(−√
3 sin t cos t− 2 sin2 t+ 2

√
3 cos2 t

)
dt = 2π

(√
3− 1

)
.

14.7.21 ∇× v = 〈1, 0, 0〉. The curl looks like:

This means that the maximum rotation of the field is in the direction〈1, 0, 0〉. The rotation is counterclockwise
looking in the negative x direction.

14.7.22 ∇× v = 〈0,−2z, 0〉. The curl looks like:
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This means that the maximum rotation of the field is in the direction of they-axis, and the amount of rotation,
clockwise or counterclockwise, increases the further from the z-axis one gets. It rotates counterclockwise
(viewed from the positive z-axis) for z < 0, and clockwise for z > 0.

14.7.23 ∇× v = 〈0,−2, 0〉. The curl looks like:

This means that the maximum rotation of the field is in the direction of the y-axis. It is constant at all
points, and is clockwise viewed from the positive y-axis.

14.7.24 ∇× v = 〈2, 0, 0〉. The curl looks like:

The maximum rotation of the vector field is in the direction of the x-axis; it is constant at all points, and is
counterclockwise viewed from the positive x-axis.

14.7.25

a. False. This is a rotation field with axis of rotation 〈1, 1, 2〉, but 〈0, 1,−1〉 · 〈1, 1, 2〉 �= 0, so the paddle
wheel axis is not perpendicular to the axis of rotation.

b. False. It relates the curl of F, not its flux.

c. True. This is because it is conservative: it is the gradient of ax+F (x)+ by+G (y)+ cz+H (z), where
F , G, H are the antiderivatives of f , g, h, respectively.

d. True. See Theorem 14.14.

14.7.26 This is a conservative vector field, with ϕ = x2− y2+ z2, so the integral
∮
F · dr = 0 for any closed

curve C.

14.7.27 This is a conservative vector field, so the integral around any closed curve is zero.

14.7.28 This is a conservative vector field with ϕ = x3y + y2z2, so the integral around any closed curve is
zero.

14.7.29 This is a conservative vector field with ϕ = xy2z3, so the integral around any closed curve is zero.

14.7.30 The surface S is 〈r cosϕ cos t, r sin t, r sinϕ cos t
〉
; computing the normal vector gives tr× tt =

〈−r sinϕ, 0, r cosϕ
〉
. Thus the surface area is

∫∫
S

1 dS =
∫ 1

0

∫ 2π

0
|tr × tt| dt dr =

∫ 1

0

∫ 2π

0
r dt dr = π. This

makes sense because the surface is simply the unit circle inclined at the angle ϕ to the xy-plane.
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14.7.31 r′(t) = 〈− cosϕ sin t, cos t,− sinϕ sin t〉, so that |r′ (t)| = 1. Then the length of C is
∫
C
1 ds =∫ 2π

0
1 dt = 2π, again as expected because C is just an inclined unit circle.

14.7.32 By Stokes’ theorem,
∮
F · dr =

∫∫
S

(∇× F) · n dS, ∇× F = 〈0, 0, 2〉; using n from Problem 30, we

have
∫∫
S

(∇× F) · n dS =
∫ 1

0

∫ 2π

0
2r cosϕdt dr = 2π cosϕ. This is maximum for ϕ = 0, when it is 2π.

14.7.33 We have∮
F · dr =

∫
C

〈−y,−z, x〉 · 〈− cosϕ sin t, cos t,− sinϕ sin t〉 dt

=

∫ 2π

0

(
cosϕ sin2 t− sinϕ cos2 t+ cosϕ sinϕ cos t sin t

)
dt = π (cosϕ− sinϕ) .

This is maximum for ϕ = 0, when it is π.

14.7.34 ∇× (a× r) = 〈2a1, 2a2, 2a3〉. Thus∮
F · dr =

∫∫
S

〈2a1, 2a2, 2a3〉 · 〈−r sinϕ, 0, r cosϕ〉 dS

= 2

∫ 2π

0

∫ 1

0

(−a1r sinϕ+ a3r cosϕ) dr dt = 2π (a3 cosϕ− a1 sinϕ) .

This is a maximum when its derivative vanishes, i.e. when a3 cosϕ − a1 sinϕ = 0. Now, 〈a1, a2, a3〉 points
in the direction of the normal if their cross-product is zero, i.e. if 〈a1, a2, a3〉 × 〈−r sinϕ, 0, r cosϕ〉 =
〈a2 r cosϕ,−a3 r sinϕ− a1 r cosϕ, a2, r sinϕ〉 = 0. This happens when a2 = 0 and a3 sinϕ+ a1 cosϕ = 0.

14.7.35 ∇×F = 〈3, 0, 0〉. To evaluate the circulation around C, we instead (using Stokes’ theorem) evaluate∫∫
S

(∇× F) · n dS for the surface of the disk of which C is a boundary. Note that n = 〈1, 1, 1〉, so that∫∫
S

(∇× F) ·n dS =
∫∫
R

3 dA = 3 ·area of A = 48π. From this calculation, it is clear that the result depended

on the radius of the circle, because that affects the area of A, but not on the center of the circle.

14.7.36

a. ∇×F = 〈1, 1, 0〉, so the integrand of the surface integral is just x+y
z ; by symmetry, the integral vanishes

on each level curve, so it vanishes altogether.

b. On the boundary of S, we have z = 0, so that F = 〈0, 0, 2y + x〉, and thus r′(t) = 〈− sin t, cos t, 0〉 so
that the dot product and thus the line integral is zero.

14.7.37

a. The normal vectors point toward the z-axis on the curved surface of S and in the direction of 〈0, 1, 0〉
on the flat surface of S.

b. To evaluate the integral, we must add up the integrals on each of the surfaces. ∇× F = 〈1, 1, 1〉. Let
S1 be the surface in the xz-plane, parameterized by 〈x, 0, z〉 for −2 ≤ x ≤ 2,x2 ≤ z ≤ 4; then the
normal to S1 is tx × tz = 〈0, 1, 0〉, so that the integral over S1 is∫∫

S1

〈1, 1, 1〉 · 〈0,−1, 0〉 dS =

∫ 2

−2

∫ 4

x2

(−1) dy dx = −
∫ 2

−2

(
4− x2

)
dx = −32

3
.

S2 is the half of the paraboloid for y ≥ 0, parameterized as 〈r cosu, r sinu, r2〉, 0 ≤ r ≤ 2,−π ≤ u ≤ 0.
The normal to S2 is tr × tu = 〈−2r2 cosu,−2r2 sinu, r〉. The integral over S2 is∫∫

S1

〈1, 1, 1〉 · 〈−2r2 cosu,−2r2 sinu, r〉 dS =

∫ 2

0

∫ 0

−π

(−2r2 (cosu+ sinu) + r
)
du dr =

32

3
+ 2π.

Thus the total is 2π.
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c. The line integral is the sum of two line integrals:∮
C

F · dr =

∮
C1

F · dr1 +
∮
C2

F · dr2

where C1 = 〈t, 0, 4〉 for −2 ≤ t ≤ 2 andC2 = 〈2 cos t, 2 sin t, 4〉 for −π ≤ t ≤ 0. Then∮
C1

F · dr1 =

∫ 2

−2

〈2z + y, 2x+ z, 2y + x〉 · 〈1, 0, 0〉 dt =
∫ −2

2

8 dt = −32∮
C2

F · dr2 =

∫ 0

−π

〈2z + y, 2x+ z, 2y + x〉 · 〈−2 sin t, 2 cos t, 0〉 dt

=

∫ 0

−π

(−16 sin t− 4 sin2 t+ 8 cos t+ 8 cos2 t
)
dt = 32 + 2π,

so the total line integral is 2π.

14.7.38 We have, from Stokes’ theorem and Ampere’s Law,
∫∫
S

(∇×B)·n dS =
∮
C
B·dr = μI = μ

∫∫
S

J·n dS

Thus we have ∫∫
S

((∇×B)− μJ) · n dS = 0

for all surfaces S bounded by any given closed curve C. It is clear that given the freedom to choose C and S,
that it follows that the integrand is identically zero, i.e. that for any surface S,((∇×B)− μJ) ·n= 0. From
this it is easy to see that we must have ∇ ×B = μJ, since we are free to make the normal vector point in
any direction at any given point by choosing S appropriately.

14.7.39 The boundary of the region is the circle C: x2+ y2 = 1 forz = 0. With the usual parameterization,
we have ∮

C

F · dr =

∫ 2π

0

〈cos t− sin t, sin t,− cos t〉 · 〈− sin t, cos t, 0〉 dt

=

∫ 2π

0

(− sin t cos t+ sin2 t+ sin t cos t
)
dt =

∫ 2π

0

sin2 t dt = π.

So the integral is independent of a.

14.7.40

a. ∇× F =
〈

∂
∂y (ay)− ∂

∂z (cx) ,
∂
∂z (bz)− ∂

∂x (ay) , ∂
∂x (cx)− ∂

∂y (bz)
〉
= 〈a, b, c〉.

b. The area of R is
∫∫
S

(∇× F) · n dS =
∫∫
S

n · n dS =
∫∫
R

|n|2 dA = area ofR because |n| = 1, so that∮
C
F · dr =

∫∫
S

(∇× F) · n dS = area ofR.

c. r′(t) = 〈5 cos t,−13 sin t, 12 cos t〉, so that r(t)×r′(t) = 〈156, 0,−65〉 and thus, because r(t)×r′(t) is
constant, it points in a constant direction, so that r must lie in a plane.

d. By parts (b) and (c), we have a normal vector 〈156, 0,−65〉; its magnitude is 169, so we take F =〈
0,− 5x

13 ,
12y
13

〉
; then the area of R is

∮
C
F ·dr =

∫ 2π

0

〈
0,− 25

13 sin t, 12 cos t
〉 ·〈5 cos t,−13 sin t, 12 cos t〉 dt =∫ 2π

0

(
25 sin2 t+ 144 cos2 t

)
dt = 169π.

14.7.41

a. The boundary of this surface is the circle x2 + y2 = 1 at z = 0, so we choose instead the surface of the
disk bounded by that circle. ∇× F = 〈2x, 0,−2z〉, which is 〈2x, 0, 0〉 at z = 0, and the normal to the
disk is 〈0, 0, 1〉. Thus, the integral is equal to

∫∫
S

(∇× F) · n dS =
∫∫
S

0 dS = 0.
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b. With the usual parameterization of the boundary circle (and remembering that z = 0), we have∮
C
F · dr =

∫ 2π

0
〈0, 0, 1〉 · 〈− sin t, cos t, 0

〉
dt = 0.

14.7.42

a. Let C be the circle x2 + y2 = a2. Parameterize the circle in the usual way; then F = 1
ap 〈x, y, 0〉 and

r (t) = 〈a cos t, a sin t, 0〉. Then ∮
C
F · dr = 1

ap

∫ 2π

0

(−a2 sin t cos t+ a2 sin t cos t
)
dt = 0.

b. Stokes’ Theorem will apply when the vector field is defined throughout the disk of radius a, which
happens only when p ≤ 0. In that case, ∇× F = a−p〈0, 0, 0〉, so that the surface integral is zero.

14.7.43

a. ∇× F =
〈
0− 0, 0− 0, y2−x2

(x2+y2)2
− y2−x2

(x2+y2)2

〉
= 0.

b. Let C be the unit circle with the usual parameterization; then
∮
C
F · dr =

∫ 2π

0
〈− sin t, cos t, 0

〉 ·
〈− sin t, cos t, 0〉 dt = 2π.

c. The theorem does not apply because the vector field is not defined at the origin, which is inside the
curve C. For example, the limit of the y-coordinate is different depending on the direction.

14.7.44

a. The circumference of the disk is 2πR, so the average circulation is 1
2πR

∫∫
S

(∇× F) · n dS

b. As R becomes small, because F and thus ∇ × F are continuous, ∇ × F can be made arbitrarily
close to(∇× F)P everywhere on S by taking R small enough. Approximately, then, (∇× F) · n ≈
(∇× F)P ·n, so that 1

2πR

∫∫
S

(∇× F) · n dS ≈ 1
2πR

∫∫
S

(∇× F)P · n dS = (∇× F)P · n 1
2πR

∫∫
S

1 dS =

(∇× F)P · n. As R becomes smaller, the goodness of the approximation of ∇×F becomes better, so
the value of the integral does as well.

14.7.45 By the chain rule, df
dy = ∂f

∂y + ∂f
∂z

∂z
∂y and similarly for g, h, so

My =
∂f

∂y
+

∂f

∂z

∂z

∂y
+ hzxy + zx

(
∂h

∂y
+

∂h

∂z

∂z

∂y

)
= fy + fzzy + hzxy + zx (hy + hzzy)

Nx =
∂g

∂x
+

∂g

∂z

∂z

∂x
+ hzyx + zy

(
∂h

∂x
+

∂h

∂z

∂z

∂x

)
= gx + gzzx + hzyx + zy (hx + hzzx) .

14.7.46 One argument is quite simple: a closed surface has a closed (empty!) boundary, so the integral of
F over that boundary is zero. Alternatively, choose any closed curve C dividing the surface into two pieces.
On one half, the outward-pointing normals give a counterclockwise orientation to the boundary (viewed
from above); on the other half, they give a clockwise orientation. Thus the integral

∫∫
S

(∇× F) · n dS =∮
C
F · dr + ∮−C

F · dr, which is zero.

14.7.47 Let F= 〈0, g (y, z) , h (y, z)〉 be a vector field in the yz-plane; for a region R in that plane, with
boundary C, the normal is 〈1, 0, 0〉. Now, ∇ × F =

〈
∂h
∂y − ∂g

∂z , 0, 0
〉
, so by Stokes’ theorem,

∮
C
F · dr =∫∫

S

(∇× F) · n dS =
∫∫
R

(
∂h
∂y − ∂g

∂z

)
dA.

14.8 The Divergence Theorem

14.8.1 The surface integral measures the flow across the boundary.

14.8.2 The volume integral measures the net expansion or contraction of the vector field in the region.
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14.8.3 The Divergence Theorem says that the flow across the boundary equals the net expansion or con-
traction of the field within the solid, so that either can be computed from the other.

14.8.4 Since ∇ · 〈2z + y,−x,−2x〉 = 0, the net flux is zero.

14.8.5 Since ∇ · 〈x, y, z〉 = 3, the Divergence theorem says that the net outward flux is equal to
∫∫∫
D

3 dV =

3 · volume ofS = 32π.

14.8.6 From Example 4 (or Exercise 71 in section 14.5), the divergence is zero.

14.8.7 The outward fluxes must be equal, since by the Divergence theorem the net flux, which is the
difference of the two, is zero.

14.8.8 Outward, since it is equal to the integral of divF over the cube.

14.8.9 For the volume integral, ∇ · F = 9, so that
∫∫∫
D

∇ · F dV =
∫∫∫
D

9 dV = 9 · 4
32

3π = 96π.

For the surface integral, with the usual parameterization of the sphere,

F · n = 〈2a sinu cos v, 3a sinu sin v, 4a cosu〉 · 〈a2 sin2 u cos v, a2 sin2 u sin v, a2 cosu sinu〉
= 2a3 sin3 u cos2 v + 3a3 sin3 u sin2 v + 4a3 cos2 u sinu

and here a = 2, so that∫∫
S

F · n dS = 8

∫∫
R

(
2 sin3 u cos2 v + 3 sin3 u sin2 v + 4 cos2 u sinu

)
dA

= 8

∫ 2π

0

∫ π

0

(
2 sin3 u cos2 v + 3 sin3 u sin2 v + 4 cos2 u sinu

)
du dv = 96π.

14.8.10 For the volume integral, ∇ · F = −3, so that
∫∫∫
D

(−3) dV = −3 · volume ofD = −24

For the surface integral, we have six surfaces:

S1 : x = −1 n = 〈−1, 0, 0〉
S2 : x = 1 n = 〈1, 0, 0〉
S3 : y = −1 n = 〈0,−1, 0〉
S4 : y = 1 n = 〈0, 1, 0〉
S5 : z = −1 n = 〈0, 0,−1〉
S6 : z = 1 n = 〈0, 0, 1〉

and on each of those surfaces a simple computation shows that we have F · n = −1. Thus

6∑
i=1

∫∫∫
Si

F · n dSi =

6∑
i=1

(−1 · area ofSi) = −24.

14.8.11 For the volume integral, ∇ · F = 0, so the volume integral is zero. For the surface integral, the
boundary ellipsoid can be parameterized by 〈2 sinu cos v, 2√2 sinu sin v, 2

√
3 cosu〉, and n = tu × tv =

〈4√6 sin2 u cos v, 4
√
3 sin2 u sin v, 4

√
2 sinu cosu〉 so that

F · n = 〈2
√
3 cosu− 2

√
2 sinu sin v, 2 sinu cos v,−2 sinu cos v〉·

〈4
√
6 sin2 u cos v, 4

√
3 sin2 u sin v, 4

√
2 sinu cosu〉 = −8 sin2 u cos v

(
−2

√
2 cosu+

√
3 sinu sin v

)
and then

∫∫
S

F · n dS =
∫ 2π

0

∫ π

0

(−8 sin2 u cos v
(−2

√
2 cosu+

√
3 sinu sin v

))
du dv = 0.
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14.8.12 For the volume integral, ∇ · F = 2 (x+ y + z), so that∫∫∫
D

∇ · F dV = 2

∫ 1

−1

∫ 2

−2

∫ 3

−3

(x+ y + z) dz dy dx = 0.

For the surface integral, we have six surfaces:

S1 : x = −1 n = 〈−1, 0, 0〉
S2 : x = 1 n = 〈1, 0, 0〉
S3 : y = −2 n = 〈0,−1, 0〉
S4 : y = 2 n = 〈0, 1, 0〉
S5 : z = −3 n = 〈0, 0,−1〉
S6 : z = 3 n = 〈0, 0, 1〉

A short computation shows that for S1: F ·n = −1, for S2: F ·n = 1, for S3: F ·n = −4, for S4: F ·n = 4,
for S5: F · n = −9, and for S6: F · n = 9. Thus, the surface integral is zero.

14.8.13 ∇ ·F = 0, so by the Divergence Theorem, the net outward flux is zero since the volume integral of
∇·F is zero.

14.8.14 ∇ ·F = 0, so by the Divergence Theorem, the net outward flux is zero since the volume integral of
∇·F is zero.

14.8.15 ∇ ·F = 0, so by the Divergence Theorem, the net outward flux is zero since the volume integral of
∇·F is zero.

14.8.16 If a = 〈a, b, c〉, then a× r is the field F in Exercise 15, so the net outward flux is zero.

14.8.17 By the Divergence theorem, we can compute the integral of ∇·F over the ball of radius
√
6 ∇·F = 2,

so the volume integral is∫∫∫
D

∇ · F dV = 2 · volume of sphere of radius
√
6 = 2 · 4

3
π · 6

√
6 = 16π

√
6.

14.8.18 ∇·F = 2x, so by the Divergence theorem, the outward flux is
∫∫∫
D

2x dV =
∫ 1

0

∫ 1

0

∫ 1

0
2x dx dy dz = 1.

14.8.19 ∇ ·F = 4, so by the Divergence theorem, the outward flux is 4 times the volume of the tetrahedron,
which is (by the formula for the volume of a pyramid), 1

3 times the area of the base times the height, or 1
6 .

So the outward flux is 2
3 .

14.8.20 ∇ · F = 2 (x+ y + z), so by the Divergence theorem, the outward flux is∫∫∫
D

2 (x+ y + z) dV = 2

∫ 5

0

∫ 2π

0

∫ π

0

r (5 sinu cos v + 5 sinu sin v + 5 cosu) du dv dr = 0.

14.8.21 ∇ ·F = −4, so by the Divergence theorem, the outward flux is −4 times the volume of the sphere,
so is −128

3 π.

14.8.22 ∇ · F = 0, so the outward flux is zero by the Divergence theorem.

14.8.23 ∇·F = 3, so the outward flux is 3 times the volume of the paraboloid, which is
∫ 2

0

∫ 2π

0
r
(
4− r2

)
dθ dr

= 8π, so the outward flux is 24π.
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14.8.24 ∇ · F = 3, so the outward flux is 3 times the volume of the cone. The area of the base of the cone
is 16π, so the outward flux is 3 · 1

3 · 16π · 4 = 64π.

14.8.25 ∇ ·F = −3, so the outward flux across the boundary of D is the outward flux across the sphere of
radius 4 minus that across the sphere of radius 3, which is −3 · 4

3π
(
43 − 23

)
= −224π.

14.8.26 ∇ · F = 4 |r|, so the outward flux across a sphere of radius r is∫∫∫
D

4
√
x2 + y2 + z2 dV =

∫ 2π

0

∫ π

0

∫ r

0

4ρ ρ2 sinu dρ du dv = 4πr4.

Thus the net outward flux across the boundary of the given region is 60π.

14.8.27 ∇ · F = 2
|r| , so the outward flux across a sphere of radius r is∫∫∫

D

2√
x2 + y2 + z2

dV =

∫ 2π

0

∫ π

0

∫ r

0

2

ρ
ρ2 sinu dρ du dv = 4πr2.

Thus the net outward flux across the boundary of the given region is 12π.

14.8.28 ∇ · F = 0, so the net outward flux is zero.

14.8.29 ∇ · F = 2 (x− y + z). The net outward flux is thus the difference in the outward flux across the
two planes, so is∫∫∫

D

2 (x− y + z) dV

= 2

(∫ 4

0

∫ 4−x

0

∫ 4−x−y

0

(x− y + z) dz dy dx−
∫ 2

0

∫ 2−x

0

∫ 2−x−y

0

(x− y + z) dz dy dx

)
= 20.

14.8.30 ∇ · F = 6, so the net outward flux is 6 times the difference in the volumes of the cylinders, so is
6 · (4π − π) · 8 = 144π.

14.8.31

a. False. For example, F = 〈y, 0, 0〉 has ∇ · F = 0 at all points of the unit sphere, but the normal to the

unit sphere,
〈

x
z ,

y
z , 1
〉
is not perpendicular to F at all points.

b. False. For example, any rotation field has ∇ ·F = 0, so that
∫∫
S

F ·n dS = 0 by the Divergence theorem,

but F is not in general constant.

c. True. This is because it is bounded by
∫∫∫
D

1 dV .

14.8.32 ∇ · F = 3; we compute the outward flux from the Divergence theorem as (where S1 is the upper
hemisphere of radius a.)∫∫∫

S1

∇ · F dV = 3

∫∫∫
S1

1 dV = 3

∫ 2π

0

∫ π/2

0

∫ a

0

r2 sinu dr du dv = 2πa3.

The the outward flux over the whole sphere is thus 4πa3.

14.8.33 Because ∇ · F = 0, the outward flux is zero from the Divergence theorem.
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14.8.34 Because ∇ · F = 0, the outward flux is zero from the Divergence theorem.

14.8.35 ∇ · F = 3 sin y, so the outward flux is∫∫∫
S

3 sin y dV =

∫ π/2

0

∫ 1

0

∫ x

0

3 sin y dz dx dy =
3

2
.

14.8.36

a. We have F · n = r
|r|p · r

|r| = |r|2
|r|p+1 = |r|1−p

. Thus the surface integral is
∫∫
S

F · n dS = a1−p ·
area of sphere = a1−p · 4πa2 = 4πa3−p.

b. The conditions of the Divergence Theorem require that F be defined and have continuous partials
everywhere inside the sphere; in particular, this must hold at the origin. Thus we must have p ≤ −2.
Then the volume integral is∫∫∫

S

3− p

|r|p dV = (3− p)

∫ a

0

∫ 2π

0

∫ π

0

r−p · r2 sinu du dv dr = 4πa3−p.

14.8.37

a. Either use Exercise 36(a), or compute F · n = r
|r| · r

|r| = 1, so the surface integral is∫∫
S

F · n dS = area of sphere = 4πa2.

b. ∇ · F = 2 |r|−1
, so if D is the shell between the spheres of radius ε and a, the volume integral is∫∫∫

S

2 |r|−1
dV = 2

∫ a

ε

∫ 2π

0

∫ π

0

r sinu du dv dr = 4π
(
a2 − ε2

)
and limε→0 4π

(
a2 − ε2

)
= 4πa2.

14.8.38

a. ∂
∂xϕ = x

x2+y2+z2 , so that ∇ϕ = 1
|r|2 〈x, y, z〉 = r

|r|2 .

b. n = r
|r|2 , so that F · n = 1

|r|2 . Then
∫∫
S

F · n dS = 1
a2

∫ 2π

0

∫ π

0
a3 sinu du dv = 4πa.

c. By Exercise 36, divF = ∇ · F = 1
|r|2 .

d. If D is the shell between the spheres of radius ε anda, the volume integral is∫∫∫
D

|r|−2
dV = 2

∫ a

ε

∫ 2π

0

∫ π

0

1

r2
r sinu du dv dr = 4π (a− ε)

and limε→0 4π (a− ε) = 4πa.

14.8.39

a. By Exercise 36, the flux of E across a sphere of radius a is Q
4πε0

4πa3−3 = Q
ε0
.

b. The net outward flux across S is the difference of the fluxes across the inner and outer spheres; but by
part (a), these are equal, so the net flux across S is zero.
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c. The left-hand side is the flux across the boundary of D, while the right-hand side is the sum of the
charge densities at each point of D. The statement says that the flux across the boundary, up to
multiplication by a constant, is the sum of the charge densities in the region.

d. By the Divergence theorem, and using part (c),

1

ε0

∫∫∫
D

q (x, y, z) dV =

∫∫
S

E · n dS =

∫∫∫
D

∇ · EdV

and because this holds for all regions D, we conclude that ∇ ·E = q(x,y,z)
ε0

.

e. ∇2ϕ = ∇ ·∇ϕ = ∇ ·E = q(x,y,z)
ε0

.

14.8.40

a. By Exercise 36, the flux of F across a sphere of radius a is 4πGMa3−p = 4πGM .

b. Since the outward flux across a sphere, from part (a), is independent of the radius of the sphere, the
outward flux across the spheres of radii a and b are equal, so their difference, which is the net flux
across the spherical shell bounded by them, is zero.

c. The left hand side is the flux across the boundary of D, while the right-hand side is the sum of the
mass density inside D. The statement says that the flux across the boundary is determined by (is a
constant multiple of) the sum of the mass density inside D.

d. By the Divergence theorem, and using part (c),

4πG

∫∫∫
D

ρ (x, y, z) dV =

∫∫
S

F · n dS =

∫∫∫
D

∇ · FdV

and because this holds over all regions D, we have ∇ · F = 4πGρ (x, y, z).

e. ∇2ϕ = ∇ ·∇ϕ = ∇ · F = 4πGρ (x, y, z).

14.8.41 F = −∇T = 〈−1,−2,−1〉, so that ∇ · F = 0 and the heat flux is zero.

14.8.42 F = −∇T = 〈−2x,−2y,−2z〉, so that ∇ ·F = −6, and the heat flux is −6 times the volume of the
region, or −6.

14.8.43 F = −∇T = 〈0, 0, e−z〉; then ∇ ·F = −e−z. The heat flux is then
∫ 1

0

∫ 1

0

∫ 1

0
−e−z dx dy dz = e−1−1.

14.8.44 From Exercise 42, ∇ · F = −6, so the heat flux is −6 times the volume of the sphere, or −8π.

14.8.45 F= −∇T = 〈200xe−x2−y2−z2

, 200ye−x2−y2−z2

, 200ze−x2−y2−z2〉
. Then

∇ · F = 200e−x2−y2−z2 (
3− 2x2 − 2y2 − 2z2

)
so that ∫∫∫

D

∇ · F dV = 200

∫ 2π

0

∫ π

0

∫ a

0

e−r2
(
3− 2r2

)
r2 sinu dr du dv = 800πa3e−a2

.

14.8.46

a. By Exercise 36, the net flux across a sphere of radius a centered at the origin is 4πa3−p, which is
independent of a only if p = 3.
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b. In the general case, we have ∇ · F = 3−p
|r|p , so∫∫∫

D

∇ · F dV =

∫ b

a

∫ ϕ2

ϕ1

∫ θ2

θ1

3− p

rp
r2 sinu du dv dr

=
(
a3−p − b3−p

)
(ϕ1 cos θ1 − ϕ2 cos θ1 − ϕ1 cos θ2 + ϕ2 cos θ2)

=
(
a3−p − b3−p

)
(ϕ1 − ϕ2) (cos θ1 − cos θ2) ,

and these are in general zero only if 3− p = 0.

14.8.47

a. ϕx (x, y, z) = G′ (ρ) ρx = G′ (ρ) · x√
x2+y2+z2

= G′ (ρ) x
ρ , so that ∇ϕ = F = G′ (ρ) r

ρ .

b. The normal to the sphere of radius a is
〈
x
z ,

y
z , 1〉, so on that sphere (where ρ = a)

F · n = G′ (a)
x2

z + y2

z + z

a
= G′ (a)

a2−z2

z + z

a
= G′ (a)

a

z
,

and then the surface integral over the upper hemisphere is∫∫
S

F · n dS = aG′ (a)
∫ a

0

∫ 2π

0

r√
a2 − r2

dθ dr = 2πa2G′ (a) ,

so the total surface integral is twice that, or 4πa2G′ (a).

c. By the Chain Rule,
∂

∂x
G′ (ρ)

x

ρ
= G′′ (ρ) ρx

x

ρ
+G′ (ρ)

y2 + z2

ρ3

so that (noting that ρx = x
ρ )

∇ · F = G′′ (ρ)
(
x2 + y2 + z2

ρ2

)
+G′ (ρ)

2
(
x2 + y2 + z2

)
ρ3

= G′′ (ρ) +
2G′ (ρ)

ρ
.

d. By the Divergence theorem, the flux is also given by∫∫∫
D

∇ · F dV =

∫ a

0

∫ π

0

∫ 2π

0

ρ2 sinu

(
G′′ (ρ) +

2G′ (ρ)
ρ

)
dv du dρ

= 2π

∫ a

0

∫ π

0

sinu
(
ρ2 G′′ (ρ) + 2ρG′ (ρ)

)
du dρ

= 2π

∫ a

0

(− cosu)
(
ρ2 G′′ (ρ) + 2ρG′ (ρ)

) ∣∣u=π

u=0
dρ

= 4π

∫ a

0

(
ρ2 G′′ (ρ) + 2ρG′ (ρ)

)
dρ.

It remains to evaluate this integral. Using integration by parts, we have

4π

[∫ a

0

(
ρ2 G′′ (ρ) + 2ρG′ (ρ)

)
dρ

]
= 4π

[
ρ2 G′ (ρ)

∣∣ρ=a

ρ=0
−
∫ a

0

2ρG′ (ρ) dρ
]

= 4π

[
a2G′ (a)−

∫ a

0

2ρG′ (ρ) dρ
]

and the remaining integrals cancel, giving 4πa2G′ (a) as the final result.
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14.8.48

a. Rearrange the given equation and integrate over D to get∫∫∫
D

u∇ · F dS =

∫∫∫
D

∇ · (uF) dS −
∫∫∫
D

F ·∇u dS.

By the Divergence theorem, the first term on the right side is equal to
∫∫
S

uF · n dS where S is the

boundary of D. The result follows.

b. If you set F = 〈f (x) , 0, 0〉 andu (x, y, z) = g (x), then

∇ · F = f ′ (x) u∇ · F = f ′ (x) g (x)

uF = 〈f (x) g (x) , 0, 0〉 ∇ · (uF) = (fg)
′
(x)

∇u = 〈g′ (x) , 0, 0〉 F ·∇u = f (x) g′ (x)

so that∫∫∫
D

f ′ (x) g (x) dV =

∫∫∫
D

(fg)
′
(x) dV −

∫∫∫
D

f (x) g′ (x) dV = f (x) g (x)−
∫∫∫
D

f (x) g′ (x) dV,

which is the usual rule for integration by parts.

c. One approach is to set u = 1 and F = 1
2 〈x2z2, x2y2, y2z2〉. Gauss’ formula then gives∫∫∫

D

(
x2y + y2z + z2x

)
=

1

2

∫∫
S

〈x2z2, x2y2, y2z2〉 dS.

The integral on the right is computed by integrating over each face of the cube; on faces where x is
constant, the normal is either 〈1, 0, 0〉 or 〈−1, 0, 0〉 depending on whether x is 1 or 0; similarly for y
and z. Considering x first, when x = 0, this surface integral becomes 0 on that face (the integrand
is x2z2 at x = 0), while for x = 1 it becomes z2. In that case, the integral is 1

3 . This holds for each
dimension, so the total integral on the right side is 3 · 1

3 = 1, and thus the integral on the left is 1
2 .

14.8.49 Suppose F= 〈f, g〉 wheref = f (x, y), g = g (x, y), and supposeu = u (x, y). Then ∇ · F = fx + gy,
and ∇u = 〈ux, uy〉. Then we have for this case∫∫∫

D

u∇ · F dS =

∫∫
R

u (fx + gy) dA

∫∫
S

uF · n dS =

∮
C

uF · n ds

∫∫∫
D

F ·∇u dS =

∫∫
R

(f ux + g uy) dA,

and the result follows. Setting u = 1 then gives
∫∫
R

(fx + gy) dA =
∮
C
F · n ds, which is the flux form of

Green’s Theorem.

14.8.50 Apply the Divergence Theorem to the vector field F = u∇u. By the product rule (Thm. 14.11),
we have ∇ · (v∇v) = ∇u ·∇v + u∇2v, so the Divergence theorem says that∫∫∫

D

(
u∇2v +∇u ·∇v

)
dV =

∫∫∫
D

(∇ · (v∇v)) dV =

∫∫
S

u∇v · n dS.
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14.8.51 From Exercise 50, we have both∫∫∫
D

(
u∇2v +∇u ·∇v

)
dV =

∫∫
S

u∇v · n dS

∫∫∫
D

(
v∇2u+∇v ·∇u

)
dV =

∫∫
S

v∇u · n dS,

where the second formula is obtained by switching u and v in the first formula. Subtracting the second from
the first, and using the fact that the dot product is commutative and integrals are linear, we have the desired
result: ∫∫∫

D

(
u∇2v − v∇2u

)
dV =

∫∫
S

(u∇v − v∇u) · n dS.

14.8.52 A computation shows that ∇ϕ = −p r
|r|p+2 . Thus the potential field ∇ϕ = 0 for p = 0, so certainly

∇2ϕ = 0 as well. Otherwise, for p = 1, we have ∇ϕ = −r
|r|3 ; this is an inverse square field, and we have seen

many times (e.g. Exercise 36(b)) that the divergence of such a field is zero. Thus ∇2ϕ = 0 for p = 1 as well.

14.8.53 The Divergence theorem applied to the field∇ϕ says that∫∫∫
D

(∇2ϕ
)
dV =

∫∫
S

∇ϕ · n dS

and if ϕ is harmonic, the left side is zero.

14.8.54 Apply Green’s First Identity (Exercise 49) to u and u to give∫∫∫
D

(
u∇2u+∇u ·∇u

)
dV =

∫∫
S

u∇u · n dS.

Because ∇2u = 0 and ∇u ·∇u = |∇u|2, the result follows.

14.8.55 If T is a vector field 〈t, u, v〉, then by
∫∫

T, we mean 〈∫∫ t, ∫∫ u, ∫∫ v〉.
a. Let F = 〈f, g, h〉 and suppose n = 〈n1, n2, n3〉. Then

n× F = 〈n2h− n3g, n3f − n1h, n1g − n2f〉
∇× F =

〈∂h
∂y

− ∂g

∂z
,
∂f

∂z
− ∂h

∂x
,
∂g

∂x
− ∂f

∂y

〉
Considering first the i component of these vectors, note that for the vector field F1 = 〈0, h,−g〉, the
Divergence theorem says that∫∫

S

(n2h− n3g) dS =

∫∫
S

〈0, h,−g〉 · 〈n1, n2, n3〉 dS =

∫∫
S

F1 · n dS =

∫∫∫
D

(∇ · F1) dR

=

∫∫
D

(
∂h

∂y
− ∂g

∂z

)
dA

and similarly for the second and third components.

b. Similarly to part (a), note that

n×∇ϕ = n× 〈ϕx, ϕy, ϕz〉 = 〈n2ϕz − n3ϕy, n3ϕx − n1ϕz, n1ϕy − n2ϕx〉.
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Looking first at the x component of this vector, we have

n2ϕz − n3ϕy = 〈0, ϕz,−ϕy〉 · 〈n1, n2, n3〉 = (∇× 〈ϕ, 0, 0〉) · 〈n1, n2, n3〉

so that Stokes’ theorem says that, writing F = 〈ϕ, 0, 0〉,∫∫
S

(∇× 〈ϕ, 0, 0〉) · 〈n1, n2, n3〉 dS =

∫∫
S

(∇× F) · n dS =

∮
C

F · dr =

∮
C

〈ϕ, 0, 0〉 · dr =

∮
C

ϕdr.

and similarly for the second and third components.

Chapter Fourteen Review

1

a. False. The curl is ∂
∂x (x)− ∂

∂y (−y) = 2.

b. True. The curl of a conservative vector field is zero.

c. False. For example, 〈−y, x〉 and 〈0, 2x〉 both have curl 2.

d. False. For example, 〈x, 0, 0〉 and 〈0, y, 0〉 both have divergence 1.

e. True. By the Divergence theorem, the integral is equal to
∫∫∫
D

∇ · F dV =
∫∫∫
D

3 dV.

2

a. Choice F, because this is a radial vector field whose magnitude increases with distance from the origin.

b. Choice E, because this is a rotational field.

c. Choice D, because this is also a radial field, but the magnitude is constant.

d. Choice C, because this field is vertical along the line y = x.

e. Choice B, because the magnitude decreases rapidly away from the origin.

f. Choice A, because this field is periodic.

3 ∇ϕ = 〈2x, 8y〉.

�6 �4 �2 2 4 6 x

�6

�4

�2

2

4

6

y
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4 ∇ϕ = 〈x,−y〉.

�2 �1 1 2 x

�2

�1

1

2

y

5 ∇ϕ = − r
|r|3

6 ∇ϕ = −e−x2−y2−z2〈x, y, z〉.

7

a. 〈x, y〉 is an outward normal; for (x, y) on the circle, |〈x, y〉| =
√
x2 + y2 = 2, so the unit outward

normal is 1
2 〈x, y〉.

b. The normal component is 2〈y,−x〉 · 1
2 〈x, y〉 = 0.

c. The normal component is 1
x2+y2 〈x, y〉 · 1

2 〈x, y〉 = 1
x2+y2 · 1

2 · (x2 + y2
)
= 1

2 .

8 We have | r′ (t)| = 5, so the line integral is∫
C

(
x2 − 2xy + y2

)
ds = 5

∫ π

0

(
25 cos2 t− 10 cos t sin t+ 25 sin2 t

)
dt = 25

∫ π

0

(5− 2 sin t cos t) dt = 125π.

9 Here| r′ (t)| = √
1 + 9 + 36 =

√
46, so∫

C

y e−xz ds =
√
46

∫ ln 8

0

3te6t
2

dt =

√
46

4

(
e54 (ln 2)2 − 1

)
.

10 Parameterize the line by〈−3t, 1 + 6t, 2− 3t〉 for 0 ≤ t ≤ 1. Then| r′ (t)| = √
9 + 36 + 9 =

√
54 = 3

√
6, so∫

C

(
xz − y2

)
ds = 3

√
6

∫ 1

0

(
3t (3t− 2)− (6t+ 1)

2
)
dt = −57

√
6.

11 For the first parameterization we have| r′ (t)| = 2, so∮
C

(x− 2y − 3z) ds = 2

∫ 2π

0

(2 cos t− 4 sin t) dt = 0.

For the second parameterization we have | r′ (t)| =
√
16t2 sin2 (t2) + 16t2 cos2 (t2) = 4t, so

∮
C

(x− 2y − 3z) ds =

∫ √
2π

0

(
8t cos t2 − 16t sin t2

)
dt = 0.

12

a. Parameterize the path from P to Q by 〈1− t, t, 0〉 for 0 ≤ t ≤ 1; then the work done is
∫
C
〈1, 2y,−4z〉 ·

dr =
∫ 1

0
〈1, 2t, 0〉 · 〈−1, 1, 0〉 dt = ∫ 1

0
(2t− 1) dt = 0.
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b. Parameterize the path from P to O by 〈1 − t, 0, 0〉, and the path from O to Q by 〈0, t, 0〉, both for

0 ≤ t ≤ 1. Then the work done is
∫
C
〈1, 2y,−4z〉 ·dr =

∫ 1

0
(〈1, 0, 0〉 · 〈−1, 0, 0〉 + 〈1, 2t, 0〉 · 〈0, 1, 0〉) dt =∫ 1

0
(2t− 1) dt = 0.

c. Parameterize the quarter circle by 〈cos t, sin t, 0〉 for 0 ≤ t ≤ π
2 ; then the work done is

∫
C
〈1, 2y,−4z〉 ·

dr =
∫ π/2

0
〈1, 2 sin t, 0〉 · 〈− sin t, cos t, 0〉 dt = ∫ π/2

0
(2 cos t sin t− sin t) dt = 0.

d. Yes, the work is independent of the path; this is a conservative vector field with potential function
x+ y2 − 2z2.

13 Parameterize the first path by r1 (t) = 〈0, t, 0〉, and the second by r1 (t) = 〈0, 1, 4t〉, both for 0 ≤ t ≤ 1.
Then r′1 (t) = 〈0, 1, 0〉 and r′2 (t) = 〈0, 0, 4〉∫

C

F · dr =

∫ 1

0

(〈−t, 0, 0〉 · 〈0, 1, 0〉+ 〈−1, 4t, 0〉 · 〈0, 0, 4〉) dt = 0.

14 r′ (t) = 〈2t, 6t,−2t〉, so∫
C

F·dr =

∫ 2

1

1

(11t4)
3/2

〈t2, 3t2,−t2〉·〈2t, 6t,−2t〉 dt = 11−3/2

∫ 2

1

t−6·22t3 dt = 11−3/2

∫ 2

1

22t−3 dt =
3

44

√
11.

15 The circulation is∫
C

F ·Tds =

∫ 2π

0

〈2 sin t− 2 cos t, 2 sin t〉 · 〈−2 sin t, 2 cos t〉 dt =
∫ 2π

0

(−4 sin2 t+ 8 sin t cos t
)
dt = −4π.

The outward flux is ∫
C

F · n ds =

∫ 2π

0

((2 sin t− 2 cos t) (2 cos t)− (2 sin t) (−2 sin t)) dt

= 4

∫ 2π

0

(
sin t cos t− cos2 t+ sin2 t

)
dt = 0.

16 The circulation is ∫
C

F ·Tds =

∫ 2π

0

〈2 cos t, 2 sin t〉 · 〈−2 sin t, 2 cos t〉 dt = 0.

The outward flux is∫
C

F · n ds =

∫ 2π

0

((2 cos t) (2 cos t)− (2 sin t) (−2 sin t)) dt = 8π.

17 The circulation is ∫
C

F ·Tds =
1

4

∫ 2π

0

〈2 cos t, 2 sin t〉 · 〈−2 sin t, 2 cos t〉 dt = 0.

The outward flux is∫
C

F · n ds =
1

4

∫ 2π

0

((2 cos t) (2 cos t)− (2 sin t) (−2 sin t)) dt = 2π.

18 The circulation is∫
C

F ·Tds =

∫ 2π

0

〈2 cos t− 2 sin t, 2 cos t〉 · 〈−2 sin t, 2 cos t〉 dt = 4

∫ 2π

0

(− sin t cos t+ 1) dt = 4π.

The outward flux is∫
C

F · n ds =

∫ 2π

0

((2 cos t− 2 sin t) (2 cos t)− (2 cos t) (−2 sin t)) dt = 4

∫ 2π

0

(
cos2 t

)
dt = 4π.
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19 The normal to the plane x = 0 is 〈1, 0, 0〉, so the flux is∫
C

F · n ds =

∫ 1/2

−1/2

∫ L

−L

v0
(
L2 − y2

)
dy dz =

4

3
v0L

3..

20 A potential function is xy2.

21 A potential function is xy + yz2.

22 A potential function is ex cos y.

23 A potential function is xyez.

24

a. F = 〈2xy, x2〉, so ∫
C
F ·dr =

∫ 3

0
〈2 (9− t2

)
t,
(
9− t2

)2〉 · 〈−2t, 1〉 dt = ∫ 3

0

(
−4t2

(
9− t2

)
+
(
9− t2

)2)
dt

=
∫ 3

0

(
9− 5t2

) (
9− t2

)
dt = 0

b. Because F = ∇ϕ, where ϕ (x, y) = x2y, we have
∫
C
F · dr = ϕ (3)− ϕ (0) = 0− 0 = 0.

25

a. F = 〈yz, xz, xy〉, so ∫
C

F · dr =

∫ π

0

〈 t
π
sin t,

t

π
cos t, sin t cos t

〉 · 〈− sin t, cos t,
1

π

〉
dt

=

∫ π

0

(
t

π

(
cos2 t− sin2 t

)
+

1

π
sin t cos t

)
dt = 0.

b. F = ∇ (xyz) = ∇ϕ, so∫
C

F · dr = ϕ (cosπ sinπ)− ϕ

(
cos 0 sin 0 · 0

π

)
= 0− 0 = 0.

26

a. Parameterize C by the four paths r1 (t) = 〈−1 + 2t,−1〉, r2 (t) = 〈1,−1 + 2t〉, r3 (t) = 〈1 − 2t, 1〉,
r4 (t) = 〈−1, 1−2t〉, for 0 ≤ t ≤ 1. Then r′1 (t) = 〈2, 0〉, r′2 (t) = 〈0, 2〉, r′3 (t) = 〈−2, 0〉, r′4 (t) = 〈0,−2〉,
and∫

C

F · dr

=

∫ 1

0

(〈−1 + 2t, 1〉 · 〈2, 0〉+ 〈1, 1− 2t〉 · 〈0, 2〉+ 〈1− 2t,−1〉 · 〈−2, 0〉+ 〈−1, 2t− 1〉 · 〈0,−2〉) dt
=

∫ 1

0

(4t− 2 + 2− 4t+ 4t− 2 + 2− 4t) dt =

∫ 1

0

0 dt = 0.

b. F = ∇ϕ, where ϕ (x, y) = 1
2

(
x2 − y2

)
, so the integral around any closed curve is zero.

27

a.
∫
C
F · dr =

∫ 2π

0

〈
sin t, 4,− cos t

〉 · 〈− sin t, cos t, 0
〉
dt =

∫ 2π

0

(− sin2 t+ 4 cos t
)
dt = −π.

b. The vector field is not conservative, since for example ∂
∂y (y) �= ∂

∂z (x).

28 For p �= 2, F = ∇ϕ where ϕ = −1
(p−2)|r|p−2 , while for p = 2, ϕ = 1

2 ln
(
|r|2
)
, as can be seen by taking the

gradient. Thus F is conservative on all of R2 for p < 0.
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29 By the circulation form of Green’s Theorem,∮
C

xy2 dx+ x2y dy =

∫∫
R

(
∂

∂x

(
x2y
)− ∂

∂y

(
xy2
))

dA =

∫∫
R

(2xy − 2xy) dA = 0.

30 By the circulation form of Green’s Theorem,∮
C

(
−3y + x3/2

)
dx+

(
x− y2/3

)
dy =

∫∫
R

(
∂

∂x

(
x− y2/3

)
− ∂

∂y

(
−3y + x3/2

))
dA =

∫∫
R

4 dA = 4π.

31 By the circulation form of Green’s Theorem,∮
C

(
x3 + xy

)
dy +

(
2y2 − 2x2y

)
dx =

∫∫
R

(
∂

∂x

(
x3 + xy

)− ∂

∂y

(
2y2 − 2x2y

))
dA

=

∫∫
R

(
3x2 + y − 4y + 2x2

)
dA =

∫ 1

−1

∫ 1

−1

(
5x2 − 3y

)
dy dx =

20

3
.

32 By the flux form of Green’s Theorem,
∮
C
3x3 dy − 3y3 dx =

∫∫
R

(
9x2 + 9y2

)
dA = 9

∫ 4

0

∫ 2π

0
r3 dθ dr =

1152π. Because the orientation is clockwise, the answer is −1152π.

33 The ellipse is x2

16 + y2

4 = 1; parameterize it by r(t) = 〈x, y〉 = 〈4 cos t, 2 sin t〉, 0 ≤ t ≤ 2π. Then the area
of the region is

1

2

∮
C

((4 cos t) (2 cos t)− (2 sin t) (−4 sin t)) dt =

∫ 2π

0

4
(
cos2 t+ sin2 t

)
dt = 8π.

34 dx = −3 cos2 t sin t dt, anddy = 3 sin2 t cos t dt, so the area of the hypocycloid is

1

2

∮
C

x dy − y dx =
1

2

∫ 2π

0

((
cos3 t

) (
3 sin2 t cos t

)− (sin3 t
) (−3 cos2 t sin t

))
dt

=
3

2

∫ 2π

0

(
cos4 t sin2 t+ sin4 t cos2 t

)
dt =

3π

8
.

35

a. F =
(
x2 + y2

)−1/2 〈x, y〉, so the circulation is∮
C

F · dr =

∫∫
R

(
∂

∂x

(
y√

x2 + y2

)
− ∂

∂y

(
x√

x2 + y2

))
dA

=

∫∫
R

(
−xy√
x2 + y2

− −xy√
x2 + y2

)
dA = 0.

b. The flux is∮
C

F · n ds =

∫∫
R

(
∂

∂x

(
x√

x2 + y2

)
+

∂

∂y

(
y√

x2 + y2

))
dA

=

∫∫
R

(
y2

(x2 + y2)
3/2

+
x2

(x2 + y2)
3/2

)
dA =

∫∫
R

(
1√

x2 + y2

)
dA =

∫ π

0

∫ 3

1

1 dr dθ = 2π.
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36

a. The circulation is
∮
C
F · dr =

∫∫
R

(
∂
∂x (x cos y)− ∂

∂y (− sin y)
)
dA =

∫ π/2

0

∫ π/2

0
2 cos y dy dx = π.

b. The flux is
∮
C
F · n ds =

∫∫
R

(
∂
∂x (− sin y) + ∂

∂y (x cos y)
)
dA =

∫ π/2

0

∫ π/2

0
(−x sin y) dy dx = − 1

8π
2.

37

a. For F to be conservative, we must have ∂
∂y (ax+ by) = ∂

∂x (cx+ dy), or b = c.

b. For F to be source-free, we must have ∂
∂x (ax+ by) = − ∂

∂y (cx+ dy), or a = −d.

c. F is both conservative and source-free if b = c and a = −d, i.e. if F = 〈ax+ by, bx− ay〉.
38 The divergence is ∂

∂x (yz) + ∂
∂y (xz) + ∂

∂z (xy) = 0. The curl is

〈 ∂

∂y
(xy)− ∂

∂z
(xz) ,

∂

∂z
(yz)− ∂

∂x
(xy) ,

∂

∂x
(xz)− ∂

∂y
(yz)〉 = 0.

The field is both source-free and irrotational.

39 The divergence is 4 |r|. The curl is

〈 ∂

∂y
(z |r|)− ∂

∂z
(y |r|) , ∂

∂z
(x |r|)− ∂

∂x
(z |r|) , ∂

∂x
(y |r|)− ∂

∂y
(x |r|)〉 = 0.

The field is irrotational but not source-free.

40 The divergence is ∂
∂x (sinxy) + ∂

∂y (cos yz) + ∂
∂z (sinxz) = y cosxy − z sin yz + x cosxz. The curl is

〈y sin yz,−z cosxz,−x cosxy〉. The field is neither irrotational nor source-free.

41 The divergence is ∂
∂x

(
2xy + z4

)
+ ∂

∂y

(
x2
)
+ ∂

∂z

(
4xz3

)
= 2y + 12xz2. The curl is

〈 ∂

∂y

(
4xz3

)− ∂

∂z

(
x2
)
,
∂

∂z

(
2xy + z4

)− ∂

∂x

(
4xz3

)
,
∂

∂x

(
x2
)− ∂

∂y

(
2xy + z4

)〉 = 0,

so the field is irrotational but not source-free.

42 |r|4 =
(
x2 + y2 + z2

)2
, so

∇ (x2 + y2 + z2
)−2

=
〈−4x

(
x2 + y2 + z2

)−3
,−4y

(
x2 + y2 + z2

)−3
,−4z

(
x2 + y2 + z2

)−3〉
= − 4 r

|r|6 .

Now
∂

∂x

(
−4x

(
x2 + y2 + z2

)−3
)
= −4

(
y2 + z2 − 5x2

) (
x2 + y2 + z2

)−4
,

so that

∇ ·∇ |r|−4
= −4

(
x2 + y2 + z2

)−4 (
y2 + z2 − 5x2 + x2 + z2 − 5y2 + x2 + y2 − 5z2

)
=

12

|r|6 .

43

a. The curl is

〈 ∂

∂y
(−y)− ∂

∂z
(x) ,

∂

∂z
(z)− ∂

∂x
(−y) ,

∂

∂x
(x)− ∂

∂y
(z)〉 = 〈−1, 1, 1〉.

So the scalar component in the direction of 〈1, 0, 0〉 is〈−1, 1, 1〉·〈1, 0, 0〉 = −1, and the scalar component
in the direction of

〈
0,− 1√

2
, 1√

2

〉
is
〈
0,− 1√

2
, 1√

2

〉 · 〈1, 0, 0〉 = 0.
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b. The scalar component of the curl is a maximum in the direction of the curl, i.e. in the direction
〈−1, 1, 1〉, whose unit vector is 1√

3
〈−1, 1, 1〉.

44 The curl of the vector field is ∇ × F = 〈0, 0, 2〉, and the component of the curl along a unit vector n is
thus 〈0, 0, 2〉 · n.

a. It does not spin, because 〈0, 0, 2〉 · 〈1, 0, 0〉 = 0.

b. The scalar component of the curl in the direction 〈0, 0, 1〉 is 2.
c. It spins the fastest when the paddle wheel is aligned with 〈0, 0, 1〉.

45 Parameterize the sphere by 〈3 sinu cos v, 3 sinu sin v, 3 cosu〉, 0 ≤ u ≤ π
2 ; 0 ≤ v ≤ 2π. Then |n| = 9 sinu,

so ∫∫
S

1 dS =

∫∫
R

9 sinu dA =

∫ 2π

0

∫ π/2

0

9 sinu du dv = 18π.

46 Parameterize the surface by 〈v cosu, v sinu, v〉 for 2 ≤ v ≤ 4, 0 ≤ u ≤ 2π. Then∫∫
S

1 dS =

∫∫
R

√
2 v dA =

√
2

∫ 4

2

∫ 2π

0

v du dv = 12π
√
2.

47 The volume element is
√
12 + 12 + 12 =

√
3, so the area is∫∫

S

1 dS =
√
3

∫∫
R

1 dA =
√
3

∫ 1

−1

∫ 1

−1

1 dx dy = 4
√
3.

48 The volume element is
√
z2x + z2y + 1 =

√
2 (x2 + y2) + 1, so the integral is

∫∫
S

1 dS =

∫∫
R

√
2 (x2 + y2) + 1 dA =

∫ 2

0

∫ 2π

0

r
√
2r2 + 1 dθ dr =

26

3
π.

49 The volume element for z = 2− x− y is
√
3, so the integral is∫∫

S

(1 + yz) dS =
√
3

∫∫
R

(1 + yz) dA =
√
3

∫ 2

0

∫ 2−x

0

(1 + y (2− x− y)) dy dx =
8
√
3

3
.

50 The normal to the curved surface of the cylinder at (x, y, z) is 〈0, y, z〉, so∫∫
S

〈0, y, z〉 · n dS = a

∫∫
R

(
y2 + z2

)
dA = a2 · area ofR = 32πa3.

51 Parameterize the curved surface using spherical coordinates, so that |n| = 4 sinu; then for the curved
surface we have∫∫

S

(x− y + z) dS = 8

∫ 2π

0

∫ π/2

0

(sinu cos v − sinu sin v + cosu) sinu du dv = 8π.

For the planar surface, n = 〈0,−1, 0〉 so that |n| = 1 and∫∫
S

(x− y + z) dS =

∫∫
R

(x− y + z) dA =

∫ 2

0

∫ 2π

0

r (cos θ − sin θ) dθ dr = 0

and the total integral is thus 8π.
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52 The normal to the cylinder is 〈x, y, 0〉 with magnitude 1, so∫∫
S

F · n dS =

∫∫
R

〈x, y, z〉 · 〈x, y, 0〉 dA =

∫∫
R

(
x2 + y2

)
dA =

∫∫
R

1 dA = 32π.

53 F =
(
x2 + y2 + z2

)−1/2 〈x, y, z〉; using spherical coordinates to parameterize the sphere gives∫∫
S

F · n dS =

∫∫
R

1

a
〈a sinu cos v, a sinu sin v, a cosu〉 · 〈a2 sin2 u cos v, a2 sin2 u sin v, a2 sinu cosu〉 dA

=

∫∫
R

a2 sinu dA =

∫ 2π

0

∫ π

0

a2 sinu du dv = 4πa2.

54

a. Using the explicit description, we have
√

z2z + z2y + 1 =
√

4 (x2 + y2) + 1, so

∫∫
S

1 dS =

∫∫
R

√
4 (x2 + y2) + 1 dA =

∫ 2

0

∫ 2π

0

r
√
4r2 + 1 dθ dr =

π

6

(
17
√
17− 1

)
.

b. Using the given parametric description, we have |n| = v
√
1 + 4v2, so∫∫

S

1 dS =

∫∫
R

v
√

1 + 4v2 dA =

∫ 2π

0

∫ 2

0

v
√

1 + 4v2 dv dθ =
π

6

(
17
√
17− 1

)
.

c. Using the given parametric description, we have

|tu × tv| =
∣∣∣∣〈−√

v sinu,
√
v cosu, 0〉 × 〈−1

2
v−1/2 cosu,

1

2
v−1/2 sinu, 1

〉∣∣∣∣ = 1

2

√
4v + 1

so that ∫∫
S

1 dS =
1

2

∫∫
R

√
4v + 1 dA =

1

2

∫ 2π

0

∫ 4

0

√
4v + 1 dv dθ =

π

6

(
17
√
17− 1

)
.

55

a. The base of S is the surface where z = 0, or the circle x2 + y2 = a2. Similarly, the base of the
paraboloid is found by setting z = 0; simplifying gives again x2 + y2 = a2. The high point of the
hemisphere (maximum z-coordinate) occurs when x = y = 0; then z = a. Similarly, the high point on
the paraboloid also occurs when x = y = 0 and again this gives z = a.

b. The graph of the paraboloid is inside that of the hemisphere everywhere, so we would expect it to have
smaller surface area. We know that the surface area of the hemisphere is 4πa2 · 1

2 = 2πa2. For the

paraboloid, we have zx = − 2x
a , zy = − 2y

a , so that |n| =
√

4(x2+y2)
a2 + 1, so

∫∫
S

1 dS =
1

a

∫∫
R

√
4 (x2 + y2) + a2 dA =

1

a

∫ a

0

∫ 2π

0

r
√
4r2 + a2 dθ dr =

(
5
√
5− 1

)
6

πa2,

which is in fact smaller than the area of the hemisphere.
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c. n = 〈a2 sin2 u cos v, a2 sin2 u sin v, a2 cosu sinu〉, so∫∫
S

F · n dS =

∫∫
R

〈a sinu cos v, a sinu sin v, a cosu〉 · 〈a2 sin2 u cos v, a2 sin2 u sin v, a2 cosu sinu〉 dA

= a3
∫ 2π

0

∫ π/2

0

(
sin3 u cos2 v + sin3 u sin2 v + cos2 u sinu

)
du dv

= a3
∫ 2π

0

∫ π/2

0

(
sin3 u+ cos2 u sinu

)
du dv = a3

∫ 2π

0

∫ π/2

0

sinu du dv = 2πa3.

d. For the paraboloid, the parameterization is
〈
v cosu, v sinu, a− v2

a

〉
, 0 ≤ v ≤ a, 0 ≤u≤ 2π, and

n = 〈−v sinu, v cosu, 0〉 × 〈cosu, sinu,−2v

a

〉
=
〈−1

a
2v2 cosu,−1

a
2v2 sinu,−v

〉
,

so that the outward-pointing normal is
〈
2v2

a cosu, 2v2

a sinu, v
〉
and∫∫

S

F · n dS =

∫∫
R

〈
v cosu, v sinu, a− v2

a

〉 · 〈2v2
a

cosu,
2v2

a
sinu, v

〉
dA

=

∫ a

0

∫ 2π

0

(
2

a
v3 + av − v3

a

)
du dv =

3

2
πa3.

56

a. For the given r, we have (a cosu sin v)2

a2 + (b sinu sin v)2

b2 = cos2 u sin2 v + sin2 u sin2 v + cos2 v = sin2 v +
cos2 v = 1

b. The normal vector is determined by n = tu× tv = 〈−bc cosu sin2 v,−ac sinu sin 2v,−ab sin v cos v〉, so
that the outward pointing normal is the negative of this vector. Then∫∫

S

1 dS =

∫ 2π

0

∫ π

0

∣∣〈bc cosu sin2 v, ac sinu sin2 v, ab sin v cos v〉∣∣ dv du
=

∫ 2π

0

∫ π

0

√
b2c2 cos2 u sin4 v + a2c2 sin2 u sin4 v + a2b2 sin2 v cos2 v dv du.

57 Parameterize x2 + y2 = 4 for z = 0 using r(t) = 〈2 cos t, 2 sin t, 0〉 for0 ≤ t ≤ 2π.∮
C

F · dr =

∫ 2π

0

F · r′ (t) dt =
∫ 2π

0

〈0, 0, 4 cos t sin t〉 · 〈−2 sin t, 2 cos t, 0〉 dt = 0.

58 F = 〈u2 − v2, u, 2v (6− 2u− v)〉, r (u, v) = 〈u, v, 6− 2u− v〉, tu× tv = 〈2, 1, 1〉∮
C

F · dr =

∫ 3

0

∫ 6−2u

0

(
2u2 − 4v2 + 12v − 4uv

)
dv du =

39
√
6

2
.

59 The boundary of this region is in the xy-plane, found by setting z = 0, so it is x2 + y2 = 99, the circle
of radius

√
99 about the origin. Parameterize the circle in the usual way; then∫∫
S

(∇× F) · n dS =

∮
C

F · dr =

∮
C

〈0,
√
99 cos t,

√
99 sin t〉 · 〈−√

99 sin t,
√
99 cos t, 0〉 dt

=

∫ 2π

0

99 cos2 t dt = 99π.
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60 The boundary of this region is the circle x2 + z2 = 4 for y = 0; parameterizing it in the usual way as
〈2 cos t, 0, 2 sin t〉 gives∫∫

S

(∇× F) · n dS =

∮
C

F · dr =

∫ 2π

0

〈4 cos2 t− 4 sin2 t, 0, 4 sin t cos t
〉 · 〈−2 sin t, 0, 2 cos t〉 dt

= 8

∫ 2π

0

((
sin2 t− cos2 t

)
sin t+ sin t cos2 t

)
dt = 8

∫ 2π

0

sin3 t dt = 0.

61 By Stokes’ theorem, the circulation around a closed curve C can be found by choosing a surface S of
which C is the boundary; then ∮

C

F · dr =

∫∫
S

(∇× F) · n dS.

But for F = ∇ (10− x2 + y2 + z2
)
, ∇× F = 0, so the right-hand side is zero.

62 We have ∇ · F = −3 so that∫∫
S

F · n dS =

∫∫∫
D

∇ · F dV = −3 · volume of cube = −3.

63 ∇ · F = x2 + y2 + z2, so∫∫
S

F · n dS =

∫∫∫
D

(
x2 + y2 + z2

)
dV =

∫ 3

0

∫ 2π

0

∫ π

0

r2 · r2 sinu du dv dr =
972

5
π.

64 ∇ · F = 2 (x+ y + z), so∫∫
S

F · n dS =

∫∫∫
D

2 (x+ y + z) dV =

∫ 8

0

∫ 2

0

∫ 2π

0

2r (r cos θ + r sin θ + t) dθ dr dt = 256π.

65 ∇ · F = 3
(
x2 + y2

)
, so the outward flux across the boundary S of a hemisphere D of radius a is∫∫

S

F · n dS =
∫∫∫
D

3
(
x2 + y2

)
dV =

∫ a

0

∫ 2π

0

∫ π/2

0
3r2 sin2 u · r2 sinu du dv dr = 4

5πa
5, so that the net flux

across the region bounded by the hemispheres of radii 1 and 2 is 4
5π (32− 1) = 124

5 π.

66 ∇ ·F = 0, so the flux is zero across any surface that bounds a region where F is defined and differentiable;
the given region does not include zero, so is one of these. Thus the net outward flux is zero.

67 Using the Divergence theorem, ∇ · F = 2x+ sin y + 2y − 2 sin y + 2z + sin y = 2 (x+ y + z), so that∫∫
S

F · n dS =

∫∫∫
D

2 (x+ y + z) dV =

∫ 4

0

∫ 1

0

∫ 1−x

0

2 (x+ y + z) dy dx dz =
32

3
.

68

a. The normal vectors point outwards everywhere on S; that is, on the curved surface, they point upwards,
and on the flat surface they point in the direction of negative x.

b. Parameterize C by two paths: r1 (t) = 〈a cos t, a sin t, 0〉 for −π
2 ≤ t ≤ π

2 and r2 (t) = 〈0, a − 2t, 0〉 for
0 ≤ t ≤ a. Then r′1 (t) = 〈−a sin t, a cos t, 0

〉
and r′2 (t) = 〈0,−2, 0〉. So∮

C

F · dr =

∫ π/2

−π/2

〈−a sin t, a cos t, a sin t− 2a cos t〉 · 〈−a sin t, a cos t, 0〉 dt

+

∫ a

0

〈2t− a, 0, a− 2t〉 · 〈0,−2, 0〉dt =
∫ π/2

−π/2

a2 dt = πa2.
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568 Chapter 14. Vector Calculus

c. ∇ × F = 〈2, 4, 2〉. For the curved portion of S, using spherical coordinates, the normal vector is
〈a2 sin2 u cos v, a2 sin2 u sin v, a2 cosu sinu〉, and for the flat portion, the normal vector is〈−1, 0, 0〉.
Then

∫∫
S

(∇× F) · n dS =
∫∫
S1

(
2a2 sin2 u cos v + 4a2 sin2 u sin v + 2a2 cosu sinu

)
dS +

∫∫
S2

(−2) dS =

2a2
∫ π/2

−π/2

∫ π/2

0

(
sin2 u cos v + 2 sin2 u sin v + sinu cosu

)
du dv − πa2 = 2πa2 − πa2 = πa2.
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