CHAPTER 2 - HYDRAULICS

Review	Question	Page	References

(1) 24	(8) 30	(15) 42
(2) 24	(9) 31	(16) 44
(3) 25	(10) 32	(17) 44
(4) 25	(11) 33	(18) 44
(5) 27	(12) 35	(19) 45
(6) 28	(13) 36	(20) 45
(7) 30	(14) 40-42	(21) 46
		(22) www.iihr.uiowa.edu/research

Solutions to Practice Problems

- 1. P = 0.43 x h (Equation 2-2b) P = 0.43 x 50 ft = 22 psi at the bottom of the reservoir P = 0.43 x (50 - 30) = 0.43 x 20 ft = 8.6 psi above the bottom
- 2. h = 0.1 x P = 0.1 x 50 = 5 m (Equation 2-3a)
- 3. Depth of water above the valve: h = (78 m -50 m) + 2 m = 30 m P = 9.8 x h = 9.8 x 30 = 294 kPa ≈ 290 kPa (Equation 2-2a)
- 4. h = 2.3 x P = 2.3 x 50 = 115 ft, in the water main h = 115 - 40 = 75 ft P = 0.43 x 75 = 32 psi, 40 ft above the main (Equation 2-2b)
- 5. Gage pressure P = 30 + 9.8 x 1 = 39.8 kPa ≈ 40 kPa Pressure head (in tube) = 0.1 x 40 kPa = 4 m
- 6. Q= A x V (Eq. 2-4), therefore V = Q/A A = $\pi D^2/4 = \pi (0.3)^2/4 = 0.0707 \text{ m}^2$ 100L/s x 1 m³/1000L=0.1 m³/s V = 0.1 m³/s 0.707m² = 1.4 m/s
- 7. Q = (500 gal/min) x (1 min/60 sec) x (1 ft³/7.5 gal) = 1.11 cfs A = Q/V (from Eq. 2-4) A = 1.11 ft³/sec /1.4 ft/sec = 0.794 ft² A = $\pi D^2/4$, therefore D = $\sqrt{4A/\pi} = \sqrt{(4)(0.794)/\pi} = 1$ ft = 12 in.
- 8. Q=A1 x V1 = A2 x V2 (Eq.2-5) Since A = $\pi D^2/4$, we can write

$$D_1^2 x V_1 = D_2^2 x V_2$$
 and $V_2 = V_1 x (D_1^2 / D_2^2)$
In the constriction, $V_2 = (2 \text{ m/s}) x (4) = 8 \text{ m/s}$

9. Area of pipe A = $\pi (0.3)^2/4 = 0.0707 \text{ m}^2$

Area of pipe B = $\pi (0.1)^2/4 = 0.00785 \text{ m}^2$ Area of pipe C= $\pi (0.2)^2/4 = 0.03142 \text{ m}^2$ $Q_A = Q_B + Q_C = 0.00785 \text{ m}^2 \text{ x } 2 \text{ m/s} + 0.03142 \text{ m}^2 \text{ x } 1 \text{ m/s}$

= 0.04712 m³/s (from continuity of flow: $Q_{IN} = Q_{OUT}$)

$$V_A = Q_A/A_A = 0.4712/0.0707 \approx 0.67$$
 m/s (from Eq. 2-4)

10. p₁/w + V₁²/2g = p₂/W + V₂²/2g (Eq.2-8) A₁ = π(1.33)²/4 = 1.4 ft² A₂ = π(0.67)²/4 = 0.349 ft² V₁ = 6/1.4 = 4.29 ft/sec V₂ = 6/0.349 = 17.2 ft/sec w = 62.4 lb/ft³ and g = 32.2 ft/sec² From Eq. 2-8, and multiplying *psi* x 144 in²/ft² to get lb/ft² 50(144)/62.4 + 4.29²/2(32.2) = p₂(144)/62.4 + 17.2²/2(32.2) 115.38 + 0.28578 = 2.3076p₂ + 4.5937 p₂ = 111.07 /2.307 ≈ 48 psi

11.
$$p_1/w + v_1^2/2g = p_2/w + v_2^2/2g$$
 (Eq.2-8)
A₁ = $\pi(0.300)^2/4 = 0.0707 \text{ m}^2 \text{ A}_2 = \pi(0.1 \ 00)^2/4 = 0.00785 \text{ m}^2$

Q= 50 L/s x 1 m³/1000 L = 0.05 m³/s V₁ = 0.05/0.0707 = 0.70721 m/sec V₂ = 0.05/0.00785 = 6.369 m/sec w = 9.81 kN/m³ and g = 9.81 m/s²; From Eq. 2-8,

 $\begin{array}{l} 700/2(9.81) + 0.70721^2/2(9.81) = p_2/2(9.81) + 6.369^2/2(9.81) \\ 35.67789 + 0.02549 = 0.05097p_2 + 2.06775 \mbox{ and } p_2 = 660 \mbox{ kPa} \end{array}$

- 12. From Figure 2.15, with Q = 200 L/s and D = 600 mm, read S = 0.0013. Therefore h_L= S x L = 0.0013 x 1000 m = 1.3 m Pressure drop p = 9.8 x 1.3 ≈ 12.7 ≈ 13 kPa per km
- 13. h_{L} = 2.3 x 20 = 46 ft and S = 46/5280 = 0.0087 (where 1 mi = 5280 ft)

From Figure 2.15, with Q = 1000 gpm and S = 0.0087, read D = 10.3 in. Use a 12 in. standard diameter pipe

From the nomograph (Figure 2.15) read Q \approx 100 L/s = 0.1 m³/s Check with Eq. 2-9: Q = 0.28 x 100 x $0.3^{2.63}$ x $0.01^{0.54} \approx 0.1$ m³/s OK

15. Use (Eq. 2-10): Q = C x A₂ x { $(2g(p_1 - p_2)/w)/(1 - (A_2/A_1)^2)^{1/2}$ where A₁ = $\pi(6)^2/4$ = 28.27 in² and A₂ = $\pi(3)^2/4$ = 7.07 in²

 $g = 32.2 \text{ ft/s}^2 = 386.4 \text{ in/s}^2$ w = 62.4 lb/ft³ x 1 ft³/12³ in³ = 0.0361 lb/in³ Q = 0.98 x 7.07 x {(2(386.4)(10)/0.0361)1(1 - (7.07/28.27)²)} ^{1/2} Q= 0.98 x 7.07 x $\sqrt{228,354}$ = 3311 in³/s = 1.9 cfs ≈ 2 cfs

16. Use (Eq. 2-10): Q = C x A₂ x { $(2g(p_1 - p_2)/w)/(1 - (A_2/A_1)^2)$ } ^{1/2} A₁= $\pi(0.15)^2/4 = 0.01767 \text{ m}^2$ and A₂ = $\pi(0.075)^2/4 = 0.00442 \text{ m}^2$ g = 9.81 m/s² w = 9.81 kN/m³ 1 - $(A_2/A_1)^2 = 1 - (0.00442/0.01767)^2 = 0.93743$ Q = 0.98 x 0.00442 x {(2(9.81)(100)/9.81)/0.93743} ^{1/2} = 0.063 m³/s (or, Q = 0.063 m³/s x 1000 L/m³ = 63 L/s)

17. Use Manning's nomograph (Figure 2.21): With D = 800 mm = 80 cm, n=0.013 and S = 0.2% = 0.002, read Q= 0.56 m³/s = 560 L/s and V = 1.17 m/s

18. S = 1.5/1000 = 0.015; from Fig. 2.21, Q ≈ 1800 gpm and V ≈ 2.3 ft/s

19. Q= 200 L/s = 0.2 m³/s; from Fig. 2.21, D \approx 42 cm; Use 450 mm pipe

- 20. Q = 7 mgd = 7,000,000 gal/day x 1 day/1440 min ≈ 4900 gpm From Fig. 2.21, with n=0.013, D=36 in and Q=4900 gpm: S = 0.00027, V = 1.54 ft/s Since 1.54 ft/s is less than the minimum self-cleansing velocity of 2 ft/s, it is necessary to increase the slope of the 36 in pipe. From Fig. 2.21, with 36 in and 2 ft/s: S = 0.00047 = 0.047% = 0.05%
- 21. For full-flow conditions, with D = 300 mm and S = 0.02, read from

Fig. 2.21: Q = 0.135 m³/s = 135 L/s and V = 2m/s q/Q = 50/135 = 0.37 From Fig. 2.22, d/D = 0.42 and v/V = 0.92 Depth at partial flow d = 0.42 x 300 = 126 mm \approx 130 mm Velocity at partial flow v = 0.92 x 2 \approx 1.8 m/s

- 22. For full-flow conditions, from Fig. 2.21 read Q = 1800 gpm. From Fig. 2.22, the maximum value of q/Q = 1.08 when d/D = 0.93. Therefore, the highest discharge capacity for the 18" in pipe, q_{max} = 1800 x 1.08 ≈ 1900 gpm, would occur at a depth of d = 18 x 0.93 ≈ 17 in.
- 23. For full-flow conditions, from Fig. 2.21 read Q = 0.55 m³/s = 550 L/s. From Fig.2.22, the maximum value of v/V = 1.15 when d/D = 0.82. Therefore, the highest flow velocity for the 900 mm pipe, v_{max} = 0.9 x 1.15 ≈ 1 m/s, would occur at a depth of d = 900 x 0.82 ≈ 740 mm. When the flow occurs at that depth, q/Q = 1.05 and the discharge q = 580 L/s

24. S = 0.5/100 = 0.005

For full-flow conditions, Q = $0.44 \text{ m}^3/\text{s} = 440 \text{ L/s}$ and V = 1.6 m/sSince d/D = 200/600 = 0.33, from Fig. 2.22 q/Q = 0.23 and v/V = 0.8 Therefore, q = 440 x $0.23 \approx 100 \text{ L/s}$ and v = $1.6 \text{ x} 0.8 \approx 1.3 \text{ m/s}$ 25. Q = A x V = 2 x 0.75 x 25/75 = 0.5 m³/s = 500 L/s

26. From Eq. 2-12, $Q = 2.5 \times (4/12)^{2.5} = 0.16 \text{ cfs}$

27. 150 mm x 1 in/25.4 mm x 1 ft/12 in = 0.492 ft From Eq. 2-12, Q = 2.5 x (0.492)^{2.5} = 0.425 cfs x 28.32 L/ft³ ≈ 12 L/s

28. From Eq. 2-13, Q = 3.4 x (20/12) x (10/12)^{1.5} = 4.3 cfs \approx 120 L/s