
Understanding Machine Learning

Solution Manual

Written by Alon Gonen∗

Edited by Dana Rubinstein

November 17, 2014

2 Gentle Start

1. Given S = ((xi, yi))
m
i=1, define the multivariate polynomial

pS(x) = −
∏

i∈[m]:yi=1

‖x− xi‖2 .

Then, for every i s.t. yi = 1 we have pS(xi) = 0, while for every other
x we have pS(x) < 0.

2. By the linearity of expectation,

E
S|x∼Dm

[LS(h)] = E
S|x∼Dm

[
1

m

m∑
i=1

1[h(xi)6=f(xi)]

]

=
1

m

m∑
i=1

E
xi∼D

[1[h(xi)6=f(xi)]]

=
1

m

m∑
i=1

P
xi∼D

[h(xi) 6= f(xi)]

=
1

m
·m · L(D,f)(h)

= L(D,f)(h) .

∗The solutions to Chapters 13,14 were written by Shai Shalev-Shwartz
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3. (a) First, observe that by definition, A labels positively all the posi-
tive instances in the training set. Second, as we assume realizabil-
ity, and since the tightest rectangle enclosing all positive examples
is returned, all the negative instances are labeled correctly by A
as well. We conclude that A is an ERM.

(b) Fix some distribution D over X , and define R? as in the hint.
Let f be the hypothesis associated with R? a training set S,
denote by R(S) the rectangle returned by the proposed algorithm
and by A(S) the corresponding hypothesis. The definition of the
algorithm A implies that R(S) ⊆ R∗ for every S. Thus,

L(D,f)(R(S)) = D(R? \R(S)) .

Fix some ε ∈ (0, 1). Define R1, R2, R3 and R4 as in the hint. For
each i ∈ [4], define the event

Fi = {S|x : S|x ∩Ri = ∅} .

Applying the union bound, we obtain

Dm({S : L(D,f)(A(S)) > ε}) ≤ Dm
(

4⋃
i=1

Fi

)
≤

4∑
i=1

Dm(Fi) .

Thus, it suffices to ensure that Dm(Fi) ≤ δ/4 for every i. Fix
some i ∈ [4]. Then, the probability that a sample is in Fi is
the probability that all of the instances don’t fall in Ri, which is
exactly (1− ε/4)m. Therefore,

Dm(Fi) = (1− ε/4)m ≤ exp(−mε/4) ,

and hence,

Dm({S : L(D,f)(A(S)) > ε]}) ≤ 4 exp(−mε/4) .

Plugging in the assumption on m, we conclude our proof.

(c) The hypothesis class of axis aligned rectangles in Rd is defined as
follows. Given real numbers a1 ≤ b1, a2 ≤ b2, . . . , ad ≤ bd, define
the classifier h(a1,b1,...,ad,bd) by

h(a1,b1,...,ad,bd)(x1, . . . , xd) =

{
1 if ∀i ∈ [d], ai ≤ xi ≤ bi
0 otherwise

(1)
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The class of all axis-aligned rectangles in Rd is defined as

Hdrec = {h(a1,b1,...,ad,bd) : ∀i ∈ [d], ai ≤ bi, }.

It can be seen that the same algorithm proposed above is an ERM
for this case as well. The sample complexity is analyzed similarly.
The only difference is that instead of 4 strips, we have 2d strips
(2 strips for each dimension). Thus, it suffices to draw a training

set of size
⌈
2d log(2d/δ)

ε

⌉
.

(d) For each dimension, the algorithm has to find the minimal and
the maximal values among the positive instances in the training
sequence. Therefore, its runtime is O(md). Since we have shown

that the required value of m is at most
⌈
2d log(2d/δ)

ε

⌉
, it follows

that the runtime of the algorithm is indeed polynomial in d, 1/ε,
and log(1/δ).

3 A Formal Learning Model

1. The proofs follow (almost) immediately from the definition. We will
show that the sample complexity is monotonically decreasing in the
accuracy parameter ε. The proof that the sample complexity is mono-
tonically decreasing in the confidence parameter δ is analogous.

Denote by D an unknown distribution over X , and let f ∈ H be the
target hypothesis. Denote by A an algorithm which learns H with
sample complexity mH(·, ·). Fix some δ ∈ (0, 1). Suppose that 0 <

ε1 ≤ ε2 ≤ 1. We need to show that m1
def
= mH(ε1, δ) ≥ mH(ε2, δ)

def
=

m2. Given an i.i.d. training sequence of size m ≥ m1, we have that
with probability at least 1− δ, A returns a hypothesis h such that

LD,f (h) ≤ ε1 ≤ ε2 .

By the minimality of m2, we conclude that m2 ≤ m1.

2. (a) We propose the following algorithm. If a positive instance x+
appears in S, return the (true) hypothesis hx+ . If S doesn’t con-
tain any positive instance, the algorithm returns the all-negative
hypothesis. It is clear that this algorithm is an ERM.

(b) Let ε ∈ (0, 1), and fix the distribution D over X . If the true
hypothesis is h−, then our algorithm returns a perfect hypothesis.
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Assume now that there exists a unique positive instance x+. It’s
clear that if x+ appears in the training sequence S, our algorithm
returns a perfect hypothesis. Furthermore, if D[{x+}] ≤ ε then
in any case, the returned hypothesis has a generalization error
of at most ε (with probability 1). Thus, it is only left to bound
the probability of the case in which D[{x+}] > ε, but x+ doesn’t
appear in S. Denote this event by F . Then

P
S|x∼Dm

[F ] ≤ (1− ε)m ≤ e−mε .

Hence, HSingleton is PAC learnable, and its sample complexity is
bounded by

mH(ε, δ) ≤
⌈

log(1/δ)

ε

⌉
.

3. Consider the ERM algorithm A which given a training sequence S =
((xi, yi))

m
i=1, returns the hypothesis ĥ corresponding to the “tightest”

circle which contains all the positive instances. Denote the radius of
this hypothesis by r̂. Assume realizability and let h? be a circle with
zero generalization error. Denote its radius by r?.

Let ε, δ ∈ (0, 1). Let r̄ ≤ r∗ be a scalar s.t. DX ({x : r̄ ≤ ‖x‖ ≤ r?}) =
ε. Define E = {x ∈ R2 : r̄ ≤ ‖x‖ ≤ r?}. The probability (over
drawing S) that LD(hS) ≥ ε is bounded above by the probability that
no point in S belongs to E. This probability of this event is bounded
above by

(1− ε)m ≤ e−εm .

The desired bound on the sample complexity follows by requiring that
e−εm ≤ δ.

4. We first observe that H is finite. Let us calculate its size accurately.
Each hypothesis, besides the all-negative hypothesis, is determined by
deciding for each variable xi, whether xi, x̄i or none of which appear
in the corresponding conjunction. Thus, |H| = 3d + 1. We conclude
that H is PAC learnable and its sample complexity can be bounded
by

mH(ε, δ) ≤
⌈
d log 3 + log(1/δ)

ε

⌉
.

Let’s describe our learning algorithm. We define h0 = x1 ∩ x̄1 ∩
. . . ∩ xd ∩ x̄d. Observe that h0 is the always-minus hypothesis. Let
((a1, y1), . . . , (am, ym)) be an i.i.d. training sequence of size m. Since
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we cannot produce any information from negative examples, our algo-
rithm neglects them. For each positive example a, we remove from hi
all the literals that are missing in a. That is, if ai = 1, we remove x̄i
from h and if ai = 0, we remove xi from hi. Finally, our algorithm
returns hm.

By construction and realizability, hi labels positively all the positive
examples among a1, . . . ,ai. From the same reasons, the set of literals
in hi contains the set of literals in the target hypothesis. Thus, hi clas-
sifies correctly the negative elements among a1, . . . ,ai. This implies
that hm is an ERM.

Since the algorithm takes linear time (in terms of the dimension d) to
process each example, the running time is bounded by O(m · d).

5. Fix some h ∈ H with L(Dm,f)(h) > ε. By definition,

PX∼D1 [h(X) = f(X)] + . . .+ PX∼Dm [h(X) = f(X))]

m
< 1− ε .

We now bound the probability that h is consistent with S (i.e., that
LS(h) = 0) as follows:

P
S∼

∏m
i=1Di

[LS(h) = 0] =
m∏
i=1

P
X∼Di

[h(X) = f(X)]

=

( m∏
i=1

P
X∼Di

[h(X) = f(X)]

) 1
m

m

≤
(∑m

i=1 PX∼Di [h(X) = f(X)]

m

)m
< (1− ε)m

≤ e−εm .

The first inequality is the geometric-arithmetic mean inequality. Ap-
plying the union bound, we conclude that the probability that there
exists some h ∈ H with L(Dm,f)(h) > ε, which is consistent with S is

at most |H| exp(−εm).

6. Suppose that H is agnostic PAC learnable, and let A be a learning
algorithm that learns H with sample complexity mH(·, ·). We show
that H is PAC learnable using A.
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Let D, f be an (unknown) distribution over X , and the target function
respectively. We may assume w.l.o.g. that D is a joint distribution
over X ×{0, 1}, where the conditional probability of y given x is deter-
mined deterministically by f . Since we assume realizability, we have
infh∈H LD(h) = 0. Let ε, δ ∈ (0, 1). Then, for every positive integer
m ≥ mH(ε, δ), if we equip A with a training set S consisting of m i.i.d.
instances which are labeled by f , then with probability at least 1− δ
(over the choice of S|x), it returns a hypothesis h with

LD(h) ≤ inf
h′∈H

LD(h′) + ε

= 0 + ε

= ε .

7. Let x ∈ X . Let αx be the conditional probability of a positive label
given x. We have

P[fD(X) 6= y|X = x] = 1[αx≥1/2] · P[Y = 0|X = x] + 1[αx<1/2] · P[Y = 1|X = x]

= 1[αx≥1/2] · (1− αx) + 1[αx<1/2] · αx
= min{αx, 1− αx}.

Let g be a classifier1 from X to {0, 1}. We have

P[g(X) 6= Y |X = x] = P[g(X) = 0|X = x] · P[Y = 1|X = x]

+ P[g(X) = 1|X = x] · P[Y = 0|X = x]

= P[g(X) = 0|X = x] · αx + P[g(X) = 1|X = x] · (1− αx)

≥ P[g(X) = 0|X = x] ·min{αx, 1− αx}
+ P[g(X) = 1|x] ·min{αx, 1− αx}
= min{αx, 1− αx},

The statement follows now due to the fact that the above is true for
every x ∈ X . More formally, by the law of total expectation,

LD(fD) = E(x,y)∼D[1[fD(x)6=y]]

= Ex∼DX
[
Ey∼DY |x [1[fD(x)6=y]|X = x]

]
= Ex∼DX [αx]

≤ Ex∼DX
[
Ey∼DY |x [1[g(x)6=y]|X = x]

]
= LD(g) .

1As we shall see, g might be non-deterministic.
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8. (a) This was proved in the previous exercise.

(b) We proved in the previous exercise that for every distribution D,
the bayes optimal predictor fD is optimal w.r.t. D.

(c) Choose any distribution D. Then A is not better than fD w.r.t.
D.

9. (a) Suppose that H is PAC learnable in the one-oracle model. Let A
be an algorithm which learns H and denote by mH the function
that determines its sample complexity. We prove that H is PAC
learnable also in the two-oracle model.

Let D be a distribution over X ×{0, 1}. Note that drawing points
from the negative and positive oracles with equal provability is
equivalent to obtaining i.i.d. examples from a distribution D′
which gives equal probability to positive and negative examples.
Formally, for every subset E ⊆ X we have

D′[E] =
1

2
D+[E] +

1

2
D−[E].

Thus, D′[{x : f(x) = 1}] = D′[{x : f(x) = 0}] = 1
2 . If we let

A an access to a training set which is drawn i.i.d. according to
D′ with size mH(ε/2, δ), then with probability at least 1 − δ, A
returns h with

ε/2 ≥ L(D′,f)(h) = P
x∼D′

[h(x) 6= f(x)]

= P
x∼D′

[f(x) = 1, h(x) = 0] + P
x∼D′

[f(x) = 0, h(x) = 1]

= P
x∼D′

[f(x) = 1] · P
x∼D′

[h(x) = 0|f(x) = 1]

+ P
x∼D′

[f(x) = 0] · P
x∼D′

[h(x) = 1|f(x) = 0]

= P
x∼D′

[f(x) = 1] · P
x∼D

[h(x) = 0|f(x) = 1]

+ P
x∼D′

[f(x) = 0] · P
x∼D

[h(x) = 1|f(x) = 0]

=
1

2
· L(D+,f)(h) +

1

2
· L(D−,f)(h).

This implies that with probability at least 1− δ, both

L(D+,f)(h) ≤ ε and L(D−,f)(h) ≤ ε.
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Our definition for PAC learnability in the two-oracle model is sat-
isfied. We can bound both m+

H(ε, δ) and m−H(ε, δ) by mH(ε/2, δ).

(b) Suppose that H is PAC learnable in the two-oracle model and
let A be an algorithm which learns H. We show that H is PAC
learnable also in the standard model.

Let D be a distribution over X , and denote the target hypothesis
by f . Let α = D[{x : f(x) = 1}]. Let ε, δ ∈ (0, 1). Accord-

ing to our assumptions, there exist m+ def
= m+

H(ε, δ/2),m−
def
=

m−H(ε, δ/2) s.t. if we equip A with m+ examples drawn i.i.d.
from D+ and m− examples drawn i.i.d. from D−, then, with
probability at least 1− δ/2, A will return h with

L(D+,f)(h) ≤ ε ∧ L(D−,f)(h) ≤ ε .

Our algorithm B draws m = max{2m+/ε, 2m−/ε, 8 log(4/δ)ε } sam-
ples according to D. If there are less then m+ positive examples,
B returns h−. Otherwise, if there are less then m− negative ex-
amples, B returns h+. Otherwise, B runs A on the sample and
returns the hypothesis returned by A.

First we observe that if the sample contains m+ positive instances
and m− negative instances, then the reduction to the two-oracle
model works well. More precisely, with probability at least 1 −
δ/2, A returns h with

L(D+,f)(h) ≤ ε ∧ L(D−,f)(h) ≤ ε .

Hence, with probability at least 1− δ/2, the algorithm B returns
(the same) h with

L(D,f)(h) = α · L(D+,f)(h) + (1− α) · L(D−,f)(h) ≤ ε

We consider now the following cases:

• Assume that both α ≥ ε. We show that with probability
at least 1 − δ/4, the sample contain m+ positive instances.
For each i =∈ [m], define the indicator random variable Zi,
which gets the value 1 iff the i-th element in the sample is
positive. Define Z =

∑m
i=1 Zi to be the number of positive

examples that were drawn. Clearly, E[Z] = αm. Using Cher-
noff bound, we obtain

P[Z < (1− 1

2
)αm] < e

−mα
8 .
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By the way we chose m, we conclude that

P[Z < m+] < δ/4 .

Similarly, if 1−α ≥ ε, the probability that less than m− neg-
ative examples were drawn is at most δ/4. If both α ≥ ε and
1−α ≥ ε, then, by the union bound, with probability at least
1 − δ/2, the training set contains at least m+ and m− pos-
itive and negative instances respectively. As we mentioned
above, if this is the case, the reduction to the two-oracle
model works with probability at least 1 − δ/2. The desired
conclusion follows by applying the union bound.

• Assume that α < ε, and less than m+ positive examples are
drawn. In this case, B will return the hypothesis h−. We
obtain

LD(h) = α < ε .

Similarly, if (1−α) < ε, and less than m− negative examples
are drawn, B will return h+. In this case,

LD(h) = 1− α < ε .

All in all, we have shown that with probability at least 1 − δ,
B returns a hypothesis h with L(D,f)(h) < ε. This satisfies our
definition for PAC learnability in the one-oracle model.

4 Learning via Uniform Convergence

1. (a) Assume that for every ε, δ ∈ (0, 1), and every distribution D
over X × {0, 1}, there exists m(ε, δ) ∈ N such that for every
m ≥ m(ε, δ),

P
S∼Dm

[LD(A(S)) > ε] < δ .

Let λ > 0. We need to show that there existsm0 ∈ N such that for
every m ≥ m0, ES∼Dm [LD(A(S))] ≤ λ. Let ε = min(1/2, λ/2).
Set m0 = mH(ε, ε). For every m ≥ m0, since the loss is bounded
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above by 1, we have

E
S∼Dm

[LD(A(S))] ≤ P
S∼Dm

[LD(A(S)) > λ/2] · 1 + P
S∼Dm

[LD(A(S)) ≤ λ/2] · λ/2

≤ P
S∼Dm

[LD(A(S)) > ε] + λ/2

≤ ε+ λ/2

≤ λ/2 + λ/2

= λ .

(b) Assume now that

lim
m→∞

E
S∼Dm

[LD(A(S))] = 0 .

Let ε, δ ∈ (0, 1). There exists some m0 ∈ N such that for every
m ≥ m0, ES∼Dm [LD(A(S))] ≤ ε · δ. By Markov’s inequality,

P
S∼Dm

[LD(A(S)) > ε] ≤ ES∼Dm [LD(A(S))]

ε

≤ εδ

ε
= δ .

2. The left inequality follows from Corollary 4.4. We prove the right
inequality. Fix some h ∈ H. Applying Hoeffding’s inequality, we
obtain

P
S∼Dm

[|LD(h)− LS(h)| ≥ ε/2] ≤ 2 exp

(
− 2mε2

(b− a)2

)
. (2)

The desired inequality is obtained by requiring that the right-hand
side of Equation (2) is at most δ/|H|, and then applying the union
bound.

5 The Bias-Complexity Tradeoff

1. We simply follow the hint. By Lemma B.1,

P
S∼Dm

[LD(A(S)) ≥ 1/8] = P
S∼Dm

[LD(A(S)) ≥ 1− 7/8]

≥ E[LD(A(S))]− (1− 7/8)

7/8

≥ 1/8

7/8

= 1/7 .
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