
CHAPTER 2 
 

MATHEMATICS FOR MICROECONOMICS 

 
The problems in this chapter are primarily mathematical.  They are intended to give students 

some practice with the concepts introduced in Chapter 2, but the problems in themselves offer 

few economic insights.  Consequently, no commentary is provided. Results from some of the 

analytical problems are used in later chapters, however, and in those cases the student will be 

directed to here. 

 

Solutions 
 

2.1 U (x, y) = 4x2 + 3y2 

a. 6y = 
y 

U 
      ,8x = 

x 

U 








 

b. 8, 12 

c. dU = dy6y   + dx  8x =dy   
y 

U 
 + dx  

x 

U 








 

d. 0 =dy y  6 +dx x  8     0 = dU for 
dx

dy
 

3y

4x
 = 

6y

8x
 = 

dx

dy 
 

e. x = 1,     y = 2     U = 4 1 + 3  4 = 16   

f. 2/3  = 
3(2)

4(1)
 = 

dx

dy



 

g. U = 16 contour line is an ellipse centered at the origin.  With equation 

2 24 3 16x y  , slope of the line at (x, y) is 
3y

4x
 = 

dx

dy
 . 

 

2.2 a. Profits are given by   22 40 100R C q q        

10 = q     40 + 4q = 
dq

d *



 

100 = 100  40(10) + )2(10 = 
2


*  

b. 4 = 
dq

d
2

2




 so profits are maximized 

c. 
dR

MR =  = 70  2q
dq

  

dC
MC =  = 2q + 30

dq
 

so q* = 10 obeys MR = MC = 50. 
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2.3 Substitution:  21    so   y x f xy x x      

0 = 2x  1 = 
x

f





 

0.5 0.5, 0.25x = , y =  f  =   

 

Note:  2 0f     .  This is a local and global maximum. 

Lagrangian Method:   £ (1 )xy x y     

 

£ 
 = y   = 0

x






 

 

£ 
 = x  = 0

y






 

 

so, x = y. 

using the constraint gives 0.5, 0.25x y xy    

2.4     Setting up the Lagrangian:  £ (0.25 )x y xy    . 

  

£
1

£
1

y
x

x
y






 




 



 

  So, x = y.  Using the constraint gives 2 0.25, 0.5xy x x y    . 

2.5 a.   2( ) 0.5 40f t gt t    

  * 40
,

df
 = g t + 40 = 0 t

dt g
    . 

  

b. Substituting for t*,  * 2( ) 0.5 (40 ) 40(40 ) 800f t g g g g    . 

 
*

2( )
800

f t
g

g


 


. 

 

c.   * 2f 1
 =  ( )t

g 2





 depends on g because t* depends on g. 

    

so * 2 240
0.5( ) 0.5( )

2

f 800
 = t

g g g

 
   


. 

 d.    800 32 25, 800 32.1 24.92   a reduction of .08.  Notice that 
2 2800 800 32 0.8g     so a 0.1 increase in g could be predicted to 

reduce height by 0.08 from the envelope theorem. 
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2.6 a.  This is the volume of a rectangular solid made from a piece of metal which is x 

by 3x      with the defined corner squares removed. 

 

b.  2 23 16 12 0
V

x xt t
t


   


.  Applying the quadratic formula to this expression 

yields 
2 216 256 144 16 10.6

0.225 , 1.11
24 24

x x x x x
t x x

  
   .  To determine 

true maximum must look at second derivative -- 
2

2
16 24

V
x t

t


  


 which is 

negative only for the first solution. 

c. If 3 3 3 30.225 , 0.67 .04 .05 0.68t x V x x x x      so V increases without 

limit. 

d. This would require a solution using the Lagrangian method.  The optimal 

solution requires solving three non-linear simultaneous equations – a task 

not undertaken here.  But it seems clear that the solution would involve a 

different relationship between t and x than in parts a-c. 

 

2.7 a.  Set up Lagrangian 1 2 1 2£ 5ln ( )x x k x x      yields the first order 

conditions:  

1

2 2

1 2

£
1 0

£ 5
0

£
0

x

x x

k x x








  




  




   



 

 

 Hence, 2 21 5   or  5x x    .  With k = 10, optimal solution is 1 2 5.x x   

b. With k = 4, solving the first order conditions yields 2 15, 1.x x    

c. Optimal solution is 1 20, 4, 5ln 4.x x y    Any positive value for x1 reduces 

y. 

d.    If k = 20, optimal solution is 1 215, 5.x x    Because x2 provides a 

diminishing marginal increment to y whereas x1 does not, all optimal solutions 

require that, once x2 reaches 5, any extra amounts be devoted entirely to x1.  

 

2.8 a. TC = Cq
q

Cq
q

dqqMCdq
q

o

q q

  22
)1(

2

0 0

2

 

   The constant of integration here is fixed costs. 

   

 b. By profit maximization, p = MC(q). 

     p = q +1 ; q = p -1 = 14 

     If the firm is just breaking even , profits = total revenue – total costs = 0 
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Costs  Fixed98

098

0)14
2

14
(14*15)(

2







C

C

CqTCpq

 

  

 c. If p=20, q = 19. Following the same steps as in b., and using C=98, we get  

     5.82)9819
2

19
(19*20)(

2

 qTCpq  

   So, profits increase by 82.5 

  

 d. Assuming profit maximization, we have p = MC(q) 

     
98

2

)1(
98)1(

2

)1(
)1()98

2
(

11

222



















p
p

p
ppq

q
pq

pqqp


 

 e. i. Using the above equation, π(20) - π(15) = 82.5 

     ii. 5.82
2

)1()15()20(

20

15

220

15

  p
p

dpp  

  The 2 approaches above demonstrate the envelope theorem. In the first case, 

we optimize q first and then substitute it into the profit function. In the second 

case, we directly vary the parameter (i.e., p) and essentially move along the 

firm’s supply curve. 

 

 Analytical Problems 

 

2.9 Concave and Quasiconcave Functions 

  The proof is most easily accomplished through the use of the matrix algebra of 

quadratic forms.  See, for example, Mas Colell et al., pp. 937-939.  Intuitively, 

because concave functions lie below any tangent plane, their level curves must 

also be convex.  But the converse is not true.  Quasi-concave functions may 

exhibit “increasing returns to scale”; even though their level curves are convex, 

they may rise above the tangent plane when all variables are increased together. 

  A counter example would be the Cobb-Douglas function which is always quasi-

concave, but convex when α+β > 1. 

 

 

2.10 The Cobb-Douglas Function 

  a. 1
  1

1 2f    > 0.x x
   

2

  1
1 2f    > 0.x x

   

 

11
 2

1 1f  (     1)     < 0.x x
     

 

   22

    2
1 2f  (     1)     < 0.x x

     
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12 21

    1  1
1 2f f     > 0.x x

     

 

Clearly, all the terms in Equation 2.114 are negative. 

 

b. If x  x = c =y 21
  

 

x  c = x
/

1
1/

2
   since α, β > 0, x2 is a convex function of x1 . 

 

c. Using equation 2.98, 

 

x x    x  x  1)    ( ) ( 1)    (  = f    ff 2    2
2

2    2
1

222    2
2

2    2
1

2

1222

   11

 

 

= x x )         (1  2    2
2

2   2
1

   which is negative for α + β > 1. 

 

2.11 The Power Function 

 

  a. Since 0, 0y y   , the function is concave. 

 

b. Because 11 22, 0f f  , and 12 21 0f f  , Equation 2.98 is satisfied and the 

function is concave.  Because 1 2, 0f f   Equation 2.114 is also satisfied so 

the function is quasi-concave. 

  c. y is quasi-concave as is y


.  But y


 is not concave for  1  .  This can 

be shown most easily by   1 2 1 2 1 2(2 ,2 ) [(2 ) (2 ) ] 2 ( , )f x x x x f x x      . 

 

 

2.12 Taylor Approximations 

 

  a. From Equation 2.85, a function in one variable is concave if 0)('' xf  

      Using the quadratic Taylor to approximate )(xf  near a point a: 

   2))((''5.0))((')()( axafaxafafxf     

            ))((')( axafaf   (because 0)(0)( 2  axandaf ) 

    The RHS above is the equation of the line tangent to the point a and so, 

we have shown that any concave function must lie on or below the tangent 

to the function at that point. 

 

  b. From Equation 2.98, a function in 2 variables is concave if 

02

122211  fff  and we also know that due to the concavity of the 

function, 02 2

2222112

2

111

2  dxfdxdxfdxfyd  

   So, 0.5( 2

2222112

2

111 2 dxfdxdxfdxf  ) 0 .  
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   This is the third term of the quadratic Taylor expansion where 

bydyaxdx  , . 

   Thus, we have ))(,())(,(),(),( 21 bybafaxbafbafyxf   

   Which shows that any concave function must lie on or below its tangent 

plane. 

    

 

2.13 More on Expected Value 

 

  a. The tangent to g(x) at the point E(x) will have the form )(xgdxc   for 

all values of x and ))(()( xEgxdEc  . 

   But, ))(()()())(( xEgxdEcdxcExgE  . 

 

 

  b. Using the same procedure as before with ≥ instead of   and vice versa, 

we have the following proof: 

   The tangent to g(x) at the point E(x) will have the form )(xgdxc  for 

all values of x and ))(()( xEgxdEc  .  

   Now, ))(()()())(( xEgxdEcdxcExgE  . 

 

  c. Let dxdvvxxfduxFu  ,),(),(1 .  Apply Equation 2.136. 

   )()(0)())(1())(1(
000

xExEdxxxfxxFdxxF  


 

    

 

  d. 

   LHStxPdxxfdxxtf
t

dxxxf
t

dxxxfdxxxf
tt

xE
RHS

ttt

t

t



















 



 




)()()(
1

)(
1

)()(
1)(

0

 

  e. 1. 1
2

22)(

1

2

1

3 





















 
x

dxxdxxf  

   2. 2

1

2

1

3 1
2

22)()( 




 









   x

x
dxxdxxfxF

x
x x

 

   3. E(x) = 



 dxxF ))(1( = 1

1

1

1

2 







 xdxx  
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   4.  

     

t

xE

t
xSince

tt

xE

t
ttFtxP

)(1
,1

1)(

1
)(1)(

2

2

2





 

        

   Thus, Markov’s inequality holds. 

 

  f. 1.   1
9

1

3
)(

2

1

3
2

1

2

 



   xdx
x

dxxf  

   2.  
4

5

12

116

12

1

3
)()(

2

1

4
2

1

3




 



   xdx
x

dxxxfxE  

   3.  
9

1

9

1

3
)01(

0

1

3
0

1

2

 
 xdx

x
xP  

   4. 20;
8

3

9

8
3

)(

)(
)(

2

2

 x
x

x

AP

AandxP
Axf  

   5.  
2

3

32

3

8

3
)()(

2

0

4
2

0

3

 



xdx

x
dxAxxfAxE  

           6. Eliminating the lowest values for x should increase the expected      

value of the remaining values. 

 

2.14 More on Variances and Covariances 

 

  a. 

  

22

2222

222

))(()(

))(())()((2)()))((())((2)(

)))(()(2(]))([()(

xExE

xExExExExEExxEExE

xExxExExExExVar







 

 b. 

  

)()()(

)()()()()()()(

)]()()()([

))]())(([(),(

yExExyE

yExExEyEyExExyE

yExExyEyxExyE

yEyxExEyxCov









 

 

 c. 22 ))((])[()( byaxEbyaxEbyaxVar   (From part a.) 
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),(2)()(

))(()()(2))(()()(2)(

))()(()2(

22

22222222

22222

yxabCovyVarbxVara

yEbyExabExEayEbxyabExEa

ybExaEybaxbyxaE









   (From results of parts a. and b.) 

 

d. )()(5.)(5.)5.5(. xEyExEyxE     

 Remember that if 2 random variables x and y are independent, then  

Cov(x, y) = 0 

)(5.

0)(25.)(25.)5.5(.

xVar

yVarxVaryxVar




 

If x and y characterize 2 different assets with the properties 

)var()var(),()( yxyExE  we have shown that the variance of a 

diversified portfolio is only half as large as for a portfolio invested in only 

one of the assets.   
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