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Chapter 1__________________  
 
Section 1.1  
1.  
i. The answer is yes because any nonempty set of positive integers has a smallest member 

by the Well-Ordering Princip le. The smallest member is 1 because we can write 1 as 1 = 
139 ⋅ 397 –102 ⋅ 541.  

 

ii.  No. If m
n

 is in the set, then 
2
m
n

 is also in the set. So there is no smallest member. The 

Well-Ordering Princip le does not apply because the set in question is not a subset of the 
integers.  

2. Let P(n) be the statement that 1 + 3 + … + (2n – 1) = n2. Then P(1) is the statement that 1 = 
12, which is true.   Now suppose that P(n) is true. We prove that P(n + 1) is true, namely, that 
1 + 3 + … + (2n – 1) + (2n + 1)  = (n + 1).2 By our induction hypothesis, we can substitute n2 
for 1 + 3 + … + (2n – 1). So we are left to prove that n2 + (2n + 1) = (n + 1)2, which is clearly 
true.  

  
 

3. Let n =1. Then 
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4. Let n = 1. Then n3 + 2n = 3, which is a multiple of 3. Assume n3 + 2n is a multiple of 3. We 

must show that (n + 1)3+ 2(n + 1) is a multiple of 3. Now (n + 1)3+ 2(n + 1) = n3 + 3n2 +3n + 
1 + 2n + 2, which equals (n3 + 2n) + 3n2 +3n + 3. Since (n3 + 2n) is a multiple of three, and 
3n2 +3n + 3 = 3(n2 + n + 1), (n + 1)3+ 2(n + 1) is a multiple of 3. 

 
5. If there is one person in the room, there are 0 handshakes.  Assume that if n people are in the 

room, there are ( 1)
2

n n −  handshakes.  If an (n + 1)th person enters the room then n more 

handshakes will occur, making the total ( 1)
2
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6. Proof by induction: 

Base Case: A tree consisting of a single node has one node, which is an odd number of 
nodes. Assume that a binary tree with fewer then n nodes has an odd number of nodes. 
Let T be a tree with n nodes where n > 1 so that T has a root with two offspring.   Below 
the root node there are two trees, each with fewer than n nodes.  By induction, each of 
these trees has an odd number of nodes. So the number of nodes in the two sub trees 
combined is even. The additional root makes the number of nodes in the entire tree odd. 
 

7.   Reflexivity: For all pairs (x, y), 0 = 2 (x – x) = (y – y). So (x, y)R(x, y).   
 
 Symmetry: Assume (x, y) R (s, t).Then 2(x – s) = (y – t). So 2(s – x) = (t – y) and  

(s, t)R(x, y). 
   

Transitivity: Let (x, y) R (s, t) and (s, t) R (u, v). Then 2(x – s) = (y – t) and 2(s – u) = (t – v). 
Adding left and right sides, we get 2(x – u) = (y – v). Thus (x, y) R (u, v). 

 
The equivalence class [(1, 1)] consists of all points on the line (y – 1) = 2(x – 1).  

 
8. Suppose that (x, y)R(s, t)  and that (u, v)R(w, z).To show that [(x, y)] +[(u, v)] = [(s, t)] + [(w, 

z)], we must show  that (xv + yu, yv) R (sz + tw, tz) . So we need to show that (xv + yu)tz = 
yv(sz + tw) or, equivalently, that xvtz + yutz = szyv + twyv. From our assumptions, we can 
substitute  ys for  xt  and vw for uz in left side of latter equation to obtain equality.  

  
9. Reflexivity: x Rx because x is in the same member of C as itself.  Symmetry: If xRy, then yRx 

since y and x are in the same member of C. Transitivity: If xRy and yRz, then x and y are in 
the same set in C and also  y and z are in the same set in C. Since y is in exactly one subset of 
C,  x and z must be in the same subset. Therefore, xRz.  

 
10.  Let Σ be the set of integers greater than n0. Let T be the subset Σ of numbers not included in 

S. Assume that T is not the empty set. The Well-Ordering Principle tells us that if T is not 
empty, then T has a smallest member, say  x.  Note that x ≠ n0 by the definition of T. Now if x 
is the smallest natural number in T, then x – 1 is in S. But if (x – 1) ∈ S, then assumption ii 
insures that (x – 1) + 1 = x is a member of S, contradicting our assumption that x ∉ S.  Thus T 
must be empty and the set of integers greater than n0 is therefore contained in S.  

 
11.  Let P(n) be the statement, "If S ⊆  N contains any integer that is less than or equal to n,  then 

S has a smallest member."  By proving that P(n) is true for all n, we prove that every non-
empty set of natural numbers has a least element, which is the Well-Ordering Principle. 
Here's the proof by induction: P(1) is true because if a set contains the natural number 1, its 
smallest member is 1. Assume that P(n) is true for the integer n. Let S be a set that contains 
the integer n + 1. If S contains no integer less than n + 1, then n + 1 is its smallest member. If 
S does contain an integer less than n + 1, then it certainly contains an integer that is less than 
or equal to n. By the induction hypothesis, S has a least member.  
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12. i. Let  ε  > 0. By our assumption there is a natural number n such that  n > 
ε
1

. Taking 

reciprocals, we have  0 < 
n
1

< ε .  

ii.  Let ε   = y – x. From part i we can find n such that 1
n

< ε  .  By the premise of the 

problem, there is an integer m0  > 0 such that m0 > ny or, equivalently, 0m
n

> y.  

Let S be the set of integers {m : 
n
m

> y}. Since m0 ∈ S, S is not empty.   Since y > 0, 

every m ∈ S is positive.  Thus well ordering applies to S, and there is a smallest q in 

S such that  
n
q

> y.  So 
n

q 1−
is less than y. We now show that  x < 

n
q 1−

 < y. Since 

n
1

< ε , we have x < y -
n
1

 < 
n

q 1−
< y. Thus 

n
q 1−

 is a rational number between x 

and y.   
 

iii.  If x < 0, let q be any rational number greater than |x|. Let r be a rational number 
between the positive numbers x + q and y + q. Then r – q is a rational number 
between x and y.  

 
1.1 To the Teacher Tasks: 

1. The result of computing x p
y q

÷  must be a number m
n

 such that m p x
n q y

⋅ = . If we let m = xq 

and n = yp, we get the correct result: xq p x
yp q y

⋅ = .  Of course, now we should back up and 

explain why the process of multiplying fractions by multiplying numerators and 
denominators is reasonable. The job of the teacher is to make this process both 
comprehensible and routine.  

2.  
1 1 + 3 1 + 3 + 5 1 + 3 + 5 + 7  
*   
 
 
 

*    * 
*     * 

*  *  * 
*  *  * 
*   *  * 

*  *  *  * 
*  *  *  * 
*  *  *  * 
*   *  *  * 

 
 
Section 1.2  
1. Adding  –a to both sides, we obtain –a + (a + b) = –a +( a + c). By the associative law, this 

is equivalent to  (–a + a)+ b =(– a + a) + c.  Since –a  and a are additive inverses we have 0 
+ b = 0 + c. Since 0 is the additive identity, we obtain b = c.  

 
2. First note that 0 = 1 + (–1).  Thus, by Proposition 1, we  have 0 = a (1 + (–1)). Distributing, 

we obtain 0 = a + (–1)a.  By adding –a to both sides we obtain  –a = 0 + (–1)a and so –a = 
(–1)a .  
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3.   First note that –(–a) + (–a) = 0. Adding a to both sides we have  

(–(–a) + (–a)) + a = 0 + a = a.   
By associativity, we have –(–a) + ((–a)+ a)  = a and so    –(–a) + 0 = a. Thus –(–a) = a 

 
4. From Proposition 1, we know (a + (–a))b = 0.  Distributing, we have ab + (–a)b = 0.  

Adding –ab to both sides, we have  (–ab + ab) + (–a)b = –ab + 0. Thus 0 + (–a)b = –ab or 
(–a)b = –ab 

 
5. Assume that ab = ac  and that a ≠ 0. By subtracting ac from both sides, we obtain  

ab – ac = 0.  By distribution, we have a(b – c) = 0. Since a ≠ 0, b – c = 0. Adding c to 
both sides, we have b = c. Here we need the fact that for integers, if ab = 0, either a or b (or 
both) must be 0. 
 

6. Since a divides b and a divides c  we can find integers  q and p such that b = aq and c = 
ap. So (mb + nc) = (maq + nap) = a(mq + np). Thus a | (mb + nc). 

 
7. i. 335 = 19 ⋅ 17 + 12 
 ii.  –335 = (–20) ⋅ 17 + 5 

iii.  21 = 1 ⋅ 13 + 8 
iv.  13 = 1 ⋅ 8 + 5 

 
8. Let a | b and c| d. Then there exist integers p and q such that b = pa and d = cq. We can 

multiply to get acpq = bd . So bd is a multiple of ac. Thus ac divides bd.  
 

9. If a = qb + r, then –a = (–q – 1) b + (b – r).   (Note that 0 ≤ (b – r) < b.)  
 
10. The integers n, n +1, and n +2 are three consecutive integers. So one of them is a multiple of 

three. So the product is a multiple of 3. Note, this can also be proved by induction.  
 
11.  Proof by Induction: 
 Base Case: Let n = 0. Then we have 2n + 1  + 33n + 1 = 2 + 3 = 5 and 5 certainly divides 5. 

Assume that 5 divides 2n+1+ 33n+1so that there is an integer  q such that 5q = 2n+1+ 33n+1.  
Now consider 2n+2 + 33n+4. Note that 2n+2 + 33n+4 = 2 ⋅  2n+1 + 27 ⋅ 33n+1 = 2 ⋅ 2n+1 + 2 ⋅  33n+1  

+ 25 ⋅ 33n+1. This equals 2(2n+1 + 33n+1) + 25 ⋅  33n+1 = 2(5q) + 5 ⋅ 5 ⋅ 33n+1 = 5(2q + 5 
⋅ 33n+1). Thus 5 divides 2n+1+ 33n+1, which proves that 5 divides 2n + 1  + 33n + 1  for all n ≥ 0. 

 
1.2 To the Teacher Tasks: 
1. 42321=104 ⋅ 341+202 in base five.  In base 12, we let ten = T, and eleven = E.  Then 42321 = 

130 ⋅ 341 + 1E1.  
 
Section 1.3  
1. i. 2;  ii. 17;  iii. 1;  iv. 1 
 
2.  

i. Any integer x that divides both m and n divides both –m and –n and conversely. Thus 
the set of common divisors of m and n is identical to the set of common divisors of –
m and –n.  

ii.  Since  |n| is a divisor of n, and it is the gcd(n, n)  since no number larger than |n| can 
divide n.  

iii.  Since 1 divides any integer n, and no number greater than 1 divides 1,  gcd(n, 1) = 1.  
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3. By Theorem 1 we know that am + bn = gcd( a, b ). If x divides both a and b, it divides both 

summands on the left side and thus it divides their sum.  
 
4. Since gcd(a, c) = 1, we can find integer m and n such that 1 = ma + nc. Multplying through 

by b, we have b = mab + ncb. Now ac divides mab because c divides b. Also ac divides ncb 
because a divides b. Thus ac divides the sum b = mab + ncb. 

 
5. By Theorem 1, we can find integers s, t, p and q such that  1 = sx + tm and and 1 = py + qm. 

Then 1 = spxy + (pyt + tqm + sxq)m. Again by Theorem 1, gcd(xy, m) = 1.  
 
6. Since a divides a and since a divides b, we know that a is a common divisor of a and b. It is 

the greatest common divisor since no number larger than a divides a.  
 
7.  i. 23 = 1 ⋅ 13 + 10 
  13 = 1 ⋅ 10 + 3 
  10 = 3 ⋅ 3 + 1 
 

ii.  1234 = 10 ⋅ 123 + 4 
123 = 30 ⋅ 4 + 3 
4 = 1⋅ 3 + 1 
 

iii.  442 = 1 ⋅ 289 +  153 
289 = 1 ⋅ 153 + 136 
153 = 1 ⋅ 136 +  17 
136 = 8 ⋅ 17 + 0  

 
8.  i. 102102 

 ii. 3525 
 iii. 39617 

  
9. First note that if n is odd, both 3n and 3n + 2 are odd numbers. The first step of Euclid's 

Algorithm, applied to 3n + 2 and 3n is as follows.  
3n + 2 = 1⋅ 3n + 2.   

Thus gcd(3n + 2, 3n) is either 2 or 1. But it cannot be 2 since both 3n + 2 and 3n are odd.  
 
10.  i. No solutions 
 ii.  x = – 6 + 5⋅ t 
  y = 9 – 7⋅ t 
 iii.  x = – 8 + 19t 
  y = 20 – 47 ⋅ t 
 
11.  x = 5⋅ t for any positive integer t 

y = 18⋅ t – 3 
 
12. 
Let x denote the number of cocks,  y the number of hens and z the number of groups of 3 chicks. 
Then x + y + 3z = 100 and 5x + 3y + z = 100. Substitute 100 – 5x –  3y for z in the first expression 
to obtain the Diophantine equation 7x + 4y = 100. Its solutions are x = –100 + 4t and y = 200 – 7t. 
Substitute the solutions for x and y into100 – 5x –  3y =  z to find that  z = t.  Its only positive 
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solutions are for 25 ≤  t ≤  28. So (x, y, 3z) can equal (0, 25, 75) or (4, 78, 26) or (8, 11, 81) or 
(12, 4, 84). 
  
13.      i.  q2 = 1, q3 = 1 and q4 = 3. Thus s4 = 4 and t4 = -7. The sum 4⋅ 23 - 7 ⋅ 13 = 1.  

ii. q2 = 10, q3 = 30 and q4 = 1. Thus s4 = 31 and t4 = -311. The sum 31 ⋅ 1234 - 311 ⋅ 123 = 
1. 
iii.  q2 = 1, q3 = 1 and q4 = 1. Thus s4 = 2 and t4 = -3. The sum 2⋅ 442 - 3 ⋅ 289 = 17. 
 

1.3 To the Teacher  

1.  i. 1
6

; ii. 1
24

 

 
Answer for 2.and  3. : 

Suppose that a = s/t and b = u/v are positive rational numbers expressed in lowest terms 
and that c = lcm(t, v). Then we can find integers m and n such that a = m/c and b = n/c. 
As in the Division Algorithm, we can express a uniquely as m/c = qn/c + r/c where q is 
an integer, m = qn + r, and   0 ≤  r < n. Thus the number steps needed to carry out 
Euclid's Algorithm on a and b are exactly as many as needed for m and n. Thus the 
Algorithm halts. Iterating, we see that the algorithm halts when r = gcd(m, n) and the 
remainder is gcd(m, n)/r. Geometrically, we can think of lengths a and b as being 
multiples of a unit length 1/c. Euclid's Algorithm finds the largest integer multiple of 1 
that divides both m and m. So Euclid's Algorithm applied a and b finds the largest integer 
multiple of 1/c  of which both m/c  and n/c are integer multiples.  

 
Section 1.4  
1. 12347983 = 281 ⋅ 43943 and both factors are prime numbers.  
 
2. i.  Let ni be the minimum of mi and ki. Then gcd(a, b) = 1 2

1 2
nnn n

np p p⋅ ⋅…  
ii.  223271 

 
3. i.  Let ni be the maximum of mi and k i. Then lcm(a, b) = 1 2

1 2
nnn n

np p p⋅ ⋅…  
ii.  25355172112133 

 
4. Every prime above 2 is odd. So if a prime is of the form 3m + 1 then m must be an even 

number. If m is odd, then 3m is odd so 3m + 1 is even and hence not prime. If m is even, 
2m n= ⋅  for some integer n. Thus 3 1 3 2 1m n+ = ⋅ ⋅ +  which is in the form  6n + 1.  

 
5. i. Let n be a composite number and let p be a prime that divides n and let q be another prime 

that divides n. Suppose that p n>  and q n> . Then p q n n n⋅ > ⋅ =  so p q n⋅ >  
which is a contradiction. 

 
 

ii. 541 is indeed prime.  
 
6. The first multiple of n / 2 is n . So for / 2p n>  the multiples of p will be outside of the range 

of numbers that we are searching. 
 
7. 2 3 5 7 1 1 1 3 1 7 1 9 2 3 2 9 3 1 1 200560490131⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + =  
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8. Proof of Corollary 5. Suppose that x is a rational number and that x = m/n. Let d  = gcd(m, n) 
and  m = ds and n = dt for some integers s and t. By Proposition 3 of Section 1.3,  gcd(s, t) = 
1.  Note that m/n = s/t  because mt = dst =  dts = ns.  

 
9.       2 = 1 + 1  14 = 13 + 1  
 4 = 3 + 1  16 = 13 + 3 
 6 = 3 + 3  18 = 17 + 1 
 8 = 5 + 3  20 = 19 + 1 
 10 = 7 + 3  22 = 19 + 3 
 12 = 11 + 1   24 = 19 + 5 
  
10.  Let p(i) denote the ith  prime. Since p(1) = 2 and 2 ≤  

1 122
−

, the statement is true for n = 1. 
Suppose that p(k) < 

122
k−

 for  1 ≤  k ≤  n. Then 1 (1) (2) ( )p p p n+ L 0 1 12 2 21 2 2 ...2
n−

≤ + .   

Summing the exponents with the geometric formula, we have 1 (1) (2) ( )p p p n+ L 2 11 2
n −≤ +  

and we know that  2 11 2
n −+ 22

n

≤ . By the argument of Theorem 1, there must a prime between 

1 (1) (2) ( )p p p n+ L  and p(n). Thus  p(n + 1) 22
n

≤ .  
 

11.  Let p be any prime number. Since p is prime the only factors of p are 1 and itself. Suppose 

that p is rational. Then a
p

b
=   where a and b are relatively prime non-zero integers, and 

2

2

a
p

b
 

= 
 

 so 2 2a p b= ⋅ .  Since p divides the right side of the equation it must also divide the 

left-hand side of the equation, and since p is a prime it must divide a (Euclid’s Lemma) so we 
can rewrite a as p n⋅  which gives us the equation 2 2 2p n p b⋅ = ⋅ . Dividing both sides by p 
we get 2 2p n b⋅ = and so, by the same argument, p must divide b. Thus a and b are not 
relatively prime, which is a contradiction. 

 
1.4 To the Teacher Tasks  
Challenge  1: 419,431,461 
Challenge  2: [3, 197], [7, 193], [19, 181], [37, 163], [43, 157], [61, 139], [73, 127], [97, 103] 
 
Section 1.5 
Task 1.  
a. (In this problem, our indexing will be shifted.) Let Si be the number of ways to express i as 

the sum of 1's and 2's . If i = 1, there is one way and so S1 = 0 and if i = 2, there are2 ways, 
namely 2 = 1+1 and 2 = 2, so that S2 = 2. Now if i > 1, any expression of i as such a sum 
either terminates in 1 or 2 and the preceding summands sum to i – 1 and i – 2 respectively. 
The number of ways for the preceding summands to be expressed is Si–1  and Si–2  
respectively.  Thus Si  = Si – 1 +  Si – 2.  

b.  (In this problem, our indexing will be shifted.) Let Ei  be the number of ways the elf can 
jump i steps. Then E0 = 1 since there is exactly one way to jump no steps: Don't jump. There 
is exactly one way to jump to step 1 and so E1 = 1. Now if the elf in on step n, he was 
previously either on step n – 2 or on step n – 1. There are Ei – 2  and Ei – 1 ways respectively to 
get to steps n – 2 or n – 1. Thus Ei  = Ei – 2  + Ei – 1.  

c. (In this problem, our indexing will be shifted.) In the diagram below D stands for drone (or 
Dad) and M stands for mother.    When n = 0, the number of grandmothers is 1.  (She is seen 
two levels up from the root.) The mothers at any level i are either mother to a female (M) at 
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level i – 1 or a male (D) at level i – 1 because every bee has a mother. The males at level i – 1 
are, in turn, in one-to-one  correspondence with the mothers at level i – 2 because every 
female has a father.  Thus the number of mothers at level i is the sum of the number of  
mothers at level i – 1 and the number of mothers at level i – 2.  

 
 
 
 
 
 
 
 
 
Lemma 1.  
Proof. Suppose that b = nc. If d|a and d| c,  then d|(a + nc). Conversely, if d|(a + nc) and d| c, then 
d|((a + nc) – nc).  
 
Propos ition 3.   
Proof. Since F0 = 0, the proposition is true for n = 0. Assume that for all 0 ≤  i < n, that Fm + i =  
Fm – 1Fi + FmFi + 1. Then Fm+(n – 1) = Fm – 1Fn – 1  + FmFn  and  Fm+(n – 2) =  Fm – 1Fn – 2 + FmFn – 1. Adding,  
Fm + n  = Fm – 1 ( Fn – 1 + Fn – 2 ) + Fm( Fn + Fn – 1).  
 
Proposition 4.  
Proof.   It is clearly true for n = 1. Assume that Fmk is divisible by Fm. By Proposition 2, Fmk + m = 
Fmk – 1Fm + FmkFm+1. 
 
Proposition 5.  
Proof.    By proposition 2, Fqn + r = Fqn – 1Fr + FqnFr + 1. By proposition 3, Fn divides Fqn. By 
proposition 1, Fqn – 1 and Fqn  are relatively prime. Thus any common divisor of Fr and Fn is a 
divisor of Fqn – 1Fr + FqnFr + 1. Any common divisor of Fqn – 1Fr + FqnFr + 1 and Fn must divide Fqn – 

1Fr since Fn divides Fnq. Since Fqn – 1 and  Fqn are relatively prime, Fn and Fqn – 1  are relatively 
prime. Thus any common divisor of Fqn – 1Fr  and  Fn  must divide Fr.  
 
Theorem 6.  
Proof. We can iterate proposition 4, carrying out the division theorem on the subscripts on the Fi. 
As with Euclid's algorithm, we will terminate with gcd(Fm, Fn) = gcd(Fd, F0) where d = gcd(m, n). 
Since F0 = 0, gcd(Fd, F0) = Fd. Thus gcd(Fm, Fn) = Fd = Fgcd(m, n). 
 
 
Additional Identities:  
1. Use induction on n and note: 
  (Fn)2 – Fn + 1Fn – 1  = (Fn)2

  - (Fn + Fn – 1) Fn – 1 =  
 Fn(Fn – Fn – 1) – (Fn – 1)2 = FnFn – 2 – (Fn – 1 )2. 
 
2. If there are k 2s, then the number of addends of n is n – k. So the problem can be rephrased 

as, "How many ways can we place k  2s in a string of n – k  2s and 1's?" The answer is 
n k

k
− 

 
 

.  The sum results when we add all possible counts of 2s.    

In Pascal's Triangle we find the identity in adding the numbers in the ascending diagonals. One 
such diagonal is highlighted. Another is underlined. A third is italicized.  

D

M
M D

DM M

M D M D

M D M M D M

M

M D
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1  
1 1 
1 2 1 
1 3  3 1 
1 4 6 4 1 
1 5 10 10 5 1 
 
Section 1.6  

1. i. First express the numbers with a common denominator: 1
2

 = 3
6

and 1
3

= 2
6

. Then 

3 2 1
1

6 6 6
= ⋅ +  and 2 1

2 0
6 6

= ⋅ + . So the common measure of  1
2

and 1
3

is 1
6

. This means that 

both 1
2

 and 1
3

are integer multiples of 1
6

and that 1
6

is the largest such rational number. 

ii. 3
8

= 9
24

and 5
6

=  20
24

. Now 20 9 2
2

24 24 24
= ⋅ +  and 9 2 1

4
24 24 24

= ⋅ + . Thus 1
24

is the 

   largest common measure. 
 
2. For two fractions p/n and q/n expressed over a common denominator n, the algorithm takes 

exactly as many steps as when it is applied to p and q.  
 

3. i. {0; 1, 2, 3} =  7
10

 and {3; 1, 2, 1, 2, 1, 2} = 153
41

. 

4. We get1
2

, then 2
3

, then 3
5

. Continuing, we get the ratios of consecutive Fibonacci numbers.  

 
5. i . {0; 2, 1, 5, 2},  ii. {2; 11}, iii. { 1; 4, 1, 1, 1, 2} 
 
6. i.  {3; 7, 7}, ii. {3; 7, 16,11} 
 
7. {1;1, 1, 1, …} 
 
8. The continued fraction approximation for e with 10 terms is {2; 1,2,1,1,4,1,1,6,1}. This 

evaluates to 2.718283582. With the same number of places, the calculator's approximation to 

e is 2.718281828.  

9. For both i and ii, notice that 1
1

n
n

a
a− +  = 1

1
( 1) 1n

n

a
a− +

− +
= 1

1
1

( 1)
1

n

n

a
a

− +
− +

. 

Section 1.7  
1. No since 15 is divisible by 5. 
  
2. The sequence of remainders is {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7}. 
 
3. a12  = (a2)6 and by Fermat's Theorem , (a2)6 – 1 is divisible by 7. Similarly, (a3)4 – 1 is 

divisible by 5. Since 5 and 7 are relatively prime, a12 – 1 is divisible by 35.  
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4.  3100 = (325)4 which has a remainder 1 after division by 5 by Fermat. Thus the final digit of 
3100 is either 1 or 6. Since 3100 is odd, the final digit is 1.  

 
5. Since 91 = 13 ⋅ 7 and 91 divides 390 – 1, we cannot use Fermat's Theorem to test for primes 

because there are non-prime values of p for which the conclusion holds for some values of a. 
But if there is any a for which the result does not hold, we are guaranteed that p is not prime.   

 
6. (aq – 1) (aq + 1) = ap – 1 – 1 which is divisible by p. By Euclid's Lemma, one of the factors 

must be divisible by p. By the Division Theorem, (aq + 1) = 1⋅ (aq – 1) + 2. So the gcd of (aq 
– 1) and (aq + 1) can only be 1 or 2. Since p is and odd prime greater than 2, it cannot divide 
both factors.  

 
7. 63504 

8. In ( )
d

c d∑ , each integer x between 1 and n is counted exactly once by c(d) where d = gcd(x, 

n). Thus ( )
d

c d n=∑ . Let d be a positive divisor of n. To see that c(d) = φ(n/d), first note that 

the multiples of d that divide n are of the form i ⋅ d for a subset of the values of i such that 1 

≤  i ≤  n
d

. Of these values of i, gcd( i⋅ d , n) = d if and only if gcd(i, n) = 1. Thus there are 

exactly φ(n/d) such values of  i.  
 
9. i. τ(2) = 2 and σ(2) = 3; τ(10) = 4 and σ(10) = 18; τ(28) = 6 and σ(28) = 56.  

ii.  The positive divisors of n are all of the form 1 2
1 2 ... qxx x

qp p p  , where  0 i ix n≤ ≤ . Thus 
there are ni + 1 possibilities for the exponent of pi.  

iii.  Proof by induction on the number q of distinct prime factors of n. If q = 1, then n = 
1np for some prime p and positive n1. Its divisors are 1, p, …, 1np . Their sum is 

1 11
1

np
p

+−
−

. Now suppose the assertion holds for numbers that factor into powers of   

q – 1 distinct primes and assume that n factors as 1 2
1 2 ... qnn n

qp p p . By the induction 

hypothesis, the sum of the factors of the form 20
1 2 ... qii

qp p p  = 
1

2

1
1

inq
i

i i

p
p

+

=

−
−∏ .  Let S be 

the set of all factors of the form 20
1 2 ... qii

qp p p . Then σ(n) = 
1

1
0

n
i

i a S

p a
= ∈
∑∑  = 

1

1
0

n
i

i a S

p a
= ∈

 
 
 

∑ ∑ = 
1

1

1

1
1

inp
p

+ −
 − 

1

2

1
1

inq
i

i i

p
p

+

=

 −
 − 
∏ = 

1

1

1
1

inq
i

i i

p
p

+

=

−
−∏ . 

iv. τ(n) = 72; σ(n) = 191319912000  
 
 
10. If m and n are relatively prime, then the prime factors of mn are the disjoint union of the 

factors of m and the factors of n.  
 
11. Note that (2n – 1) and (2n–1) are relatively prime. Since (2n – 1) is prime, σ((2n – 1)) = 2n. Also 

σ(2n – 1 ) =  2n – 1. So σ((2n – 1)(2n–1)) = (2n – 1)(2n). The sum of the divisors strictly less than 
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(2n – 1)(2n–1) is (2n – 1)(2n) – (2n – 1)(2n – 1 ) = (2n – 1)(2n – 1 ). Thus if (2n – 1) is prime, (2n – 

1)(2n – 1 ) is a perfect number. The first four perfect numbers are 6, 28, 496, and 8128. 

Looking further: 

 
191561942608236107294793378084303638130997321548169216  

 is a perfect number! (Let n = 89.)  
 

12. Note that 1729 = 7⋅ 13 ⋅ 19. Then a 37 –  a = a((a6)6 – 1) = a((a3)12 – 1) = a((a2)18 – 1) 
 
Section 1.8  
In The Classroom: Problem Solving 
Social Security Number: 381654729 
 
Section 1.9 
1. 235 – 1 = (27)5 – 1 = (27 – 1)(228 + 221 + 214 + 27 + 1). 27 – 1 = 127 is a factor. Similarly we 

find that 25 – 1 = 31 is a factor. 
 
2. We need to find four primes of the form 2 ⋅ 17k   + 1 that are less than the square root of  217 – 

1. The required square root is less than 363. Starting with k  = 1 we have the following 
numbers to check: 35, 69, 103, 137, 171, 205, 239, 273, 307, and 341. Checking for small 
factors we can remove 35, 69, 171, 205, 273, and 341 from the list. Thus the four primes are 
103, 137, 239, and 307. 

 
3.  The first prime to check is 2⋅ 2) + 1 = 47. (223 – 1)/47 = 178481.  
 
4.  For n = 13, the smallest r is 12. 
     For n = 17, the smallest r is 8 and 8 divides 17 – 1 = 16. 
     For n = 19, the smallest r is 18. 
 
5.  For n = 5, the smallest r is 4. 
     For n = 7, the smallest r is 6. 
     For n = 11, the smallest r is 5 and 5 divides 11 – 1. 
 
6. Suppose that p is odd. Then ( 1) ( 2)2 1 (2 ) 1 (2 1)(2 2 ... 2 1)pq q p q q p q p q− −+ = + = + − + − + . Thus 2q  

+ 1 is a factor. For example 22 + 1 = 5 is a factor of 26 + 1 = 65. 
 
Chapter 1 Highlights: Chapter Questions 
3. i. q = 0, r = 2;   ii. q = 26, r = 21; iii.  q = –27, r = 36 
 
4. i. 456 = 1 ⋅ 234 + 222; 234 = 1 ⋅ 222 + 12;  222 = 18 ⋅ 12 + 6; 12 = 2⋅ 6 + 0.  
 

ii. 589403 = 6 ⋅ 93840 + 26363; 93840 = 3 ⋅  26363 + 14751; 26363 =1 ⋅ 14751+11612;  
14751 = 1 ⋅ 11612 + 3139; 11612 = 3 ⋅ 3139 + 2195; 
3139 = 1 ⋅ 2195 + 944; 2195 = 2 ⋅  944 + 307; 944 = 3 ⋅ 307 + 23; 307 = 13 ⋅ 23 + 8;   
8 = 1⋅  7 + 1; 7 = 1 ⋅ 7 + 0 
 
iii. The gcd of any two consecutive Fibonacci numbers is 1.  
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5. i. no solutions since gcd(30, 12) does not divide 27 
ii. 12 = 12(–6 + t ⋅ 17)31 + 12(11 – t ⋅ 31)17 for any integer t ∈ Z.  

 
6. With p = 7, we have 127651 = 126 ⋅ 1275 + 1. By Fermat's Little Theorem, the remainder 127651  

after division by 7 is equal to the remainder of  121 after division by 7. Thus the answer is 5.  
 

7. 1123668000 
 
8. i. 5952; ii. 130628; iii. 144; 
 
10. Proof.  Since x divides xs and xs = yt,  x divides yt. Since gcd(x, y) = 1, x divides t. (Euclid's 

Lemma). Similarly, y divides s.  
 
Chapter 2__________________  
Section 2.1  
1.  [13]9 = {…–14, –5,  4,  13, 22, 31, 40, …}, [3]10  = {...–17, –7, 3, 13, 23, 33, 43, …}, [4]11 = 

{…–18, –7,  4,  15, 26, 37, 48, …}  
 
2. Since m| (a – b), it follows that m | k(a – b) for all k  in Z.  
 
 
3. Since m | (a – b) and m|(c – d), it follows that m | ((a + c) – (b + d)).  
 
4. If a ≡  b mod m and then the statement is true for n = 1. Assume that an – 1 ≡  bn – 1 mod m. We 

can apply part iii of Theorem 2 to an – 1 ≡  bn – 1 mod m and a ≡  b mod m to conclude that an  ≡  
bn  mod m 

 
5. Since 103 ≡  3 mod 5, we can determine 10345 ≡  345 mod 5. Since 34mod 5 = 1,   we have   

345 mod 5 = (34)1131mod 5 = 3.  
  
6. We can see that  58 mod 11 = 3 and a bit of experimenting reveals that 35 mod 11 = 1. Thus 

5829 mod 11 = 329 mod 11 = (35)534 mod 11 = 34 mod 11. Now 34 = 81 and 81 mod 11 = 4.  
 
7. The terminal digit of a must be 1, 2, 3 or 4. Thus the terminal digit of a2 must be 1, 4, 9, or 6. 

So a2 mod 5 must be 1 or 4. With the same reasoning, a4 mod 5 = 1.  
 
8. We can state Euler's Theorem as follows. "If a  and m are relatively prime, then ( ) 1maϕ ≡  

mod m."  We can state Fermat's Little Theorem as, "If p is prime, then for any integer a, 
pa a≡ mod p."  

  
9. The solution sets are: 

i. empty 
ii.  [1]8 ∪ [3]8 ∪ [5]8 ∪ [7]8 
iii.  empty 
iv. [3]5 
v. [6]11 
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10. The integer x0 is a solution to ax ≡  b mod m if and only if there exists a q0 such that x0 and q0 
satisfy the Diophantine equation ax – qm = b.  In that case, all other values of x are of the 

form x = x0 + 
im
d

 by Proposition 8 of Section 1.3.  

11. The solution sets are: 
i. [4]15 ∪  [9]15 ∪  [14]15 
ii.  [6]35 ∪ [13]35 ∪ [20]35 ∪ [27]35 ∪ [34]35 
iii.  [15]19 

 
12. Since rx ≡ rb mod m, we can find an integer q such that rx – rb = qm. Now divide both sides 

by d =  gcd(r, m). Then ( )r m
x b q

d d
− = . Since r

d
 and m

d
 are relatively prime and since m

d
 

divides ( )r
x b

d
− , 

m
d

 must divide ( )x b− . 

13.  
 

i. 7x ≡ 5 mod 11 ;  An inverse of 7 is 8 since 56  ≡ 1 mod 11. Thus  8 ⋅5 ≡  40 mod 11 and 
40  ≡  7 mod 11. So x =  [7]11 

ii.  8x ≡ 2 mod 6 ; no inverse; x = [1]6 and x =[ 4]6 
iii.  5x ≡ 3 mod 12; The inverse of  5 is 5 since 25 ≡ 1 mod 12. Thus  25 x  ≡ 15  mod 12  and 

15 ≡ 3 mod 12. Thus  x = [3]12 
 
  
14.  
i. The inverse of 31 is 12 mod 53 and the solution set is  [11]53 
ii.  The inverse of  23 is 27 mod 31 and the solution set is  [2]31 
 

 
 
15.  i. 4; ii.  1;  iii. 2. 
 
16.  
i. Proof. a2 ≡ 1 mod p iff p| (a2 – 1). Now p| (a2 – 1) iff p | (a – 1)(a + 1). By Euclid's 

lemma, p | (a – 1)(a + 1) iff p | (a – 1) or p | (a + 1).  
ii.  Proof.  The number of elements in the set {p – 1, p – 2, …., 1} is even. Of these 

numbers, only p – 1 and 1 are their own inverses. So every other number has a distinct 
inverse in the list. So when we write out the product (p – 1)(p – 2) …1 mod p, we can 
replace each pair of inverses with 1 mod p. We are left with (p – 1)! ≡ (p – 1) mod p or 
equivalently, (p – 1)! ≡ –1 mod p.  

 
17. [206]210  
 
18. [535]1001 
 
19. The number of coins is 3930.  
 
20. Let d = gcd(m, n).   We know that x is a common solution to x ≡ b mod m and x ≡ a mod n if 

and only if  a – b = qm – pn for some integers q and p.  The Diophantine equation a – b = qm 
– pn  has a solution if and only if a – b is divisible by d.   Now suppose that x and y are both 
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simultaneous solutions to x ≡ b mod m and x ≡ a mod n.  Then we can find integers t and s 
such that x – y = tm = sn. Since m/d and n are relatively prime, m/d divides s by Euclid's 
Lemma. So s = vm/d  for some integer v. Thus x – y = vmn/d . Since lcm(m, n) = mn/d, we 
have that x and y are congruent modulo lcm(m, n). 

 
2.1 To the Teacher Tasks  

1. d12 = 7 
2.  If an odd digit is changed by +3 and an even digit is changed by +1, the error will not be 

detected.  
 
 
Section 2.2  
Proposition A and Corollary 1:   
Proof. 10n  = 999…9 + 1,  which is congruent to 1 mod 9. Thus a10n ≡ a mod 9.  
 
Trick 1: xn10n + xn-110n – 1 +…. + x0 ≡ xn + xn –1 + …+ x0 mod 9 by Corollary B. 
  
Trick 2.  The argument is the same as for Trick 1 because 10n = 999…9 + 1 is congruent to 1 
mod 3.  
 
Trick 3: Apply hint.  
 
Trick 4. First note that a number x that ends in a zero is divisible by 7 if and only if the integer 

10
x

 is divisible by 7 because the smallest multiple of 7 that ends in 0 is 70. (In "short" division, 

we would have to carry a 7  or a 0 to the last digit. The former is impossible and the later implies 

that 
10
x

 is divisible by 7. )  Now suppose that d is the last digit.  

 
Trick 5.  This trick  is also based on Proposition A and Corollary B:  
(xn + yn) 10n + ( xn-1 + yn-1) 10n – 1 +…. + (x0 + y0) ≡ (xn + yn) + ( xn-1 + yn-1) +…. + (x0 + y0) mod  9.  
The case for multiplication is similar. 
 
Additional tasks:  
 
1. The analogy to Proposition A in base 5 is that 5n 

 = 4..44 + 1. The analogous test for division 
of x by 4 is to test that the sum of its digits is divisible by 4. (All computations are carried out 
base 5.) We can generalize the test for divisibility  by m – 1 in base m.  

 
2. Just like 11 base 10, 6 has a remainder of 1 mod 5. So the trick is to test the alternating sum 

of digits.  
 
3. This test will NOT detect all errors. For instance, it will not detect transposed digits in the 

answer 
 
4. Interpret the hint with Proposition A and its corollary.  
 
 
Section 2.3 
Task 1.  21443  mod 221 = 20   T 



15   Solutions 

  7043  mod 221 = 8 H 
  10043  mod 221 = 9 I 
  9243  mod 221 = 14 N 
  15843  mod 221 = 11 K 
 
Task 2.    SEND _HELP  (There's an extra symbol that we can interpret as a space.)  
 
Task 3. 208 1 214 70 100 59 46 200 92 
 
Task 4.  

Encode: 7335  4585  6397  6741  2984  1  3197 

 
Decoded: 7 15 27 8 15 13 5 or GO HOME  

 
Task 5.  j =  903595073  Decoded: 7 15 20 3 8 1 or GOTCHA 

 
 
Task 6.   M kj  = M 1 + s(p – 1)(q – 1)/d = M (M p-1 )s( q – 1)/d. By Fermat's Little Theorem, Mp-1 ≡ 1 mod p 
and so    Mkj  ≡  M (M p-1 )s( q – 1)/d ≡  M mod p. Similarly, Mkj  ≡  M mod q. Since gcd(p, q) = 1, 
Mkj  ≡  M mod pq.  (Note:  This assumes that the primes chosen are larger than the digits to be 
encoded. Otherwise, it works when M and n are relatively prime. )  
 
 
Section 2.4  
1.  

 
Z3, +  0 1 2 
0 0 1 2 
1 1 2 0 
2 2 0 1 

 
 

Z3, *  0 1 2 
0 0 0 0 
1 0 1 2 
2 0 2 1 

 
 

Z4, +  0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 
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2. Suppose that x ∈[a]m and y∈[b]m . Then a ≡ x mod m and b ≡ y mod m. By Theorem 2 of 
Section 2.1, ab≡ xy mod m. Therefore [ab]m = [xy]m.  

 
3. i. 0; ii. 3; iii. 2; iv. 2 
 
 
4. [a]m([b]m + [c]m) = [a]m ⋅ ([b + c]m) = [a(b + c)]m = [ab + ac]m = [ab]m + [ac]m = [a]m ⋅ [b]m + 

[a]m ⋅ [c]m 
 
5. i. 4; ii. 3; iii. 4;   iv. 10; v. 8; vi.{2, 5, 8, 11} 
 
6.  m = 12: The units are 1, 5, 7, 11. Their inverses are 1, 5, 7, 11 respectively.  

m =  9: The units are 1, 2, 4, 5, 7, 8. Their inverses are 1, 5, 7, 2, 4, and 8 respectively.  
m = 10: The units are 1, 3, 7, 9. Their inverses are 1, 7, 3, and 9 respectively.  
m = 11: The units are 1 through 10. The inverses are (in order) {1, 6, 4, 3, 9, 2, 8, 7, 5, 10}.  

 
7. Let p be prime. Then for all x such that 0 < x < p, gcd(x, p) = 1 and  ax ≡ 1 mod p has a 

solution.  
 
8. The congruence ax ≡ 1 mod m has a solution if and only if gcd(a, m) = 1.  
 
9. Suppose that a be a nonzero element in Zm. Let d = gcd(a, m) and y = m/d. If d > 1, then a is a 

zero divisor because ay = 0 in Zm but y ≠ 0. Conversely, if d = 1, and ay ≡  0 mod m, then m | 
y . So y = 0 in Zm  and a is not a zero divisor.  

 
10. There are ϕ (m) units in Um.   
 

U12

, *  
1 5 7 11 

1 1 5 7 11 
5 5 1 11 7 
7 7 11 1 5 
11 11 7 5 1 

 
 

U8,  
*  

1 3 5 7 

1 1 3 5 7 
3 3 1 7 5 
5 5 7 1 3 
7 7 5 3 1 

 
 

Z4, *  0 1 2 3 
0 0 0 0 0 
1 0 1 2 3 
2 0 2 0 2 
3 0 3 2 1 
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11. No. For instance,  in Z6,  2 ⋅ 4 = 2⋅ 1 but, canceling the 2,  4 ≠ 1.  
 
12. Let m = 6. Then  4 + 4 = 1 + 1 but 4 ≠ 1.  
 
13. Let m = 9. Then  4 + 4 + 4 = 1 + 1 + 1 but 4 ≠ 1. 
 
 
14. In Z7, 3 is such an element because 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1.  This can not 

be done for Z8 because each nonzero element squared is equal to 1.  It cannot be done in Z10. 
In Z11, 2 works.  

  
2.4 To the Teacher Tasks  
1. For instance, 1 < 4 but  is 1 + 1 < 1 + 4?  

2. The symbol 
1
π

 is used to denote a value of x such that x π⋅  = 1. Just writing the symbol 
1
π

 

does not imply that you can find such a value of x. It is not immediately obvious that among 
all the numbers that you can express as non-repeating, non-terminating decimals, there is a 
number that satisfies the equation x π⋅  = 1. (A proof  of existence is an exercise in analysis.)  

 
 
 
Section 2.5  

1. iii. ( )( ) ( )( ) ( )( ) ( )0 0a b a b a b b a− − + − = − − + = − = . Since by part ii, ( ) ( )a b ab− = −  
we also have that ( )ab−  is the additive inverse of both (ab) and (-a)(-b). Thus these two 
are equal since their additive inverses are unique. 

 
iv.  ( 1) (1 )a a a− = − = −  again applying part ii. 

 
2. Suppose that 1 and x are unities in the same ring. Then 1 = 1 ⋅x = x. 
 
3. Suppose that a and b are multiplicative inverses of x in a ring R. Then ( ) ( )ax b a xb=  by 

associativity. So ( ) 1 ( ) 1ax b b b a xb a a= ⋅ = = = ⋅ = . Thus the two inverses are equal. 
 
4. Let d = gcd(x, m). Let y = m/d. If d ≠ 1, then xy = 0 in Zm but y ≠  0. Thus x is a zero divisor 

in Zm. Conversely, if d = 1 and  xy = 0 in Zm, then m divides y so that y = 0 in Zm and x is not 
a zero divisor.  

 

5. The symbol 2 has a multiplicative inverse in Z5 and in Z15 but not in Z4 or Z20. Thus 2 can be 
cancelled in 2x = 2y in Z5 and in Z15 but not in the others. 

6. In M2× 2, let x = 
1 2
3 4

 
 
 

 and y = 
0 1
1 1

 
 
 

. Then (x + y)2 = x2 + xy + yx + y2 = 
13 18
24 37

 
 
 

but 

x2 + 2xy + y2 = 
12 17
24 38

 
 
 

. (In a non-commutative ring, the expansion of (x + y)n would have 
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n
i

 
 
 

monomials that contained exactly i copies of x and n – i of y. However, each 

arrangement of a monomial would need to be counted individually because, for instance, we 
could not assume that xxyxyxy = x4y2. Thus (x + y)n would have 2n distinct monomials in its 
expansion.   

7. The units of Zm are the elements that are relatively prime to m. If gcd(x, m) = 1 then there are 
integers u and v such that ux + vm = 1. Thus ux = 1 – vm  and  ux = 1 in Zm. So x is a unit. If 
gcd(x,m) ≠ 1, then x is a zero divisor and hence not a unit. (See Exercise 4.)  

8. The units in Q[x] are the non-zero rational numbers. Each non-zero rational number has a 
multiplicative inverse. Since the symbol x does not have a multiplicative inverse, no non-
constant polynomial is a unit. 

9. Let p(x) = anxn + …..+a0 and q(x) = bkxk + …+ b0 be two non-zero polynomials with 
coefficients in a ring R . Suppose that neither an nor bk = 0.  Their product is anbkxn+k + … + 
a0b0. If R is an integral domain, anbk ≠  0 and so the p(x)q(x) ≠ 0. Thus R[x] is an integral 
domain. Conversely, suppose R is not an integral domain, and let a and b be zero divisors in 
R. Let p(x) = a and q(x) = b. Then p(x)q(x) = 0 and R[x] is not an integral domain.  

10. If R is a ring without unity, then clearly R[x] is not a field because it has no unity element.  If 
R is a ring (or field) with unity, the polynomial p(x) = x has no inverse.  

11. In Z5, x = 2. In Z7, there is no solution.  

12.  ad – cb ≠ 0.  

13.  The multiplicative inverse of a non-zero element a + b 5  is 2 2

5
5

a b
a b

−
−

 

14. To show that Z3[i] is a field we need to show that every non-zero element has a multiplicative 
inverse.  Consider a + bi where a and b are elements of Z3  and are not both zero. Then (a + 
bi)(a – bi) = a2 + b2. The square of an element in Z3  is either 0 or 1. It can not be 2. The 
possible values of a2 + b2 are 1 or 2. If it is 1, then a – bi is the multiplicative inverse. If the 
value of a2 + b2 is 2 then 2a -2bi is the multiplicative inverse of a + bi.  The multiplicative 
inverse of 2 + i  is 2(2 – i) = 1 – 2i. To solve (2 + i)x = 1 + 2i, multiply both sides by 1 – 2i so 
that (1 2 )(2 ) (1 2 )(1 2 ) 1 1 2i i x x i i− + = = − + = + = .  

15.  No, because   (2 + i)(2 – i) = 4 + 1 = 0 mod 5.  

16. If x2 = x, then x2 – x = 0 or x(x – 1) = 0. In an integral domain, it must be the case that x = 0 or 
x – 1 = 0. Thus the only solutions are x = 0 and x = 1.  

17.  The sum of any polynomial with itself p times results in the zero polynomial.  

18.  As per the hint, Tx is injective since if xy = xz, we have x(y – z) = 0. Since x ≠ 0, y – z = 0 or 
y = z. Since an injective map on a finite set must be surjective, we can find z in R such that xz 
= 1. Thus every nonzero element in R is a unit and R must be a field.  

 

2.5 To the Teacher Tasks  

2. If the mouse uses n or more doors, then it must visit one of the n stations more than once. It 
could find  a trip with no repeated stations that uses fewer doors.  

3. No! In figure 1, a mouse cannot get back to station 6 or to station 1.   
4. Yes, if there is a loop like 2 →3→4 →2 which can be traversed any number of times.  
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5. Yes, if there are no such loops as  2 →3 →4→2, a mouse could never get back to where it 
started.  

6. E.g. Power transmission lines. 
7. The matrix A2 would contain a 1 in position i-j if there is at least one path between stations i 

and j using exactly 2 doors 0 otherwise. The matrix would summarize the existence of paths, 
but not count the number of paths.  

 
Section 2.6  
1. z + w = 3 –2i;  , zw =  5 – 5 i; z/w =  (-1/5 – 7i/ 5);  

w2 = 3 + 4i;   z3 = -26 + 18i.  
2. z = 1 + i/3. 
3. Both are sides are equal to (ac + ae – bd – bf) + (ad + af + bc + be) i 

 

4. 
1
z

 = 2 2 2 2

c d
i

c d c d
−

+ +
. The product of 

1
z

 and w = 2 2 2 2

ac bd bc ad
i

c d c d
+ −

+
+ +

 

 
5.   i0 = 1, i1 = i,   i2 = -1, i3 = -i. Thus  in  = i n mod 4.  

 
 

6. z = 3 – 4i; |z| = 9 16+ = 5;  

1
z

 
 
 

 = 
3 4

25 25
i

+  and 
1
z

 = 
1
5

; 

2z = -7 – 24i and |z2| = 25. 
 
 
7. If z = a + bi,  then both | z |2 and  z z are equal to a2 + b2.  
 
8. Let z = a + bi and w = x + yi. Then 

i. Both z + w  and  ( )z w+ are equal to (a + x) – (b + y)i.  

ii.   Both z w  and ( )zw are equal to (ax– by) – ( ay + xb)i. 

iii.   Both 
1
w

 
 
 

 and 
1
w

 are equal to 
2 2

x iy
x y

+
+

. 

 
 

9. Since 3 i+ = 2 cos sin
6 6

i
π π    +        

, 5( 3 )i+  = 5 5 5
2 cos sin

6 6
i

π π    +        
= 

-16 3 +16i. Since (1 + i) = 2cos sin
4 4

i   +   
   

π π
,  (1 + i)n = 

( )2 cos sin
4 4

n n n
i

    +        

π π
, for  n = 1, 2,… 
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10. Applying the quadratic formula to x2  + x + 1, the  cube roots of 1 are 1, 
1 3

2
i− +

, and 

1 3
2
i− −

. This agrees with de Moivre's formulas since ( ) ( )cos 0 sin 0 i+  = 1, 

2 2
cos sin

3 3
i   +   

   

π π
= 

1 3
2
i− +

 and 
4 4

cos sin
3 3

i
π π   +   

   
= 

1 3
2
i− −

. 

 
 
11. The sixth roots of unity are as follows: 

cos(0) + sin(0)i = 0  

2 2
cos sin

6 6
i

π π   +   
   

 = 
1 3
2 2

i
+  

4 4
cos sin

6 6
i

π π   +   
   

=
1 3
2 2

i
− +  

6 6
cos sin

6 6
i

π π   +   
   

=  –1 

 

8 8
cos sin

6 6
i

π π   +   
   

= 
1 3
2 2

i
− −  

10 10
cos sin

6 6
i

π π   +   
   

= 
1 3
2 2

i
−  

 

12. 1+ 3 i =  2 cos sin
3 3

i
    +        

π π
and its square roots are 2 cos sin

6 6
i

    ± +        

π π
 

where 2 denotes the real, positive square root of 2.  
 

13. 1 + i = 2 cos sin
4 4

i
    +        

π π
 and its cube roots are 1/62 cos sin

12 12
i

    +        

π π
, 

1/6 9 9
2 cos sin

12 12
i

    +        

π π
, and 1/6 17 17

2 cos sin
12 12

i
    +        

π π
 where 21/6 denotes the 

real sixth root of 2.  
 
 
14.  The roots of  x2 + x + 1 are cube roots of unity, which are also sixth roots of unity. So each 

root of  x2 + x + 1 is a root of  x5 + x4 + x3 + x2 + x + 1.  
 

 
15. We can check that for any k  > 0, xk – 1 = (x – 1)(xk –1  +  xk  - 2  + …+ 1) by multiplying. If n = 

pq then xpq – 1 = (xp)q – 1 = (xp – 1)((xp)q – 1 + (xp)q – 2 + …+ 1).  
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16. Note that x24 – 1 = (x12 – 1)(x12 + 1) and that x12 + 1 = (x4 + 1)(x8 – x4 +1).  Since 

cos sin
12 12

i   +   
   

π π
 is not a root of x12 –1, it must be a root of x12 + 1. Since 

4

cos sin
12 12

i
    +        

π π ≠  –1, cos sin
12 12

i   +   
   

π π
 cannot be a root of x4 + 1. Thus it 

must be a root of x8– x4 + 1.  
 
 

17.  z = 
3 9 8
2 2

i i− − −
±   

 
2.6 To the Teacher Tasks  

1. 3  + i = 2 cos sin
6 6

i
π π    +        

= ln(2) /6ie π+  

2. 
2
5

i n

e
π

, n = 0, 1, 2, 3, 4.  

3. i. 
ln(13) 3

arctan
2 2

i  +  
 

; ii. 1 + π i; 
2
iπ

 

4. A similarity: Arctan and the complex logarithm functions are both partial inverses of many to 
one functions. Thus we need to restrict our answers to values of θ  that lie in an interval on 
which the tangent function and the complex exponential functions are one-to-one.  

 A difference: the domain of the arctan function includes 0 whereas the domain of the 
complex logarithm function does not.  

 
Section 2.7 
In the Classroom: Why is the Product of Two Negatives Positive? 
2.  In a ring R , there is an element 0 R∈  such that 0 0x x x+ = + =  for all x  in R . Prove   

that this 0 is unique. 
 
Suppose 10  and 20  are two such elements. Then 1 1 2 20 0 0 0= + = . 
 

3. Each element x  in a ring R  has an element y  (also in R ), such that 0x y y x+ = + = . 
Prove that each element x  has a unique such element y . 

Suppose 1y  and 2y are both additive inverses of x  in R . Then 1 2( )y x y+ + =  

1 2( )y x y+ + , by associativity. So 1 2( )y x y+ + = 2 20 y y+ = =  1 2( )y x y+ + =  

1 10y y+ = . Thus the two inverses are equal. 
 
Section 2.8  

1. The numbers are 5 5+ −  and 5 5− − . 
 
2. If x = 0 then the right hand side is 0. By making x large enough we can make the left hand 

side greater than q. By continuity of polynomials,  there must be an x such that x3 + px exactly 
equals q. 
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3. If x3 = px + q has a as a positive root then substitute –a into the equation x3 + px = q. This 
yields 3( ) ( )− + = −a q p a . This becomes –a3 +q = -pa. Rearrange to a3 = pa + q. This is the 
original condition. 

 

4. Since 200 10 2− = −  we can rewrite the original number as 
3 33 34 200 4 200 4 10 2 4 10 2− + − + − − − = − + − + − − − . Now assume that 

3 4 10 2 2− ± − = ± −a b . Keeping the positive sign and cubing both sides yields 
3 2 2 34 10 2 6 (3 2 ) 2− + − = − + − −a ab a b b . By inspection a = 2 and b = 1 gives equality. 

Thus 3 34 10 2 4 10 2 (2 2 ) (2 2 ) 4− + − + − − − = + − + − − = . 
 

5. 
1 1 1 1

1
11 1 1

− −
= ⋅ = = − −

−− − −
.  With this in hand we have 

4
2 1

1
−

= −  while the 

other form 
4 2

2 1
1 1

= = − −
− −

. 

 
 
Chapter 2 Highlights: Chapter Questions  
2. Reflexivity: x has the same remainder as itself.  

Symmetry: If x has the same remainder as y, then y has the same remainder as x. 

Transitivity: If x has the same remainder as y and y has the same remainder as z, then z has 
the same remainder as x. 

3. [–y ]m  =  [m – x]m.  
 
4. 423335 mod 13 = 9 
 
 
5. i. [4]15 ∪ [9]15 ∪ [14]15  

ii.  [2]12 
iii.  no solution 
iv. [156]211 

 
6. Let a = 15 and b = 19 and m = 10. Then a mod 10 = 5 and b mod 10 = 9 and so a mod 10 + b 

mod 10 = 14. However, (a + b ) mod 10 = 34 mod 10 = 4.  
 
7. [12]616 
 
8. Let d = gcd(m, n). Then m = m1d and n = n1d for some integers m1 and n1.  Since a – b = qm 

and a – b = tn for some integers q and t, we have qm = tn and hence qm1 = tn1. Since gcd(m1, 
m2) = 1, we know that m1 divides  t so that for some integer s, t = sm1. Substituting in the 
expression a – b = tn, we find that a – b = sm1n. Notice that m1n = mn/d = lcm(n, m).  

 
9. i. 0; ii. 8; iii. 9; iv. 10 
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10. 13 –1 = 4 in Z17.  
 
11. i. 16; ii. 7; iii. {2, 5, 8} 
 
 
12. The units of Z15 are {1, 2, 4, 7, 8, 11, 13, 14}. Their inverses are, respectively,{1, 8, 4, 13,  2,  

11, 7, 14} 
 
13. In Zm, (m – 1)-1 = (m – 1) because (m – 1)2 = m2  –  2m + 1  and (m2  – 2m + 1) mod m = 1.  
14. An element x of Zm is zero divisor if and only if x ≠ 0 and gcd(x, m) ≠  1. In Z17, there are no 

zero divisors because 17 is prime. In Z20, the set of zero divisors is {2, 4, 5, 6, 8, 10, 12, 14, 
15, 16, 18}.  

 
15. An element  x of Zm is a unit if and only if gcd(x, m) = 1. In Z17, every non-zero element is a 

unit because 17 is prime. In Z20, the units are {1, 3, 7, 9, 11, 13, 17, 19}. 
 

16. The multiplicative inverse of  1 + 3 2  is 
1 3

2
17 17
−

+ . The solution to (1 + 3 2 )x = 1 – 

5 2  is ( )1 3
2 1 5 2

17 17
− + ⋅ − 

 
=

31 8
2

17 17
−

+ . 

17. 
5 14
70 16

− 
 − 

 Note: the answer is x2 + xy + yx + y2 and xy ≠ yx.  

 
18. If p is not prime, then we can factor p as st, where s and t are not equal to either 0 or 1 mod p. 

Thus the elements  s + 0i and t + 0i   are a zero divisors.  Now suppose p is prime and let a + 
ib be an element of Zp. If a2 + b2 = 0 mod p then (a + bi)(a – bi) = 0 mod p and (a + bi) 
cannot be a unit. On the other hand, if a2 + b2 ≠ 0 mod p, then a2 + b2 has a multiplicative 
inverse z in Zp. The multiplicative inverse of (a + bi) is then za – bzi because (a + bi)(za – 
zbi) = z(a2 + b2) = 1.  

 
19. z = 2 + 5i; z + w = 3 – 7i;  zw = -8 – 9i; z/w = 12/5  –  i/5; w2 =  – 3 – 4i ; z3 = – 142 + 65i.  

20. z = 
1 3

1
2 2

i
 −

− −  
 

 and z = 
1 3

1
2 2

i
 −

− +  
 

. 

 
21. x8 – 1 = (x – 1)(x + 1)(x2 + 1)(x4 +1) = (x – 1)(x + 1)(x – i )(x + i)( x2 – i)(x2 + i) 

 = (x – 1)(x + 1)(x – i )(x + i)( x – 2 2
2 2

i 
+  

 
)( x + 2 2

2 2
i 

+  
 

)( (x – 2 2
2 2

i 
−  

 
)( (x 

+ 2 2
2 2

i 
−  

 
). So the eight roots are 1± , ± i, ± 2 2

2 2
i 

+  
 

, ± 2 2
2 2

i 
−  

 
. 

 
22. i = cos(π /2) + i sin( π /2). Thus the cube roots of i are as follows:  

cos(π /6) + i sin( π /6) = 3
2 2

i
+  

cos(π /6 + 2π /3 ) + i sin(π /6 + 2π /3) = 3
2 2

i−
+  
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cos(π /6 + 4π /3 ) + i sin(π /6 + 4π /3) = - i.  
 
 

  
Chapter 3__________________  
 
Section 3.1 
1. 2 23 1  and 1x x x+ + +  
2. In Z2, there are 4 polynomials of degree 2, 4 monic.  In Z5, there are  100 polynomials of 

degree 2, 25 monic; in Zn, there are (n – 1)n 2 polynomials of degree 2, n2 monic. 
  
3. a. sum: 2x2 + 6x + 3;   product:  6x3 + 13x2 + 9x + 2 

b. sum: 2x2 + x + 3;    product:  x3 + 3x2 + 4x + 2 
c. sum: 2x2 + x;    product:  x3 + 2x2 + 2 
d. sum: (2 + 3i)x2 + 6x + 3i           product: (6 + 9i)x3 + (3 + 4i)x2 + 9ix – 2  

4. The results follow from Chapter 2.1, Theorem 2. For the ith coefficient of the sum, we know  
that (ai + bi) mod n = (ai mod n + bi mod n) mod n. For the ith  coefficient of the product we 

know that modj q
j q i

a b n
+ =

 
 
 
∑ = ( ) ( )mod mod modj q

j q i

a n b n n
+ =

 
 
 
∑ . 

 

5. i.  quotient: x2 + x + 1;    remainder: 0 
ii.  quotient: xn – 1 + xn – 2  + … + x + 1;  remainder: 0 
iii.  quotient: 2x2 + 4x + 4;    remainder: 2 
iv.  quotient: x3 + x2 + 1;    remainder: 0 
v.   quotient: x2 + x + 2 + 2i    remainder: 3 + 2i  

6. Let  p(x) = anxn + ..+ a0 and q(x) = bmxm +…+ b0 with  an ≠ 0 and bm ≠ 0. If anbm ≠  0, then 
p(x)q(x) = anbm xm + n + …+ a0b0 ≠ 0 in R[x]. Conversely, if anbm = 0, then the product of the 
non- zero polynomials p(x) = anxn and q(x) = bmxm is zero: (anxn)( bmxm) = (anbm)xn+ m 

 =  0. 

7. i. yes; ii. no; iii. no 

8. Each iteration of division by p(x) = bmxn + …+ b0 requires that we obtain gi(x) = g(x)  – 

( )in n m

m

a
x p x

b
−  where 

ina is the leading coefficient of gi-1(x). Only the leading coefficient of 

p(x), namely bm, must be a unit for this to be carried out. 

9.  0 (Use the remainder theorem and simply evaluate the polynomial at x = 1.) 

10.  4 

11. 3x2 + 3x. Its roots are 0, 1, 2, 3, 4, and 5.  

12.  All polynomials p(x) = xn + ….+ a0 for which a0 = 0 have root 0; otherwise, all polynomials 
with an even number of non-zero coefficients have root 1.  
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13. Monic:  x2 + 1, x2 + x + 2, and x2 + 2x + 2; Not monic:  2x2 + 2, 2x2 +  2x + 1, and 2x2 + x + 1. 

14.  f(x) = q(x)(x  – a) + r0  and f(a) = r0. So f(a) = 0 if and only if r0 = 0. Thus f(a) = 0 if and only 
if f(x) = q(x)(x  – a). 

15. Let n = 1. A polynomial of the form x – a has exactly one root, namely a. Assume that the 
theorem is true for polynomials of degree less than n and suppose that p(x) is a polynomial of 
degree n > 1.  If p(x) has no roots, then we are done since 0 < n. If p(x) has a root at x0, then 
p(x) = g(x)(x – x0) and deg (g(x)) = n – 1. By the induction hypothesis, g(x) has at most n – 1 
roots. Any root of p(x) is either equal to x0 or it is a root of g(x). Thus p(x) has at most n roots.  

16. Suppose that p – 1 =nd and let y = xd. Then xp – 1 – 1 = yn – 1 = (y – 1)(y n – 1  + yn – 2  +  … + 1) 
= (xd – 1)( xd(n – 1) + xd (n – 2) + … + 1). Conversely, if p – 1 = nd + r and 0 < r < d, then  the 
remainder of xp – 1 – 1 after division by xd – 1 is xr – 1. (At each stage in long division, another 
copy d is subtracted from the exponent p – 1 until r is left.)  

3.1 To the Teacher Tasks 
1. Yes! Let p(x) = x2 + x + 1. Then p(1) = 3, p(2) = 7; p(3) = 13 but p(4) = 21. 

2. (x2 + x + 1)(x2 + 2) + (x + 3) = x4 + x3 + 3x2 + 3x + 5 In base 10, we have 11335 = 111 ⋅102 + 

13.  

 

The base 13 expression 11335 = 111 ⋅102 + 13 means (134 + 133 + 3⋅132 + 3⋅13 + 5 ) = (132 

+ 13 + 1)(132 + 2)  + 13 + 3 or , in base ten, 31309 = 183 ⋅ 171 + 16. 

  

In base 7, the expression11335 = 111 ⋅102 + 13 means  (74 + 73 + 3⋅72 + 3⋅7+ 5 ) = (72 + 7 + 

1)(72 + 2)  + 7 + 3 or 2917=57 ⋅51+10.  

 

3. Suppose that p(x) = g(x)f(x) and let m be an integer. For p(m) to be prime, either f(m) or g(m) 
must equal 1 or – 1. But this can happen for at most a finite number of values of m. For 
instance, f(x) = 1, or equivalently, f(x) – 1 = 0 has only a finite number of solutions.  

 
Section 3.2 
1.  (x5 + x4 + x3 – 2x2 – 2x – 2) = x(x4  + x3 – x 2 – 2x – 2) + (2x3 – 2) 

(x4  + x3 – x 2 – 2x – 2)   = (x/2 + 1/2)( 2x3 – 2) + (–x2 – x – 1)   
(2x3 – 2) = ( – 2x + 2)( – x2 – x – 1 ) + 0 
Thus  (–x2 – x – 1) = gcd(f, g) and therefore x2 + x + 1 is "the" gcd(f, g).  

 
2. f(x) = g(x)q(x) + r(x) and f(x) – g(x)q(x) = r(x). Thus d(x) divides both  f(x) and g(x) if and 

only if d(x) divides both r(x) and g(x). 
3. i. x – 2  

ii. x + 4 
iii. 1 

4. s(x)f(x) + t(x)g(x) = gcd(f, g) 

i. s(x) = 22 1 1
5 10 10

x x− −  and t(x) = -2 11
5 10

x −  
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