Outline	Correlations and Least Squares
Outline	Example. Wisconsin Lottery Sales
Correlations and Least Squares Basic Linear Regression Model Is the Model Useful?: Some Basic Summary Measures Properties of Regression Coefficient Estimators Statistical Inference Building a Better Model: Residual Analysis Application: Capital Asset Pricing Model res (Regression Modeling) Basic Linear Regression 1/40	 What factors affect lottery sales? Helpful to know for marketing, e.g., where to establish new retail outlets. <i>i</i> unit of analysis, ZIP (postal) code <i>n</i> = 50 randomly selected geographic areas <i>y</i> = average lottery sales (SALES) over a forty-week period, April, 1998 through January, 1999, <i>x</i> = population (POP), measure of size of the area. Later, we will introduce other factors including area's typical age, education level, income, and so forth. Population is the obvious place to start. Here are some summary statistics.
Example. Wisconsin Lottery Sales	Scatter Plot
$\begin{split} & Frequency \\ & 0 \\ $	Scatter Pion Pres Solutions Manual Scatter Pion Pres Solutions Manual Scatter Pion Pres Solutions I setween the two variables is a <i>scatter plot</i> .

Correlations and Least Squares

Correlations

- One way to summarize the strength of the relationship between two variables is through a *correlation* statistic.
- The ordinary, or Pearson, correlation coefficient is defined as

$$r=\frac{1}{(n-1)s_xs_y}\sum_{i=1}^n\left(x_i-\overline{x}\right)\left(y_i-\overline{y}\right).$$

Recall the sample standard deviation $s_y = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(y_i - \overline{y})^2}$.

- The correlation coefficient is said to be a "unitless" measure.
 - It is unaffected by scale and location changes of either, or both, variables.
 - It can readily be compared across different data sets.
- Correlation coefficients take up less space to report than a scatter plot and are often the primary statistic of interest.

Basic Linear Regression

• Scatter plots help us understand other aspects of the data, such as the range, and also provide indications of nonlinear relationships in the data.

Frees (Regression Modeling)

Correlations and Least Squares

Least Squares Estimates

• The solution gives the least squares intercept and slope estimates

$$b_1 = r \frac{s_y}{s_x}$$
 and $b_0 = \overline{y} - b_1 \overline{x}$.

- We have dropped the asterisk, or star (*) notation because these are no longer generic values.
- The line that they determine, $\hat{y} = b_0 + b_1 x$, is called the *estimated*, or fitted, regression line.

Method of Least Squares

• Can knowledge of population (x) help us understand sales (y)?

Correlations and Least Squares

- Method of Least Squares
 - Begin with the line $y = b_0^* + b_1^* x$, where the intercept and slope, b_0^* and b_1^* , are merely generic values.
 - For the *i*th observation, y_i (b₀^{*} + b₁^{*}x_i) represents the deviation of the observed value y_i from the line at x_i.
 - The sum of squared deviations is

$$SS(b_0^*, b_1^*) = \sum_{i=1}^n (y_i - (b_0^* + b_1^* x_i))^2$$

• Minimize this quantity by taking derivatives with respect to the intercept and slope, setting equal to zero and solving

$$rac{\partial}{\partial b_0^*} SS(b_0^*, b_1^*) = \sum_{i=1}^n (-2) \left(y_i - (b_0^* + b_1^* x_i) \right) = 0$$

and

$$rac{\partial}{\partial b_1^*} SS(b_0^*, b_1^*) = \sum_{i=1}^n (-2x_i) \left(y_i - (b_0^* + b_1^* x_i) \right) = 0$$

Correlations and Least Squares

Example. Wisconsin Lottery Sales

For these data, we have r = 0.886 and recall

Table: Summary Statistics of Each Variable

			Standard		
Variable	Mean	Median	Deviation	Minimum	Maximum
POP	9,311	4,406	11,098	280	39,098
SALES	6,495	2,426	8,103	189	33,181

Thus,

- $b_1 = 0.886(8, 103)/11,098 = 0.647$ and
- $b_0 = 6,495 (0.647)9,311 = 470.8$.
- This yields the fitted regression line

$$\hat{y} = 470.8 + (0.647)x$$

5/40

Correlations and Least Squares

Example. Summarizing Simulations

- Manistre and Hancock (2005) simulated a 10-year European put option and demonstrated the relationship between the value-at-risk (VaR) and the conditional tail expectation (CTE)
- Stock prices are modeled as

$$S(Z) = 100 \exp\left((.08)10 + .15\sqrt{10}Z\right),$$

annual mean return of 8% and standard deviation 15% .

• The present value of this option is

$$C(Z) = e^{-0.06(10)} \max(0, 110 - S(Z))$$

based on a 6% discount rate.

• 1,000 i.i.d. standard normal random variables were simulated and calculate each of 1000 present values, *C*_{*i*1},..., *C*_{*i*.1000}.

Basic Linear Regression

- Var_i is the 95th percentile
- *CTE_i* is the average of the highest 50.

Frees (Regression Modeling)

9 / 40

Basic Linear Regression Model

Observables Representation

Basic Linear Regression Model

Observables Representation Sampling Assumptions

- F1. E $y_i = \beta_0 + \beta_1 x_i$.
- F2. $\{x_1, \ldots, x_n\}$ are non-stochastic variables.

F3. Var
$$y_i = \sigma^2$$
.

- F4. $\{y_i\}$ are independent random variables.
- For F4, think of stratified sampling, where each x_i is a strata (or group)
- For F3, a common variance is known as homoscedasticity
- We sometimes require

F5. $\{y_i\}$ are normally distributed.

However, approximate normality is enough for central limit theorems that we will need for inference.

Example. Summarizing Simulations

The correlation coefficient turns out to be r = 0.782.

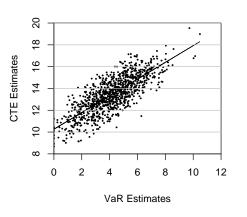


Figure: Plot of Conditional Tail Expectation (CTE) versus Value at Risk (VaR). Based on n = 1,000 simulations from a 10 year European put bond.

Basic Linear Regression Model

Graphical Representation

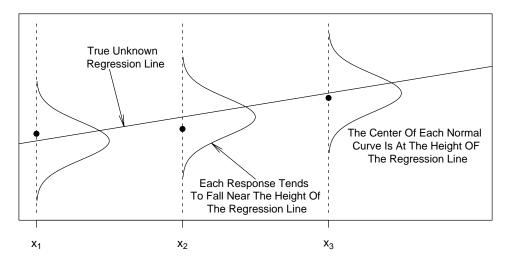


Figure: The distribution of the response varies by the level of the explanatory variable.

Basic Linear Regression Model

Error Representation

Basic Linear Regression Model Error Representation Sampling Assumptions E1. $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$. E2. $\{x_1, \dots, x_n\}$ are non-stochastic variables. E3. E $\varepsilon_i = 0$ and Var $\varepsilon_i = \sigma^2$. E4. $\{\varepsilon_i\}$ are independent random variables.

- The error representation is a useful springboard for residual analysis (Section 2.6)
- The observable representation is a useful springboard for extensions to nonlinear regression models

Basic Linear Regression

• These two sets of assumptions are equivalent

Basic Linear Regression Model

Statistics versus Parameters

- Statistics summarize the (observed) sample/data
- Parameters summarize the (generally unobserved) population
- Use Greek letters for parameters, roman letters for statistics

Table: Summary Measures of the Population and Sample

Data	Summary Measures	Regression Line		Variance
		Intercept	Slope	-
Population	Parameters	β_0	β_1	σ^2
Sample	Statistics	b_0	b_1	<i>s</i> ²

Frees (Regression Modeling)

13/40

Basic Linear Regression

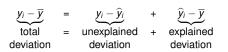
14 / 40

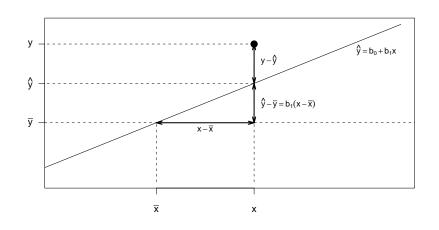
Is the Model Useful?: Some Basic Summary Measures

Partitioning the Variability

Frees (Regression Modeling)

We now have two "estimates" of y_i , \overline{y} and \hat{y}_i





Is the Model Useful?: Some Basic Summary Measures

Partitioning the Variability

After a little algebraic manipulation, this yields

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 + \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2,$$

or Total SS = Error SS + Regression SS where SS stands for sum of squares.

• Summarize with "R-square," the coefficient of determination, defined as

$$R^2 = rac{Regression SS}{Total SS}.$$

- R^2 = the proportion of variability explained by the regression line.
- If the regression line fits the data perfectly, then *Error* SS = 0 and $R^2 = 1$.
- If the regression line provides no information about the response, then *Regression* SS = 0 and $R^2 = 0$.
- Property: $0 \le R^2 \le 1$, with larger values implying a better fit.

Is the Model Useful?: Some Basic Summary Measures

The Size of a Typical Deviation: s

• Define the estimate of the disturbance term $\epsilon_i = y_i - (\beta_0 + \beta_1 x_i)$,

 $e_i = y_i - (b_0 + b_1 x_i)$

the ith residual.

- If we could observe disturbances, then we would estimate σ^2 using $(n-1)^{-1} \sum_{i=1}^{n} (\varepsilon_i \overline{\varepsilon})^2$.
- Instead, an estimator of σ^2 , the mean square error (MSE), is defined as

$$s^2 = \frac{1}{n-2} \sum_{i=1}^{n} e_i^2$$

- The residual standard deviation is $s = \sqrt{s^2}$.
- Property of least square residuals, $\overline{e} = 0$.
- Dividing by n-2 makes s^2 unbiased.
 - Two points determine a line.
 - With *n* observations, there are n 2 "free" observations that contribute to the variability.

Is the Model Useful?: Some Basic Summary Measures

Example. Wisconsin Lottery Sales

ANOVA Table							
Source	Sum of Squares	df	Mean Square				
Regression	2,527,165,015	1	2,527,165,015				
Error	690,116,755	48	14,377,432				
Total	3,217,281,770	49					

From this table, you can check that $R^2 = 78.5\%$ and s = 3,792.

ANOVA Table

Define

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2} = \frac{Error SS}{n-2} = MSE.$$

and

ANOVA Table						
Source	Sum of Squares	df	Mean Square			
Regression	Regression SS	1	Regression MS			
Error	Error SS	<i>n</i> – 2	MSE			
Total	Total SS	<i>n</i> – 1				

The ANOVA table is merely a bookkeeping device used to keep track of the sources of variability.

Frees (Regression Modeling)

Basic Linear Regression

18 / 40

Properties of Regression Coefficient Estimators

Weighted Sums

- The least squares estimates can be expressed as weighted sum of the responses.
- Define the weights

$$w_i = \frac{x_i - \overline{x}}{s_x^2(n-1)}$$

- The sum of *x*-deviations $(x_i \overline{x})$ is zero, we see that $\sum_{i=1}^{n} w_i = 0$.
- The slope estimate is

$$b_{1} = r \frac{s_{y}}{s_{x}} = \frac{1}{(n-1)s_{x}^{2}} \sum_{i=1}^{n} (x_{i} - \overline{x}) (y_{i} - \overline{y}) = \sum_{i=1}^{n} w_{i} (y_{i} - \overline{y}) = \sum_{i=1}^{n} w_{i} y_{i}.$$

- A similar result holds for the intercept estimate (with different weights)
- There exists central limit theorems for weighted sums, so that we may treat b_1 and b_0 as approximately normal, even if y is not normally distributed.

19/40

Properties of Regression Coefficients

- Regression coefficients are unbiased.
- By the linearity of expectations and Assumption F1, we have

$$E b_{1} = \sum_{i=1}^{n} w_{i}E y_{i} = \beta_{0} \sum_{i=1}^{n} w_{i} + \beta_{1} \sum_{i=1}^{n} w_{i}x_{i} = \beta_{1}.$$

- · Some easy algebra also shows that
 - Here, the sum $\sum_{i=1}^{n} w_i x_i = [s_x^2(n-1)]^{-1} \sum_{i=1}^{n} (x_i \overline{x}) x_i = [s_x^2(n-1)]^{-1} \sum_{i=1}^{n} (x_i \overline{x})^2 = 1.$ • $\sum_{i=1}^{n} w_i^2 = 1/(s_x^2(n-1)).$
- By Assumption F4, we have

Var
$$b_1 = \sum_{i=1}^n w_i^2$$
 Var $y_i = \frac{\sigma^2}{s_x^2(n-1)}$.

Properties of Regression Coefficient Estimators

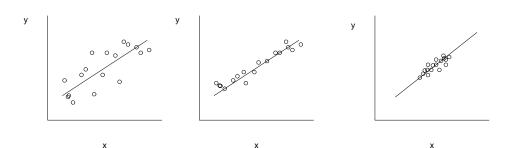
Standard Errors

Frees (Regression Modeling)

The *standard error* of b_1 , the estimated standard deviation of b_1 , is defined as

$$se(b_1)=\frac{s}{s_x\sqrt{n-1}}$$

- As *n* becomes larger, $se(b_1)$ becomes smaller.
- As *s* becomes smaller, *se*(*b*₁) becomes smaller.
- As s_x increases, then $se(b_1)$ becomes smaller.



Basic Linear Regression

Statistical Inference

Is the Explanatory Variable Important?: The t-Test

- Logic: If β₁ = 0, then the model is E y = β₀ + ε. That is, it contains no x.
- Is H₀ :?β₁ = 0 valid? We respond to this question by looking at the test statistic

 $t - ratio = \frac{\text{estimator} - \text{hypothesized value of parameter}}{\text{standard error of the estimator}}$

- For the case of H_0 : $\beta_1 = 0$, we examine $t(b_1) = b_1/se(b_1)$.
- Under Assumptions F1-F5 and H_0 , the distribution of $t(b_1)$ follows a *t*-distribution with df = n 2 degrees of freedom.

Statistical Inference

Example. Wisconsin Lottery Sales

- The residual standard deviation is s = 3,792.
- The x-standard deviation is $s_x = 11,098$.
- Thus, the standard error of the slope is se(b₁) = 3792/(11098√50 − 1) = 0.0488.
- The slope estimate is $b_1 = 0.647$.
- Thus, the *t*-statistic is $t(b_1) = 0.647/0.0488 = 13.4$.
- We interpret this by saying that the slope is 13.4 standard errors above zero.
- For the hypothesis test, the 97.5th percentile from a *t*-distribution with df = 50 2 = 48 degrees of freedom is $t_{48,0.975} = 2.011$.
- Because |13.4| > 2.011, we reject $H_0 : \beta_1 = 0$ in favor of the alternative that $\beta_1 \neq 0$.

Statistical Inference	Statistical Inference
The <i>t</i> -test	Interpretations of the <i>t</i> -ratio
Table: Decision-Making Procedures for Testing $H_0: \beta_1 = d$ Alternative Hypothesis (H_a) Procedure: Reject H_0 in favor of H_a if $\beta_1 > d$ $t - ratio > t_{n-2,1-\alpha}.$ $\beta_1 < d$ $t - ratio < -t_{n-2,1-\alpha}.$ $\beta_1 \neq d$ $ t - ratio > t_{n-2,1-\alpha}/2.$ Notes: The significance level is α . Here, $t_{n-2,1-\alpha}$ is the $(1-\alpha)$ th percentile from the t -distribution using $df = n - 2$ degrees of freedom.Table: Probability Values for Testing $H_0: \beta_1 = d$	 If r = 0, then b₁ = 0 and t(b₁) = 0. No correlation, no relationship. The correlation between y and x, r = r(x, y) is the same as between y and ŷ, say r(x, ŷ). Because r is location and scale invariant (assuming that ŷ = b₀ + b₁x and b₁ > 0. It turns out (Ex 2.13) that R² = r². Further, one can check that (Ex 2.16) t(b₁) = √n-2 r/√1-r².
Alternative Hypothesis (Ha) $\beta_1 > d$ $\beta_1 < d$ $\beta_1 \neq d$ p-value $\Pr(t_{n-2} > t - ratio)$ $\Pr(t_{n-2} < t - ratio)$ $\Pr(t_{n-2} > t - ratio)$	
Frees (Regression Modeling) Basic Linear Regression 25 / 40	Frees (Regression Modeling) Basic Linear Regression 26 / 40
Statistical Inference	Statistical Inference
Confidence Intervals	Prediction Intervals
 <i>b</i>₁ is our point estimator of the true, unknown slope β₁. How reliable is it? The standard error gives us some idea. (<i>b</i>₁ - β₁) / <i>se</i>(<i>b</i>₁) follows a <i>t</i>-distribution with <i>n</i> - 2 degrees of freedom. From this, we have a 100(1 - α)% confidence interval for the slope β₁ <i>b</i>₁ ± <i>t</i>_{<i>n</i>-2,1-α/2} <i>se</i>(<i>b</i>₁). Wisconsin lottery sales example: An approximate 95% confidence interval for the slope is 0.647 ± (2.011)(.0488) = (0.549, 0.745). An approximate 90% confidence interval for the slope is 0.647 ± (1.677)(.0488) = (0.565, 0.729). 	• Prediction is an important task for actuaries • Suppose that I know that the population of a zip code is $x^* = 10,000$, what is my prediction of sales? How good is it? • We want to predict $y^* = \beta_0 + \beta_1 x^* + \varepsilon$ • Our point prediction is $\hat{y}^* = b_0 + b_1 x^*$ • The prediction error is $\underbrace{y^* - \hat{y}^*}_{\text{prediction error}} = \underbrace{\beta_0 - b_0 + (\beta_1 - b_1) x^*}_{\text{error in estimating the}} + \underbrace{\varepsilon^*}_{\text{total conditional regression line at }x^*}$

Statistical Inference

Prediction Intervals

• It can be shown that the standard error of the prediction is

$$se(pred) = s\sqrt{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{(n-1)s_x^2}}$$

- As x^* becomes farther from \overline{x} , se(pred) increases
- Thus, a $100(1 \alpha)$ % prediction interval at x^* is

$$\widehat{y}^* \pm t_{n-2,1-\alpha/2}$$
 se(pred)

- Wisconsin lottery sales example:
 - Point prediction $\hat{y}^* = 470.8 + 0.647 (10000) = 6,941$.
 - The standard error of this prediction is

$$se(pred) = 3,792\sqrt{1 + \frac{1}{50} + \frac{(10,000 - 9,311)^2}{(50 - 1)(11,098)^2}} = 3,836$$

The 95% prediction interval is

 $6,941 \pm (2.011)(3,836) = 6,941 \pm 7,710 = (-769,14,651).$

Frees (Regression Modeling) Basic Linear Regression 29 / 40 Frees (Regression Modeling) Basic Linear Regression 30 / 40

Building a Better Model: Residual Analysis

Model Misspecification Issues

- Lack of Independence. There may exist relationships among the deviations {ε_i} so that they are no longer independent.
- **Heteroscedasticity**. Assumption E3 that indicates that all observations have a common (although unknown) variability, known as *homoscedasticity*. *Heteroscedascity* is the term used when the variability varies by observation.
- Relationships between Model Deviations and Explanatory Variables.
 If an explanatory variable has the ability to help explain the deviation *ε*, the one should be able to use this information to better predict *y*.
- Nonnormal Distributions. If the distribution of the deviation represents a serious departure from approximate normality, then the usual inference procedures are no longer valid.
- **Unusual Points**. Individual observations may have a large effect on the regression model fit, meaning that the results may be sensitive to the impact to behavior of a single observation.

Building a Better Model: Residual Analysis

Diagnostic Checking

- **Diagnostic Checking.** Process of matching the modeling assumptions with the data and use any mismatch to specify a better model.
 - Like when you go to a doctor and he or she performs diagnostic routines to check your health
 - We will begin with the error representation and use residuals as approximations of the errors/disturbances
- **Residual Analysis.** If the residuals are related to a variable or display any other recognizable pattern, then we should be able to take advantage of this information and improve our model specification.

Building a Better Model: Residual Analysis

Unusual Points

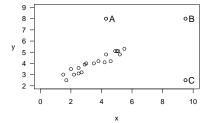
- Because regression estimates are weighted averages, some observations are more important than others.
- An observation that is unusual in the vertical direction is called an *outlier*.
- To detect outliers, we will use standardized residuals, essentially residuals divided by s
- An observation that is unusual in the horizontal directional is called a *high leverage point*.
- An observation may be both an outlier and a high leverage point.

Building a Better Model: Residual Analysis

The Effect of Outliers and High Leverage Points

Table: 19 Base Points Plus Three Types of Unusual Observations

Variables		19 Base Points								A	В	С	
X	1.5	1.7	2.0	2.2	2.5	2.5	2.7	2.9	3.0	3.5	3.4	9.5	9.5
У	3.0	2.5	3.5	3.0	3.1	3.6	3.2	3.9	4.0	4.0	8.0	8.0	2.5
X	3.8	4.2	4.3	4.6	4.0	5.1	5.1	5.2	5.5				
У	4.2	4.1	4.8	4.2	5.1	5.1	5.1	4.8	5.3				



Basic Linear Regression

Frees (Regression Modeling)

Building a Better Model: Residual Analysis

Example. Wisconsin Lottery Sales

Table: Regression Results with and without Kenosha

Data	b_0	<i>b</i> ₁	S	$R^{2}(\%)$	$t(b_1)$
With Kenosha	469.7	0.647	3,792	78.5	13.26
Without Kenosha	-43.5	0.662	2,728	88.3	18.82

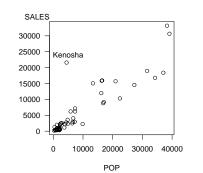


Figure: Scatter plot of SALES versus POP, with the outlier corresponding to Kenosha marked.

Building a Better Model: Residual Analysis

The Effect of Outliers and High Leverage Points

Table: Results from Four Regressions

Data	<i>b</i> ₀	<i>b</i> ₁	S	$R^{2}(\%)$	$t(b_1)$
19 Base Points	1.869	0.611	0.288	89.0	11.71
19 Base Points + A				53.7	4.57
19 Base Points + B	1.775	0.640	0.285	94.7	18.01
19 Base Points + C	3.356	0.155	0.865	10.3	1.44

- The 19 base points show a high R^2 , s = 0.29.
- With outlier A, the R² drops from 89% to 53.7%.
- An outlier, "unusual in the *y*-value," depends on the *x*-value.
- With B, the regression line provides a better fit.
- Point B is not an outlier, but it is a high leverage point.
- Point C is an outlier and a high leverage point. The *R*² coefficient drops from 89% to 10%.
- Many do not believe that 1 point in 20 can have such a dramatic effect on the regression fit.

34 / 40

Basic Linear Regression

Building a Better Model: Residual Analysis

Example. Wisconsin Lottery Sales

One point can change the appearance of the whole distribution.

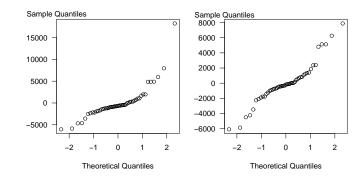


Figure: *qq* Plots of Wisconsin Lottery Residuals. The left-hand panel is based on all 50 points. The right-hand panel is based on 49 points, residuals from a regression after removing Kenosha.

Application: Capital Asset Pricing Mode

Data

ple only, Download all chapters at: alibabadow

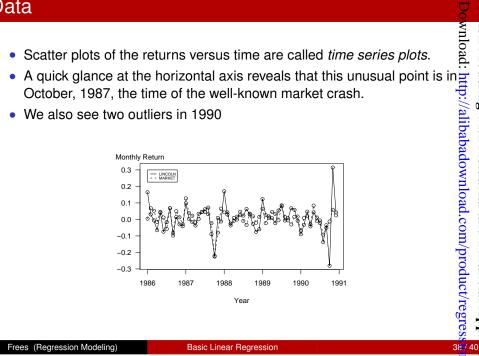
- Consider monthly returns over the five year period from January. 1986 to December, 1990, inclusive.
- y = security returns from the Lincoln National Insurance Corporation as the dependent variable
- x = market returns from the index of the Standard & Poor's 500 Index.

Table: Summary Statistics of 60 Monthly Observations

	Mean	Median	Standard	Minimum	Maximum	
			Deviation			
LINCOLN	0.0051	0.0075	0.0859	-0.2803	0.3147	
MARKET	0.0074	0.0142	0.0525	-0.2205	0.1275	
Source: Center for Research on Security Prices, University of Chicago						

Application: Capital Asset Pricing Mode

Data



Basic Linear Regressio

rees (Regression wodeling)	Basic Linear Regression	37 / 40	Frees (Regression Modeling)
Application: Capita	I Asset Pricing Model		Application: Capi

Regression

- The estimated regression is LINCOLN = -0.00214 + 0.973MARKET.
- The resulting estimated standard error, s = 0.0696 is lower than the standard deviation of Lincoln's returns, $s_v = 0.0859$.
- Further, $t(b_1) = 5.64$, which is significantly large.
- One disappointing aspect is that the statistic $R^2 = 35.4\%$

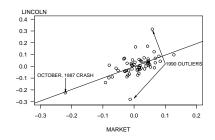


Figure: Scatterplot of Lincoln's return versus the S&P 500 Index return. The regression line is superimposed, enabling us to identify the market crash and two outliers.

tal Asset Pricing Model

Sensitivity Analysis

• Without the market crash, the estimated regression is

LINCOLN = -0.00181 + 0.956MARKET,

with $R^2 = 26.4\%$, $t(b_1) = 4.52$, s = 0.0702 and $s_y = 0.0811$.

- The important point is that the R^2 decreased when omitting this unusual point.
- ial-applic The outliers were due to some unfounded rumors in the market that made Lincoln's price drop one month and subsequently recover.
- Should the unusual points be left in the analysis? Tough questio that does not have a right or wrong answer. Your only mistake lst-editio would be not paying attention to these points!