Principles of Biochemistry With a Human Focus 1st Edition Garrett Test Bank

Full Download: http://alibabadownload.com/product/principles-of-biochemistry-with-a-human-focus-1st-edition-garrett-test-bank/

Chapter #2 Water, pH, and Ionic Equilibrium

Chapter 2 Water: The Medium of Life

1.	The unrivaled ability to form hydrogen bonds per liquid water molecule is the strong intermolecular attractions unique to water.		
	a.	1	
	b.	2	
	c.	3	
	d.	4	
	e.	5	
2.	Because of its highly polar nature, water is an excellent solvent for polar substances, but NOT for:		
	a.	salts.	
	b.	sugars.	
	c.	aldehydes and ketones.	
	d.	hydrocarbons.	
	e.	alcohols and amines.	
3.	The solvent with the highest dielectric constant in this group is:		
	a.	water	
	b.	acetic acid	
	c.	ethanol	
	d.	hexane	
	e.	benzene	
4.	The average lifetime of a hydrogen bond connection in water is on the order of:		
	a.	picoseconds.	
	b.	microseconds.	
	c.	milliseconds.	
	d.	seconds.	
	e.	nanoseconds.	
5.	All of the following characteristics are associated with the solvent water EXCEPT:		
	a.	a high surface tension.	
	b.	a chemically inert solvent, which has a great capacity to dissolve a diverse spectrum of molecules and ions.	
	c.	low heat capacity.	
	d.	a high dielectric constant.	
	e.	a high capacity to form hydrogen bonds.	
Copyri	ght 2002	2 by Harcourt, Inc. 6	

- 6. Amphiphilic (amphipathic) molecules include:
 - a. sugars
 - b. acidic amino acids
 - c. inorganic salts
 - d. water
 - e. salts of fatty acids
- 7. In micelles:
 - a. polar ends form hydrophobic interactions with water.
 - b. non-polar ends form hydrophilic interactions with water.
 - c. hydrocarbon tails form hydrophobic interactions with water.
 - d. polar ends are hydrophobic and non-polar ends are hydrophilic.
 - e. hydrocarbon tails are excluded from the water into hydrophobic domains.
- 8. Addition of glucose to water results in all of the following effects EXCEPT.
 - a. An increase in the osmotic pressure of the solution.
 - b. The lowering of the boiling point of the solution.
 - c. The lowering of the vapor pressure of the solution.
 - d. The lowering of the freezing point of the solution.
 - e. None of the above.
- 9. Introduction of a solute into water has all of the following effects EXCEPT.
 - a. Solutes fix nearby water molecules into more ordered arrays.
 - b. Solutes dissolved in water make it easier for water to assume its crystalline lattice (freeze).
 - c. Ions establish hydration shells creating local order.
 - d. Hydrophobic molecules create local structures in water.
 - e. Solutes give order to water and diminish the dynamic interplay of pure water.
- 10. If equal molar amounts of Na₂HPO₄ and Na₃PO₄ are mixed in water, estimate the resulting pH. The pK_as of phosphoric acid are 2.1, 7.2, and 12.4.
 - a. 7.2
 - b. 12.4
 - c. 4.5
 - d. 9.5
 - e. 2.1

Chapter #2 Water, pH, and Ionic Equilibrium

- 11. If 50 ml of 0.01 M HCl is added to 50 ml of 0.01 M NaH_2PO_4 (pK_a = 7.2), the resulting pH will be:
 - a. equal to the pK_a .
 - b. Above the pK_a , but less than 8.2.
 - c. Below the pK_a , but above 6.2.
 - d. Above 8.2.
 - e. Below 6.2.
- 12. A plasma pH of 6.8 doesn't seem too far away from a normal pH of 7.4, but at pH 6.8 the H⁺ concentration is ____ times greater than at pH 7.4 and results in severe acidosis.
 - a. 0.1
 - b. 0.6
 - c. 4
 - d. 10
 - e. 20
- 13. Which of the following would make the best buffer at pH 10.0?
 - a. Acetic acid and sodium acetate ($pK_a = 4.8$)
 - b. Methylammonium chloride and methylamine ($pK_a = 10.6$)
 - c. Na_2HPO_4 / Na_3PO_4 (pK_a = 12.4)
 - d. Histidine (p $K_a = 6.0$)
 - e. tris-Hydroxymethyl aminomethane (pK_a = 8.1)
- 14. $pH = pK_a$ when:
 - a. $[A^{-}]/[HA] = 0$
 - b. $\log ([A^-]/[HA]) = 1$
 - c. $[A^{-}] >> [HA]$
 - d. $[A^{-}] = [HA]$
 - e. $\log ([HA] / [A^-]) = 1$
- 15. Buffers have all of the following characteristics EXCEPT they:
 - a. have relatively flat titration curves at the pH(s) where they buffer.
 - b. resist changes in their pH as acid or base is added.
 - c. are typically composed of a weak acid and its conjugate base.
 - d. buffer best for polyprotic acids half-way between the two pK_a values.
 - e. buffer where the amounts of conjugate base are nearly equivalent to the amounts of weak acid.

16.	Buffer systems are effective when the pH values are within $__$ pH unit(s) of the pK _a value.		
	a. 1 b. 2 c. 3 d. 4 e. 5	2 3 4	
17.	Intracellular pH is maintained primarily by the and buffer systems, and the extracellular pH by the buffer system.		
	b. H c. H d. H	HPO ₄ ²⁻ / H ₂ PO ₄ ⁻ , HCO ₃ ⁻ / H ₂ CO ₃ , histidine H ₃ PO ₄ / H ₂ PO ₄ ⁻ , histidine, HCO ₃ ⁻ / H ₂ CO ₃ HCO ₃ ⁻ / H ₂ CO ₃ , H ₃ PO ₄ / H ₂ PO ₄ ⁻ , histidine HPO ₄ ²⁻ / H ₂ PO ₄ ⁻ , histidine, HCO ₃ ⁻ / H ₂ CO ₃ HCO ₃ ⁻ / H ₂ CO ₃ , histidine, H ₃ PO ₄ / H ₂ PO ₄ ⁻	
18.	What is the approximate fractional concentrations of $H_2PO_4^{-}$ / HPO_4^{2-} (pK _a = 7.2) at pH 7.5?		
	b. 1 c. 5 d. 1	1/1 1/2 5/1 1/10 3/1	
19.	Hyperventilation is a physiological mechanism to:		
	b. r c. l d. r	ower $[CO_2(g)]$ in the blood and increase blood pH. raise $[CO_2(g)]$ in the blood and increase blood pH. ower $[CO_2(g)]$ in the blood and decrease blood pH. raise $[CO_2(g)]$ in the blood and decrease blood pH. ower $[CO_2(g)]$ in the blood and increase $[HCO_3^-]$.	
20.		Water is particularly suited as a solvent for biosystems because it has all of the following characteristics EXCEPT:	

Copyright 2002 by Harcourt, Inc.

Water is relatively chemically inert, yet dissolves a variety of solutes.

Water is innocuous, yet a powerful solvent.

Water is an excellent solvent for non-polar substances.

a.

b.

c.

d.

e.

Water is a medium for ionization enhancing the variety of chemical species.

Through hydrophobic interactions, lipids coalese into membranes in water.

Full Download: http://alibabadownload.com/product/principles-of-biochemistry-with-a-human-focus-1st-edition-garrett-test-bank/

Chapter #2 Water, pH, and Ionic Equilibrium

- 21. Which of the following weak acids would make the best buffer at pH = 5.0?
 - acetic acid ($K_a = 1.74 \times 10^{-5}$, $pK_a = 4.76$) a.
 - H_2PO_4 ($K_a = 1.38 \times 10^{-7}, pK_a = 7.20$) b.
 - bicarbonate ($K_a = 6.3 \times 10^{-11}$, p $K_a = 10.24$) c.
 - tris-hydroxymethyl aminomethane ($K_a = 8.32 \times 10^{-9}$, p $K_a = 8.07$) d.
 - lactic acid ($K_a = 1.38 \times 10^{-4}$, $pK_a = 3.86$) e.
- 22. What ionic forms of phosphoric acid are present at pH 7.0. The pK_as of phosphoric acid are 2.1, 7.2, and 12.4.
 - a. $H_2PO_4^-$
 - H₂PO₄⁻ and HPO₄⁻² b.
 - HPO₄ and PO₄-3 c.
 - H₃PO₄ and H₂PO₄ d.
 - HPO_4^{-2} e.
- 23. The enzyme fumarase has a pH optimum of about 7.6. What would be the buffer of choice to study this enzyme?
 - lactic acid ($K_a = 1.38 \times 10^{-4}$, $pK_a = 3.86$) a.
 - bicarbonate ($K_a = 6.3 \times 10^{-11}$, $pK_a = 10.24$) acetic acid ($K_a = 1.74 \times 10^{-5}$, $pK_a = 4.76$) b.
 - c.
 - succinate $(K_a = 2.34 \times 10^{-6}, \bar{pK_a} = 5.63)$ d.
 - tris-hydroxymethyl aminomethane ($K_a = 8.32 \times 10^{-9}$, p $K_a = 8.07$) e.
- When preparing an acetate buffer at pH 4.5 with 0.01 M solutions of acetic acid ($pK_a = 4.8$) 24. and sodium acetate, the volume of acetic acid needed would be ______ the volume of sodium acetate solution.
 - a. equal to
 - b. less than half of
 - more than half of c.
 - about six times d.
 - about twice e.