
Outline

Outline

1 Correlations and Least Squares

2 Basic Linear Regression Model

3 Is the Model Useful?: Some Basic Summary Measures

4 Properties of Regression Coefficient Estimators

5 Statistical Inference

6 Building a Better Model: Residual Analysis

7 Application: Capital Asset Pricing Model

Frees (Regression Modeling) Basic Linear Regression 1 / 40

Correlations and Least Squares

Example. Wisconsin Lottery Sales

• What factors affect lottery sales? Helpful to know for marketing, e.g.,

where to establish new retail outlets.
• i unit of analysis, ZIP (postal) code
• n = 50 randomly selected geographic areas
• y= average lottery sales (SALES) over a forty-week period, April, 1998

through January, 1999,
• x = population (POP), measure of size of the area.
• Later, we will introduce other factors including area’s typical age,

education level, income, and so forth. Population is the obvious place to

start.
• Here are some summary statistics.

Table: Summary Statistics of Each Variable

Standard

Variable Mean Median Deviation Minimum Maximum

POP 9,311 4,406 11,098 280 39,098

SALES 6,495 2,426 8,103 189 33,181

Source: Frees and Miller (2003).
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Example. Wisconsin Lottery Sales
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Figure: Histograms of Population and Sales. Each distribution is skewed to the right,
indicating that there are many small areas compared to a few areas with larger sales
and populations.

Correlations and Least Squares

Scatter Plot

• The basic graphical tool used to investigate the relationship

between the two variables is a scatter plot.
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Figure: A scatter plot of the lottery data. Each of the 50 plotting symbolsFrees (Regression Modeling) Basic Linear Regression 4 / 40
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Correlations and Least Squares

Correlations

• One way to summarize the strength of the relationship between

two variables is through a correlation statistic.

• The ordinary, or Pearson, correlation coefficient is defined as

r =
1

(n − 1)sxsy

n∑
i=1

(xi − x) (yi − y) .

Recall the sample standard deviation sy =
√

1
n−1

∑n
i=1 (yi − y)2.

• The correlation coefficient is said to be a ”unitless” measure.
• It is unaffected by scale and location changes of either, or both,

variables.
• It can readily be compared across different data sets.

• Correlation coefficients take up less space to report than a scatter
plot and are often the primary statistic of interest.

• Scatter plots help us understand other aspects of the data, such as
the range, and also provide indications of nonlinear relationships in
the data.
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Correlations and Least Squares

Method of Least Squares

• Can knowledge of population (x) help us understand sales (y)?
• Method of Least Squares

• Begin with the line y = b∗
0 + b∗

1x , where the intercept and slope, b∗
0 and b∗

1,
are merely generic values.

• For the i th observation, yi − (b∗
0 + b∗

1xi) represents the deviation of the
observed value yi from the line at xi .

• The sum of squared deviations is

SS(b∗
0 , b∗

1) =
n∑

i=1

(yi − (b∗
0 + b∗

1xi))
2

• Minimize this quantity by taking derivatives with respect to the intercept and
slope, setting equal to zero and solving

∂

∂b∗
0

SS(b∗
0 , b∗

1) =
n∑

i=1

(−2) (yi − (b∗
0 + b∗

1xi)) = 0

and
∂

∂b∗
1

SS(b∗
0 , b∗

1) =
n∑

i=1

(−2xi) (yi − (b∗
0 + b∗

1xi)) = 0.

Correlations and Least Squares

Least Squares Estimates

• The solution gives the least squares intercept and slope estimates

b1 = r
sy

sx
and b0 = y − b1x .

• We have dropped the asterisk, or star (*) notation because these

are no longer generic values.

• The line that they determine, ŷ = b0 + b1x , is called the estimated,
or fitted, regression line.
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Correlations and Least Squares

Example. Wisconsin Lottery Sales

For these data, we have r = 0.886 and recall

Table: Summary Statistics of Each Variable

Standard

Variable Mean Median Deviation Minimum Maximum

POP 9,311 4,406 11,098 280 39,098

SALES 6,495 2,426 8,103 189 33,181

Thus,

• b1 = 0.886 (8, 103) /11, 098 = 0.647 and

• b0 = 6, 495 − (0.647)9, 311 = 470.8.

• This yields the fitted regression line

ŷ = 470.8 + (0.647)x .
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Correlations and Least Squares

Example. Summarizing Simulations

• Manistre and Hancock (2005) simulated a 10-year European put

option and demonstrated the relationship between the

value-at-risk (VaR) and the conditional tail expectation (CTE)

• Stock prices are modeled as

S(Z ) = 100 exp
(
(.08)10 + .15

√
10Z

)
,

annual mean return of 8% and standard deviation 15% .

• The present value of this option is

C(Z ) = e−0.06(10)max (0, 110 − S(Z )) ,

based on a 6% discount rate.

• 1,000 i.i.d. standard normal random variables were simulated and

calculate each of 1000 present values, Ci1, . . . , Ci,1000.

• Vari is the 95th percentile

• CTEi is the average of the highest 50.
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Correlations and Least Squares

Example. Summarizing Simulations

The correlation coefficient turns out to be r = 0.782.
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Figure: Plot of Conditional Tail Expectation (CTE) versus Value at Risk (VaR). Based

on n = 1, 000 simulations from a 10 year European put bond.

Basic Linear Regression Model

Observables Representation

Basic Linear Regression Model

Observables Representation Sampling Assumptions

F1. E yi = β0 + β1xi .

F2. {x1, . . . , xn} are non-stochastic variables.

F3. Var yi = σ2.

F4. {yi} are independent random variables.

• For F4, think of stratified sampling, where each xi is a strata (or

group)

• For F3, a common variance is known as homoscedasticity

• We sometimes require

F5. {yi} are normally distributed.

However, approximate normality is enough for central limit

theorems that we will need for inference.
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Basic Linear Regression Model

Graphical Representation
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Figure: The distribution of the response varies by the level of the explanatory
variable.
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Basic Linear Regression Model

Error Representation

Basic Linear Regression Model

Error Representation Sampling Assumptions

E1. yi = β0 + β1xi + εi .

E2. {x1, . . . , xn} are non-stochastic variables.

E3. E εi = 0 and Var εi = σ2.

E4. {εi} are independent random variables.

• The error representation is a useful springboard for residual

analysis (Section 2.6)

• The observable representation is a useful springboard for

extensions to nonlinear regression models

• These two sets of assumptions are equivalent
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Basic Linear Regression Model

Statistics versus Parameters

• Statistics summarize the (observed) sample/data

• Parameters summarize the (generally unobserved) population

• Use Greek letters for parameters, roman letters for statistics

Table: Summary Measures of the Population and Sample

Data Summary Regression Variance

Measures Line

Intercept Slope

Population Parameters β0 β1 σ2

Sample Statistics b0 b1 s2
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Is the Model Useful?: Some Basic Summary Measures

Partitioning the Variability

We now have two “estimates” of yi , y and ŷi

yi − y︸ ︷︷ ︸ = yi − ŷi︸ ︷︷ ︸ + ŷi − y︸ ︷︷ ︸
total = unexplained + explained

deviation deviation deviation

x x

y

ŷ

y

y − ŷ

ŷ − y = b1(x − x)

x − x

ŷ = b0 + b1x

Is the Model Useful?: Some Basic Summary Measures

Partitioning the Variability

After a little algebraic manipulation, this yields

n∑
i=1

(yi − y)2 =
n∑

i=1

(
yi − ŷi

)2
+

n∑
i=1

(
ŷi − y

)2
,

or Total SS = Error SS + Regression SS where SS stands for sum of squares.

• Summarize with “R-square,” the coefficient of determination, defined as

R2 =
Regression SS

Total SS
.

• R2 = the proportion of variability explained by the regression line.
• If the regression line fits the data perfectly, then Error SS = 0 and R2 = 1.
• If the regression line provides no information about the response, then

Regression SS = 0 and R2 = 0.
• Property: 0 ≤ R2 ≤ 1, with larger values implying a better fit.



Is the Model Useful?: Some Basic Summary Measures

The Size of a Typical Deviation: s

• Define the estimate of the disturbance term εi = yi − (β0 + β1xi) ,

ei = yi − (b0 + b1xi)

the i th residual.
• If we could observe disturbances, then we would estimate σ2 using

(n − 1)−1
∑n

i=1 (εi − ε)2.
• Instead, an estimator of σ2, the mean square error (MSE), is defined as

s2 =
1

n − 2

n∑
i=1

ei
2.

• The residual standard deviation is s =
√

s2.
• Property of least square residuals, e = 0.
• Dividing by n − 2 makes s2 unbiased.

• Two points determine a line.
• With n observations, there are n − 2 “free” observations that contribute to

the variability.

Is the Model Useful?: Some Basic Summary Measures

ANOVA Table

Define

s2 =
1

n − 2

n∑
i=1

(
yi − ŷi

)2
=

Error SS
n − 2

= MSE .

and

ANOVA Table

Source Sum of Squares df Mean Square

Regression Regression SS 1 Regression MS
Error Error SS n − 2 MSE
Total Total SS n − 1

The ANOVA table is merely a bookkeeping device used to keep track

of the sources of variability.
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Is the Model Useful?: Some Basic Summary Measures

Example. Wisconsin Lottery Sales

ANOVA Table

Source Sum of Squares df Mean Square

Regression 2,527,165,015 1 2,527,165,015

Error 690,116,755 48 14,377,432

Total 3,217,281,770 49

From this table, you can check that R2 = 78.5% and s = 3, 792.

Frees (Regression Modeling) Basic Linear Regression 19 / 40

Properties of Regression Coefficient Estimators

Weighted Sums

• The least squares estimates can be expressed as weighted sum of the

responses.
• Define the weights

wi =
xi − x

s2
x(n − 1)

.

• The sum of x-deviations (xi − x) is zero, we see that
∑n

i=1 wi = 0.
• The slope estimate is

b1 = r
sy

sx
=

1

(n − 1)s2
x

n∑
i=1

(xi − x) (yi − y) =
n∑

i=1

wi (yi − y) =
n∑

i=1

wiyi .

• A similar result holds for the intercept estimate (with different weights)
• There exists central limit theorems for weighted sums, so that we may treat

b1 and b0 as approximately normal, even if y is not normally distributed.



Properties of Regression Coefficient Estimators

Properties of Regression Coefficients

• Regression coefficients are unbiased.
• By the linearity of expectations and Assumption F1, we have

E b1 =
n∑

i=1

wiE yi = β0

n∑
i=1

wi + β1

n∑
i=1

wixi = β1.

• Some easy algebra also shows that

• Here, the sum
∑n

i=1 wixi =[
s2

x (n − 1)
]−1 ∑n

i=1 (xi − x) xi =
[
s2

x (n − 1)
]−1 ∑n

i=1 (xi − x)2 = 1.

• ∑n
i=1 w2

i = 1/
(
s2

x (n − 1)
)
.

• By Assumption F4, we have

Var b1 =
n∑

i=1

w2
i Var yi =

σ2

s2
x(n − 1)

.

Properties of Regression Coefficient Estimators

Standard Errors

The standard error of b1, the estimated standard deviation of b1, is

defined as

se(b1) =
s

sx
√

n − 1
.

• As n becomes larger, se(b1) becomes smaller.
• As s becomes smaller, se(b1) becomes smaller.
• As sx increases, then se(b1) becomes smaller.

y

x

y

x

y

x
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Statistical Inference

Is the Explanatory Variable Important?: The t-Test

• Logic: If β1 = 0, then the model is E y = β0 + ε. That is, it contains

no x .

• Is H0 :?β1 = 0 valid? We respond to this question by looking at the

test statistic

t − ratio =
estimator − hypothesized value of parameter

standard error of the estimator
.

• For the case of H0 : β1 = 0 , we examine t(b1) = b1/se(b1).

• Under Assumptions F1-F5 and H0, the distribution of t(b1) follows

a t-distribution with df = n − 2 degrees of freedom.
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Statistical Inference

Example. Wisconsin Lottery Sales

• The residual standard deviation is s = 3, 792.

• The x-standard deviation is sx = 11, 098.

• Thus, the standard error of the slope is

se(b1) = 3792/(11098
√

50 − 1) = 0.0488.

• The slope estimate is b1 = 0.647.

• Thus, the t-statistic is t(b1) = 0.647/0.0488 = 13.4.

• We interpret this by saying that the slope is 13.4 standard errors

above zero.

• For the hypothesis test, the 97.5th percentile from a t-distribution

with df = 50 − 2 = 48 degrees of freedom is t48,0.975 = 2.011.

• Because |13.4| > 2.011, we reject H0 : β1 = 0 in favor of the

alternative that β1 �= 0.
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Statistical Inference

The t-test

Table: Decision-Making Procedures for Testing H0 : β1 = d

Alternative Hypothesis (Ha) Procedure: Reject H0 in favor of Ha if

β1 > d t − ratio > tn−2,1−α.

β1 < d t − ratio < −tn−2,1−α.

β1 �= d |t − ratio| > tn−2,1−α/2.

Notes: The significance level is α. Here, tn−2,1−α is the (1-α)th percentile

from the t -distribution using df = n − 2 degrees of freedom.

Table: Probability Values for Testing H0 : β1 = d

Alternative

Hypothesis (Ha) β1 > d β1 < d β1 �= d
p-value Pr(tn−2 > t − ratio) Pr(tn−2 < t − ratio) Pr(|tn−2| > |t − ratio|)
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Statistical Inference

Interpretations of the t-ratio

• If r = 0, then b1 = 0 and t(b1) = 0. No correlation, no relationship.

• The correlation between y and x , r = r(x , y) is the same as
between y and ŷ , say r(x , ŷ).

• Because r is location and scale invariant (assuming that
ŷ = b0 + b1x and b1 > 0.

• It turns out (Ex 2.13) that R2 = r2.

• Further, one can check that (Ex 2.16)

t(b1) =
√

n − 2
r√

1 − r2
.
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Statistical Inference

Confidence Intervals

• b1 is our point estimator of the true, unknown slope β1.

• How reliable is it? The standard error gives us some idea.

• (b1 − β1) /se(b1) follows a t-distribution with n − 2 degrees of
freedom.

• From this, we have a 100(1 − α)% confidence interval for the slope
β1

b1 ± tn−2,1−α/2 se(b1).

• Wisconsin lottery sales example:

• An approximate 95% confidence interval for the slope is

0.647 ± (2.011)(.0488) = (0.549, 0.745).

• An approximate 90% confidence interval for the slope is

0.647 ± (1.677)(.0488) = (0.565, 0.729).
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Statistical Inference

Prediction Intervals

• Prediction is an important task for actuaries

• Suppose that I know that the population of a zip code is

x∗ = 10, 000, what is my prediction of sales? How good is it?

• We want to predict y∗ = β0 + β1x∗ + ε

• Our point prediction is ŷ∗ = b0 + b1x∗

• The prediction error is

y∗ − ŷ∗︸ ︷︷ ︸ = β0 − b0 + (β1 − b1) x∗︸ ︷︷ ︸ + ε∗︸︷︷︸
prediction error = error in estimating the + deviation of the additional

regression line at x
∗

response from its mean
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Statistical Inference

Prediction Intervals

• It can be shown that the standard error of the prediction is

se(pred) = s

√
1 +

1

n
+

(x∗ − x)2

(n − 1)s2
x
.

• As x∗ becomes farther from x , se(pred) increases
• Thus, a 100(1 − α)% prediction interval at x∗ is

ŷ∗ ± tn−2,1−α/2 se(pred)

• Wisconsin lottery sales example:
• Point prediction - ŷ∗= 470.8 + 0.647 (10000) = 6,941.
• The standard error of this prediction is

se(pred) = 3, 792

√
1 +

1

50
+

(10, 000 − 9, 311)2

(50 − 1)(11, 098)2
= 3, 836.

• The 95% prediction interval is

6, 941 ± (2.011)(3, 836) = 6, 941 ± 7, 710 = (−769, 14, 651).
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Building a Better Model: Residual Analysis

Diagnostic Checking

• Diagnostic Checking. Process of matching the modeling
assumptions with the data and use any mismatch to specify a
better model.

• Like when you go to a doctor and he or she performs diagnostic

routines to check your health
• We will begin with the error representation and use residuals as

approximations of the errors/disturbances

• Residual Analysis. If the residuals are related to a variable or

display any other recognizable pattern, then we should be able to

take advantage of this information and improve our model

specification.
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Building a Better Model: Residual Analysis

Model Misspecification Issues

• Lack of Independence. There may exist relationships among the

deviations {εi} so that they are no longer independent.

• Heteroscedasticity. Assumption E3 that indicates that all observations

have a common (although unknown) variability, known as

homoscedasticity. Heteroscedascity is the term used when the variability

varies by observation.

• Relationships between Model Deviations and Explanatory Variables.

If an explanatory variable has the ability to help explain the deviation ε,

the one should be able to use this information to better predict y .

• Nonnormal Distributions. If the distribution of the deviation represents a

serious departure from approximate normality, then the usual inference

procedures are no longer valid.

• Unusual Points. Individual observations may have a large effect on the

regression model fit, meaning that the results may be sensitive to the

impact to behavior of a single observation.
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Building a Better Model: Residual Analysis

Unusual Points

• Because regression estimates are weighted averages, some

observations are more important than others.

• An observation that is unusual in the vertical direction is called an

outlier.
• To detect outliers, we will use standardized residuals, essentially

residuals divided by s
• An observation that is unusual in the horizontal directional is

called a high leverage point.
• An observation may be both an outlier and a high leverage point.
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Building a Better Model: Residual Analysis

The Effect of Outliers and High Leverage Points

Table: 19 Base Points Plus Three Types of Unusual Observations

Variables 19 Base Points A B C

x 1.5 1.7 2.0 2.2 2.5 2.5 2.7 2.9 3.0 3.5 3.4 9.5 9.5

y 3.0 2.5 3.5 3.0 3.1 3.6 3.2 3.9 4.0 4.0 8.0 8.0 2.5

x 3.8 4.2 4.3 4.6 4.0 5.1 5.1 5.2 5.5

y 4.2 4.1 4.8 4.2 5.1 5.1 5.1 4.8 5.3
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Building a Better Model: Residual Analysis

The Effect of Outliers and High Leverage Points

Table: Results from Four Regressions

Data b0 b1 s R2(%) t(b1)

19 Base Points 1.869 0.611 0.288 89.0 11.71

19 Base Points + A 1.750 0.693 0.846 53.7 4.57

19 Base Points + B 1.775 0.640 0.285 94.7 18.01

19 Base Points + C 3.356 0.155 0.865 10.3 1.44

• The 19 base points show a high R2, s = 0.29.

• With outlier A, the R2 drops from 89% to 53.7%.

• An outlier, “unusual in the y-value,” depends on the x-value.

• With B, the regression line provides a better fit.

• Point B is not an outlier, but it is a high leverage point.

• Point C is an outlier and a high leverage point. The R2 coefficient drops

from 89% to 10%.

• Many do not believe that 1 point in 20 can have such a dramatic effect on

the regression fit.
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Building a Better Model: Residual Analysis

Example. Wisconsin Lottery Sales

Table: Regression Results with and without Kenosha

Data b0 b1 s R2(%) t(b1)

With Kenosha 469.7 0.647 3,792 78.5 13.26

Without Kenosha -43.5 0.662 2,728 88.3 18.82
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Figure: Scatter plot of SALES versus POP, with the outlier corresponding to Kenosha
marked.

Building a Better Model: Residual Analysis

Example. Wisconsin Lottery Sales

One point can change the appearance of the whole distribution.
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Figure: qq Plots of Wisconsin Lottery Residuals. The left-hand panel is based on all
50 points. The right-hand panel is based on 49 points, residuals from a regression
after removing Kenosha.



Application: Capital Asset Pricing Model

Data

• Consider monthly returns over the five year period from January,

1986 to December, 1990, inclusive.

• y = security returns from the Lincoln National Insurance

Corporation as the dependent variable

• x = market returns from the index of the Standard & Poor’s 500

Index.

Table: Summary Statistics of 60 Monthly Observations

Mean Median Standard Minimum Maximum

Deviation

LINCOLN 0.0051 0.0075 0.0859 -0.2803 0.3147

MARKET 0.0074 0.0142 0.0525 -0.2205 0.1275

Source: Center for Research on Security Prices, University of Chicago

Frees (Regression Modeling) Basic Linear Regression 37 / 40

Application: Capital Asset Pricing Model

Data

• Scatter plots of the returns versus time are called time series plots.

• A quick glance at the horizontal axis reveals that this unusual point is in

October, 1987, the time of the well-known market crash.

• We also see two outliers in 1990

Year

1986 1987 1988 1989 1990 1991
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−0.1

0.0

0.1

0.2

0.3

Monthly Return
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MARKET

Frees (Regression Modeling) Basic Linear Regression 38 / 40

Application: Capital Asset Pricing Model

Regression

• The estimated regression is ̂LINCOLN = −0.00214 + 0.973MARKET .
• The resulting estimated standard error, s = 0.0696 is lower than the standard

deviation of Lincoln’s returns, sy = 0.0859.

• Further, t(b1) = 5.64, which is significantly large.

• One disappointing aspect is that the statistic R2 = 35.4%

−0.3 −0.2 −0.1 0.0 0.1 0.2

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

MARKET

LINCOLN

OCTOBER, 1987 CRASH

1990 OUTLIERS

Figure: Scatterplot of Lincoln’s return versus the S&P 500 Index return. The
regression line is superimposed, enabling us to identify the market crash and
two outliers.
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Application: Capital Asset Pricing Model

Sensitivity Analysis

• Without the market crash, the estimated regression is

̂LINCOLN = −0.00181 + 0.956MARKET ,

with R2 = 26.4%, t(b1) = 4.52, s = 0.0702 and sy = 0.0811.

• The important point is that the R2 decreased when omitting this

unusual point.

• The outliers were due to some unfounded rumors in the market

that made Lincoln’s price drop one month and subsequently

recover.

• Should the unusual points be left in the analysis? Tough question

that does not have a right or wrong answer. Your only mistake

would be not paying attention to these points!
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