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Preface

This Instructor’s Manual for the Ninth Edition of Numerical Analysis by Burden and
Faires contains solutions to all the exercises in the book. Although the answers to
the odd exercises are also in the back of the text, we have found that users of the
book appreciate having all the solutions in one source. In addition, the results listed
in this Instructor’s Manual often go beyond those given in the back of the book. For
example, we do not place the long solutions to theoretical and applied exercises in
the book. You will find them here.

A Student Study Guide for the Ninth Edition of Numerical Analysis is also avail-
able and the solutions given in the Guide are generally more detailed than those in the
Instructor’s Manual. In order to make it convenient for instructors, we have placed
an asterisk (*) in this Manual in front of each exercise whose solution is given in the
Student Study Guide. Hopefully this will help with your homework assignments and
test problems.

We have added a number of exercises to the text that involve the use of a Computer
Algebra System. We have chosen Maple as our standard, because their Numerical-

Analysis package parallels the algorithms in this book, but any of these systems can
be used. In our recent teaching of the course we found that students understood the
concepts better when they worked through the algorithms step-by-step, but let the
computer algebra system do the tedious computation.

It has been our practice to include structured algorithms in our Numerical Analysis
book for all the techniques discussed in the text. The algorithms are given in a form
that can be coded in any appropriate programming language, by students with even
a minimal amount of programming expertise.

At our website for the book,

http://www.math.ysu.edu/∼faires/Numerical-Analysis/

you will find all the algorithms written in the programming languages FORTRAN,
Pascal, C, Java, as well as in the Computer Algebra Systems, Maple, MATLAB,
and Mathematica. For the Ninth Edition, we have added new Maple programs to
reflect the changes in their system and to include portions of their NumericalAnalysis

package.

vii
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The website also contains additional information about the book and will be up-
dated regularly to reflect any modifications that might be made. For example, we
will place there any responses to questions from users of the book concerning inter-
pretations of the exercises and appropriate applications of the techniques.

We will have a set of presentation material ready soon for many of the methods
in the book. These are being constructed by Professor John Carroll of Dublin City
University using the Beamer package of LATEX, and will be placed on the website.
The Beamer package creates PDF files that are similar to Power Point presentations
but incorporates mathematical elements easily and correctly. We are quite excited
about this material and expect to have many of the presentations ready before they
would normally be covered in the Fall term of 2010. If you send us an e-mail we will
keep you posted on our progress.

We hope our supplement package provides flexibility for instructors teaching Nu-
merical Analysis. If you have any suggestions for improvements that can be incorpo-
rated into future editions of the book or the supplements, we would be most grateful
to receive your comments. We can be most easily contacted by electronic mail at the
addresses listed below.

Youngstown State University Richard L. Burden
burden@math.ysu.edu

August 20, 2010 J. Douglas Faires
faires@math.ysu.edu



Mathematical Preliminaries

Note: An asterisk (*) before an exercise indicates that there is a solution in the Student
Study Guide.

Exercise Set 1.1, page 14

*1. For each part, f ∈ C[a, b] on the given interval. Since f(a) and f(b) are of opposite sign, the
Intermediate Value Theorem implies that a number c exists with f(c) = 0.

2. (a) [0, 1]

(b) [0, 1], [4, 5], [−1, 0]

*(c) [−2,−2/3], [0, 1], [2, 4]

(d) [−3,−2], [−1,−0.5], and [−0.5, 0]

3. For each part, f ∈ C[a, b], f ′ exists on (a, b) and f(a) = f(b) = 0. Rolle’s Theorem implies
that a number c exists in (a, b) with f ′(c) = 0. For part (d), we can use [a, b] = [−1, 0] or
[a, b] = [0, 2].

4. The maximum value for |f(x)| is given below.

*(a) (2 ln 2)/3 ≈ 0.4620981

(b) 0.8

(c) 5.164000

(d) 1.582572

*5. For x < 0, f(x) < 2x+k < 0, provided that x < − 1
2k. Similarly, for x > 0, f(x) > 2x+k > 0,

provided that x > − 1
2k. By Theorem 1.11, there exists a number c with f(c) = 0. If f(c) = 0

and f(c′) = 0 for some c′ 6= c, then by Theorem 1.7, there exists a number p between c and c′

with f ′(p) = 0. However, f ′(x) = 3x2 + 2 > 0 for all x.

6. Suppose p and q are in [a, b] with p 6= q and f(p) = f(q) = 0. By the Mean Value Theorem,
there exists ξ ∈ (a, b) with

f(p)− f(q) = f ′(ξ)(p− q).

But, f(p)− f(q) = 0 and p 6= q. So f ′(ξ) = 0, contradicting the hypothesis.

7. (a) P2(x) = 0

(b) R2(0.5) = 0.125; actual error = 0.125
1
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(c) P2(x) = 1 + 3(x− 1) + 3(x− 1)2

(d) R2(0.5) = −0.125; actual error = −0.125

8. P3(x) = 1 + 1
2x− 1

8x
2 + 1

16x
3

x 0.5 0.75 1.25 1.5

P3(x) 1.2265625 1.3310547 1.5517578 1.6796875√
x+ 1 1.2247449 1.3228757 1.5 1.5811388

|
√
x+ 1− P3(x)| 0.0018176 0.0081790 0.0517578 0.0985487

*9. Since

P2(x) = 1 + x and R2(x) =
−2eξ(sin ξ + cos ξ)

6
x3

for some ξ between x and 0, we have the following:

(a) P2(0.5) = 1.5 and |f(0.5)− P2(0.5)| ≤ 0.0932;

(b) |f(x)− P2(x)| ≤ 1.252;

(c)
∫ 1

0 f(x) dx ≈ 1.5;

(d) |
∫ 1

0
f(x) dx−

∫ 1

0
P2(x) dx| ≤

∫ 1

0
|R2(x)| dx ≤ 0.313, and the actual error is 0.122.

10. P2(x) = 1.461930+0.617884
(

x− π
6

)

−0.844046
(

x− π
6

)2
andR2(x) = − 1

3e
ξ(sin ξ+cos ξ)

(

x− π
6

)3

for some ξ between x and π
6 .

(a) P2(0.5) = 1.446879 and f(0.5) = 1.446889. An error bound is 1.01×10−5, and the actual
error is 1.0× 10−5.

(b) |f(x)− P2(x)| ≤ 0.135372 on [0, 1]

(c)
∫ 1

0 P2(x) dx = 1.376542 and
∫ 1

0 f(x) dx = 1.378025

(d) An error bound is 7.403× 10−3, and the actual error is 1.483× 10−3.

11. P3(x) = (x− 1)2 − 1
2 (x− 1)3

(a) P3(0.5) = 0.312500, f(0.5) = 0.346574. An error bound is 0.2916, and the actual error
is 0.034074.

(b) |f(x)− P3(x)| ≤ 0.2916 on [0.5, 1.5]

(c)
∫ 1.5

0.5
P3(x) dx = 0.083,

∫ 1.5

0.5
(x− 1) lnx dx = 0.088020

(d) An error bound is 0.0583, and the actual error is 4.687× 10−3.

12. (a) P3(x) = −4 + 6x− x2 − 4x3; P3(0.4) = −2.016

(b) |R3(0.4)| ≤ 0.05849; |f(0.4)− P3(0.4)| = 0.013365367

(c) P4(x) = −4 + 6x− x2 − 4x3; P4(0.4) = −2.016

(d) |R4(0.4)| ≤ 0.01366; |f(0.4)− P4(0.4)| = 0.013365367
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13. P4(x) = x+ x3

(a) |f(x)− P4(x)| ≤ 0.012405

(b)
∫ 0.4

0
P4(x) dx = 0.0864,

∫ 0.4

0
xex

2

dx = 0.086755

(c) 8.27× 10−4

(d) P ′
4(0.2) = 1.12, f ′(0.2) = 1.124076. The actual error is 4.076× 10−3.

*14. First we need to convert the degree measure for the sine function to radians. We have 180◦ = π
radians, so 1◦ = π

180 radians. Since,

f(x) = sinx, f ′(x) = cosx, f ′′(x) = − sinx, and f ′′′(x) = − cosx,

we have f(0) = 0, f ′(0) = 1, and f ′′(0) = 0.

The approximation sinx ≈ x is given by

f(x) ≈ P2(x) = x, and R2(x) = −cos ξ

3!
x3.

If we use the bound | cos ξ| ≤ 1, then

∣

∣

∣
sin

π

180
− π

180

∣

∣

∣
=
∣

∣

∣
R2

( π

180

)∣

∣

∣
=

∣

∣

∣

∣

− cos ξ

3!

( π

180

)3
∣

∣

∣

∣

≤ 8.86× 10−7.

15. Since 42◦ = 7π/30 radians, use x0 = π/4. Then

∣

∣

∣

∣

Rn

(

7π

30

)∣

∣

∣

∣

≤
(

π
4 − 7π

30

)n+1

(n+ 1)!
<

(0.053)n+1

(n+ 1)!
.

For |Rn(
7π
30 )| < 10−6, it suffices to take n = 3. To 7 digits,

cos 42◦ = 0.7431448 and P3(42
◦) = P3(

7π

30
) = 0.7431446,

so the actual error is 2× 10−7.

*16. (a) P3(x) =
1

3
x+

1

6
x2 +

23

648
x3

(b) We have

f (4)(x) =
−119

1296
ex/2 sin

x

3
+

5

54
ex/2 cos

x

3
,

so
∣

∣

∣f (4)(x)
∣

∣

∣ ≤
∣

∣

∣f (4)(0.60473891)
∣

∣

∣≤ 0.09787176, for 0 ≤ x ≤ 1,

and

|f(x)− P3(x)| ≤
∣

∣f (4)(ξ)
∣

∣

4!
|x|4 ≤ 0.09787176

24
(1)4 = 0.004077990.
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17. (a) P3(x) = ln(3) + 2
3 (x− 1) + 1

9 (x− 1)2 − 10
81 (x− 1)3

(b) max0≤x≤1 |f(x)− P3(x)| = |f(0)− P3(0)| = 0.02663366

(c) P̃3(x) = ln(2) + 1
2x

2

(d) max0≤x≤1 |f(x)− P̃3(x)| = |f(1)− P̃3(1)| = 0.09453489

(e) P3(0) approximates f(0) better than P̃3(1) approximates f(1).

18. Pn(x) =
∑n

k=0 x
k, n ≥ 19

19. Pn(x) =
n
∑

k=0

1

k!
xk, n ≥ 7

20. For n odd, Pn(x) = x− 1
3x

3 + 1
5x

5 + · · ·+ 1
n (−1)(n−1)/2xn. For n even, Pn(x) = Pn−1(x).

21. A bound for the maximum error is 0.0026.

22. (a) P
(k)
n (x0) = f (k)(x0) for k = 0, 1, . . . , n. The shapes of Pn and f are the same at x0.

(b) P2(x) = 3 + 4(x− 1) + 3(x− 1)2.

23. (a) The assumption is that f(xi) = 0 for each i = 0, 1, . . . , n. Applying Rolle’s Theorem
on each on the intervals [xi, xi+1] implies that for each i = 0, 1, . . . , n − 1 there exists a
number zi with f

′(zi) = 0. In addition, we have

a ≤ x0 < z0 < x1 < z1 < · · · < zn−1 < xn ≤ b.

(b) Apply the logic in part (a) to the function g(x) = f ′(x) with the number of zeros of g in
[a, b] reduced by 1. This implies that numbers wi, for i = 0, 1, . . . , n− 2 exist with

g′(wi) = f ′′(wi) = 0, and a < z0 < w0 < z1 < w1 < · · ·wn−2 < zn−1 < b.

(c) Continuing by induction following the logic in parts (a) and (b) provides n+1−j distinct
zeros of f (j) in [a, b].

(d) The conclusion of the theorem follows from part (c) when j = n, for in this case there
will be (at least) (n+ 1)− n = 1 zero in [a, b].

*24. First observe that for f(x) = x− sinx we have f ′(x) = 1− cosx ≥ 0, because −1 ≤ cosx ≤ 1
for all values of x. Also, the statement clearly holds when |x| ≥ π, because | sinx| ≤ 1.

(a) The observation implies that f(x) is non-decreasing for all values of x, and in particular
that f(x) > f(0) = 0 when x > 0. Hence for x ≥ 0, we have x ≥ sinx, and when
0 ≤ x ≤ π, | sinx| = sinx ≤ x = |x|.

(b) When −π < x < 0, we have π ≥ −x > 0. Since sinx is an odd function, the fact (from
part (a)) that sin(−x) ≤ (−x) implies that | sinx| = − sinx ≤ −x = |x|.
As a consequence, for all real numbers x we have | sinx| ≤ |x|.

25. Since R2(1) =
1
6e

ξ, for some ξ in (0, 1), we have |E −R2(1)| = 1
6 |1− eξ| ≤ 1

6 (e − 1).

26. (a) Use the series

e−t2 =

∞
∑

k=0

(−1)kt2k

k!
to integrate

2√
π

∫ x

0

e−t2 dt,

and obtain the result.
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(b) We have

2√
π
e−x2

∞
∑

k=0

2kx2k+1

1 · 3 · · · (2k + 1)
=

2√
π

[

1− x2 +
1

2
x4 − 1

6
x7 +

1

24
x8 + · · ·

]

·
[

x+
2

3
x3 +

4

15
x5 +

8

105
x7 +

16

945
x9 + · · ·

]

=
2√
π

[

x− 1

3
x3 +

1

10
x5 − 1

42
x7 +

1

216
x9 + · · ·

]

= erf (x)

(c) 0.8427008

(d) 0.8427069

(e) The series in part (a) is alternating, so for any positive integer n and positive x we have
the bound

∣

∣

∣

∣

erf(x) − 2√
π

n
∑

k=0

(−1)kx2k+1

(2k + 1)k!

∣

∣

∣

∣

<
x2n+3

(2n+ 3)(n+ 1)!
.

We have no such bound for the positive term series in part (b).

27. (a) Let x0 be any number in [a, b]. Given ǫ > 0, let δ = ǫ/L. If |x − x0| < δ and a ≤ x ≤ b,
then |f(x)− f(x0)| ≤ L|x− x0| < ǫ.

(b) Using the Mean Value Theorem, we have

|f(x2)− f(x1)| = |f ′(ξ)||x2 − x1|,

for some ξ between x1 and x2, so

|f(x2)− f(x1)| ≤ L|x2 − x1|.

(c) One example is f(x) = x1/3 on [0, 1].

*28. (a) The number 1
2 (f(x1) + f(x2)) is the average of f(x1) and f(x2), so it lies between these

two values of f . By the Intermediate Value Theorem 1.11 there exist a number ξ between
x1 and x2 with

f(ξ) =
1

2
(f(x1) + f(x2)) =

1

2
f(x1) +

1

2
f(x2).

(b) Let m = min{f(x1), f(x2)} and M = max{f(x1), f(x2)}. Then m ≤ f(x1) ≤ M and
m ≤ f(x2) ≤M, so

c1m ≤ c1f(x1) ≤ c1M and c2m ≤ c2f(x2) ≤ c2M.

Thus
(c1 + c2)m ≤ c1f(x1) + c2f(x2) ≤ (c1 + c2)M

and

m ≤ c1f(x1) + c2f(x2)

c1 + c2
≤M.

By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x1 and
x2, there exists a number ξ between x1 and x2 for which

f(ξ) =
c1f(x1) + c2f(x2)

c1 + c2
.
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(c) Let f(x) = x2 + 1, x1 = 0, x2 = 1, c1 = 2, and c2 = −1. Then for all values of x,

f(x) > 0 but
c1f(x1) + c2f(x2)

c1 + c2
=

2(1)− 1(2)

2− 1
= 0.

29. (a) Since f is continuous at p and f(p) 6= 0, there exists a δ > 0 with

|f(x)− f(p)| < |f(p)|
2

,

for |x − p| < δ and a < x < b. We restrict δ so that [p − δ, p + δ] is a subset of [a, b].
Thus, for x ∈ [p− δ, p+ δ], we have x ∈ [a, b]. So

−|f(p)|
2

< f(x)− f(p) <
|f(p)|
2

and f(p)− |f(p)|
2

< f(x) < f(p) +
|f(p)|
2

.

If f(p) > 0, then

f(p)− |f(p)|
2

=
f(p)

2
> 0, so f(x) > f(p)− |f(p)|

2
> 0.

If f(p) < 0, then |f(p)| = −f(p), and

f(x) < f(p) +
|f(p)|
2

= f(p)− f(p)

2
=
f(p)

2
< 0.

In either case, f(x) 6= 0, for x ∈ [p− δ, p+ δ].

(b) Since f is continuous at p and f(p) = 0, there exists a δ > 0 with

|f(x)− f(p)| < k, for |x− p| < δ and a < x < b.

We restrict δ so that [p− δ, p+ δ] is a subset of [a, b]. Thus, for x ∈ [p− δ, p+ δ], we have

|f(x)| = |f(x)− f(p)| < k.

Exercise Set 1.2, page 28

1. We have

Absolute error Relative error

(a) 0.001264 4.025× 10−4

(b) 7.346× 10−6 2.338× 10−6

(c) 2.818× 10−4 1.037× 10−4

(d) 2.136× 10−4 1.510× 10−4

(e) 2.647× 101 1.202× 10−3

(f) 1.454× 101 1.050× 10−2

(g) 420 1.042× 10−2

(h) 3.343× 103 9.213× 10−3
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2. The largest intervals are:

(a) (3.1412784, 3.1419068)

(b) (2.7180100, 2.7185536)

*(c) (1.4140721, 1.4143549)

(d) (1.9127398, 1.9131224)

3. The largest intervals are

(a) (149.85,150.15)

(b) (899.1, 900.9 )

(c) (1498.5, 1501.5)

(d) (89.91,90.09)

4. The calculations and their errors are:

(a) (i) 17/15 (ii) 1.13 (iii) 1.13 (iv) both 3× 10−3

(b) (i) 4/15 (ii) 0.266 (iii) 0.266 (iv) both 2.5× 10−3

(c) (i) 139/660 (ii) 0.211 (iii) 0.210 (iv) 2× 10−3, 3× 10−3

(d) (i) 301/660 (ii) 0.455 (iii) 0.456 (iv) 2× 10−3, 1× 10−4

5. We have

Approximation Absolute error Relative error

(a) 134 0.079 5.90× 10−4

(b) 133 0.499 3.77× 10−3

(c) 2.00 0.327 0.195
(d) 1.67 0.003 1.79× 10−3

*(e) 1.80 0.154 0.0786
(f) −15.1 0.0546 3.60× 10−3

(g) 0.286 2.86× 10−4 10−3

(h) 0.00 0.0215 1.00

6. We have

Approximation Absolute error Relative error

(a) 133.9 0.021 1.568× 10−4

(b) 132.5 0.001 7.55× 10−6

(c) 1.700 0.027 0.01614
(d) 1.673 0 0
(e) 1.986 0.03246 0.01662
(f) −15.16 0.005377 3.548× 10−4

(g) 0.2857 1.429× 10−5 5× 10−5

(h) −0.01700 0.0045 0.2092
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7. We have

Approximation Absolute error Relative error

(a) 133 0.921 6.88× 10−3

(b) 132 0.501 3.78× 10−3

(c) 1.00 0.673 0.402
(d) 1.67 0.003 1.79× 10−3

*(e) 3.55 1.60 0.817
(f) −15.2 0.0454 0.00299
(g) 0.284 0.00171 0.00600
(h) 0 0.02150 1

8. We have

Approximation Absolute error Relative error

(a) 133.9 0.021 1.568× 10−4

(b) 132.5 0.001 7.55× 10−6

(c) 1.600 0.073 0.04363
(d) 1.673 0 0
(e) 1.983 0.02945 0.01508
(f) −15.15 0.004622 3.050× 10−4

(g) 0.2855 2.143× 10−4 7.5× 10−4

(h) −0.01700 0.0045 0.2092

9. We have

Approximation Absolute error Relative error

*(a) 3.14557613 3.983× 10−3 1.268× 10−3

(b) 3.14162103 2.838× 10−5 9.032× 10−6

10. We have

Approximation Absolute error Relative error

(a) 2.7166667 0.0016152 5.9418× 10−4

(b) 2.718281801 2.73 ×10−8 1.00× 10−8
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11. (a) We have

lim
x→0

x cosx− sinx

x− sinx
= lim

x→0

−x sinx
1− cosx

= lim
x→0

− sinx− x cosx

sinx
= lim

x→0

−2 cosx+ x sinx

cosx
= −2

(b) f(0.1) ≈ −1.941

(c)
x(1 − 1

2x
2)− (x − 1

6x
3)

x− (x− 1
6x

3)
= −2

(d) The relative error in part (b) is 0.029. The relative error in part (c) is 0.00050.

12. (a) lim
x→0

ex − e−x

x
= lim

x→0

ex + e−x

1
= 2

(b) f(0.1) ≈ 2.05

(c)
1

x

((

1 + x+
1

2
x2 +

1

6
x3
)

−
(

1− x+
1

2
x2 − 1

6
x3
))

=
1

x

(

2x+
1

3
x3
)

= 2 +
1

3
x2;

using three-digit rounding arithmetic and x = 0.1, we obtain 2.00.

(d) The relative error in part (b) is = 0.0233. The relative error in part (c) is = 0.00166.

13. We have

x1 Absolute error Relative error x2 Absolute error Relative error

(a) 92.26 0.01542 1.672 × 10−4 0.005419 6.273 × 10−7 1.157 × 10−4

(b) 0.005421 1.264 × 10−6 2.333 × 10−4 −92.26 4.580 × 10−3 4.965 × 10−5

(c) 10.98 6.875 × 10−3 6.257 × 10−4 0.001149 7.566 × 10−8 6.584 × 10−5

(d) −0.001149 7.566 × 10−8 6.584 × 10−5 −10.98 6.875 × 10−3 6.257 × 10−4

14. We have

Approximation for x1 Absolute error Relative error

(a) 92.24 0.004580 4.965× 10−5

(b) 0.005417 2.736× 10−6 5.048× 10−4

(c) 10.98 6.875× 10−3 6.257× 10−4

(d) −0.001149 7.566× 10−8 6.584× 10−5

Approximation for x2 Absolute error Relative error

(a) 0.005418 2.373× 10−6 4.377× 10−4

(b) −92.25 5.420× 10−3 5.875× 10−5

(c) 0.001149 7.566× 10−8 6.584× 10−5

(d) −10.98 6.875× 10−3 6.257× 10−4
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15. The machine numbers are equivalent to

(a) 3224

(b) −3224

*(c) 1.32421875

(d) 1.3242187500000002220446049250313080847263336181640625

16. (a) Next Largest: 3224.00000000000045474735088646411895751953125;

Next Smallest: 3223.99999999999954525264911353588104248046875

(b) Next Largest: −3224.00000000000045474735088646411895751953125;

Next Smallest: −3223.99999999999954525264911353588104248046875

*(c) Next Largest: 1.3242187500000002220446049250313080847263336181640625;

Next Smallest: 1.3242187499999997779553950749686919152736663818359375

(d) Next Largest: 1.324218750000000444089209850062616169452667236328125;

Next Smallest: 1.32421875

17. (b) The first formula gives −0.00658, and the second formula gives −0.0100. The true three-
digit value is −0.0116.

18. (a) −1.82

(b) 7.09× 10−3

(c) The formula in (b) is more accurate since subtraction is not involved.

19. The approximate solutions to the systems are

(a) x = 2.451, y = −1.635

(b) x = 507.7, y = 82.00

20. (a) x = 2.460 y = −1.634

(b) x = 477.0 y = 76.93

*21. (a) In nested form, we have f(x) = (((1.01ex − 4.62)ex − 3.11)ex + 12.2)ex − 1.99.

(b) −6.79

(c) −7.07

(d) The absolute errors are

| − 7.61− (−6.71)| = 0.82 and | − 7.61− (−7.07)| = 0.54.

Nesting is significantly better since the relative errors are

∣

∣

∣

∣

0.82

−7.61

∣

∣

∣

∣

= 0.108 and

∣

∣

∣

∣

0.54

−7.61

∣

∣

∣

∣

= 0.071,

22. We have 39.375 ≤ Volume ≤ 86.625 and 71.5 ≤ Surface Area ≤ 119.5.

23. (a) n = 77
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(b) n = 35

*24. When dk+1 < 5,

∣

∣

∣

∣

y − fl(y)

y

∣

∣

∣

∣

=
0.dk+1 . . .× 10n−k

0.d1 . . .× 10n
≤ 0.5× 10−k

0.1
= 0.5× 10−k+1.

When dk+1 > 5,

∣

∣

∣

∣

y − fl(y)

y

∣

∣

∣

∣

=
(1− 0.dk+1 . . .)× 10n−k

0.d1 . . .× 10n
<

(1− 0.5)× 10−k

0.1
= 0.5× 10−k+1.

25. (a) m = 17

(b) We have

(

m

k

)

=
m!

k!(m− k)!
=
m(m− 1) · · · (m− k − 1)(m− k)!

k!(m− k)!
=
(m

k

)

(

m− 1

k − 1

)

· · ·
(

m− k − 1

1

)

(c) m = 181707

(d) 2,597,000; actual error 1960; relative error 7.541× 10−4

26. (a) The actual error is |f ′(ξ)ǫ|, and the relative error is |f ′(ξ)ǫ| · |f(x0)|−1, where the number
ξ is between x0 and x0 + ǫ.

(b) (i) 1.4× 10−5; 5.1× 10−6 (ii) 2.7× 10−6; 3.2× 10−6

(c) (i) 1.2; 5.1× 10−5 (ii) 4.2× 10−5; 7.8× 10−5

27. (a) 124.03

(b) 124.03

(c) −124.03

(d) −124.03

(e) 0.0065

(f) 0.0065

(g) −0.0065

(h) −0.0065

*28. Since 0.995 ≤ P ≤ 1.005, 0.0995 ≤ V ≤ 0.1005, 0.082055 ≤ R ≤ 0.082065, and 0.004195 ≤
N ≤ 0.004205, we have 287.61◦ ≤ T ≤ 293.42◦. Note that 15◦C = 288.16K.

When P is doubled and V is halved, 1.99 ≤ P ≤ 2.01 and 0.0497 ≤ V ≤ 0.0503 so that
286.61◦ ≤ T ≤ 293.72◦. Note that 19◦C = 292.16K. The laboratory figures are within an
acceptable range.
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Exercise Set 1.3, page 39

1. (a)
1

1
+

1

4
. . .+

1

100
= 1.53;

1

100
+

1

81
+ . . .+

1

1
= 1.54.

The actual value is 1.549. Significant round-off error occurs much earlier in the first
method.

(b) The following algorithm will sum the series
∑N

i=1 xi in the reverse order.

INPUT N ;x1, x2, . . . , xN
OUTPUT SUM

STEP 1 Set SUM = 0
STEP 2 For j = 1, . . . , N set i = N − j + 1

SUM = SUM+ xi
STEP 3 OUTPUT(SUM );

STOP.

2. We have

Approximation Absolute Error Relative Error

(a) 2.715 3.282× 10−3 1.207× 10−3

(b) 2.716 2.282× 10−3 8.394× 10−4

(c) 2.716 2.282× 10−3 8.394× 10−4

(d) 2.718 2.818× 10−4 1.037× 10−4

*3. (a) 2000 terms

(b) 20,000,000,000 terms

4. 4 terms

*5. 3 terms

6. (a) O
(

1
n

)

(b) O
(

1
n2

)

(c) O
(

1
n2

)

(d) O
(

1
n

)

7. The rates of convergence are:

(a) O(h2)

(b) O(h)

(c) O(h2)

(d) O(h)

*8. (a) n(n+ 1)/2 multiplications; (n+ 2)(n− 1)/2 additions.



Mathematical Preliminaries 13

(b)

n
∑

i=1

ai





i
∑

j=1

bj



 requires n multiplications; (n+ 2)(n− 1)/2 additions.

9. The following algorithm computes P (x0) using nested arithmetic.

INPUT n, a0, a1, . . . , an, x0
OUTPUT y = P (x0)

STEP 1 Set y = an.
STEP 2 For i = n− 1, n− 2, . . . , 0 set y = x0y + ai.
STEP 3 OUTPUT (y);

STOP.

*10. The following algorithm uses the most effective formula for computing the roots of a quadratic
equation.

INPUT A, B, C.
OUTPUT x1, x2.

STEP 1 If A = 0 then
if B = 0 then OUTPUT (‘NO SOLUTIONS’);

STOP.
else set x1 = −C/B;

OUTPUT (‘ONE SOLUTION’,x1);
STOP.

STEP 2 Set D = B2 − 4AC.

STEP 3 If D = 0 then set x1 = −B/(2A);
OUTPUT (‘MULTIPLE ROOTS’, x1);
STOP.

STEP 4 If D < 0 then set
b =

√
−D/(2A);

a = −B/(2A);
OUTPUT (‘COMPLEX CONJUGATE ROOTS’);
x1 = a+ bi;
x2 = a− bi;

OUTPUT (x1, x2);
STOP.

STEP 5 If B ≥ 0 then set

d = B +
√
D;

x1 = −2C/d;
x2 = −d/(2A)

else set

d = −B +
√
D;

x1 = d/(2A);
x2 = 2C/d.

STEP 6 OUTPUT (x1, x2);
STOP.
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11. The following algorithm produces the product P = (x− x0), . . . , (x− xn).

INPUT n, x0, x1, · · · , xn, x
OUTPUT P .

STEP 1 Set P = x− x0;
i = 1.

STEP 2 While P 6= 0 and i ≤ n set
P = P · (x− xi);
i = i+ 1

STEP 3 OUTPUT (P );
STOP.

12. The following algorithm determines the number of terms needed to satisfy a given tolerance.

INPUT number x, tolerance TOL, maximum number of iterations M .
OUTPUT number N of terms or a message of failure.

STEP 1 Set SUM = (1− 2x)/
(

1− x+ x2
)

;
S = (1 + 2x)/

(

1 + x+ x2
)

;
N = 2.

STEP 2 While N ≤M do Steps 3–5.

STEP 3 Set j = 2N−1;
y = xj

t1 =
jy

x
(1− 2y);

t2 = y(y − 1) + 1;

SUM = SUM+
t1
t2
.

STEP 4 If |SUM− S| < TOL then
OUTPUT (N);
STOP.

STEP 5 Set N = N + 1.

STEP 6 OUTPUT(’Method failed’);
STOP.

When TOL = 10−6, we need to have N ≥ 4.

13. (a) If |αn − α|/(1/np) ≤ K, then

|αn − α| ≤ K(1/np) ≤ K(1/nq) since 0 < q < p.

Thus

|αn − α|/(1/np) ≤ K and {αn}∞n=1 → α

with rate of convergence O(1/np).
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(b)

n 1/n 1/n2 1/n3 1/n5

5 0.2 0.04 0.008 0.0016
10 0.1 0.01 0.001 0.0001
50 0.02 0.0004 8× 10−6 1.6× 10−7

100 0.01 10−4 10−6 10−8

The most rapid convergence rate is O(1/n4).

14. (a) If F (h) = L+O (hp), there is a constant k > 0 such that

|F (h)− L| ≤ khp,

for sufficiently small h > 0. If 0 < q < p and 0 < h < 1, then hq > hp. Thus, khp < khq,
so

|F (h)− L| ≤ khq and F (h) = L+O (hq) .

(b) For various powers of h we have the entries in the following table.

h h2 h3 h4

0.5 0.25 0.125 0.0625
0.1 0.01 0.001 0.0001
0.01 0.0001 0.00001 10−8

0.001 10−6 10−9 10−12

The most rapid convergence rate is O
(

h4
)

.

*15. Suppose that for sufficiently small |x| we have positive constants k1 and k2 independent of x,
for which

|F1(x)− L1| ≤ K1|x|α and |F2(x) − L2| ≤ K2|x|β .

Let c = max(|c1|, |c2|, 1), K = max(K1, K2), and δ = max(α, β).

(a) We have

|F (x) − c1L1 − c2L2| = |c1(F1(x)− L1) + c2(F2(x)− L2)|
≤ |c1|K1|x|α + |c2|K2|x|β ≤ cK[|x|α + |x|β ]
≤ cK|x|γ [1 + |x|δ−γ ] ≤ K̃|x|γ ,

for sufficiently small |x| and some constant K̃. Thus, F (x) = c1L1 + c2L2 +O(xγ).
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(b) We have

|G(x) − L1 − L2| = |F1(c1x) + F2(c2x)− L1 − L2|
≤ K1|c1x|α +K2|c2x|β ≤ Kcδ[|x|α + |x|β ]
≤ Kcδ|x|γ [1 + |x|δ−γ ] ≤ K̃|x|γ ,

for sufficiently small |x| and some constant K̃. Thus, G(x) = L1 + L2 +O(xγ).

*16. Since

lim
n→∞

xn = lim
n→∞

xn+1 = x and xn+1 = 1 +
1

xn
,

we have

x = 1 +
1

x
, so x2 − x− 1 = 0.

The quadratic formula implies that

x =
1

2

(

1 +
√
5
)

.

This number is called the golden ratio. It appears frequently in mathematics and the sciences.

*17. (a) To save space we will show the Maple output for each step in one line. Maple would
produce this output on separate lines.

n := 98; f := 1; s := 1
n := 98 f := 1 s := 1

for i from 1 to n do

l := f + s; f := s; s := l; od :

l :=2 f := 1 s := 2

l :=3 f := 2 s := 3

...

l :=218922995834555169026 f := 135301852344706746049 s := 218922995834555169026

l :=354224848179261915075

(b) F100 :=
1

sqrt(5)

(

(

(1 + sqrt(5)

2

)100

−
(

1− sqrt(5)

2

)100
)

F100 :=
1√
5

(

(

1

2
+

1

2

√
5

)100

−
(

1

2
− 1

2

√
5

)100
)

evalf(F100)
0.3542248538× 1021
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(c) The result in part (a) is computed using exact integer arithmetic, and the result in part
(b) is computed using ten-digit rounding arithmetic.

(d) The result in part (a) required traversing a loop 98 times.

(e) The result is the same as the result in part (a).

18. (a) n = 50

(b) n = 500
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Solutions of Equations of One

Variable

Exercise Set 2.1, page 54

*1. p3 = 0.625

2. *(a) p3 = −0.6875

(b) p3 = 1.09375

3. The Bisection method gives:

(a) p7 = 0.5859

(b) p8 = 3.002

(c) p7 = 3.419

4. The Bisection method gives:

(a) p7 = −1.414

(b) p8 = 1.414

(c) p7 = 2.727

(d) p7 = −0.7265

5. The Bisection method gives:

(a) p17 = 0.641182

(b) p17 = 0.257530

(c) For the interval [−3,−2], we have p17 = −2.191307, and for the interval [−1, 0], we have
p17 = −0.798164.

(d) For the interval [0.2, 0.3], we have p14 = 0.297528, and for the interval [1.2, 1.3], we have
p14 = 1.256622.

6. (a) p17 = 1.51213837

(b) p17 = 0.97676849

(c) For the interval [1, 2], we have p17 = 1.41239166, and for the interval [2, 4], we have
p18 = 3.05710602.

19
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(d) For the interval [0, 0.5], we have p16 = 0.20603180, and for the interval [0.5, 1], we have
p16 = 0.68196869.

7. (a)

y = f (x) y = x

x1

1

2

2

y

(b) Using [1.5, 2] from part (a) gives p16 = 1.89550018.

*8. (a)

10

210

y

  5

10 x

y = x

y = tan x

(b) Using [4.2, 4.6] from part (a) gives p16 = 4.4934143.

9. (a)

x1

1

2

2

1

y
y = cos (e  2 2)x

y = e  2 2x

(b) p17 = 1.00762177

10. (a) 0

(b) 0

(c) 2

(d) −2
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11. *(a) 2

(b) −2

*(c) −1

(d) 1

*12. We have
√
3 ≈ p14 = 1.7320, using [1, 2].

13. The third root of 25 is approximately p14 = 2.92401, using [2, 3].

*14. A bound for the number of iterations is n ≥ 12 and p12 = 1.3787.

15. A bound is n ≥ 14, and p14 = 1.32477.

16. For n > 1,

|f(pn)| =
(

1

n

)10

≤
(

1

2

)10

=
1

1024
< 10−3,

so

|p− pn| =
1

n
< 10−3 ⇔ 1000 < n.

*17. Since limn→∞(pn−pn−1) = limn→∞ 1/n = 0, the difference in the terms goes to zero. However,
pn is the nth term of the divergent harmonic series, so limn→∞ pn = ∞.

18. Since −1 < a < 0 and 2 < b < 3, we have 1 < a+ b < 3 or 1/2 < 1/2(a+ b) < 3/2 in all cases.
Further,

f(x) < 0, for − 1 < x < 0 and 1 < x < 2;

f(x) > 0, for 0 < x < 1 and 2 < x < 3.

Thus, a1 = a, f(a1) < 0, b1 = b, and f(b1) > 0.

(a) Since a + b < 2, we have p1 = a+b
2 and 1/2 < p1 < 1. Thus, f(p1) > 0. Hence,

a2 = a1 = a and b2 = p1. The only zero of f in [a2, b2] is p = 0, so the convergence will
be to 0.

(b) Since a+ b > 2, we have p1 = a+b
2 and 1 < p1 < 3/2. Thus, f(p1) < 0. Hence, a2 = p1

and b2 = b1 = b. The only zero of f in [a2, b2] is p = 2, so the convergence will be to 2.

(c) Since a+ b = 2, we have p1 = a+b
2 = 1 and f(p1) = 0. Thus, a zero of f has been found

on the first iteration. The convergence is to p = 1.

*19. The depth of the water is 0.838 ft.

20. The angle θ changes at the approximate rate w = −0.317059.



22 Exercise Set 2.2

Exercise Set 2.2, page 64

1. For the value of x under consideration we have

(a) x = (3 + x− 2x2)1/4 ⇔ x4 = 3 + x− 2x2 ⇔ f(x) = 0

(b) x =

(

x+ 3− x4

2

)1/2

⇔ 2x2 = x+ 3− x4 ⇔ f(x) = 0

(c) x =

(

x+ 3

x2 + 2

)1/2

⇔ x2(x2 + 2) = x+ 3 ⇔ f(x) = 0

(d) x =
3x4 + 2x2 + 3

4x3 + 4x− 1
⇔ 4x4 + 4x2 − x = 3x4 + 2x2 + 3 ⇔ f(x) = 0

2. (a) p4 = 1.10782; (b) p4 = 0.987506; (c) p4 = 1.12364; (d) p4 = 1.12412;

(b) Part (d) gives the best answer since |p4 − p3| is the smallest for (d).

*3. The order in descending speed of convergence is (b), (d), and (a). The sequence in (c) does
not converge.

4. The sequence in (c) converges faster than in (d). The sequences in (a) and (b) diverge.

5. With g(x) = (3x2 + 3)1/4 and p0 = 1, p6 = 1.94332 is accurate to within 0.01.

6. With g(x) =
√

1 + 1
x and p0 = 1, we have p4 = 1.324.

7. Since g′(x) = 1
4 cos

x
2 , g is continuous and g′ exists on [0, 2π]. Further, g′(x) = 0 only when

x = π, so that g(0) = g(2π) = π ≤ g(x) =≤ g(π) = π + 1
2 and |g′(x)| ≤ 1

4 , for 0 ≤ x ≤ 2π.
Theorem 2.3 implies that a unique fixed point p exists in [0, 2π]. With k = 1

4 and p0 = π, we
have p1 = π + 1

2 . Corollary 2.5 implies that

|pn − p| ≤ kn

1− k
|p1 − p0| =

2

3

(

1

4

)n

.

For the bound to be less than 0.1, we need n ≥ 4. However, p3 = 3.626996 is accurate to
within 0.01.

8. Using p0 = 1 gives p12 = 0.6412053. Since |g′(x)| = 2−x ln 2 ≤ 0.551 on
[

1
3 , 1
]

with k = 0.551,
Corollary 2.5 gives a bound of 16 iterations.

*9. For p0 = 1.0 and g(x) = 0.5(x+ 3
x ), we have

√
3 ≈ p4 = 1.73205.

10. For g(x) = 5/
√
x and p0 = 2.5, we have p14 = 2.92399.

11. (a) With [0, 1] and p0 = 0, we have p9 = 0.257531.

(b) With [2.5, 3.0] and p0 = 2.5, we have p17 = 2.690650.

(c) With [0.25, 1] and p0 = 0.25, we have p14 = 0.909999.

(d) With [0.3, 0.7] and p0 = 0.3, we have p39 = 0.469625.

(e) With [0.3, 0.6] and p0 = 0.3, we have p48 = 0.448059.



Solutions of Equations of One Variable 23

(f) With [0, 1] and p0 = 0, we have p6 = 0.704812.

12. The inequalities in Corollary 2.4 give |pn − p| < kn max(p0 − a, b− p0). We want

kn max(p0 − a, b− p0) < 10−5 so we need n >
ln(10−5)− ln(max(p0 − a, b− p0))

ln k
.

(a) Using g(x) = 2 + sinx we have k = 0.9899924966 so that with p0 = 2 we have n >
ln(0.00001)/ lnk = 1144.663221. However, our tolerance is met with p63 = 2.5541998.

(b) Using g(x) = 3
√
2x+ 5 we have k = 0.1540802832 so that with p0 = 2 we have n >

ln(0.00001)/ lnk = 6.155718005. However, our tolerance is met with p6 = 2.0945503.

*(c) Using g(x) =
√

ex/3 and the interval [0, 1] we have k = 0.4759448347 so that with
p0 = 1 we have n > ln(0.00001)/ lnk = 15.50659829. However, our tolerance is met with
p12 = 0.91001496.

(d) Using g(x) = cosx and the interval [0, 1] we have k = 0.8414709848 so that with p0 = 0
we have n > ln(0.00001)/ lnk > 66.70148074. However, our tolerance is met with p30 =
0.73908230.

13. For g(x) = (2x2 − 10 cosx)/(3x), we have the following:

p0 = 3 ⇒ p8 = 3.16193; p0 = −3 ⇒ p8 = −3.16193.

For g(x) = arccos(−0.1x2), we have the following:

p0 = 1 ⇒ p11 = 1.96882; p0 = −1 ⇒ p11 = −1.96882.

*14. For g(x) =
1

tanx
− 1

x
+ x and p0 = 4, we have p4 = 4.493409.

15. With g(x) =
1

π
arcsin

(

−x
2

)

+ 2, we have p5 = 1.683855.

16. (a) If fixed-point iteration converges to the limit p, then

p = lim
n→∞

pn = lim
n→∞

2pn−1 −Ap2n−1 = 2p−Ap2.

Solving for p gives p =
1

A
.

(b) Any subinterval [c, d] of

(

1

2A
,
3

2A

)

containing
1

A
suffices.

Since
g(x) = 2x−Ax2, g′(x) = 2− 2Ax,

so g(x) is continuous, and g′(x) exists. Further, g′(x) = 0 only if x =
1

A
.

Since

g

(

1

A

)

=
1

A
, g

(

1

2A

)

= g

(

3

2A

)

=
3

4A
, and we have

3

4A
≤ g(x) ≤ 1

A
.

For x in
(

1
2A ,

3
2A

)

, we have
∣

∣

∣

∣

x− 1

A

∣

∣

∣

∣

<
1

2A
so |g′(x)| = 2A

∣

∣

∣

∣

x− 1

A

∣

∣

∣

∣

< 2A

(

1

2A

)

= 1.
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17. One of many examples is g(x) =
√
2x− 1 on

[

1
2 , 1
]

.

*18. (a) The proof of existence is unchanged. For uniqueness, suppose p and q are fixed points in
[a, b] with p 6= q. By the Mean Value Theorem, a number ξ in (a, b) exists with

p− q = g(p)− g(q) = g′(ξ)(p − q) ≤ k(p− q) < p− q,

giving the same contradiction as in Theorem 2.3.

(b) Consider g(x) = 1− x2 on [0, 1]. The function g has the unique fixed point

p =
1

2

(

−1 +
√
5
)

.

With p0 = 0.7, the sequence eventually alternates between 0 and 1.

*19. (a) Suppose that x0 >
√
2. Then

x1 −
√
2 = g(x0)− g

(√
2
)

= g′(ξ)
(

x0 −
√
2
)

,

where
√
2 < ξ < x0. Thus, x1 −

√
2 > 0 and x1 >

√
2. Further,

x1 =
x0
2

+
1

x0
<
x0
2

+
1√
2
=
x0 +

√
2

2

and
√
2 < x1 < x0. By an inductive argument,

√
2 < xm+1 < xm < . . . < x0.

Thus, {xm} is a decreasing sequence which has a lower bound and must converge.

Suppose p = limm→∞ xm. Then

p = lim
m→∞

(

xm−1

2
+

1

xm−1

)

=
p

2
+

1

p
. Thus p =

p

2
+

1

p
,

which implies that p = ±
√
2. Since xm >

√
2 for all m, we have limm→∞ xm =

√
2.

(b) We have

0 <
(

x0 −
√
2
)2

= x20 − 2x0
√
2 + 2,

so 2x0
√
2 < x20 + 2 and

√
2 < x0

2 + 1
x0

= x1.

(c) Case 1: 0 < x0 <
√
2, which implies that

√
2 < x1 by part (b). Thus,

0 < x0 <
√
2 < xm+1 < xm < . . . < x1 and lim

m→∞
xm =

√
2.

Case 2: x0 =
√
2, which implies that xm =

√
2 for all m and limm→∞ xm =

√
2.

Case 3: x0 >
√
2, which by part (a) implies that limm→∞ xm =

√
2.
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20. (a) Let

g(x) =
x

2
+
A

2x
.

Note that g
(√

A
)

=
√
A. Also,

g′(x) = 1/2−A/
(

2x2
)

if x 6= 0 and g′(x) > 0 if x >
√
A.

If x0 =
√
A, then xm =

√
A for all m and limm→∞ xm =

√
A.

If x0 > A, then

x1 −
√
A = g(x0)− g

(√
A
)

= g′(ξ)
(

x0 −
√
A
)

> 0.

Further,

x1 =
x0
2

+
A

2x0
<
x0
2

+
A

2
√
A

=
1

2

(

x0 +
√
A
)

.

Thus,
√
A < x1 < x0. Inductively,

√
A < xm+1 < xm < . . . < x0

and limm→∞ xm =
√
A by an argument similar to that in Exercise 19(a).

If 0 < x0 <
√
A, then

0 <
(

x0 −
√
A
)2

= x20 − 2x0
√
A+A and 2x0

√
A < x20 +A,

which leads to √
A <

x0
2

+
A

2x0
= x1.

Thus
0 < x0 <

√
A < xm+1 < xm < . . . < x1,

and by the preceding argument, limm→∞ xm =
√
A.

(b) If x0 < 0, then limm→∞ xm = −
√
A.

21. Replace the second sentence in the proof with: “Since g satisfies a Lipschitz condition on [a, b]
with a Lipschitz constant L < 1, we have, for each n,

|pn − p| = |g(pn−1)− g(p)| ≤ L|pn−1 − p|.”

The rest of the proof is the same, with k replaced by L.

22. Let ε = (1 − |g′(p)|)/2. Since g′ is continuous at p, there exists a number δ > 0 such that for
x ∈ [p−δ, p+δ], we have |g′(x)−g′(p)| < ε. Thus, |g′(x)| < |g′(p)|+ε < 1 for x ∈ [p−δ, p+δ].
By the Mean Value Theorem

|g(x)− g(p)| = |g′(c)||x− p| < |x− p|,

for x ∈ [p− δ, p+ δ]. Applying the Fixed-Point Theorem completes the problem.
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23. With g(t) = 501.0625− 201.0625e−0.4t and p0 = 5.0, p3 = 6.0028 is within 0.01 s of the actual
time.

*24. Since g′ is continuous at p and |g′(p)| > 1, by letting ǫ = |g′(p)|−1 there exists a number δ > 0
such that |g′(x) − g′(p)| < |g′(p)| − 1 whenever 0 < |x − p| < δ. Hence, for any x satisfying
0 < |x− p| < δ, we have

|g′(x)| ≥ |g′(p)| − |g′(x)− g′(p)| > |g′(p)| − (|g′(p)| − 1) = 1.

If p0 is chosen so that 0 < |p− p0| < δ, we have by the Mean Value Theorem that

|p1 − p| = |g(p0)− g(p)| = |g′(ξ)||p0 − p|,

for some ξ between p0 and p. Thus, 0 < |p− ξ| < δ so |p1 − p| = |g′(ξ)||p0 − p| > |p0 − p|.

Exercise Set 2.3, page 75

*1. p2 = 2.60714

2. p2 = −0.865684; If p0 = 0, f ′(p0) = 0 and p1 cannot be computed.

*3. (a) 2.45454

(b) 2.44444

(c) Part (a) is better.

4. (a) −1.25208

(b) −0.841355

5. (a) For p0 = 2, we have p5 = 2.69065.

(b) For p0 = −3, we have p3 = −2.87939.

*(c) For p0 = 0, we have p4 = 0.73909.

(d) For p0 = 0, we have p3 = 0.96434.

6. (a) For p0 = 1, we have p8 = 1.829384.

(b) For p0 = 1.5, we have p4 = 1.397748.

(c) For p0 = 2, we have p4 = 2.370687; and for p0 = 4, we have p4 = 3.722113.

(d) For p0 = 1, we have p4 = 1.412391; and for p0 = 4, we have p5 = 3.057104.

(e) For p0 = 1, we have p4 = 0.910008; and for p0 = 3, we have p9 = 3.733079.

(f) For p0 = 0, we have p4 = 0.588533; for p0 = 3, we have p3 = 3.096364; and for p0 = 6,
we have p3 = 6.285049.

7. Using the endpoints of the intervals as p0 and p1, we have:

(a) p11 = 2.69065

(b) p7 = −2.87939

*(c) p6 = 0.73909
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(d) p5 = 0.96433

8. Using the endpoints of the intervals as p0 and p1, we have:

(a) p7 = 1.829384

(b) p9 = 1.397749

(c) p6 = 2.370687; p7 = 3.722113

(d) p8 = 1.412391; p7 = 3.057104

(e) p6 = 0.910008; p10 = 3.733079

(f) p6 = 0.588533; p5 = 3.096364; p5 = 6.285049

9. Using the endpoints of the intervals as p0 and p1, we have:

(a) p16 = 2.69060

(b) p6 = −2.87938

*(c) p7 = 0.73908

(d) p6 = 0.96433

10. Using the endpoints of the intervals as p0 and p1, we have:

(a) p8 = 1.829383

(b) p9 = 1.397749

(c) p6 = 2.370687; p8 = 3.722112

(d) p10 = 1.412392; p12 = 3.057099

(e) p7 = 0.910008; p29 = 3.733065

(f) p9 = 0.588533; p5 = 3.096364; p5 = 6.285049

11. (a) Newton’s method with p0 = 1.5 gives p3 = 1.51213455.

The Secant method with p0 = 1 and p1 = 2 gives p10 = 1.51213455.

The Method of False Position with p0 = 1 and p1 = 2 gives p17 = 1.51212954.

(b) Newton’s method with p0 = 0.5 gives p5 = 0.976773017.

The Secant method with p0 = 0 and p1 = 1 gives p5 = 10.976773017.

The Method of False Position with p0 = 0 and p1 = 1 gives p5 = 0.976772976.

12. (a) We have

Initial Approximation Result Initial Approximation Result

Newton’s p0 = 1.5 p4 = 1.41239117 p0 = 3.0 p4 = 3.05710355

Secant p0 = 1, p1 = 2 p8 = 1.41239117 p0 = 2, p1 = 4 p10 = 3.05710355

False Position p0 = 1, p1 = 2 p13 = 1.41239119 p0 = 2, p1 = 4 p19 = 3.05710353
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(b) We have

Initial Approximation Result Initial Approximation Result

Newton’s p0 = 0.25 p4 = 0.206035120 p0 = 0.75 p4 = 0.681974809

Secant p0 = 0, p1 = 0.5 p9 = 0.206035120 p0 = 0.5, p1 = 1 p8 = 0.681974809

False Position p0 = 0, p1 = 0.5 p12 = 0.206035125 p0 = 0.5, p1 = 1 p15 = 0.681974791

*13. For p0 = 1, we have p5 = 0.589755. The point has the coordinates (0.589755, 0.347811).

14. For p0 = 2, we have p2 = 1.866760. The point is (1.866760, 0.535687).

15. The equation of the tangent line is

y − f(pn−1) = f ′(pn−1)(x − pn−1).

To complete this problem, set y = 0 and solve for x = pn.

*16. Newton’s method gives p15 = 1.895488, for p0 = π
2 ; and p19 = 1.895489, for p0 = 5π. The

sequence does not converge in 200 iterations for p0 = 10π. The results do not indicate the
fast convergence usually associated with Newton’s method.

17. (a) For p0 = −1 and p1 = 0, we have p17 = −0.04065850, and for p0 = 0 and p1 = 1, we
have p9 = 0.9623984.

(b) For p0 = −1 and p1 = 0, we have p5 = −0.04065929, and for p0 = 0 and p1 = 1, we have
p12 = −0.04065929.

(c) For p0 = −0.5, we have p5 = −0.04065929, and for p0 = 0.5, we have p21 = 0.9623989.

18. (a) The Bisection method yields p10 = 0.4476563.

(b) The method of False Position yields p10 = 0.442067.

(c) The Secant method yields p10 = −195.8950.

*19. This formula involves the subtraction of nearly equal numbers in both the numerator and
denominator if pn−1 and pn−2 are nearly equal.

20. Newton’s method for the various values of p0 gives the following results.

(a) p8 = −1.379365

(b) p7 = −1.379365

(c) p7 = 1.379365

(d) p7 = −1.379365

(e) p7 = 1.379365

(f) p8 = 1.379365

21. Newton’s method for the various values of p0 gives the following results.
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(a) p0 = −10, p11 = −4.30624527

(b) p0 = −5, p5 = −4.30624527

(c) p0 = −3, p5 = 0.824498585

(d) p0 = −1, p4 = −0.824498585

(e) p0 = 0, p1 cannot be computed because f ′(0) = 0

(f) p0 = 1, p4 = 0.824498585

(g) p0 = 3, p5 = −0.824498585

(h) p0 = 5, p5 = 4.30624527

(i) p0 = 10, p11 = 4.30624527

*22. The required accuracy is met in 7 iterations of Newton’s method.

*23. For f(x) = ln(x2 + 1)− e0.4x cosπx, we have the following roots.

(a) For p0 = −0.5, we have p3 = −0.4341431.

(b) For p0 = 0.5, we have p3 = 0.4506567.

For p0 = 1.5, we have p3 = 1.7447381.

For p0 = 2.5, we have p5 = 2.2383198.

For p0 = 3.5, we have p4 = 3.7090412.

(c) The initial approximation n− 0.5 is quite reasonable.

(d) For p0 = 24.5, we have p2 = 24.4998870.

24. We have λ ≈ 0.100998 and N(2) ≈ 2,187,950.

25. The two numbers are approximately 6.512849 and 13.487151.

*26. The minimal annual interest rate is 6.67%.

27. The borrower can afford to pay at most 8.10%.

*28. (a) 1
3e, t = 3 hours

(b) 11 hours and 5 minutes

(c) 21 hours and 14 minutes

*29. (a) First define the function by

f := x− > 33x+1 − 7 · 52x
f := x→ 3(3x+1) − 7 52x

solve(f(x) = 0, x)

− ln (3/7)

ln (27/25)

fsolve(f(x) = 0, x)
fsolve(3(3x+1) − 7 5(2x) = 0, x)

The procedure solve gives the exact solution, and fsolve fails because the negative x-axis
is an asymptote for the graph of f(x).



30 Exercise Set 2.3

(b) Using the Maple command plot({f(x)}, x = 10.5..11.5) produces the following graph.

x 

y 

1   10

10.5

11.511 12

15
x

2   10
15

x

3   10
15

x

(c) Define f ′(x) using

fp := x− > (D)(f)(x)

fp := x→ 3 3(3x+1) ln(3)− 14 5(2x) ln(5)

Digits := 18; p0 := 11
Digits := 18

p0 := 11

for i from 1 to 5 do

p1 := evalf(p0− f(p0)/fp(p0))

err := abs(p1− p0)

p0 := p1

od

The results are given in the following table.

i pi |pi − pi−1|

1 11.0097380401552503 .0097380401552503
2 11.0094389359662827 .0002991041889676
3 11.0094386442684488 .2916978339 10−6

4 11.0094386442681716 .2772 10−2

5 11.0094386442681716 0

(d) We have 33x+1 = 7 · 52x. Taking the natural logarithm of both sides gives

(3x+ 1) ln 3 = ln 7 + 2x ln 5.

Thus

3x ln 3− 2x ln 5 = ln 7− ln 3, x(3 ln 3− 2 ln 5) = ln
7

3
,

and

x =
ln 7/3

ln 27− ln 25
=

ln 7/3

ln 27/25
= − ln 3/7

ln 27/25
.

This agrees with part (a).



Solutions of Equations of One Variable 31

30. (a) solve(2x
2 − 3 · 7(x+1), x) fails and fsolve(2x

2 − 3 · 7(x+1), x) returns −1.118747530.

(b) plot(2x
2 − 3 · 7(x+1), x = −2..4) shows there is also a root near x = 4.

(c) With p0 = 1, p4 = −1.1187475303988963 is accurate to 10−16; with p0 = 4, p6 =
3.9261024524565005 is accurate to 10−16

(d) The roots are

ln(7)±
√

[ln(7)]2 + 4 ln(2) ln(4)

2 ln(2)
.

31. We have PL = 265816, c = −0.75658125, and k = 0.045017502. The 1980 population is
P (30) = 222,248,320, and the 2010 population is P (60) = 252,967,030.

32. PL = 290228, c = 0.6512299, and k = 0.03020028;

The 1980 population is P (30) = 223, 069, 210, and the 2010 population is P (60) = 260, 943, 806.

33. Using p0 = 0.5 and p1 = 0.9, the Secant method gives p5 = 0.842.

34. (a) We have, approximately,

A = 17.74, B = 87.21, C = 9.66, and E = 47.47

With these values we have

A sinα cosα+B sin2 α− C cosα− E sinα = 0.02.

(b) Newton’s method gives α ≈ 33.2◦.

Exercise Set 2.4, page 85

1. *(a) For p0 = 0.5, we have p13 = 0.567135.

(b) For p0 = −1.5, we have p23 = −1.414325.

(c) For p0 = 0.5, we have p22 = 0.641166.

(d) For p0 = −0.5, we have p23 = −0.183274.

2. (a) For p0 = 0.5, we have p15 = 0.739076589.

(b) For p0 = −2.5, we have p9 = −1.33434594.

(c) For p0 = 3.5, we have p5 = 3.14156793.

(d) For p0 = 4.0, we have p44 = 3.37354190.

3. Modified Newton’s method in Eq. (2.11) gives the following:

*(a) For p0 = 0.5, we have p3 = 0.567143.

(b) For p0 = −1.5, we have p2 = −1.414158.

(c) For p0 = 0.5, we have p3 = 0.641274.

(d) For p0 = −0.5, we have p5 = −0.183319.
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4. (a) For p0 = 0.5, we have p4 = 0.739087439.

(b) For p0 = −2.5, we have p53 = −1.33434594.

(c) For p0 = 3.5, we have p5 = 3.14156793.

(d) For p0 = 4.0, we have p3 = −3.72957639.

5. Newton’s method with p0 = −0.5 gives p13 = −0.169607. Modified Newton’s method in
Eq. (2.11) with p0 = −0.5 gives p11 = −0.169607.

6. *(a) Since

lim
n→∞

|pn+1 − p|
|pn − p| = lim

n→∞

1
n+1
1
n

= lim
n→∞

n

n+ 1
= 1,

we have linear convergence. To have |pn − p| < 5× 10−2, we need n ≥ 20.

(b) Since

lim
n→∞

|pn+1 − p|
|pn − p| = lim

n→∞

1
(n+1)2

1
n2

= lim
n→∞

(

n

n+ 1

)2

= 1,

we have linear convergence. To have |pn − p| < 5× 10−2, we need n ≥ 5.

7. (a) For k > 0,

lim
n→∞

|pn+1 − 0|
|pn − 0| = lim

n→∞

1
(n+1)k

1
nk

= lim
n→∞

(

n

n+ 1

)k

= 1,

so the convergence is linear.

(b) We need to have N > 10m/k.

*8. (a) Since

lim
n→∞

|pn+1 − 0|
|pn − 0|2 = lim

n→∞
10−2n+1

(10−2n)
2 = lim

n→∞
10−2n+1

10−2n+1 = 1,

the sequence is quadratically convergent.

(b) We have

lim
n→∞

|pn+1 − 0|
|pn − 0|2 = lim

n→∞
10−(n+1)k

(

10−nk
)2 = lim

n→∞
10−(n+1)k

10−2nk

= lim
n→∞

102n
k−(n+1)k = lim

n→∞
10n

k(2−(n+1
n )k) = ∞,

so the sequence pn = 10−nk

does not converge quadratically.

9. Typical examples are

(a) pn = 10−3n

(b) pn = 10−αn

*10. Suppose f(x) = (x − p)mq(x). Since

g(x) = x− m(x− p)q(x)

mq(x) + (x− p)q′(x)
,

we have g′(p) = 0.
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