
[Pick the date] [CHAPTER 2]

 1
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 2

C++ Basics

1. Solutions to the Programming Projects:

1. Metric - English units Conversion

A metric ton is 35,273.92 ounces. Write a C++ program to read the weight of a

box of cereal in ounces then output this weight in metric tons, along with the

number of boxes to yield a metric ton of cereal.

Design: To convert 14 ounces (of cereal) to metric tons, we use the 'ratio of units'

to tell us whether to divide or multiply:

 1 metric tons

14 ounces * * = 0.000397 metric tons

 35,273 ounces

The use of units will simplify the determination of whether to divide or to multiply in

making a conversion. Notice that ounces/ounce becomes unit-less, so that we are

left with metric ton units. The number of ounces will be very, very much larger than

the number of metric tons. It is then reasonable to divide the number of ounces by

the number of ounces in a metric ton to get the number of metric tons.

Now let metricTonsPerBox be the weight of the cereal box in metric tons. Let

ouncesPerBox the be the weight of the cereal box in ounces. Then in C++ the

formula becomes:

const double ouncesPerMetric_ton = 35272.92;

metricTonsPerBox = ouncesPerBox / ouncesPerMetricTon;

Problem Solving with C++ 8th Edition Savitch Solutions Manual
Full Download: http://alibabadownload.com/product/problem-solving-with-c-8th-edition-savitch-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/problem-solving-with-c-8th-edition-savitch-solutions-manual/

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 2
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

This is metric tons PER BOX, whence the number of BOX(es) PER metric ton

should be the reciprocal:

 boxesPerMetricTon = 1 / metricTonsPerBox;

Once this analysis is made, the code proceeds quickly:

//Purpose: To convert cereal box weight from ounces to

// metric tons to compute number of boxes to make up a

// metric ton of cereal.

#include <iostream>

using namespace std;

const double ouncesPerMetricTon = 35272.92;

int main()

{

double ouncesPerBox, metricTonsPerbox,

 boxesPerMetricTon;

char ans = 'y';

while('y' == ans || 'Y' == ans)

{

 cout << “enter the weight in ounces of your”

 << “favorite cereal:” <<endl;

 cin >> ouncesPerBox;

 metricTonsPerbox =

 ouncesPerBox / ouncesPerMetricTon;

 boxesPerMetricTon = 1 / metricTonsPerbox;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 3
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 cout << "metric tons per box = "

 << metricTonsPerbox << endl;

 cout << "boxes to yield a metric ton = "

 << boxesPerMetricTon << endl;

 cout << " Y or y continues, any other character ”

 << “terminates." << endl;

 cin >> ans;

 }

 return 0;

}

A sample run follows:

enter the weight in ounces of your favorite cereal:

14

metric tons per box = 0.000396905

boxes to yield a metric ton = 2519.49

Y or y continues, any other characters terminates.

y

enter the weight in ounces of your favorite cereal:

20

metric tons per box = 0.000567007

boxes to yield a metric ton = 1763.65

Y or y continues, any other characters terminates.

n

2. Lethal Dose

Certain artificial sweeteners are poisonous at some dosage level. It is desired to

know how much soda a dieter can drink without dying. The problem statement

gives no information about how to scale the amount of toxicity from the

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 4
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

dimensions of the experimental mouse to the dimensions of the dieter. Hence the

student must supply this necessary assumption as basis for the calculation.

This solution supposes the lethal dose is directly proportional to the weight of the

subject, hence

 weightOfDieter

 lethalDoseDieter = lethalDoseMouse *

 weightOfMouse

This program accepts weight of a lethal dose for a mouse, the weight of the

mouse, and the weight of the dieter, and calculates the amount of sweetener that

will just kill the dieter, based on the lethal dose for a mouse in the lab. If the

student has problems with grams and pounds, a pound is 454 grams.

It is interesting that the result probably wanted is a safe number of cans, while all

the data can provide is the minimum lethal number! Some students will probably

realize this, but my experience is that most will not. I just weighed a can of diet

pop and subtracted the weight of an empty can. The result is about 350 grams.

The label claims 355 ml, which weighs very nearly 355 grams. To get the lethal

number of cans from the number of grams of sweetener, you need the number of

grams of sweetener in a can of pop, and the concentration of sweetener, which

the problem assumes 0.1% , that is a conversion factor of 0.001.

gramsSweetenerPerCan = 350 * 0.001 = 0.35 grams/can

cans = lethalDoseDieter / (0.35 grams / can)

//Ch2Prob2.cc

//Input: lethal dose of sweetener for a lab mouse, weights

// of mouse and dieter, and concentration of sweetener in a

// soda.

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 5
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

//Output: lethal dose of soda in number of cans.

//Assumption: lethal dose proportional to weight of subject

// Concentration of sweetener in the soda is 1/10 percent

#include <iostream>

using namespace std;

const double concentration = .001; // 1/10 of 1 percent

const double canWeight = 350;

const double gramsSweetnerPerCan = canWeight concentration;

 //units of grams/can

int main()

{

double lethalDoseMouse, lethalDoseDieter,

 weightMouse, weightDieter; //units: grams

double cans;

char ans;

do

{

cout << "Enter the weight of the mouse in grams"

 << endl;

cin >> weightMouse;

cout << "Enter the lethal dose for the mouse in“

 << ”grams " << endl;

cin >> lethalDoseMouse;

cout << "Enter the desired weight of the dieter in”

 <<“ grams " << endl;

cin >> weightDieter;

lethalDoseDieter =

lethalDoseMouse weightDieter/weightMouse;

cout << "For these parameters:\nmouse weight: "

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 6
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 << weightMouse

 << " grams " << endl

 << "lethal dose for the mouse: "

 << lethalDoseMouse

 << "grams" << endl

 << "Dieter weight: " << weightDieter

 << " grams " << endl

 << "The lethal dose in grams of sweetener is: "

 << lethalDoseDieter << endl;

cans = lethalDoseDieter / gramsSweetnerPerCan;

cout << "Lethal number of cans of pop: "

 << cans << endl;

cout << "Y or y continues, any other character quits"

 << endl;

cin >> ans;

} while ('y' == ans || 'Y' == ans);

return 0;

}

A typical run follows:

17:23:09:~/AW$ a.out

Enter the weight of the mouse in grams

15

Enter the lethal dose for the mouse in grams

100

Enter the desired weight of the dieter, in grams

45400

For these parameters:

mouse weight: 15 grams

lethal dose for the mouse: 100 grams

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 7
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Dieter weight: 45400 grams

The lethal dose in grams of sweetener is: 302667

Lethal number of cans of pop: 864762

Y or y continues, any other character quits

y

Enter the weight of the mouse in grams

30

Enter the lethal dose for the mouse in grams

100

Enter the desired weight of the dieter, in grams

45400

For these parameters:

mouse weight: 30 grams

lethal dose for the mouse: 100 grams

Dieter weight: 45400 grams

The lethal dose in grams of sweetener is: 151333

Lethal number of cans of pop: 432381

Y or y continues, any other character quits

q

17:23:56:~/AW$

3. Pay Increase

The workers have won a 7.6% pay increase, effective 6 months retroactively. This

program is to accept the previous annual salary, then outputs the retroactive pay

due the employee, the new annual salary, and the new monthly salary. Allow user

to repeat as desired. The appropriate formulae are:

const double INCREASE = 0.076;

newSalary = salary * (1 + INCREASE);

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 8
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

monthly = salary / 12;

retroactive = (salary – oldSalary)/2;

The code follows:

//Ch2Prob3.cc

//Given 6 mos retroactive 7.6% pay increase,

//input salary

//Output new annual and monthly salaries, retroactive pay

#include <iostream>

using namespace std;

const double INCREASE = 0.076;

int main()

{

 double oldSalary, salary, monthly, retroactive;

 char ans;

 cout << "Enter current annual salary." << endl

 << "I'll return new annual salary, monthly ”

 << “salary, and retroactive pay." << endl;

 cin >> oldSalary;//old annual salary

 salary = oldSalary*(1+INCREASE);//new annual salary

 monthly = salary/12;

 retroactive = (salary – oldSalary)/2;

 cout << "new annual salary " << salary << endl;

 cout << "new monthly salary " << monthly << endl;

 cout << "retroactive salary due: "

 << retroactive << endl;

 return 0;

}

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 9
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

17:50:12:~/AW$ a.out

Enter current annual salary.

100000

I'll return new annual salary, monthly salary, and

retroactive pay.

new annual salary 107600

new monthly salary 8966.67

retroactive salary due: 3800

4. Retroactive Salary

// File: Ch2.4.cpp

// Modify program from Problem #3 so that it calculates

retroactive

// salary for a worker for a number of months entered by the user.

//Given a 7.6% pay increase,

//input salary

//input number of months to compute retroactive salary

//Output new annual and monthly salaries, retroactive pay

#include <iostream>

const double INCREASE = 0.076;

int main()

{

 using std::cout;

 using std::cin;

 using std::endl;

 double oldSalary, salary, monthly, oldMonthly, retroactive;

 int numberOfMonths; // number of months to pay retroactive

increase

 char ans;

 cout << "Enter current annual salary and a number of months\n"

 << "for which you wish to compute retroactive pay.\n"

 << "I'll return new annual salary, monthly "

 << "salary, and retroactive pay." << endl;

 cin >> oldSalary;//old annual salary

 cin >> numberOfMonths;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 10
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 salary = oldSalary * (1+INCREASE); //new annual salary

 oldMonthly = oldSalary/12;

 monthly = salary/12;

 retroactive = (monthly - oldMonthly) * numberOfMonths;

 // retroactive = (salary - oldSalary)/2; // six months

retroactive pay increase.

 cout << "new annual salary " << salary << endl;

 cout << "new monthly salary " << monthly << endl;

 cout << "retroactive salary due: "

 << retroactive << endl;

 return 0;

}

/*

Typical run

Enter current annual salary and a number of months

for which you wish to compute retroactive pay.

I'll return new annual salary, monthly salary, and retroactive

pay.

12000

9

new annual salary 12912

new monthly salary 1076

retroactive salary due: 684

Press any key to continue

 */

5. No solution provided.

6. No solution provided.

7. Payroll

This problem involves payroll and uses the selection construct. A possible

restatement: An hourly employee's regular payRate is $16.78/hour for

hoursWorked <= 40 hours. If hoursWorked > 40 hours, then

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 11
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(hoursWorked -40) is paid at an overtime premium rate of 1.5 * payRate.

FICA (social security) tax is 6% and Federal income tax is 14%. Union dues of

$10/week are withheld. If there are 3 or more covered dependents, $15 more is

withheld for dependent health insurance.

a) Write a program that, on a weekly basis, accepts hours worked then outputs

gross pay, each withholding amount, and net (take-home) pay.

b) Add 'repeat at user discretion' feature.

I was unpleasantly surprised to find that with early GNU g++ , you cannot use a

leading 0 (such as an SSN 034 56 7891) in a sequence of integer inputs. The gnu

iostreams library took the integer to be zero and went directly to the next input!

You either have to either use an array of char, or 9 char variables to avoid this

restriction.

Otherwise, the code is fairly straight forward.

//file Ch2Prob7.cc

//pay roll problem:

//Inputs: hoursWorked, number of dependents

//Outputs: gross pay, each deduction, net pay

//

//This is the 'repeat at user discretion' version

//Outline:

//In a real payroll program, each of these values would be

//stored in a file after the payroll calculation was printed

//to a report.

//

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 12
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

//regular payRate = $10.78/hour for hoursWorked <= 40

//hours.

//If hoursWorked > 40 hours,

// overtimePay = (hoursWorked - 40) * 1.5 * PAY_RATE.

//FICA (social security) tax rate is 6%

//Federal income tax rate is 14%.

//Union dues = $10/week .

//If number of dependents >= 3

// $15 more is withheld for dependent health insurance.

//

#include <iostream>

using namespace std;

const double PAY_RATE = 16.78;

const double SS_TAX_RATE = 0.06;

const double FedIRS_RATE = 0.14;

const double STATE_TAX_RATE = 0.05;

const double UNION_DUES = 10.0;

const double OVERTIME_FACTOR = 1.5;

const double HEALTH_INSURANCE = 15.0;

int main()

{

double hoursWorked, grossPay, overTime, fica,

 incomeTax, stateTax, union_dues, netPay;

int numberDependents, employeeNumber;

char ans;

//set the output to two places, and force .00 for cents

cout.setf(ios::showpoint);

cout.setf(ios::fixed);

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 13
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

cout.precision(2);

// compute payroll

do

{

cout << "Enter employee SSN (digits only,”

 << “ no spaces or dashes) \n”;

cin >> employeeNumber ;

cout << “Please the enter hours worked and number “

 << “of employees.” << endl;

cin >> hoursWorked ;

cin >> numberDependents;

cout << endl;

if (hoursWorked <= 40)

 grossPay = hoursWorked * PAY_RATE;

else

{

 overTime =

 (hoursWorked - 40) * PAY_RATE * OVERTIME_FACTOR;

 grossPay = 40 * PAY_RATE + overTime;

}

fica = grossPay * SS_TAX_RATE;

incomeTax = grossPay * FedIRS_RATE;

stateTax = grossPay * STATE_TAX_RATE;

netPay =

 grossPay - fica - incomeTax

 - UNION_DUES - stateTax;

if (numberDependents >= 3)

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 14
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 netPay = netPay - HEALTH_INSURANCE;

//now print report for this employee:

cout << "Employee number: "

 << employeeNumber << endl;

cout << "hours worked: " << hoursWorked << endl;

cout << "regular pay rate: " << PAY_RATE << endl;

if (hoursWorked > 40)

{

 cout << "overtime hours worked: "

 << hoursWorked - 40 << endl;

 cout << "with overtime premium: "

 << OVERTIME_FACTOR << endl;

}

cout << "gross pay: " << grossPay << endl;

cout << "FICA tax withheld: " << fica << endl;

cout << "Federal Income Tax withheld: "

 << incomeTax << endl;

cout << "State Tax withheld: " << stateTax << endl;

if (numberDependents >= 3)

 cout << "Health Insurance Premium withheld: "

 << HEALTH_INSURANCE << endl;

cout << "Flabbergaster's Union Dues withheld: "

 << UNION_DUES << endl;

cout << "Net Pay: " << netPay << endl << endl;

cout << "Compute pay for another employee?”

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 15
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 << “ Y/y repeats, any other ends" << endl;

cin >> ans;

} while('y' == ans || 'Y' == ans);

return 0;

}

//A typical run:

14:26:48:~/AW $ a.out

Enter employee SSN (digits only, no spaces or dashes)

234567890

Please the enter hours worked and number of employees.

10

1

Employee number: 234567890

hours worked: 10.00

regular pay rate: 16.78

gross pay: 167.80

FICA tax withheld: 10.07

Federal Income Tax withheld: 23.49

State Tax withheld: 8.39

Flabbergaster's Union Dues withheld: 10.00

Net Pay: 115.85

Compute pay for another employee? Y/y repeats, any other ends

y

Enter employee SSN (digits only, no spaces or dashes)

987654321

Please the enter hours worked and number of employees.

10

3

Employee number: 987654321

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 16
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

hours worked: 10.00

regular pay rate: 16.78

gross pay: 167.80

FICA tax withheld: 10.07

Federal Income Tax withheld: 23.49

State Tax withheld: 8.39

Health Insurance Premium withheld: 35.00

Flabbergaster's Union Dues withheld: 10.00

Net Pay: 80.85

Compute pay for another employee? Y/y repeats, any other ends

y

Enter employee SSN (digits only, no spaces or dashes)

123456789

Please the enter hours worked and number of employees.

45

3

Employee number: 123456789

hours worked: 45.00

regular pay rate: 16.78

overtime hours worked: 5.00

with overtime premium: 1.50

gross pay: 797.05

FICA tax withheld: 47.82

Federal Income Tax withheld: 111.59

State Tax withheld: 39.85

Health Insurance Premium withheld: 35.00

Flabbergaster's Union Dues withheld: 10.00

Net Pay: 552.79

Compute pay for another employee? Y/y repeats, any other ends

n

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 17
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

14:28:12:~/AW $

8. No solution provided.

9. Installment Loan Time

No down payment, 18 percent / year, payment of $50/month, payment goes first

to interest, balance to principal. Write a program that determines the number of

months it will take to pay off a $1000 stereo. The following code also outputs the

monthly status of the loan.

#include <iostream>

using namespace std;

// chapter 2 problem 9.

int main()

{

double principal = 1000.;

double interest, rate = 0.015;

int months = 0;

cout << "months\tinterest\tprincipal" << endl;

while (principal > 0)

{

months++;

interest = principal * rate;

principal = principal - (50 - interest);

if (principal > 0)

 cout << months << "\t" << interest << "\t\t"

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 18
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 << principal << endl;

}

cout << "number of payments = " << months;

//undo the interation that drove principal negative:

principal = principal + (50 - interest);

//include interest for last month:

interest = principal * 0.015;

principal = principal + interest;

cout << " last months interest = " << interest;

cout << " last payment = " << principal << endl;

return 0;

}

Testing is omitted for this problem.

10. No solution provided.

11. Separate numbers by sign, compute sums and averages
// Programming Problem 11

// Read ten int values output

// sum and average of positive numbers

// sum and average of nonpositive numbers,

// sum and average of all numbers,

//

// Averages are usually floating point numbers.We mulitply

// the numerator of the average computation by 1.0 to make

// the int values convert automatically to double.

#include <iostream>

int main()

{

 using std::cout;

 using std::cin;

 using std::endl;

 int value, sum = 0, sumPos = 0, sumNonPos = 0;

 int countPos = 0, countNeg = 0;

 cout << "Enter ten numbers, I'll echo your number and compute\n"

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 19
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 << "the sum and average of positive numbers\n"

 << "the sum and average of nonpositive numbers\n"

 << "the sum and average of all numbers\n\n";

 for(int i =0; i < 10; i++)

 {

 cin >> value;

 cout << "value " << value <<endl;

 sum += value;

 if (value > 0)

 {

 sumPos += value;

 countPos++;

 }

 else

 {

 sumNonPos += value;

 countNeg++;

 }

 }

 cout << "Sum of Positive numbers is "

 << sumPos << endl;

 cout << "Average of Positive numbers is "

 << (1.0 * sumPos) / countPos << endl;

 cout << "Sum of NonPositive numbers is "

 << sumNonPos << endl;

 cout << "Average of NonPositive numbers is "

 << (1.0 * sumNonPos) / countNeg << endl;

 cout << "Sum " << sum << endl;

 cout << "Average is " << (1.0 * sum)/(countPos + countNeg) << endl;

 if((countPos + countNeg)!= 10)

 cout << "Count not 10, error some place\n";

 return 0;

}

/*

Typical run

Enter ten numbers, I'll echo your number and compute

the sum and average of positive numbers

the sum and average of nonpositive numbers

the sum and average of all numbers

4

value 4

5

value 5

-1

value -1

3

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 20
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

value 3

-4

value -4

-3

value -3

9

value 9

8

value 8

7

value 7

2

value 2

Sum of Positive numbers is 38

Average of Positive numbers is 5.42857

Sum of NonPositive numbers is -8

Average of NonPositive numbers is -2.66667

Sum 30

Average is 3

Press any key to continue

 */

12.

//

// Ch2Proj12.cpp

//

// This program computes the square root of a number n

// using the Babylonian algorithm.

//

#include <iostream>

using namespace std;

// ====================

// main function

// ====================

int main()

{

 double guess, previousguess, n, r;

 // Input number to compute the square root of

 cout << "Enter number to compute the square root of." << endl;

 cin >> n;

 // Initial guess, although note this doesn’t work for the number 1

 previousguess = n;

 guess = n /2;

 // Repeat until guess is within 1% of the previous guess

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 21
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 while (((previousguess - guess) / previousguess) > 0.01)

 {

 previousguess = guess;

 r = n / guess;

 guess = (guess + r) / 2;

 }

 cout << "The estimate of the square root of " << n << " is "

 << guess << endl;

 return 0;

}

13.

//

// Ch2Proj13.cpp

//

// This program inputs a speed in MPH and converts it to

// Minutes and Seconds per mile, as might be output on a treadmill.

//

#include <iostream>

using namespace std;

// ====================

// main function

// ====================

int main()

{

 double milesPerHour, hoursPerMile, minutesPerMile, secondsPace;

 int minutesPace;

 // Input miles per hour

 cout << "Enter speed in miles per hour:" << endl;

 cin >> milesPerHour;

 // Compute inverse, which is hours per mile

 hoursPerMile = 1.0 / milesPerHour;

 // Convert to minutes per mile which is 60 seconds/hour * hoursPerMile

 minutesPerMile = 60 * hoursPerMile;

 // Extract minutes by converting to an integer, while

 // truncates any value after the decimal point

 minutesPace = static_cast<int>(minutesPerMile);

 // Seconds is the remaining number of minutes * 60

 secondsPace = (minutesPerMile - minutesPace) * 60;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 22
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 cout << milesPerHour << " miles per hour is a pace of " <<

 minutesPace << " minutes and " << secondsPace << " seconds. " <<

endl;

 return 0;

}

14.

//

// Ch2Proj14.cpp

//

// This program plays a simple game of "Mad Libs".

//

#include <iostream>

using namespace std;

// ====================

// main function

// ====================

int main()

{

 string instructorName;

 string yourName;

 string food;

 int num;

 string adjective;

 string color;

 string animal;

 cout << "Welcome to Mad Libs! Enter your name: " << endl;

 cin >> yourName;

 cout << "Enter your instructor's first or last name." << endl;

 cin >> instructorName;

 cout << "Enter a food." << endl;

 cin >> food;

 cout << "Enter a number between 100 and 120." << endl;

 cin >> num;

 cout << "Enter an adjective." << endl;

 cin >> adjective;

 cout << "Enter a color." << endl;

 cin >> color;

 cout << "Enter an animal." << endl;

 cin >> animal;

 cout << endl;

 cout << "Dear Instructor " << instructorName << "," << endl;

 cout << endl;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 23
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 cout << "I am sorry that I am unable to turn in my homework at this

time."

 << endl;

 cout << "First, I ate a rotten " << food << " which made me turn " <<

 color << " and " << endl;

 cout << "extremely ill. I came down with a fever of " << num << "." <<

endl;

 cout << "Next, my " << adjective << " pet " << animal << " must have "

<<

 "smelled the remains " << endl;

 cout << "of the " << food << " on my homework, because he ate it. I am

" <<

 "currently " << endl;

 cout << "rewriting my homework and hope you will accept it late." <<

endl;

 cout << endl;

 cout << "Sincerely," << endl;

 cout << yourName << endl;

 return 0;

}

15.

//***

// Ch2Proj15.cpp

//

// This program allows the user to input a starting and an ending

// temperature. Within this temperature range the program should output

// the temperature and the corresponding velocity in one degree

// increments.

//

#include <iostream>

using namespace std;

int main()

{

 double VELOCITY_AT_ZERO = 331.3;

 double INCREASE_PER_DEGREE = 0.61;

 // Declare variables for the start and end temperatures, along with

 // a variable that we'll increment as we compute the temperatures.

 // (Note that we could also just increment the 'start' variable.

 int temp, start, end;

 // Prompt the user to input the time

 cout << "Enter the starting temperature, in degrees Celsius: ";

 cin >> start;

 cout << "Enter the ending temperature, in degrees Celsius: ";

 cin >> end;

 // Set cout such that we only show a single digit after the

 // decimal point

 cout.setf(ios::fixed);

 cout.setf(ios::showpoint);

 cout.precision(1);

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 24
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 temp = start;

 while (temp <= end)

 {

 cout << "At " << temp << " degrees Celsius the velocity of sound is "

 << (VELOCITY_AT_ZERO + (temp * INCREASE_PER_DEGREE))

 << " m/s\n";

 temp++;

 }

 return 0;

}

16.

//***

// Ch2Proj16.cpp

//

// Re-write a program using the style described in the chapter for

// indentation, add comments, and use appropriately named constants.

//***

// File Name: volume.cpp

// Author:

// Email Address:

// Project Number: 2.16

// Description: Computes the volume of a sphere given the radius

// Last Changed: October 6, 2007

#include <iostream>

using namespace std;

int main()

{

 const double PI = 3.1415;

 double radius, volume;

 // Prompt the user to enter a radius

 cout << "Enter radius of a sphere." << endl;

 cin >> radius;

 // Compute and print the volume

 volume = (4.0 / 3.0) * PI * radius * radius * radius;

 cout << " The volume is " << volume << endl;

 return 0;

}

17.

//***

// Ch2Proj17.cpp

//

// Estimate the amount of water in a water well.

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 25
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

//***

#include <iostream>

using namespace std;

int main()

{

 const double GALLONS_PER_CUBIC_FOOT = 7.48;

 int radiusInches;

 double radiusFeet;

 double depthFeet;

 double volumeCubicFeet;

 double gallons;

 cout << "What is the radius in inches of the well casing?" << endl;

 cin >> radiusInches;

 cout << "What is the depth of the well in feet?" << endl;

 cin >> depthFeet;

 // Convert radius to feet

 radiusFeet = radiusInches / 12.0;

 // Compute volume in cubic feet

 volumeCubicFeet = (3.1415 * radiusFeet * radiusFeet) * depthFeet;

 // Convert to gallons

 gallons = volumeCubicFeet * GALLONS_PER_CUBIC_FOOT;

 cout << "Your well contains " << gallons << " gallons of water."

 << endl;

 char ch;

 cin >> ch;

 return 0;

}

18.

//***

// Ch2Proj18.cpp

//

// Estimate the amount of water in a water well.

//***

//***

#include <iostream>

using namespace std;

int main()

{

 const int CALORIES_PER_CANDYBAR = 230;

 int pounds;

 int feet, inches;

 int age;

 char sex;

 double bmr;

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 26
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 cout << "Enter your weight in pounds." << endl;

 cin >> pounds;

 cout << "Enter your height in feet and inches (use the format 'feet

inches', e.g. '5 10' for 5 feet and 10 inches)." << endl;

 cin >> feet;

 cin >> inches;

 cout << "Enter your age in years." << endl;

 cin >> age;

 cout << "Enter M for male or F for female." << endl;

 cin >> sex;

 if (sex == 'M')

 {

 bmr = 66 + (6.3 * pounds) + (12.9 * (feet*12 + inches)) –

 (6.8 * age);

 }

 else

 {

 bmr = 655 + (4.3 * pounds) + (4.7 * (feet*12 + inches)) –

 (4.7 * age);

 }

 cout << "You need to eat " << (bmr/CALORIES_PER_CANDYBAR) << "

candy bars to maintain your weight." << endl;

 char ch;

 cin >> ch;

 return 0;

}

19.

//***

// Ch2Proj19.cpp

//

// Calculate an overall percentage from individual grade scores.

//***

//***

#include <iostream>

using namespace std;

int main()

{

 int numExercises;

 int totalScore=0;

 int pointsPossible=0;

 cout << "How many exercises to input?" << endl;

 cin >> numExercises;

 for (int i = 1; i <= numExercises; i++)

 {

 cout << "Score received for Exercise " << i << " ";

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 27
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 int score;

 cin >> score;

 totalScore += score;

 cout << "Total points possible for Exercise " << i << " ";

 int points;

 cin >> points;

 pointsPossible += points;

 }

 double percent = ((double) totalScore / pointsPossible) * 100;

 cout << "Your total is " << totalScore << " out of " <<

 pointsPossible << ", or " << percent << "%" << endl;

 char ch;

 cin >> ch;

 return 0;

}

2. Outline of topics in the chapter

2.1 Variables and assignments

2.2 Input and Output

2.3 Data Types and Expressions

2.4 Simple Flow of Control

branching

looping

2.5 Program Style

3. General Remarks on the chapter:

This chapter is a very brief introduction to the minimum C++ necessary to write simple

programs.

Comments in the Student's code:

Self documenting code is a code feature to be striven for. The use of identifier

names that have meaning within the context of the problems being solved goes a

long way in this direction.

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 28
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Code that is not self documenting for whatever reasons may be made clearer by

appropriate (minimal) comments inserted in the code.

"The most difficult feature of any programming language to master is the

comment."

 -- a disgruntled maintenance programmer.

"Where the comment and the code disagree, both should be assumed to be in

error."

 -- an experienced maintenance programmer.

With these cautions in mind, the student should place remarks at the top of file

containing program components, describing the purpose. Exactly what output is

required should be specified, and any conditions on the input to guarantee correct

execution should also be

specified.

Remarks can clarify difficult points, but remember, if the comment doesn't add to

what can be gleaned from the program code itself, the comment is unnecessary,

indeed it gets in the way. Good identifier names can reduce the necessity for

comments!

iostreams vs stdio

You will have the occasional student who has significant C programming

experience. These students will insist on using the older stdio library input-output

(for example, printf). Discourage this, insist on C++ iostream i/o. The reason is

that the iostream library understands and uses the type system of C++. You have

to tell stdio functions every type for every output attempted. And if you don't get it

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 29
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

right, then the error may not be obvious in the output. Either iostreams knows the

type, or the linker will complain that it doesn't have the member functions to

handle the type you are using. Then it is easy enough to write stream i/o routines

to do the i/o in a manner consistent with the rest of the library.

It is possible to do all i/o using the stream operators >> and << : file i/o,

device i/o, as well as console i/o. You can overload the operator>> and

operator<< functions to carry out i/o for any and all objects you define. You can

adjust behavior to your taste using manipulators.

Use of endl vs '\n'

With regard to cout << "... \n"; versus cout << "..." << endl; this

writer prefers the use of the endl manipulator in most cases. Using either will get

the same result in all correct programs. With early C++ compilers, if the program

has a runtime error, then the usage:

cout << "... \n";

may fail to give any output. Under the same circumstances

cout << "..." << endl;

would give useful information which could help determine where the program

failed. The i/o library provided with current compilers are more friendly. These

libraries flush the output when a carriage return ('\n') is sent, the same as sending

endl.

Pitfall: Use of '=' Where '==' is Intended

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 30
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

In the text's section: "Pitfall: Using = in place of ==" the instructor should note that

the very best of programmers fall into this error.

Note that the assignment

x = 1;

is an expression that has a value. The value of this expression is the value

transferred to the variable on the left hand side of the assignment. This value

could be used by an if or while as a condition, just as any other expression

can. In fact, this is a typical C/C++ idiom. While it is useful, it can be quite

confusing, and I do not use it, and I discourage it in beginner classes.

Some compilers warn if an assignment expression is used as the Boolean

expression in an if statement or within a loop. There is a way to get some

further help at the price of a little discipline. If the programmer consistently writes

the constant in a comparison on the left, as in

if (12 == x)

...;

instead of

if (x == 12)

...;

then the compiler will catch this pitfall of using = instead of ==:

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 31
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if (12 = x) // error: invalid l-value in assignment

...;

Otherwise this error is very hard to see, since this looks right. (This is one of the

warts C++ inherited from C.) There is a similar pitfall in using only one & instead of

&&, or one |, instead of ||.

Another Semicolon Pitfall

Occasionally one of my students will bring code that is similar to this, inquiring

what might be the matter:

if(x == 12);

 x = 0;

.

After this code segment, the variable x has the value 0. The hard-to-see intent

error is of course caused by the semicolon at the end of the if line which defines

a null statement. The if control construct controls a single statement, which is

the null statement here. The extra semicolon problem can cause infinite loops.

See Display 2.11, Syntax of the while-Statement, and the following code segment:

x = 10;

while (x > 0);

{

 cout << x << endl;

 x--;

}

Savitch Instructor’s Resource Guide

Problem Solving w/ C++, 8e Chapter 2

 32
 Copyright © 2012 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A program having this loop in it hangs, giving no output. As before, the extraneous

semicolon after the while causes the problem. Note that placing assignments in

the control of an if or a while is C (and C++) idiom. Even so, some compilers

warn about this.

How Do I Find What Key Will Stop My Program?

Such code as in the last paragraph must be killed to get back control of the

computer. Under UNIX or Unix work-alike systems, there are several system-

defined keys that will terminate a program. The one named kill is the best one

to try first. This is usually control-c, but under System V, this may be the

delete key. If this fails, the current value for a Unix or Linux system may be

found by typing the command stty at the system prompt. The command stty

- a may be necessary. (The space between stty and the - is required, and

there must be no space between the - and the a. In this last case, you may wish

to type stty -a | more (stty - a, piped into more) to get this information a

screenful at a time. This gives you more information than you ever wanted about

the terminal settings. The values of interest are intr, quit and kill. These

are set to ^C, ^\, and (^U control C, control-back-slash and

control U) on this writer's Debian 3.0 Linux system. With Windows press

control-alt-del to bring up the task manager to stop a runaway program. If using

an IDE such as Visual Studio you can also stop the program by clicking on the

stop icon.

Problem Solving with C++ 8th Edition Savitch Solutions Manual
Full Download: http://alibabadownload.com/product/problem-solving-with-c-8th-edition-savitch-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/problem-solving-with-c-8th-edition-savitch-solutions-manual/

