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1.1 The Geometry and Algebra of Vectors
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3. See Figures 1.15 and 1.16.

4. (a) Similar to Example 1.1, we have the following:

If [0, 2, 0] is translated to
−−→
BC where B = (1, 2, 3),

then we must have C = (0 + 1, 2 + 2, 0 + 3) = (1, 4, 3) as the new tail.
In short, we added 1 to the first coordinate, 2 to the second coordinate,
and 3 to the third coordinate. Why is this the correct thing to do?

(b) Likewise, if [3, 2, 1] is translated, C = (3 + 1, 2 + 2, 1 + 3) = (4, 4, 4) is the new tail.

(c) If [1,−2, 1] is translated, C = (1 + 1,−2 + 2, 1 + 3) = (2, 0, 4) is the new tail.

(d) If [−1,−1,−2] is translated, C = (−1 + 1,−1 + 2,−2 + 3) = (0, 1, 1) is the new tail.

5. (a)
−−→
AB = [4− 1, 2− (−1)] = [3, 3].
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6. Recall the notation that [a, b] denotes a move of a units horizontally and b units vertically.
During the first part of the walk, the hiker walks 4 km north, so a = [0, 4].
During the second part of the walk, the hiker walks a distance of 5 km northeast.

From the components, we get b = [5 cos 45◦, 5 sin 45◦] =
[
5
√
2

2 , 5
√
2

2

]
.

Thus, the net displacement vector is c = a+ b =
[
5
√
2

2 , 4 + 5
√
2

2

]
.

7. a+ b =

[
3
0

]
+

[
2
3

]
=

[
3 + 2
0 + 3

]
=

[
5
3

]
8. b+ c =

[
2
3

]
+

[
−2
3

]
=

[
0
6

]
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9. d− c =

[
3

−2

]
−
[
−2
3

]
=

[
5

−5

]
. 10. a− d =

[
3
0

]
−
[

3
−2

]
=

[
0
2

]
.

11. 2a+ 3c = 2 [0, 2, 0] + 3 [1,−2, 1] = [2 · 0, 2 · 2, 2 · 0] + [3 · 1, 3(−2), 3 · 1] = [3,−2, 3].

12. 2c− 3b− d = 2 [1,−2, 1]− 3 [3, 2, 1]− [−1,−1,−2] = [−6,−9, 1].

13. u = [ cos 60◦, sin 60◦ ] =
[
1
2 ,
√
3
2

]
, v = [ cos 210◦, sin 210◦ ] =

[
−
√
3
2 ,−

1
2

]
⇒ (implies)

u+ v =
[
1
2 −

√
3
2 ,
√
3
2 − 1

2

]
, u− v =

[
1
2 +

√
3
2 ,
√
3
2 + 1

2

]
.

14. (a)
−−→
AB = b− a.

(b)
−−→
BC =

−−→
OC − b = (b− a)− b = −a.

(c)
−−→
AD = −2a.

(d)
−−→
CF =

−−→
CB +

−−→
BA+

−→
AF = −

−−→
BC −

−−→
AB +

(
−
−−→
AB − a

)
−
−−→
AB = 2 (a− b).

(e)
−→
AC =

−−→
AB +

−−→
BC = (b− a) + (−a) = b− 2a.

(f)
−−→
BC +

−−→
DE +

−→
FA = −a+

(
−−−→
AB
)
+
(−−→
AB + a

)
= 0.

15. 2(a− 3b)+ 3(2b+ a)

property e.
distributivity

= (2a− 6b)+ (6b+3a)

property b.
associativity

= (2a+3a)+ (−6b+6b) = 5a.
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16. −3(a − c) + 2(a + 2b) + 3(c − b)

property e.
distributivity

= (−3a + 3c) + (2a + 4b) + (3c − 3b)

property b.
associativity

=
(−3a+ 2a) + (4b− 3b) + (3c+ 3c) = −a+ b+ 6c.

17. x− a = 2 (x− 2a) = 2x− 4a ⇒ x− 2x = a− 4a ⇒ −x = −3a ⇒ x = 3a.

18. x+2a−b = 3 (x+ a)−2 (2a− b) = 3x+3a−4a+2b ⇒ x−3x = −a−2a+2b+b ⇒ −2x =
−3a+ 3b ⇒ x = 3

2a− 3
2b.

19. 20.
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21. See Exercise 19. 22. See Exercise 20.

23. Property (d) states that u+ (−u) = 0. The first diagram below shows u along with −u.
Then, as the diagonal of the parallelogram, the resultant vector is 0.

Property (e) states c(u+ v) = cu+ cv. The second figure illustrates this.

-x

6
y

7u

/
−u

Property (d)

-x

6
y

�

u

1v
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�

u+ v

�
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1cv

1
cv �

c(u+ v)

Property (e)



6 1 Vectors

24. Let u = [u1, u2, ..., un], v = [v1, v2, ..., vn] , and let c and d be scalars in R.
Property (d):

u+ (−u) = [u1, u2, ..., un] + (−1 [u1, u2, ..., un]) = [u1, u2, ..., un] + [−u1,−u2, ...,−un]
= [u1 + (−u1) , u2 + (−u2) , ..., un + (−un)] = [0, 0, ..., 0] = 0

Property (e):

c (u+ v) = c ([u1, u2, ..., un] + [v1, v2, ..., vn]) = c ([u1 + v1, u2 + v2, ..., un + vn])

= [c (u1 + v1) , c (u2 + v2) , ..., c (un + vn)] = [cu1 + cv1, cu2 + cv2, ..., cun + cvn]

= [cu1, cu2, ..., cun] + [cv1, cv2, ..., cvn] = c [u1, u2, ..., un] + c [v1, v2, ..., vn] = cu+ cv

Property (f):

(c+ d)u = (c+ d) [u1, u2, ..., un] = [(c+ d)u1, (c+ d)u2, ..., (c+ d)un]

= [cu1 + du1, cu2 + du2, ..., cun + dun] = [cu1, cu2, ..., cun] + [du1, du2, ..., dun]

= c [u1, u2, ..., un] + d [u1, u2, ..., un] = cu+ du

Property (g):

c (du) = c (d [u1, u2, ..., un]) = c [du1, du2, ..., dun] = [cdu1, cdu2, ..., cdun]

= [(cd)u1, (cd)u2, ..., (cd)un] = (cd) [u1, u2, ..., un] = (cd)u

25. u+ v = [0, 1] + [1, 1] = [1, 0], u · v = 0 + 1 = 1.

26. u+ v = [1, 1, 0] + [1, 1, 1] = [0, 0, 1], u · v = 1 + 1 + 0 = 0.

27. u+ v = [1, 0, 1, 1] + [1, 1, 1, 1] = [0, 1, 0, 0], u · v = 1 + 0 + 1 + 1 = 1.

28. u+ v = [1, 1, 0, 1, 0] + [0, 1, 1, 1, 0] = [1, 0, 1, 0, 0], u · v = 0 + 1 + 0 + 1 + 0 = 0.

29. + 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

30. + 0 1 2 3 3

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

31. 2 + 2 + 2 = 6 = 0 in Z3. 32. 2 · 2 · 2 = 3 ·2 + 2 = 2 in Z3.
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33. 2(2 + 1 + 2) = 2(2) = 3 ·1 + 1 = 1 in Z3. 34. 3 + 1 + 2 + 3 = 4 ·2 + 1 = 1 in Z4.

35. 2 · 3 · 2 = 4 ·3 + 0 = 0 in Z4. 36. 3(3 + 3 + 2) = 4 ·6 + 0 = 0 in Z4.

37. 2 + 1 + 2 + 2 + 1 = 2 in Z3, 2 + 1 + 2 + 2 + 1 = 0 in Z4, 2 + 1 + 2 + 2 + 1 = 3 in Z5.

38. (3 + 4) (3 + 2 + 4 + 2) = 2 (1) = 2 in Z5.

39. 8 (6 + 4 + 3) = 8 (4) = 5 in Z9. 40. 2100 =
(
210
)10

= (1024)
10

= 110 = 1 in Z11.

41. [2, 1, 2] + [2, 0, 1] = [1, 1, 0] in Z3
3. 42. [2, 1, 2] · [2, 2, 1] = 1 + 2 + 2 = 2 in Z3

3.

43. [2, 0, 3, 2] · ([3, 1, 1, 2] + [3, 3, 2, 1]) = [2, 0, 3, 2] · [2, 0, 3, 3] = 0 + 0 + 2 + 1 = 3 in Z4
4.

[2, 0, 3, 2] · ([3, 1, 1, 2] + [3, 3, 2, 1]) = [2, 0, 3, 2] · [1, 4, 3, 3] = 2 + 0 + 4 + 1 = 2 in Z4
5.

44. x = 2 + (−3) = 2 + 2 = 4 in Z5. 45. x = 1 + (−5) = 1 + 1 = 2 in Z6.

46. x = (2)
−1

= 2 in Z3. 47. No solution. Why? Consider: 4
2 = 2.

48. x = (2)
−1

= 3 in Z5. 49. x = (3)
−1

4 = (2) 4 = 3 in Z5.

50. No solution. Why? Consider: 6
3 = 2. 51. No solution. Why? 6

2 = 3, 8
2 = 4.

52. x = (8)
−1

9 = (7) 4 = 6 in Z11. 53. x = (2)
−1

(2 + (−3)) = (3) (2 + 2) = 2 in Z5.

54. x = (4)
−1

(2 + (−5)) = (4)
−1

(2 + 1), but (4)
−1

does not exist in Z6.
Therefore there is no solution.

55. Add 5 to both sides ⇒ 6x = 6, so x = 1, 5 (because 5 · 8= 40 = 8 · 4+ 6).

56. (a) All values. (b) All values. (c) All values.

57. (a) All a ̸= 0 in Z5 have a solution because 5 is a prime number.

(b) a = 1, 5 because they have no common factors with 6 other than 1.

(c) a and m can have no common factors other than 1,
that is, the greatest common divisor (gcd) of a and m is 1.
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1.2 Length and Angle: The Dot Product

1. Following Example 1.15, u ·v =

[
−1
2

]
·
[
3
1

]
= (−1) · 3 + 2 · 1 = −3 + 2 = −1.

2. Following Example 1.15, u ·v =

[
2

−3

]
·
[
9
6

]
= 2 · 9 + (−3) · 6 = 18− 18 = 0.

3. u ·v =

 1
2
3

·
 2
3
1

 = 1 · 2 + 2 · 3 + 3 · 1 = 2 + 6 + 3 = 11.

4. u ·v =

 1.5
0.4

−2.1

·
 3.0

5.2
−0.6

 = (1.5) · (3.0) + (0.4) · (5.2) + (−2.1) · (−0.6) = 7.84.

5. u ·v =


1√
2√
3
0

·


4

−
√
2
0

−5

 = 1 · 4 + (
√
2) · (−

√
2) +

√
3 · 0 + 0 · (−5) = 4− 2 = 2.

6. u ·v =


1.12

−3.25
2.07

−1.83

·

−2.29
1.72
4.33

−1.54

 = −1.12 · 2.29 + 1.72 · 4.33 + 1.83 · 1.54 = 3.6265.

7. In the remarks prior to Example 1.19, we note that finding a unit vector v
in the same direction as a given vector u is called normalizing the vector u.

Therefore, we proceed as in Example 1.19:

∥u∥ =

√
(−1)

2
+ 22 =

√
5, so a unit vector v in the same direction as u is

v = (1/ ∥u∥)u =
(
1/

√
5
) [ −1

2

]
=

[
−1/

√
5

2/
√
5

]
.

8. Following Example 1.19, we have:

∥u∥ =

√
22 + (−3)

2
=

√
13, so a unit vector v in the same direction as u is

v = (1/ ∥u∥)u =
(
1/

√
13
) [ 2

−3

]
=

[
2/
√
13

−3/
√
13

]
.

9. Following Example 1.19, we have:

∥u∥ =
√
12 + 22 + 32 =

√
14, so a unit vector v in the same direction as u is

v = (1/ ∥u∥)u =
(
1/

√
14
) 1

2
3

 =

 1/
√
14

2/
√
14

3/
√
14

.



10 1 Vectors

10. Following Example 1.19, we have:

∥u∥ =

√
(1.5)

2
+ (0.4)

2
+ (−2.1)

2
=

√
6.82, so unit vector v in the same direction as u

is v = (1/ ∥u∥)u =
(
1/

√
6.82

) 1.5
0.4

−2.1

 =

 1.5/
√
6.82

0.4/
√
6.82

−2.1/
√
6.82

 ≈

 0.57
0.15

−0.80

.
11. ∥u∥ =

√
12 +

(√
2
)2

+
(√

3
)2

+ 02 =
√
6, so a unit vector in the direction of u is

v = (1/ ∥u∥)u =
(
1/

√
6
)

1√
2√
3
0

 =


1/
√
6√

2/
√
6√

3/
√
6

0/
√
6

 =


1/
√
6

1/
√
3

1/
√
2

0

 =


√
6/6√
3/3√
2/2
0

.
12. ∥u∥ =

√
(1.12)

2
+ (−3.25)

2
+ (2.07)

2
+ (−1.83)

2
=

√
19.4507, so the unit vector v is

v = (1/ ∥u∥)u =
(
1/

√
19.4507

)
1.12

−3.25
2.07

−1.83

 =


1.12/

√
19.4507

−3.25/
√
19.4507

2.07/
√
19.4507

−1.83/
√
19.4507

 ≈


0.2540

−0.7369
0.4694

−0.4149

.
13. Following Example 1.20, we compute: u− v =

[
−1
2

]
−
[
3
1

]
=

[
−4
1

]
, so

d(u,v) = ∥u− v∥ = −
√
(−4)

2
+ 12 =

√
17.

14. Following Example 1.20, we compute: u− v =

[
2

−3

]
−
[
9
6

]
=

[
−7
−9

]
, so

d(u,v) = ∥u− v∥ = −
√
(−7)

2
+ (−9)

2
=

√
130.

15. Following Example 1.20, we compute: u− v =

 1
2
3

−

 2
3
1

 =

 −1
−1
2

, so
d(u,v) = ∥u− v∥ = −

√
(−1)

2
+ (−1)

2
+ 22 =

√
6.

16. Following Example 1.20, we compute: u− v =

 1.5
0.4

−2.1

−

 3.0
5.2

−0.6

 =

 −1.5
−4.8
−1.5

, so
d(u,v) = ∥u− v∥ = −

√
(−1.5)

2
+ (−4.8)

2
+ (−1.5)

2
=

√
27.54 ≈ 5.25.



1.2 Length and Angle: The Dot Product 11

17. (a) u · v is a real number, so ∥u · v∥ is the norm of a number, which is not defined.

(b) u · v is a scalar, while w is a vector.
Thus, u · v +w adds a scalar to a vector, which is not a defined operation.

(c) u is a vector, while v ·w is a scalar.
Thus, u · (v ·w) is the dot product of a vector and a scalar, which is not defined.

(d) c · (u+ v) is the dot product of a scalar and a vector, which is not defined.

18. From trigonometry, we have:

cos θ > 0 ⇒ θ is acute, cos θ < 0 ⇒ θ is obtuse, and cos θ = 0 ⇒ θ is right.

From cos θ =
u · v

∥u∥ ∥v∥
, we see u · v determines the sign of cos θ. Why?

Therefore, as in Example 1.23, we calculate:

u · v = 2 · 1 + 1 · 1 (−3) = −1 < 0 ⇒ cos θ < 0 ⇒ θ is obtuse.

19. From trigonometry, we have:

cos θ > 0 ⇒ θ is acute, cos θ < 0 ⇒ θ is obtuse, and cos θ = 0 ⇒ θ is right.

From cos θ =
u · v

∥u∥ ∥v∥
, we see u · v determines the sign of cos θ. Why?

Therefore, as in Example 1.23, we calculate:

u · v = 2 · 1 + (−1) · (−2) + 1 · (−1) = 4 > 0 ⇒ cos θ > 0 ⇒ θ is acute.

20. Following the first step in Example 1.23, we calculate:
u · v = 5 · 1 + 4 · (−2) + (−3) · (−3) = 5− 8 + 3 = 0 ⇒ cos θ = 0 ⇒ θ is right.

21. Following the first step in Example 1.23, we calculate:
u · v = (0.9) · (−4.5) + (2.1) · (2.6) + (1.2) · (−0.8) = 0.45 ⇒ cos θ > 0 ⇒ θ is acute.

22. u · v = 1 · (−3) + 2 · 1 + 3 · 2 + 4 · (−2) = −3 ⇒ cos θ < 0 ⇒ θ is obtuse.

23. Since u · v is obviously > 0, we have cos θ > 0 which implies θ is acute.
Note: u · v is > 0 because the components of both u and v are positive.

24. As in Example 1.21, we begin by calculating u · v (if u · v = 0, we’re done. Why?):

u · v = 2 · 1 + 1 · (−3) = −1, ∥u∥ =
√
22 + 12 =

√
5, ∥v∥ =

√
12 + (−3)

2
=

√
10.

So, cos θ =
u · v

∥u∥ ∥v∥
=

−1√
5
√
10

= − 1

5 ·
√
2
and θ = cos−1

(
1

5 ·
√
2

)
= 1.7 radians or 98◦.
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25. As in Example 1.21, we begin by calculating u · v (because if u · v = 0 we’re done. Why?):

u · v = 2 · 1 + (−1) · (−2) + 1 · (−1) = 2 + 2− 1 = 3,

∥u∥ =

√
22 + (−1)

2
+ 12 =

√
6, and ∥v∥ =

√
12 + (−2)

2
+ (−1)

2
=

√
6.

Therefore, cos θ =
u · v

∥u∥ ∥v∥
=

3√
6
√
6
=

1

2
, so θ = cos−1

(
1

2

)
=
π

3
radians or 60◦.

26. As in Example 1.21, we begin by calculating u · v:
u · v = 5 · 1 + 4 · (−2) + (−3) · (−3) = 5− 8 + 3 = 0 ⇒ cos θ = 0 ⇒ θ is right.

If we wished to be more explicit, we could continue following Example 1.15:

cos θ =
u · v

∥u∥ ∥v∥
=

0

∥u∥ ∥v∥
= 0, so θ = cos−1 (0) =

π

2
radians or 90◦.

27. Following Example 1.21, we calculate:

u · v = (0.9) · (−4.5) + (2.1) · (2.6) + (1.2) · (−0.8) = 0.45,

∥u∥ =

√
(0.9)

2
+ (2.1)

2
+ (1.2)

2
=

√
6.66, and

∥v∥ =

√
(−4.5)

2
+ (2.6)

2
+ (−0.8)

2
=

√
27.65.

Therefore, cos θ =
u · v

∥u∥ ∥v∥
=

0.45√
6.66

√
27.65

=
0.45√
182.817

,

so θ = cos−1
(

0.45√
182.817

)
≈ 1.5375 radians or 88.09◦.

Note: To minimize error, we do not approximate until the last step.

Since
0.45√
182.817

≈ 0.0332816 is a positive number close to zero,

we should expect θ to be close to but less than 90◦. Why?

28. Following Example 1.21, we calculate:

u · v = 1 · (−3) + 2 · 1 + 3 · 2 + 4 · (−2) = −3,
∥u∥ =

√
1)2 + 22 + 32 + 42 =

√
30, and

∥v∥ =

√
(−3)

2
+ 12 + 22 + (−2)

2
=

√
18.

Therefore, cos θ =
u · v

∥u∥ ∥v∥
=

−3√
30

√
18

= − 1

6
√
15

,

so θ = cos−1
(
− 1

6
√
15

)
≈ 1.70 radians or 97.42◦.

Note: To minimize error, we do not approximate until the last step.

Since − 1

6
√
18

≈ −0.13 is a negative number close to zero,

we should expect θ to be close to but greater than 90◦. Why?
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29. Following Example 1.21, we calculate:

u · v = 1 · 5 + 2 · 6 + 3 · +3 · 7 + 4 · 8 = 70,

∥u∥ =
√
12 + 22 + 32 + 42 =

√
30, and

∥v∥ =
√
52 + 62 + 72 + 82 =

√
174.

Therefore, cos θ =
u · v

∥u∥ ∥v∥
=

70√
30
√
174

=
35

3
√
145

,

so θ = cos−1
(

35

3
√
145

)
≈ 0.2502 radians or 14.34◦.

Note: To minimize error, we do not approximate until the last step.

Since
35

3
√
145

≈ 0.9688639 is a positive number close to 1,

we should expect θ to be close to but greater than 0◦.

30. To show △ABC is right, we need only show one pair of its sides meet at a right angle.

So, we let u =
−−→
AB, v =

−−→
BC, and w =

−→
AC, then by the definition of orthogonal

given prior to Example 1.23, we need only show u · v, or u ·w, or v ·w = 0.

Following Example 1.1 of Section 1.1, we calculate the sides of △ABC:

u =
−−→
AB = [1− (−3), 0− 2] = [4,−2], v =

−−→
BC = [4− 1, 6− 0] = [3, 6],

w =
−→
AC = [4− (−3), 6− 2] = [7, 4], so u · v = 4 · 3 + (−2) · 6 = 12− 12 = 0 ⇒

The angle between u =
−−→
AB and v =

−−→
BC is 90◦ ⇒ △ABC is a right triangle.

Note: It is obvious that v is not orthogonal to w. Why?

31. To show △ABC is right, we need only show one pair of its sides meet at a right angle.

So, we let u =
−−→
AB, v =

−−→
BC, and w =

−→
AC, then by the definition of orthogonal

given prior to Example 1.23, we need only show u · v, or u ·w, or v ·w = 0.

Following Example 1.1 of Section 1.1, we calculate the sides of △ABC:

u =
−−→
AB = [−3− 1, 2− 1, (−2)− (−1)] = [−4, 1,−1],

v =
−−→
BC = [2− (−3), 2− 2, (−4− (−2)] = [5, 0,−2],

w =
−→
AC = [2− 1, 2− 1, (−4)− (−1)] = [1, 1,−3].

Then u ·w = (−4) · 1 + 1 · 1 + (−1) · (−3) = −4 + 1 + 3 = 0 ⇒

The angle between u =
−−→
AB and w =

−→
AC is 90◦ ⇒ △ABC is a right triangle.
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32. Following Example 1.22, we make a similar argument:

The dimensions do not matter, so we consider a cube with sides of length 1.
Also, the cube is symmetric, so we need only consider one diagonal and adjacent edge.

Orient the cube relative to the coordinate axes in R3, as shown in Figure 1.34.
Take the diagonal to be [1, 1, 1] and take the adjacent edge to be [1, 0, 0].

Then the angle θ between these two vectors satisfies:

cos θ =
1 · 1 + 1 · 0 + 1 · 0√

3
√
1

=
1√
3
, so θ = cos−1

(
1√
3

)
≈ 54.74◦.

So, the diagonal and adjacent edge meet at 54.74◦.

33. Following Example 1.15, we make a similar argument:

The dimensions do not matter, so we consider a cube with sides of length 1.
Also, the cube is symmetric, so we need only consider one pair of diagonals.

Orient the cube relative to the coordinate axes in R3, as shown in Figure 1.34.
Take the diagonals to be [1, 1, 1] and v = [1, 1,−1] (from (1, 1, 0) to (0, 0, 1)).

Then dot product between these two vectors satisfies:

u · v = 1 · 1 + 1 · 1 + 1 · (−1) = 1 + 1− 1 = 1 ̸= 0 ⇒
The diagonals of a cube are not perpendicular. How might we generalize this result?

34. To show the parallelogram is a rhombus, we need only show the diagonals are perpendiuclar.

So, all we have to show is that the dot product of the diagonals is zero.

d1 · d2 =

 2
2
0

 ·

 1
−1
3

 = 2 · 1 + 2 · (−1) + 0 · 3 = 0.

To find the length of the side, we use the Pythagorean Theorem.

Note that ∥d1∥2 = 22 + 22 + 02 = 8 and ∥d2∥2 = 12 + (−1)
2
+ 32 = 11.

So, the length of the side is
1

2

√
∥d1∥2 + ∥d2∥2 =

1

2

√
8 + 11 =

1

2

√
19 ≈ 2.18.

35. To resultant velocity of the airplane is the sum of the velocity of the airplane
and the velocity of the wind.

So, the resultant velocity r = p+w =

[
200

0

]
+

[
0

−40

]
=

[
200
−40

]
.
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36. Since ABCD is a rectangle, opposite sides BA and CD are both parallel and congruent.
So, we can use the method of Example 1.1 in Section 1.1 to find the coordinates of vertex D.

Specifically, we compute
−−→
BA = [1− 3, 2− 6, 3− (−2)] = [−2,−4, 5] .

If
−−→
BA is then translated to

−−→
CD, where C = (0, 5,−4), then we must have

D = (0 + (−2), 5 + (−4),−4 + 5) = (−2, 1, 1).

37. Since ABCD is a rectangle, opposite sides BA and CD are both parallel and congruent.
So, we can use the method of Example 1.1 in Section 1.1 to find the coordinates of vertex D.

Specifically, we compute
−−→
BA = [1− 3, 2− 6, 3− (−2)] = [−2,−4, 5] .

If
−−→
BA is then translated to

−−→
CD, where C = (0, 5,−4), then we must have

D = (0 + (−2), 5 + (−4),−4 + 5) = (−2, 1, 1).

38. Since vt = d, use the given information to find v, then solve for t and complete d.

Since the speed of the boat is 20 km/h and the speed of the flow is −5 km/h, v =

[
20
−5

]
.

The width of the river is 2 km and the distance downstream is unknown. So, d =

[
2
y

]
.

That gives us vt =

[
20
−5

]
t =

[
2
y

]
.

So, 20t = 2 which implies t = 0.1 and y = −5(0.1) = −0.5. Therefore:

(a) Ann lands 0.5 or half a kilometer downstream.
(b) It takes Ann 0.1 hours or 6 minutes to cross the river.

The river flow does not increase the amount of time it takes to cross. Why not?
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39. Find the angle between Bert’s resultant vector, r, and his velocity vector upstream, v.

Bert’s velocity vector across the river is unknown, u. So, u =

[
x
0

]
.

Bert’s velocity vector upstream compensates for the downsteam flow. So, v =

[
0
1

]
.

So, his resultant vector is r = u+ v =

[
x
0

]
+

[
0
1

]
=

[
x
1

]
.

Since Bert’s speed is 2 mph, ∥r∥ = 2. Why?

So, we have, ∥r∥2 = x2 + 1 = 4 which implies x =
√
3.

Now we follow Example 1.21 to find the angle between r and v.

cos θ =
r · v

∥r∥∥v∥
=

√
3

2
. So, θ = cos−1

(√
3

2

)
= 60◦.

So, Bert must swim at a 60◦ angle to the bank to swim directly across the river.

Could you use Pythagoras’ Theorem to solve this problem? If so, how would you do it?

40. Following Example 1.17, we compute:

u · v =

[
1

−1

]
·
[

3
−1

]
= 4 and

u · u =

[
1

−1

]
·
[

1
−1

]
= 2, so

proju(v) =
(u · v
u · u

)
u =

4

2

[
1

−1

]
=

[
2

−2

]
= 2u.

41. Following Example 1.17, we compute:

u · v =

[
3/5

−4/5

]
·
[
1
2

]
= −1 and

u · u =

[
3/5

−4/5

]
·
[

3/5
−4/5

]
= 1, so

proju(v) =
(u · v
u · u

)
u =

−1

1

[
3/5

−4/5

]
=

[
−3/5
4/5

]
= −u.

-x
6
y

Ru q

v

Rproju(v) -x

6
y

w
u

�

v
oproju(v)
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42. Following Example 1.17, we compute:

u · v =

 2/3
−2/3
−1/3

 ·

 2
−2
2

 = 2 and

u · u =

 2/3
−2/3
−1/3

 ·

 2/3
−2/3
−1/3

 = 1, so

proju(v) =
(u · v
u · u

)
u =

2

1

 2/3
−2/3
−1/3


=

 4/3
−4/3
−2/3

 = 2u.

43. Following Example 1.17, we compute:

u · v =


1

−1
1

−1

 ·


2

−3
−1
−2

 = 6 and

u · u =


1

−1
1

−1

 ·


1

−1
1

−1

 = 4, so

proju(v) =
(u · v
u · u

)
u =

6

4


1

−1
1

−1



=


3/2

−3/2
3/2

−3/2

 =
3

2
u.

44. Following Example 1.17, we compute:

u · v =

[
0.5
1.5

]
·
[
2.1
1.2

]
= 2.85 and

u · u =

[
0.5
1.5

]
·
[
0.5
1.5

]
= 2.5, so

proju(v) =
(u · v
u · u

)
u =

2.85

2.5

[
0.5
1.5

]
=

[
0.57
1.71

]
= 1.14u.

45. Following Example 1.17, we compute:

u · v =

 3.01
−0.33
2.52

 ·

 1.34
4.25

−1.66

 = −1.5523 and

u · u =

 3.01
−0.33
2.52

 ·

 3.01
−0.33
2.52

 = 15.5194, so

proju(v) =
(u · v
u · u

)
u =

−1.5523

15.5194

 3.01
−0.33
2.52


≈

 −0.301
0.033

−0.252

 ≈ − 1

10
u.
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46. Let u =
−−→
AB =

[
2− 1

2− (−1)

]
=

[
1
3

]
and v =

−→
AC =

[
4− 1

0− (−1)

]
=

[
3
1

]
.

(a) We compute the necessary values ...

u · v =

[
1
3

]
·
[
3
1

]
= 6,

u · u =

[
1
3

]
·
[
1
3

]
= 10

(
∥u∥ =

√
10
)
,

proju(v) =
(u · v
u · u

)
u =

[
3/5
9/5

]
⇒

v − proju(v) =

[
12/5
−4/5

]
⇒

∥v − proju(v)∥ =

√(
12
5

)2
+
(
− 4

5

)2
= 4
√
10
5

... then substitute into the formula for A:

A = 1
2 ∥u∥ ∥v − proju(v)∥

= 1
2

√
10 4

√
10
5 = 4.

(b) We compute the necessary values ...

u · v =

[
1
3

]
·
[
3
1

]
= 6,

∥u∥ =
√
12 + 32 =

√
10,

∥v∥ =
√
32 + 12 =

√
10 ⇒

cos θ =
u · v

∥u∥ ∥v∥
=

6√
10
√
10

=
3

5
⇒

sin θ =
√
1− cos2 θ =

√
1−

(
3
5

)2
= 4

5

... then substitute into the formula for A:

A = 1
2 ∥u∥ ∥v∥ sin θ

= 1
2

√
10

√
10 4

5 = 4.
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47. Let u =
−−→
AB =

 4− 3
−2− (−1)

6− 4

 =

 1
−1
2

 and v =
−→
AC =

 5− 3
0− (−1)
2− 4

 =

 2
1

−2

.
(a) We compute the necessary values ...

u · v =

 1
−1
2

 ·

 2
1

−2

 = −3,

u · u =

 1
−1
2

 ·

 1
−1
2

 = 6
(
∥u∥ =

√
6
)
,

proju(v) =
(u · v
u · u

)
u =

 −1/2
1/2
−1

⇒

v − proju(v) =

 5/2
1/2
−1

⇒

∥v − proju(v)∥ =

√(
5
2

)2
+
(
1
2

)2
+ (−1)

2

=
√
30
2

... then substitute into the formula for A:

A = 1
2 ∥u∥ ∥v − proju(v)∥

= 1
2

(√
6
) (√

30
2

)
= 3
√
5

2 .

(b) We compute the necessary values ...

u · v =

 1
−1
2

 ·

 2
1

−2

 = −3,

∥u∥ =

√
12 + (−1)

2
+ 22 =

√
6,

∥v∥ =

√
22 + 12 + (−2)

2
= 3 ⇒

cos θ =
u · v

∥u∥ ∥v∥
=

−3

3
√
6
= −

√
6

6
⇒

sin θ =
√
1− cos2 θ =

√
1−

(
−
√
6

6

)2
=
√
30
6

... then substitute into the formula for A:

A = 1
2 ∥u∥ ∥v∥ sin θ

= 1
2

(√
6
)

(3)
(√

30
6

)
= 3
√
5

2 .
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48. Two vectors u and v are orthogonal if and only if [⇔] their dot product is zero.
That is u · v = 0. So, we set u · v = 0 and solve for k:

u · v =

[
2
3

]
·
[
k + 1
k − 1

]
= 0 ⇒ 2(k + 1) + 3(k − 1) = 0 ⇒ 5k − 1 = 0 ⇒ k = 1

5 .

Substituting k back into the expression for v we get: v =

[
1
5 + 1
1
5 − 1

]
=

[
6
5

−4
5

]
.

We check our answer by computing u · v (it should be zero):

u · v =

[
2
3

]
·

[
6
5

− 4
5

]
=

12

5
− 12

5
= 0 as required.

49. Two vectors u and v are orthogonal if and only if [⇔] their dot product is zero.
That is u · v = 0. So, we set u · v = 0 and solve for k:

u · v =

 1
−1
2

 ·

 k2

k
−3

 = 0 ⇒ k2 − k − 6 = (k + 2)(k − 3) = 0 ⇒ k = −2, 3.

Substituting k back into the expression for v we get:

When k = −2, v1 =

 (−2)
2

−2
−3

 =

 4
−2
−3

. When k = 3, v2 =

 32

3
−3

 =

 9
3

−3

.
We check by computing u · v1 and u · v2 (they should both be zero):

u · v1 =

 1
−1
2

 ·

 4
−2
−3

 = 4 + 2− 6 = 0 and u · v2 =

 1
−1
2

 ·

 9
3

−3

 = 9− 3− 6 = 0.

50. Two vectors u and v are orthogonal if and only if [⇔] their dot product is zero.
That is u · v = 0. So, we set u · v = 0 and solve for y in terms of x:

u · v =

[
3
1

]
·
[
x
y

]
= 0 ⇒ 3x+ y = 0 ⇒ y = −3x.

Substituting y = −3x back into the expression for v we get: v =

[
x

−3x

]
= x

[
1

−3

]
.

Conclusion: Any vector orthogonal to

[
3
1

]
must be a multiple of

[
1

−3

]
.

Check: u · v =

[
3
1

]
·
[

x
−3x

]
= 3x− 3x = 0 for all values of x.

Note: We could also have solved for x in terms of y yielding v =

[
− 1

3y

y

]
= y

[
− 1

3

1

]
.
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51. As noted in the remarks just prior to Example 1.16:

The zero vector 0 =

[
0
0

]
=

[
a
b

]
⇒ a = b = 0 is orthogonal to all vectors in R2.

Having covered this case, we will now assume that at least one of a or b ̸= 0.

Two vectors u and v are orthogonal if and only if [⇔] their dot product is zero.
That is u · v = 0. So, we set u · v = 0 and solve for y in terms of x.

Case 1 : b ̸= 0: u · v =

[
a
b

]
·
[
x
y

]
= 0 ⇒ ax+ by = 0 ⇒ y = −a

bx.

Substituting y = −a
bx back into the expression for v we get: v =

[
x

−a
bx

]
= x

[
1

−a
b

]
.

If we let x = b we find b

[
1

−a
b

]
=

[
b

−a

]
, which clarifies the relationship between u and v.

Case 2 : b = 0 (⇒ a ̸= 0): u · v =

[
a
b

]
·
[
x
y

]
= 0 ⇒ ax+ by = 0 ⇒ x = − b

ay.

Substituting x = − b
ay back into the expression for v we get: v =

[
− b
ay

y

]
= y

[
− b
a

1

]
.

If we let y = −a we find −a

[
− b
a

1

]
=

[
b

−a

]
exactly as in Case 1.

Conclusion: Any vector orthogonal to

[
a
b

](
̸=
[
0
0

])
must be a multiple of

[
b

−a

]
.

Check: u · v =

[
a
b

]
·
[

bx
−ax

]
= abx− bax = 0 for all values of x.
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52. (a) The geometry of the vectors in Figure 1.26 suggests the following assertion:

For ∥u+ v∥ = ∥u∥+ ∥v∥, u and v must point in the same direction.
So, the angle θ between u and v must be 0 ⇒ cos θ = cos 0 = 1.

So, we have cos θ = cos 0 = 1 =
u · v

∥u∥ ∥v∥
⇒ u · v = ∥u∥∥v∥.

Emulating the statement of Theorem 1.6 (Pythagoras’ Theorem), we state:

For all vectors u and v in R2 and R3, ∥u+ v∥ = ∥u∥+ ∥v∥
if and only if u and v point in the same direction.

Again, we must note that pointing in same direction is equivalent to u · v = ∥u∥∥v∥.
Figuring out when to apply this condition will be the key to a successful proof.

PROOF : Proceeding as in the proof of Theorem 1.5 (The Triangle Inequality), we note:

Since both sides of the equality are nonnegative,
showing that the square of the left-hand side, ∥u+ v∥2,
is equal to the square of the right hand side, (∥u∥+ ∥v∥)2,
is equivalent to proving the condition.

∥u+ v∥2 = u · u+ 2 (u · v) + v · v
= ∥u∥2 + 2 (u · v) + ∥v∥2
= ∥u∥2 + 2∥u∥ ∥v∥+ ∥v∥2
= (∥u∥+ ∥v∥)2.

By Example 1.9
By w ·w = ∥w∥2 for any vector w
By u · v = ∥u∥∥v∥ (key condition)

By x2 + 2xy + y2 = (x+ y)
2
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(b) Since the left-hand side, ∥u+ v∥, is always non-negative,
we have to impose an initial condition of ∥u∥ ≥ ∥v∥.
The geometry of the vectors in Figures 1.26 and 1.30 suggests the following assertion:

For ∥u+ v∥ = ∥u∥ − ∥v∥ u and v must point in the opposite directions.
So, the angle θ between u and v must be π ⇒ cos θ = cosπ = −1.

So, we have cos θ = cosπ = −1 =
u · v

∥u∥ ∥v∥
⇒ u · v = −∥u∥∥v∥.

Emulating the statement of Theorem 1.6 (Pythagoras’ Theorem), we state:

For all vectors u and v in R2 and R3, ∥u+ v∥ = ∥u∥ − ∥v∥
if and only if u and v point in the opposite directions.

Again, we must note that pointing in same direction is equivalent to u · v = −∥u∥∥v∥.
Figuring out when to apply this condition will be the key to a successful proof.

PROOF : Proceeding as in the proof of Theorem 1.5 (The Triangle Inequality), we note:

Since both sides of the equality are nonnegative,
showing that the square of the left-hand side, ∥u+ v∥2,
is equal to the square of the right hand side, (∥u∥ − ∥v∥)2,
is equivalent to proving the condition.

∥u+ v∥2 = u · u+ 2 (u · v) + v · v
= ∥u∥2 + 2 (u · v) + ∥v∥2
= ∥u∥2 − 2∥u∥ ∥v∥+ ∥v∥2
= (∥u∥ − ∥v∥)2.

By Example 1.9
By w ·w = ∥w∥2 for any vector w
By u · v = −∥u∥∥v∥ (key condition)

By x2 − 2xy + y2 = (x− y)
2
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53. We prove Theorem 1.2(b) by applying the definition of the dot product.

u · (v +w) = u1 (v1 + w1) + u2 (v2 + w2) + · · ·+ un (vn + wn)
= u1v1 + u1w1 + u2v2 + u2w2 + · · ·+ unvn + unwn
= (u1v1 + u2v2 + · · ·+ unwn) + (u1w1 + u2w2 + · · ·+ unwn)
= u · v + u ·w.

54. We prove the three parts of Theorem 1.2(d)
by applying the definition of the dot product and key properties of real numbers.

Part 1 : For any vector u, we need to show u · u ≥ 0.
We begin by noting that for any real number x, we have x2 ≥ 0.
So, u · u = u1u1 + u2u2 + · · ·+ unun = u21 + u22 + · · ·+ u2n ≥ 0.
Note: u21 + u22 + · · ·+ u2n ≥ 0 because the ui are real numbers.

Part 2 : We need to show if u = 0, then u · u = 0.
We begin by noting that if u = 0, then ui = 0 for all i.
If u = 0, then u · u = 0 · 0 = u21 + u22 + · · ·+ u2n = 02 + 02 + · · ·+ 02 = 0.

Part 3 : We need to show if u · u = 0, then u = 0.
We begin by noting that for any real number x, if x2 = 0 then x = 0.
If u · u = u1u1 + u2u2 + · · ·+ unun = u21 + u22 + · · ·+ u2n = 0
then u2i = 0 for all i which implies ui = 0 because the ui are real numbers.
Therefore, since ui = 0 for all i, by definition u = 0.

55. We need to show d (u,v) = ∥u− v∥ = ∥v − u∥ = d (v,u).
If we let c = −1 in Theorem 1.3(b), then ∥ −w∥ = ∥w∥. We use this key fact below.

PROOF : d (u,v) = ∥u− v∥
= ∥ − (v − u) ∥
= ∥v − u∥
= d (v,u).

By definition
By the fact that (x− y) = − (y − x)
By ∥ −w∥ = ∥w∥ (key fact)
By definition

56. We need to show d (u,w) ≤ d (u,v) + d (v,w). That is, ∥u−w∥ ≤ ∥u− v∥+ ∥v −w∥.
This follows immediately from Theorem 1.5:

∥x+ y∥ ≤ ∥x∥+ ∥y∥ with x = u− v and y = v −w.

57. We need to show d (u,v) = ∥u− v∥ = 0 if and only if u = v.
This follows immediately from Theorem 1.3(a): ∥w∥ = 0 if and only if w = 0, with w = u− v.

58. We will show u · cv = c (u · v) by applying the definitions.

u · cv = [u1, u2, . . . , un] · [cv1, cv2, . . . , cvn] = u1cv1 + u2cv2 + · · ·+ uncvn
= cu1v1 + cu2v2 + · · ·+ cunvn = c(u1v1 + u2v2 + · · ·+ unvn) = c(u · v)

59. We need to show ∥u− v∥ ≥ ∥u∥ − ∥v∥. That is, ∥u∥ ≤ ∥u− v∥+ ∥v∥.
This follows immediately from Theorem 1.5, ∥x+ y∥ ≤ ∥x∥+ ∥y∥, with x = u− v and y = v.
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60. If u · v = u ·w it does not follow that v = w.

An instructive counterexample is suggested by the remarks just prior to Example 1.16.
Since 0 · v = 0 for every vector v in Rn, the zero vector is orthogonal to every vector.
So, if u = 0, we know nothing about v and w except that they are vectors in Rn.
However, we note that u · v = u ·w implies u · v − u ·w = u · (v −w) = 0.
So, if u · v = u ·w, it does follow that v −w is orthogonal to u.

61. We need to show (u+ v) · (u− v) = ∥u∥2 − ∥v∥2 for all vectors in Rn.
Recall, by the definitions of the dot product and the norm, w ·w = ∥w∥2.
We apply Theorem 1.2(b) and this key fact to complete our PROOF :

(u+ v) · (u− v) = u · u− u · v + v · u− v · v
= u · u− v · v
= ∥u∥2 − ∥v∥2.

By Theorem 1.2(b)
By the fact that −xy + yx = 0
By the fact that w ·w = ∥w∥2 (key fact)

62. (a) Let u,v ∈ Rn. Then

∥u+ v∥2 + ∥u− v∥2 = (u+ v) · (u+ v) + (u− v) · (u− v)

= (u · u+ v · v + 2u · v) + (u · u+ v · v − 2u · v)
= (∥u∥2 + ∥v∥2) + 2u · v + (∥u∥2 + ∥v∥2)− 2u · v = 2∥u∥2 + 2∥v∥2.

(b)

-x

6
y

�
u 1

v

>
u+ v

Y u− v

The proof in part (a) tells us that

the sum of the of the squares

of the lengths of the diagonals

of a parallelogram

is twice the sum of the squares

of the lengths of its sides.

63. Let u, v ∈ Rn, and consider 1
4∥u+ v∥2 − 1

4∥u− v∥2. By definition, we have:

1
4∥u+ v∥2 − 1

4∥u− v∥2 = 1
4 [(u+ v) · (u+ v) + (u− v) · (u− v)]

= 1
4 [(u · u+ v · v + 2u · v)− (u · u+ v · v − 2u · v)]

= 1
4 [(∥u∥

2 − ∥u∥2) + (∥v∥2 − ∥v∥2) + 4u · v] = u · v.
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64. (a) Let u,v ∈ Rn. Then

∥u+ v∥ = ∥u− v∥ ⇔ ∥u+ v∥2 = ∥u− v∥2

⇔ ∥u+ v∥2 − ∥u− v∥2 = 0

⇔ 1
4∥u+ v∥2 − 1

4∥u− v∥2 = 0

⇔ u and v are orthogonal.
(b)

-x

6
y

6

-

3

k

u
v

u+ v

u− v

The proof in part (a) tells us that

a parallelogram is a rectangle if and only if

the lengths of its diagonals are equal.

65. (a) We need to show (u+ v) · (u− v) = 0 in Rn if and only if ∥u∥ = ∥v∥.
By Exercise 55, (u+ v) · (u− v) = ∥u∥2 − ∥v∥2.
Therefore, (u+ v) · (u− v) = ∥u∥2 − ∥v∥2 = 0 if and only if ∥u∥2 = ∥v∥2.
It follows immediately that u+v and u−v are orthogonal in Rn if and only if ∥u∥ = ∥v∥.

(b)

-x

6
y

�
u

*
v

�
u+ v

I
u− v

The proof in part (a) tells us that

the diagonals of a parallelogram

are perpendicular if and only if

the lengths of its sides are equal.

66. From Example 1.9 and the fact that w ·w = ∥w∥2, we have ∥u+v∥2 = ∥u∥2 +2 (u · v)+ ∥v∥2.
Taking the square root of both sides yields ∥u+ v∥ =

√
∥u∥2 + 2 (u · v) + ∥u∥2.

Substituting in the given values of ∥u∥ = 2, ∥v∥ =
√
3, and u · v = 1

gives us ∥u+ v∥ =

√
22 + 2 (1) +

(√
3
)2

=
√
4 + 2 + 3 =

√
9 = 3.
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67. We need to show ∥u∥ = 1 and ∥v∥ = 2 imply u · v ̸= 3.
From Theorem 1.4 (the Cauchy-Schwarz Inequality), we have |x · y| ≤ ∥x∥ ∥y∥.
Substituting in the given values of ∥u∥ = 1 and ∥v∥ = 2 shows |u · v| ≤ 2.
Therefore, −2 ≤ u · v ≤ 2. It follows immediately that u · v ̸= 3.

68. (a) Assume that u is orthogonal to both v and w, so u · v = u ·w = 0.
Then u · (v +w) = u · v + u ·w = 0 + 0 = 0, so u is orthogonal to v +w.

(b) Assume that u is orthogonal to both v and w, so u · v = u ·w = 0.
Then u · (sv + tw) = u · (sv) + u · (tw) = s (u · v) + t (u ·w) = s (0) + t (0) = 0 + 0 = 0,
so u is orthogonal to sv + tw.

69. Two vectors (u and v) are orthogonal if their dot product equals zero. So we evaluate:

u · (v−proju(v)) = u ·
(
v −

(u · v
u · u

)
u
)
= u · v − u ·

(u · v
u · u

)
u

= u · v −
(u · v
u · u

)
(u · u) = u · v − u · v = 0.

70. (a) proju (proju(v)) = proju

(u · v
u · u

u
)
=
(u · v
u · u

)
proju(u) =

(u · v
u · u

)
u = proju(v).

(b) proju(v − proju(v)) = proju

(
v − u · v

u · u
u
)
=
(u · v
u · u

)
u−

(u · v
u · u

)(u · u
u · u

)
u

=
(u · v
u · u

)
u−

(u · v
u · u

)
u = 0.

(c)

6

3

6

-?

u

v

proju(v)

v − proju(v)
−proju(v)

From the diagram, we see that proju (v) ∥ u,

so proju (proju (v)) = proju (v).

Also, (v − proju (v)) ⊥ u,

so proju (v − proju (v)) = 0.
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71. (a) The Cauchy-Schwarz Inequality tells us |u · v| ≤ ∥u∥∥v∥.
Squaring both sides, we get |u · v|2 ≤ ∥u∥2∥v∥2.

In R2 with u =

[
u1
u2

]
and v =

[
v1
v2

]
, this becomes (u1v1 + u2v2)

2 ≤
(
u21 + u22

) (
v21 + v22

)
⇔

0 ≤
(
u21 + u22

) (
v21 + v22

)
− (u1v1 + u2v2)

2 ⇔ 0 ≤ u21v
2
2 + u22v

2
1 − 2u1u2v1v2 ⇔

0 ≤ 1
2 (u1v2 − u2v1)

2
+ 1

2 (u2v1 − u1v2)
2
.

Since the final statement is true, all the statements are true.

(b) Let u and v be elements of R3. Then |u · v|2 ≤ ∥u∥2∥v∥2 ⇔
(u1v1 + u2v2 + u3v3)

2 ≤
(
u21 + u22 + u23

) (
v21 + v22 + v23

)
⇔

0 ≤
(
u21 + u22 + u23

) (
v21 + v22 + v23

)
− (u1v1 + u2v2 + u3v3)

2 ⇔
0 ≤ u21v

2
2 + u21v

2
3 + u22v

2
1 + u22v

2
3 + u23v

2
1 + u23v

2
2 − 2u1v1u2v2 − 2u1v1u3v3 − 2u2v2u3v3 ⇔

0 ≤ 1
2 (u1v2 − u2v1)

2
+ 1

2 (u2v1 − u1v2)
2
+ 1

2 (u1v3 − u3v1)
2

+ 1
2 (u3v1 − u1v3)

2
+ 1

2 (u2v3 − u3v2)
2
+ 1

2 (u3v2 − u2v3)
2
.

Since the final statement is true, all the statements are true.

72. ∥proju(v)∥ =
∥∥∥(u · v

u · u

)
u
∥∥∥ =

∥∥∥∥∥u∥∥v∥ cos θ∥u∥u∥

∥∥∥∥ ∥u∥ =
∥u∥∥v∥
∥u∥∥u∥

∥u∥| cos θ|

= ∥v∥ |cos θ| ≤ ∥v∥ (since |cos θ| ≤ 1).

73. We have proju (v) = cu. From the figure, we see that cos θ =
c∥u∥
∥v∥

, so u · v = ∥u∥∥v∥c∥u∥
∥v∥

which we solve for c to get c =
u · v
∥u∥2

. Thus, proju (v) =
(u · v
u · u

)
u since ∥u∥2 = u · u.
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74. Proof by Induction
See Appendix B for further discussion and examples of Mathematical Induction.
Also see Chapter 3 of this Study Guide.

Using induction, we will prove the generalized Triangle Inequality:

∥v1 + v2 + . . .+ vn∥ ≤ ∥v1∥+ ∥v2∥+ . . .+ ∥vn∥ for all n ≥ 1.

1: ∥v1∥ ≤ ∥v1∥
This is obvious, so there is nothing to show.

k: ∥v1 + v2 + . . .+ vk∥ ≤ ∥v1∥+ ∥v2∥+ . . .+ ∥vk∥
This is the induction hypothesis, so there is nothing to show.

k + 1: ∥v1 + v2 + . . .+ vk + vk+1∥ ≤ ∥v1∥+ ∥v2∥+ . . .+ ∥vk∥+ ∥vk+1∥
This is the statement we must prove using the induction hypothesis.

The Triangle inequality, ∥u+ v∥ ≤ ∥u∥+ ∥v∥, will also be key.

Let vk + vk+1 by the kth vector in the induction hypothesis. Then:

∥v1 + v2 + . . .+ vk + vk+1∥

by
induction

≤ ∥v1∥+ ∥v2∥+ . . .+ ∥vk + vk+1∥

Applying The Triangle Inequality, we have ∥vk + vk+1∥ ≤ ∥vk∥+ ∥vk+1∥. So:

∥v1 + v2 + . . .+ vk + vk+1∥

by
Tri Inq

≤ ∥v1∥+ ∥v2∥+ . . .+ ∥vk∥+ ∥vk+1∥

We have proven (by induction) that

∥v1 + v2 + . . .+ vn∥ ≤ ∥v1∥+ ∥v2∥+ . . .+ ∥vn∥ for all n ≥ 1.

Induction can seem a little bit like magic at first glance.
Pay close attention to how the induction hypothesis is used to in the proof.
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Exploration: Vectors and Geometry

Since Explorations are self-contained, only solutions will be provided.

1. Like Example 1.18: m− a =
−−→
AM = 1

3

−−→
AB = 1

3 (b− a) ⇒ m = a+ 1
3 (b− a) = 1

3 (2a+ b).

In general, m− a =
−−→
AM = 1

n

−−→
AB = 1

n (b− a) ⇒ m = a+ 1
n (b− a) = 1

n ((n− 1)a+ b).

Note as n→ ∞, m → a.

2. We use the notation that the vector beginning at the origin and ending at the point X is x.

Therefore, from Exercise 1, we have: p = 1
2 (a+ c) and q = 1

2 (b+ c) ⇒
−−→
PQ = q− p = 1

2 (b+ c)− 1
2 (a+ c) = 1

2 (b− a) = 1
2

−−→
AB.

3. Draw in
−→
AC. Then from Exercise 2, we have:

−−→
PQ = 1

2

−−→
AB =

−→
SR.

Draw in
−−→
BD. Then from Exercise 2, we have:

−→
PS = 1

2

−−→
BD =

−−→
QR⇒

PQRS is a parallelogram (opposite sides are parallel and congruent).

4. Following the hint, we find m, the point that is two-thirds of the distance from A to P .

From Exercise 1, we have: p = 1
2 (b+ c) ⇒ m = 1

3 (2p+a) = 1
3 (2 ·

1
2 (b+ c)+a) = 1

3 (a+b+ c).

Next, we find m′, the point that is two-thirds of the distance from B to Q.

From Exercise 1, we have: q = 1
2 (a+c) ⇒ m′ = 1

3 (2q+b) = 1
3 (2 ·

1
2 (a+c)+b) = 1

3 (a+b+c).

Finally, we find m′′, the point that is two-thirds of the distance from C to R.

From Exercise 1, we have: r = 1
2 (a+b) ⇒ m′′ = 1

3 (2r+c) = 1
3 (2 ·

1
2 (a+b)+c) = 1

3 (a+b+c).

We have shown m = m′ = m′′. That is, the medians intersect at the centroid, G.

5. We are given
−−→
AH is orthogonal to

−−→
BC, that is

−−→
AH ·

−−→
BC = 0 and

−−→
BH is orthogonal to

−→
AC, that is

−−→
BH ·

−→
AC = 0.

We need to show
−−→
CH is orthogonal to

−−→
AB, that is

−−→
CH ·

−−→
AB = 0.

−−→
AH ·

−−→
BC = 0 ⇒ (h− a) · (b− c) = 0

−−→
BH ·

−→
AC = 0 ⇒ (h− b) · (c− a) = 0

⇒ h · b− h · c− a · b+ a · c = 0
h · c− h · a− b · c+ a · b = 0

⇒

0 = h · b− h · a− c · b+ a · c = (h− c) · (b− a) =
−−→
CH ·

−−→
AB = 0 ⇒

−−→
CH is orthogonal to

−−→
AB, so all the altitudes intersect at the orthocenter, H.
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6. We are given
−−→
QK is orthogonal to

−→
AC, that is

−−→
QK ·

−→
AC = 0 and

−−→
PK is orthogonal to

−−→
CB, that is

−−→
PK ·

−−→
CB = 0.

We need to show
−−→
RK is orthogonal to

−−→
AB, that is

−−→
RK ·

−−→
AB = 0.

By Exercise 1, we have q = 1
2 (a+ c) and p = 1

2 (b+ c). So:
−−→
QK ·

−→
AC = 0 ⇒ (k− q) · (c− a) = 0 ⇒ (k− 1

2 (a+ c)) · (c− a) = 0
−−→
PK · −−→CB = 0 ⇒ (k− p) · (b− c) = 0 ⇒ (k− 1

2 (b+ c)) · (b− c) = 0
⇒

k · c− k · a− 1
2 a · c+ 1

2 a · a− 1
2 c · c+

1
2 a · c = 0

k · b− k · c− 1
2 b · b+ 1

2 b · c− 1
2 c · b+ 1

2 c · c = 0
⇒

0 = k ·b−k ·a− 1
2 b ·b+ 1

2 a ·a = (k− 1
2 (b+a)) · (b−a) = (k− r) · (b−a) =

−−→
RK ·

−−→
AB = 0 ⇒

−−→
RK is orthogonal to

−−→
AB, so all perpendicular bisectors intersect at the circumcenter, K.

7. Let O be the origin, then we have: b = −a and ∥a∥2 = ∥c∥2 = r2, r = radius of the circle.

We need to show
−→
AC is orthogonal to

−−→
BC, that is

−→
AC ·

−−→
BC = 0 ⇒

(c− a) · (c−b) = (c− a) · (c+ a) = ∥c∥2 + c · a−∥a∥2 − a · c = (a · c− a · c) + (r2 − r2) = 0 ⇒
−→
AC is orthogonal to

−−→
BC, so ∠ACB is a right angle.

8. As in Exercise 5, we find m, the point that is one-half of the distance from P to R.

From Exercise 1, we have: p = 1
2 (a+ b) and r = 1

2 (c+ d) ⇒
m = 1

2 (p+ r) = 1
2 (

1
2 (a+ b) + 1

2 (c+ d)) = 1
4 (a+ b+ c+ d).

Next, we find m′, the point that is one-half of the distance from Q to S.

From Exercise 1, we have: q = 1
2 (b+ c) and s = 1

2 (a+ d) ⇒
m′ = 1

2 (q+ s) = 1
2 (

1
2 (b+ c) + 1

2 (a+ d)) = 1
4 (a+ b+ c+ d).

We have shown m = m′.

That is, PR and QS bisect each other because they intersect at their mutual midpoint.
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1.3 Lines and Planes

1. Following Example 1.27, we will:
(a) find the normal form by substituting into n · x = n · p and
(b) find the general form by computing those dot products.

(a) n =

[
3
2

]
, x =

[
x
y

]
, and p =

[
0
0

]
⇒ The normal form is

[
3
2

]
·
[
x
y

]
=

[
3
2

]
·
[
0
0

]
.

(b)

[
3
2

]
·
[
x
y

]
= 3x+ 2y and

[
3
2

]
·
[
0
0

]
= 0 ⇒ The general form is 3x+ 2y = 0.

2. Following Example 1.27, we will:
(a) find the normal form by substituting into n · x = n · p and
(b) find the general form by computing those dot products.

(a) n =

[
3

−4

]
, x =

[
x
y

]
, p =

[
2
1

]
⇒ Normal form is

[
3

−4

]
·
[
x
y

]
=

[
3

−4

]
·
[
2
1

]
.

(b)

[
3

−4

]
·
[
x
y

]
= 3x− 4y and

[
3

−4

]
·
[
1
2

]
= 2 ⇒ The general form is 3x− 4y = 2.

3. Following Example 1.28, we will:
(a) find the vector form by substituting into x = p+ td and
(b) find the parametric form by equating components.

(a) x =

[
x
y

]
, p =

[
1
0

]
, and d =

[
−1
3

]
⇒ The vector form is

[
x
y

]
=

[
1
0

]
+ t

[
−1
3

]
.

(b) The vector form in (a) implies the parametric form is
x = 1− t
y = 3t

.

4. Following Example 1.28, we will:
(a) find the vector form by substituting into x = p+ td and
(b) find the parametric form by equating components.

(a) x =

[
x
y

]
, p =

[
3

−3

]
, and d =

[
−1
1

]
⇒ The vector form is

[
x
y

]
=

[
3

−3

]
+ t

[
−1
1

]
.

(b) The vector form in (a) implies the parametric form is
x = 3− t
y = −3 + t

.
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5. Following Example 1.28, we will:
(a) find the vector form by substituting into x = p+ td and
(b) find the parametric form by equating components.

(a) x =

 xy
z

, p =

 0
0
0

, and d =

 1
−1
4

⇒ The vector form is

 xy
z

 =

 0
0
0

+ t

 1
−1
4

.
(b) The vector form in (a) implies the parametric form is

x = t
y = −t
z = 4t

.

6. Following Example 1.28, we will:
(a) find the vector form by substituting into x = p+ td and
(b) find the parametric form by equating components.

(a) x =

 xy
z

, p =

 −3
1
2

, and d =

 1
0
5

⇒ The vector form is

 xy
z

 =

 −3
1
2

+ t

 1
0
5

.
(b) The vector form in (a) implies the parametric form is

x = −3 + t
y = 1
z = 2 + 5t

.

7. Following Example 1.30, we will:
(a) find the normal form by substituting into n · x = n · p and
(b) find the general form by computing those dot products.

(a) n =

 3
2
1

, x =

 xy
z

, p =

 0
1
0

⇒ The normal form is

 3
2
1

·
 xy
z

 =

 3
2
1

·
 0
1
0

.
(b)

 3
2
1

 ·

 xy
z

 = 3x+ 2y + z and

 3
2
1

 ·

 0
1
0

 = 2 ⇒ The general form is 3x+ 2y + z = 2.

8. Following Example 1.30, we will:
(a) find the normal form by substituting into n · x = n · p and
(b) find the general form by computing those dot products.

(a) n =

 1
0
5

, x =

 xy
z

, p =

 −3
1
2

⇒ Normal form

 1
0
5

 ·

 xy
z

 =

 1
0
5

 ·

 −3
1
2

.
(b)

 1
0
5

 ·

 xy
z

 = x+ 5z,

 1
0
5

 ·

 −3
1
2

 = 7 ⇒ The general form is x+ 5z = 7.
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9. Following Example 1.31, we will:
(a) find the vector form by substituting into x = p+ su+ tv and
(b) find the parametric form by equating components.

(a) x =

 xy
z

, p =

 0
0
0

, u =

 2
1
2

, and v =

 −3
2
1

⇒

The vector form is

 xy
z

 =

 0
0
0

+ s

 2
1
2

+ t

 −3
2
1

.
(b) The vector form in (a) implies the parametric form is

x = 2s− 3t
y = s+ 2t
z = 2s+ t

.

10. Following Example 1.31, we will:
(a) find the vector form by substituting into x = p+ su+ tv and
(b) find the parametric form by equating components.

(a) x =

 xy
z

, p =

 4
−1
3

, u =

 1
1
0

, and v =

 −1
1
1

⇒

The vector form is

 xy
z

 =

 4
−1
3

+ s

 1
1
0

+ t

 −1
1
1

.
(b) The vector form in (a) implies the parametric form is

x = 4 + s− t
y = −1 + s+ t
z = −3 + t

.

11. Following Example 1.31, we realize we may choose any point on ℓ,
so we will use P (Q would also be fine).

A convenient direction vector is d =
−−→
PQ =

[
2
2

]
(or any scalar multiple of this).

Thus we obtain: x = p+ td

=

[
1

−2

]
+ t

[
2
2

]
.

12. Following Example 1.31, we realize we may choose any point on ℓ,
so we will use P (Q would also be fine).

A convenient direction vector is d =
−−→
PQ =

 −2
2
0

 (or any scalar multiple of this).

Thus we obtain: x = p+ td

=

 4
−1
3

+ t

 −2
2
0

.
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13. Following Example 1.31, we realize we need to find two direction vectors, u and v.
Since P = (1, 1, 1), Q = (4, 0, 2), and R = (0, 1,−1) lie in plane P, we compute:

u =
−−→
PQ = q− p =

 3
−1
1

 and v =
−→
PR = r− p =

 −1
0

−2

.
Since u and v are not scalar multiples of each other, they will serve as direction vectors.
If u and v were scalar multiples of each other, we would not have a plane but simply a line.

Therefore, we have the vector equation of P:
 xy
z

 =

 1
1
1

+ s

 3
−1
1

+ t

 −1
0

−2

.
14. Following Example 1.31, we realize we need to find two direction vectors, u and v.

Since P = (1, 0, 0), Q = (0, 1, 0), and R = (0, 0, 1) lie in plane P, we compute:

u =
−−→
PQ = q− p =

 −1
1
0

 and v =
−→
PR = r− p =

 −1
0
1

.
Since u and v are not scalar multiples of each other, they will serve as direction vectors.
If u and v were scalar multiples of each other, we would not have a plane but simply a line.

Therefore, we have the vector equation of P:
 xy
z

 =

 1
0
0

+ s

 −1
1
0

+ t

 −1
0
1

.
15. The parametric equations and associated vector forms x = p+ td found below are not unique.

(a) As in the remarks prior to Example 1.20, we begin by letting x = t.
When we substitute x = t into y = 3x− 1, we get y = 3 (t)− 1. So, we have the following:

Parametric equations
x = t
y = −1 + 3t

and vector form

[
x
y

]
=

[
0

−1

]
+ t

[
1
3

]
.

(b) In this case since the coefficient of y is 2, we begin by letting x = 2t.
When we substitute x = 2t into 3x+ 2y = 5, we get 3(2t) + 2y = 5.
Solving for y yields y = −3t+ 2.5. So, we have the following:

Parametric equations:
x = 2t
y = 2.5− 3t

and vector form

[
x
y

]
=

[
0
2.5

]
+ t

[
2

−3

]
.

We discover the following pattern: if line ℓ has equation ax+ by = c, then d =

[
b

−a

]
.
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16. By convention, u is the vector with its tail at the origin and its head at the point U .
So, when x = u, the line described by x = p+ td passes through the point U .

We note x = p+ td where d = q− p is the line that passes through P and Q,

since it passes through P (when t = 0) in the direction of
−−→
PQ (= q− p).

(a) To show x describes the line segment PQ as t varies from 0 to 1, we need to show:
when t = 0, x = p which implies the line described by x passes through the point P and
when t = 1, x = q which implies the line described by x passes through the point Q.

When t = 0, x = p+ 0 (q− p) = p.
When t = 1, x = p+ 1 (q− p) = q.

Therefore, x = p+ t (q− p) describes the line segment PQ as t varies from 0 to 1.

(b) As shown in Exploration: Vectors and Geometry to find the midpoint of PQ,

we start at P and travel half the length of PQ in the direction of the vector
−−→
PQ = q− p.

In the language of vectors, we add 1
2

−−→
PQ = 1

2 (q− p) to the vector p.

So, the vector whose head is the midpoint of PQ is p+ 1
2 (q− p).

Equating this to our expression for x yields: p+ 1
2 (q− p) = p+ t (q− p).

It follows immediately that t = 1
2 and x = p+ 1

2 (q− p) = 1
2 (p+ q).

(c) Given p = [2,−3], q = [0, 1], and x = 1
2 (p+ q), we have:

x = 1
2 ([0, 1] + [2,−3]) = [1,−1]. So, the midpoint of PQ is (1,−1).

(d) Given p = [1, 0, 1], q = [4, 1,−2], and x = 1
2 (p+ q), we have:

x = 1
2 ([1, 0, 1] + [4, 1,−2]) =

[
5
2 ,

1
2 ,−

1
2

]
. So, the midpoint of PQ is

(
5
2 ,

1
2 ,−

1
2

)
.

(e) We want two points (parameterized by t1, t2) to split PQ into three equal segments.
As in (c), the vectors whose heads are one and two-thirds of PQ from P are

p+ 1
3 (q− p) and p+ 2

3 (q− p).

Equating these to our expression for x yields:

p+ 1
3 (q− p) = p+ t1 (q− p) and p+ 2

3 (q− p) = p+ t2 (q− p).

It follows immediately that t1 = 1
3 and t2 = 2

3 , so

x1 = p+ 1
3 (q− p) = 1

3 (2p+ q) and x2 = p+ 2
3 (q− p) = 1

3 (p+ 2q).

Given p = [2,−3], q = [0, 1], x1 = 1
3 (2p+ q), and x2 = 1

3 (p+ 2q), we have:

x1 = 1
3 (2 [0, 1] + [2,−3]) =

[
4
3 ,−

5
3

]
and x2 = 1

3 ([0, 1] + 2 [2,−3]) =
[
2
3 ,−

1
3

]
.

So, the two points that divide PQ into three equal parts are
(
4
3 ,−

5
3

)
and

(
2
3 ,−

1
3

)
.

(f) Likewise p = [1, 0,−1], q = [4, 1,−2], x1 = 1
3 (2p+ q), and x2 = 1

3 (p+ 2q), yields:

x1 = 1
3 (2 [1, 0,−1] + [4, 1,−2]) =

[
2, 13 ,−

4
3

]
, x2 = 1

3 ([1, 0,−1] + 2 [4, 1,−2]) =
[
3, 23 ,−

1
3

]
.

So, the two points that divide PQ into three equal parts are
(
2, 13 ,−

4
3

)
and

(
3, 23 ,−

5
3

)
.
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17. Need to show ℓ1 with slope m1 is perpendicular to ℓ2 with slope m2 if and only if m1m2 = −1.

By definition, one possible form of the general equation for ℓ1 with slope m1 is −m1x+ y = b1.

So, the normal vector for ℓ1 is n1 =

[
−m1

1

]
and the normal vector for ℓ2 is n2 =

[
−m2

1

]
.

Now we note ℓ1 is perpendicular to line ℓ2 if and only if n1 · n2 = 0, so we have:

n1 · n2 =

[
−m1

1

]
·
[
−m1

1

]
= m1m2 + 1 = 0 which implies m1m2 = −1 as we were to show.

18. Given d is the direction vector of line ℓ and n is the normal vector to the plane P, we have:
If d and n are orthogonal which implies d · n = 0, then line ℓ is parallel to plane P.
If d and n are parallel which implies d = cn (scalar multiples), then ℓ is perpendicular to P.

(a) Since the general form of P is 2x+ 3y − z = 1, its normal vector is n =

 2
3

−1

 = d.

Since d = 1n, ℓ is perpendicular to P.

(b) Since the general form of P is 4x− y + 5z = 0, its normal vector is n =

 4
−1
5

.
Since d · n =

 2
3

−1

 ·

 4
−1
5

 = 2 · 4 + 3 · (−1) + (−1) · 5 = 0, ℓ is parallel to P.

(c) Since the general form of P is x− y − z = 3, its normal vector is n =

 1
−1
−1

.
Since d · n =

 2
3

−1

 ·

 1
−1
−1

 = 2 · 1 + 3 · (−1) + (−1) · (−1) = 0, ℓ is parallel to P.

(d) Since the general form of P is 4x+ 6y − 2z = 0, its normal vector is n =

 4
6

−2

.
Since d =

 2
3

−1

 =
1

2

 4
6

−2

 =
1

2
n, ℓ is perpendicular to P.
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19. Given n1 is the normal vector of P1 and n is the normal vector of P, we have:
If n1 and n are orthogonal which implies n1 · n = 0, then P1 is perpendicular to P.
If n1 and n are parallel which implies n1 = cn (scalar multiples), then P1 is parallel to P.

(a) Since the general form of P is 2x+ 3y − z = 1, its normal vector is n =

 2
3

−1

.
Since n1 · n =

 4
−1
5

 ·

 2
3

−1

 = 4 · 2 + (−1) · 3 + 5 · (−1) = 0, P1 is perpendicular to P.

(b) Since the general form of P is 4x− y + 5z = 0, its normal vector is n =

 4
−1
5

.
Since n1 = 1n, P1 is parallel to P.

(c) Since the general form of P is x− y − z = 3, its normal vector is n =

 1
−1
−1

.
Since n1 · n =

 4
−1
5

 ·

 1
−1
−1

 = 0, P1 is perpendicular to P.

(d) Since the general form of P is 4x+ 6y − 2z = 0, its normal vector is n =

 4
6

−2

.
Since n1 · n =

 4
−1
5

 ·

 4
6

−2

 = 0, P1 is perpendicular to P.

20. Since the vector form is x = p+ td, we use the given information to determine p and d.

The general equation of the given line is 2x− 3y = 1, so its normal vector is n =

[
2

−3

]
.

Our line is perpendicular to the given line, so it has direction vector d = n =

[
2

−3

]
.

Furthermore, since our line passes through the point P = (2,−1), we have p =

[
2

−1

]
.

So, the vector form of the line perpendicular to 2x− 3y = 1 through the point P = (2,−1) is[
x
y

]
=

[
2

−1

]
+ t

[
2

−3

]
.
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21. Since the vector form is x = p+ td, we use the given information to determine p and d.

The general equation of the given line is 2x− 3y = 1, so its normal vector is n =

[
2

−3

]
.

Our line is parallel to the given line, so it has direction vector d =

[
3
2

]
.

This comes from the solution of Exercise 45 in Section 1.2: n ·d =

[
a
b

]
·
[

b
−a

]
= ab− ab = 0.

Continuing, since our line passes through the point P = (2,−1), we have p =

[
2

−1

]
.

So, the vector form of the line parallel to 2x− 3y = 1 through the point P = (2,−1) is[
x
y

]
=

[
2

−1

]
+ t

[
3
2

]
.

22. Since the vector form is x = p+ td, we use the given information to determine p and d.

A line is perpendicular to a plane if its direction vector d = n the normal vector of the plane.

The general equation of the given plane is x− 3y + 2z = 5, so its normal vector is n =

 1
−3
2

.
Therefore, the direction vector of our line is d = n =

 1
−3
2

.
Furthermore, since our line passes through the point P = (−1, 0, 3), we have p =

 −1
0
3

.
So, the vector form of the line perpendicular to x− 3y + 2z = 5 through P = (−1, 0, 3) is xy

z

 =

 1
0

−3

+ t

 1
−3
2

.
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23. Since the vector form is x = p+ td, we use the given information to determine p and d.

A line with parametric equations
x = a+ et
y = b+ ft
z = c+ gt

has vector form

 xy
z

 =

 ab
c

+ t

 e
f
g

.
Therefore, its direction vector is d =

 e
f
g

. We use this key observation below.

Since the given line has parametric equations
x = 1− t
y = 2 + 3t
z = −2− t

,

it has vector form

 xy
z

 =

 1
2

−2

+ t

 −1
3

−1

. So, its direction vector is

 −1
3

−1

.
Since our line is parallel to the given line, its direction vector is also d =

 −1
3

−1

.
Furthermore, since our line passes through the point P = (−1, 0, 3), we have p =

 −1
0
3

.
So, the vector form of the line parallel to the given line through P = (−1, 0, 3) is xy

z

 =

 −1
0
3

+ t

 −1
3

−1

.
24. Since the normal form is n · x = n · p, we use the given information to determine n and p.

A plane is parallel to a given plane if their normal vectors n are equal.

Since the general form of the given plane is 6x− y + 2z = 3, its normal vector is n =

 6
−1
2

.
Since our plane is parallel to the given plane, its normal vector is also n =

 6
−1
2

.
Furthermore, since our plane passes through the point P = (0,−2, 5), we have p =

 0
−2
5

.
So, the normal form of the plane parallel to 6x− y + 2z = 3 through P = (0,−2, 5) is 6

−1
2

 ·

 xy
z

 =

 6
−1
2

 ·

 0
−2
5

 or

 6
−1
2

 ·

 xy
z

 = 12.



42 1 Vectors

25. Following Example 1.23, we will determine the general equations in two simple steps:
First, we will use Figure 1.31 in Section 1.2 to find a normal vector n and a point vector p.
Then we will substitute into n · x = n · p and compute the dot products to find the equations.

(a) We start with P1 determined by the face of the cube in the yz-plane.

It is clear that a normal vector for P1 is n =

 1
0
0

 or any vector parallel to the x-axis.

Also we see that P1 passes through the origin P = (0, 0, 0), so we set p =

 0
0
0

.
Substituting into n ·x = n ·p yields

 1
0
0

 ·
 xy
z

 =

 1
0
0

 ·
 0
0
0

 or 1 ·x+0 · y+0 · z = 0.

So, the general equation for P1 determined by the face in the yz-plane is x = 0.

Likewise, the general equation for P2 determined by the face in the xz-plane is y = 0
and the general equation for P3 determined by the face in the xy-plane is z = 0.

We have found equations for the planes that pass through the origin.
We will use this information to find equations for the planes that pass through (1, 1, 1).
We begin with P4 passing through the face parallel to the face in the yz-plane.

Since P4 is parallel to the face in the yz-plane, its normal vector is n =

 1
0
0

.
As previously noted P4 passes through the point P = (1, 1, 1), so we set p =

 1
1
1

.
Substituting into n ·x = n ·p yields

 1
0
0

 ·
 xy
z

 =

 1
1
1

 ·
 1
0
0

 or 1 ·x+0 · y+0 · z = 1.

So, the general equation for P4 is x = 1.
Likewise, the general equations for P5 and P6 are y = 1 and z = 1 respectively.
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(b) We will use the given information to determine n and p, then compute n · x = n · p.
We begin by observing the two key facts that will enable us to find n and p:
Two planes P1, P are perpendicular if their normal vectors are orthogonal, so n1 ·n = 0.
Every vector u in the plane P1 is orthogonal to its normal vector n1, so n1 · u = 0.

Condition 1: Our plane must be perpendicular to the xy-plane, so n1 · n = 0. From (a),

n =

 0
0
1

, so n1 · n =

 xy
z

 ·

 0
0
1

 = 0 ⇒ z = 0. So, n1 is of the form

 xy
0

.
Condition 2: n1 must be perpendicular to the vector u from the origin to (1, 1, 1).

Since u =

 1− 0
1− 0
1− 0

 =

 1
1
1

, we have n1 · n =

 xy
0

 ·

 1
1
1

 = 0 ⇒ x+ y = 0 ⇒ y = −x.

So, P1 must be of the form n1 =

 x
−x
0

 = x

 1
−1
0

. Letting x = 1 yields n1 =

 1
−1
0

.
As previously noted P1 passes through the origin P = (0, 0, 0), so we set p =

 0
0
0

.
Now n · x = n · p yields

 1
−1
0

 ·

 xy
z

 =

 1
−1
0

 ·

 0
0
0

 or 1 · x+ (−1) · y + 0 · z = 0.

Therefore, the general equation for the plane perpendicular to the xy-plane and
containing the diagonal from the origin to (1, 1, 1) is x− y = 0.

(c) As above, use u = [0, 1, 1] and v = [1, 0, 1] from Example 1.15 of Section 1.2 to find n.

From n · u =

 xy
z

 ·

 0
1
1

 = 0 ⇒ y + z = 0 ⇒ y = −z.

From n · v =

 x
−z
z

 ·

 1
0
1

 = 0 ⇒ x+ z = 0 ⇒ x = −z.

So, the normal vector n =

 −z
−z
z

 = z

 −1
−1
1

. When z = −1, we have n =

 1
1

−1

.
It is obvious the side diagonals pass through the origin P = (0, 0, 0), so we set p =

 0
0
0

.
Now n · x = n · p yields

 1
1

−1

 ·

 xy
z

 =

 1
1

−1

 ·

 0
0
0

 or 1 · x+ 1 · y + (−1) · z = 0.

The general equation for the plane containing the side diagonals is x+ y − z = 0.
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26. Finding the distance between points A and B is equivalent to finding d(a,b).
Given x = [x, y, z], p = [1, 0,−2], and q = [5, 2, 4], we have the condition d(x,p) = d(x,q).
We simplify that equation to find the condition all points X = (x, y, z) must satisfy.

d(x,p) =

√
(x− 1)

2
+ (y − 0)

2
+ (z + 2)

2
=

√
(x− 5)

2
+ (y − 2)

2
+ (z − 4)

2
= d(x,q).

Squaring both sides, we have: (x− 1)
2
+(y − 0)

2
+(z + 2)

2
= (x− 5)

2
+(y − 2)

2
+(z − 4)

2 ⇒(
x2 − 2x+ 1

)
+ y2 +

(
z2 + 4z + 4

)
=
(
x2 − 10x+ 25

)
+
(
y2 − 4y + 4

)
+
(
z2 − 8z + 16

)
.

Noting the squares cancel and combining the other like terms, we have: 8x+ 4y + 12z = 40.
Dividing both sides by 4, we see all points X = (x, y, z) lie in the plane 2x+ y + 3z = 10.

27. We will first follow Example 1.25, then use d(Q, ℓ) =
|ax0 + by0 − c|√

a2 + b2
and compare results.

Comparing

[
x
y

]
=

[
−1
2

]
+ t

[
1

−1

]
to x = p+ td, we see ℓ has P = (−1, 2) and d =

[
1

−1

]
.

As suggested by Figure 1.63, we need to calculate the length of
−−→
RQ,

where R is the point on ℓ at the foot of the perpendicular from Q.

Now if we let v =
−−→
PQ, then

−→
PR = projd(v) and

−−→
RQ = v − projd(v).

Step 1. v =
−−→
PQ = q− p =

[
2
2

]
−
[
−1
2

]
=

[
3
0

]
.

Step 2. projd(v) =

(
d · v
d · d

)
d =

(
1 · 3 + (−1) · 0

1 · 1 + (−1) · (−1)

)[
1

−1

]
=

3

2

[
1

−1

]
=

[
3/2

−3/2

]
.

Step 3. The vector we want is v − projd(v) =

[
3
0

]
−
[

3/2
−3/2

]
=

[
3/2
3/2

]
.

Step 4. The distance d(Q, ℓ) from Q to ℓ is ∥v − projd(v)∥ =

∥∥∥∥[ 3/2
3/2

]∥∥∥∥.
So Theorem 1.3(b) implies ∥v − projd(v) ∥ =

3

2

∥∥∥∥[ 1
1

]∥∥∥∥ =
3

2

√
1 + 1 =

3
√
2

2
.

Now in order to calculate d(Q, ℓ) =
|ax0 + by0 − c|√

a2 + b2
we need to put ℓ into general form.

If d =

[
a
b

]
, then n =

[
b

−a

]
because

[
a
b

]
·
[

b
−a

]
= 0. For ℓ, d =

[
1

−1

]
so n =

[
1
1

]
.

From n · x = n · p we have

[
1
1

]
·
[
x
y

]
=

[
1
1

]
·
[
−1
2

]
so x+ y = 1 and a = b = c = 1.

Furthermore, since Q = (2, 2) = (x0, y0) we have x0 = y0 = 2.

So d(Q, ℓ) =
|2 + 2− 1|√

12 + 12
=

3√
2
=

3
√
2

2
exactly as we found by following Example 1.25.
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28. We will follow Example 1.25, then use d(Q, ℓ) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
and compare results.

Even though the formula d(Q, ℓ) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
was developed for planes,

it can work for lines in R3 with the proper choice of n = [a, b, c].

Comparing

 xy
z

 =

 1
1
1

+ t

 −2
0
3

 to x = p+ td, we see P = (1, 1, 1) and d =

 −2
0
3

.
As suggested by Figure 1.63, we need to calculate the length of

−−→
RQ,

where R is the point on ℓ at the foot of the perpendicular from Q.

Now if we let v =
−−→
PQ, then

−→
PR = projd(v) and

−−→
RQ = v − projd(v).

Step 1. v =
−−→
PQ = q− p =

 0
1
0

−

 1
1
1

 =

 −1
0

−1

.
Step 2. projd(v) =

(
d · v
d · d

)
d =

(
(−2) · (−1) + (3) · (−1)

(−2) · (−2) + 3 · 3

) −2
0
3

 =

 2/13
0

−3/13

.
Step 3. The vector we want is v − projd(v) =

 −1
0

−1

−

 2/13
0

−3/13

 =

 −15/13
0

−10/13

.
Step 4. The distance d(Q, ℓ) from Q to ℓ is ∥v − projd(v)∥ =

∥∥∥∥∥∥
 −15/13

0
−10/13

∥∥∥∥∥∥.
So Theorem 1.3(b) implies ∥v − projd(v) ∥ =

5

13

∥∥∥∥∥∥
 3
0
2

∥∥∥∥∥∥ =
5

13

√
9 + 4 =

5
√
13

13
.

Now in order to calculate d(Q, ℓ) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
we need to put ℓ into general form.

The appropriate choice of n mentioned at the top follows from the following observation:

Vector

 3
0
2

 found using Theorem 1.3(b) in Step 4 is orthogonal to d, so let n =

 3
0
2

.
From n · x = n · p,

 3
0
2

·
 xy
z

 =

 3
0
2

·
 1
1
1

 so 3x+ 2z = 5 and a = 3, b = 0, c = 2, d = 5.

Furthermore, since Q = (0, 1, 0) = (x0, y0, z0) we have x0 = 0, y0 = 1, and z0 = 0.

So d(Q, ℓ) =
|0 + 0 + 0− 5|√

32 + 22
=

5√
13

=
5
√
13

13
exactly as we found by following Example 1.25.
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29. We will follow Example 1.26, then use d(Q,P) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
and compare results.

By definition ax+ by + cz = d implies n = [a, b, c], so x+ y − z = 0 implies n = [1, 1,−1].

As suggested by Figure 1.64, we need to calculate the length of
−−→
RQ = projn(v), where v =

−−→
PQ.

Step 1. By trial and error, we find P = (1, 0, 1) satisfies x+ y − z = 0.

Step 2. v =
−−→
PQ = q− p =

 2
2
2

−

 1
0
1

 =

 1
2
1

.
Step 3. projn(v) =

(n · v
d · n

)
n =

(
1 · 1 + 1 · 2− 1 · 1
12 + 12 + (−1)

2

) 1
1

−1

 =
2

3

 1
1

−1

 =

 2/3
2/3

−2/3

.
Step 4. The distance from Q to P is ∥projn(v)∥ =

∥∥∥∥∥∥
 2/3

2/3
−2/3

∥∥∥∥∥∥ =
2

3

∥∥∥∥∥∥
 1

1
−1

∥∥∥∥∥∥ =
2
√
3

3
.

Now for d(Q,P) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
we need identify a, b, c, d, and x0, y0, z0.

Since x+ y − z = 0, a = 1, b = 1, c = −1, d = 0. From Q = (2, 2, 2), x0 = y0 = z0 = 2.

So d(Q,P) =
|2 + 2− 2 + 0|√
12 + 12 + (−1)2

=
2√
3
=

2
√
3

3
as we found by following Example 1.26.

30. We will follow Example 1.26, then use d(Q,P) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
and compare results.

By definition ax+ by + cz = d implies n = [a, b, c], so x− 2y + 2z = 1 implies n = [1,−2, 2].

As suggested by Figure 1.64, we need to calculate the length of
−−→
RQ = projn(v), where v =

−−→
PQ.

Step 1. By trial and error, we find P = (1, 0, 0) satisfies x− 2y + 2z = 1.

Step 2. v =
−−→
PQ = q− p =

 0
0
0

−

 1
0
0

 =

 −1
0
0

.
Step 3. projn(v) =

(n · v
d · n

)
n =

(
−1 · 1 + 0 · 0 + 0 · 0
12 + (−2)2 + 22

) 1
−2
2

 = −1

9

 1
−2
2

 =

 −1/9
2/9

−2/9

.
Step 4. The distance from Q to P is ∥projn(v)∥ =

∥∥∥∥∥∥
 −1/9

2/9
−2/9

∥∥∥∥∥∥ =
1

9

∥∥∥∥∥∥
 1
−2
2

∥∥∥∥∥∥ =
1

3
.

Now for d(Q,P) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
we need identify a, b, c, d, and x0, y0, z0.

Since x− 2y + 2z = 1, a = 1, b = −2, c = 2, d = 1. From Q = (0, 0, 0), x0 = y0 = z0 = 0.

So d(Q,P) =
|0− 0 + 0− 1|√
12 + (−2)2 + 22

=
1√
9
=

1

3
as we found by following Example 1.26.
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31. Similar to Example 1.25, Figure 1.63 suggests we let v =
−−→
PQ, then w =

−→
PR = projd(v).

Comparing

[
x
y

]
=

[
−1
2

]
+ t

[
1

−1

]
to x = p+ td, we see ℓ has P = (−1, 2) and d =

[
1

−1

]
.

Step 1. v =
−−→
PQ = q− p =

[
2
2

]
−
[
−1
2

]
=

[
3
0

]
.

Step 2. w = projd(v) =

(
d · v
d · d

)
d =

(
1 · 3 + (−1) · 0

1 · 1 + (−1) · (−1)

)[
1

−1

]
=

3

2

[
1

−1

]
=

[
3/2

−3/2

]
.

Step 3. So, r = p+
−→
PR = p+ projd(v) = p+w =

[
−1
2

]
+

[
3/2

−3/2

]
=

[
1/2
1/2

]
.

Therefore, the point R on ℓ that is closest to Q is
(
1
2 ,

1
2

)
.

32. Similar to Example 1.25, Figure 1.63 suggests we let v =
−−→
PQ, then w =

−→
PR = projd(v).

Comparing

 xy
z

 =

 1
1
1

+ t

 −2
0
3

 to x = p+ td, we see ℓ has P = (1, 1, 1) and d =

 −2
0
3

.

Step 1. v =
−−→
PQ = q− p =

 0
1
0

−

 1
1
1

 =

 −1
0

−1

.
Step 2. w = projd(v) =

(
d · v
d · d

)
d =

(
(−2) · (−1) + 3 · (−1)

(−2)
2
+ 32

) −2
0
3

 =

 2/13
0

−3/13

.
Step 3. So, r = p+

−→
PR = p+ projd(v) = p+w =

 1
1
1

+

 2/13
0

−3/13

 =

 15/13
1

10/13

.

Therefore, the point R on ℓ that is closest to Q is
(
15
13 , 1,

10
13

)
.
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33. Similar to Example 1.26, Figure 1.64 suggests we let v =
−−→
PQ, then w =

−−→
QR = −projn(v).

By definition ax+ by + cz = d implies n = [a, b, c], so x+ y − z = 0 implies n = [1, 1,−1].

Step 1. By trial and error, we find P = (1, 0, 1) satisfies x+ y − z = 0.

Step 2. v =
−−→
PQ = q− p =

 2
2
2

−

 1
0
1

 =

 1
2
1

.
Step 3. w = projn(v) =

(n · v
n · n

)
n =

(
1 · 1 + 1 · 2 + (−1) · 1

12 + 12 + (−1)
2

) 1
1

−1

 =

 2/3
2/3

−2/3

.
Step 4. So, r = p+

−−→
PQ+

−−→
QR = p+ v − projn(v) =

 1
0
1

+

 1
2
1

−

 2/3
2/3

−2/3

 =

 4/3
4/3
8/3

.

Therefore, the point R in P that is closest to Q is
(
4
3 ,

4
3 ,

8
3

)
.

34. Similar to Example 1.26, Figure 1.64 suggests we let v =
−−→
PQ, then w =

−−→
QR = projn(v).

By definition ax+ by + cz = d implies n = [a, b, c], so x− 2y + 2z = 1 implies n = [1,−2, 2].

Step 1. By trial and error, we find P = (1, 0, 0) satisfies x− 2y + 2z = 1.

Step 2. v =
−−→
PQ = q− p =

 0
0
0

−

 1
0
0

 =

 −1
0
0

.
Step 3. w = projn(v) =

(n · v
n · n

)
n =

(
1 · (−1)

12 + (−2)
2
+ 22

) 1
−2
2

 =

 −1/9
2/9

−2/9

.
Step 4. So, r = p+

−→
PR+

−−→
QR = p+ v + projn(v) =

 1
0
0

+

 −1
0
0

+

 −1/9
2/9

−2/9

 =

 −1/9
2/9

−2/9

.

Therefore, the point R in P that is closest to Q is
(
−1

9 ,
2
9 ,−

2
9

)
.
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35. Since the given lines ℓ1 and ℓ2 are parallel, we can simply choose Q on ℓ1, P on ℓ2.
Following Example 1.25, we have:

From ℓ1, Q = (1, 1). From ℓ2, we have P = (5, 4), d = [−2, 3], and n = [3, 2] = [a, b].

Step 1. v =
−−→
PQ = q− p = [1, 1]− [5, 4] = [−4,−3].

Step 2. projd(v) =

(
d · v
d · d

)
d =

(
(−2) · (−4) + 3 · (−3)

(−2)
2
+ 32

)[
−2
3

]
= − 1

13

[
−2
3

]
=

[
2/13

−3/13

]
.

Step 3. The vector we want is v − projd(v) =

[
−4
−3

]
−
[

2/13
−3/13

]
=

[
−54/13
−36/13

]
.

Step 4. The distance d(Q, ℓ2) from ℓ1 to ℓ2 is ∥v − projd(v)∥ =

∥∥∥∥[ −54/13
−36/13

]∥∥∥∥.
So Theorem 1.3(b) implies ∥v − projd(v) ∥ =

18

13

∥∥∥∥[ 3
2

]∥∥∥∥ =
18

13

√
4 + 9 =

18
√
13

13
.

From n · p =

[
3
2

]
·
[
5
4

]
= 23, c = 23. Since Q = (1, 1) = (x0, y0), we have x0 = y0 = 1.

Now compare: d(ℓ1, ℓ2) =d(Q, ℓ2) =
|ax0 + by0 − c|√

a2 + b2
=

|3 + 2− 23|√
32 + 22

=
18√
13

=
18
√
13

13
.

36. Since the given lines ℓ1 and ℓ2 are parallel, we can simply choose Q on ℓ1, P on ℓ2.
Following Example 1.25, we have:

From [x, y, z] = [1, 0,−1] + t [1, 1, 1], we see ℓ1 gives us Q = (1, 0,−1).

From [x, y, z] = [0, 1, 1] + t [1, 1, 1], we see ℓ2 has P = (0, 1, 1), d = [1, 1, 1], and n = [1,−2, 1].

Step 1. v =
−−→
PQ = q− p = [1, 0,−1]− [0, 1, 1] = [1,−1,−2]

Step 2. projd(v) =

(
d · v
d · d

)
d =

(
1 · 1− 1 · 1− 1 · 2

12 + 12 + 12

) 1
1
1

 = −2

3

 1
1
1

 =

 −2/3
−2/3
−2/3

.
Step 3. The vector we want is v − projd(v) =

 1
−1
−2

−

 −2/3
−2/3
−2/3

 =

 5/3
−1/3
−4/3

.
Step 4. The distance d(Q, ℓ2) from ℓ1 to ℓ2 is ∥v − projd(v)∥ =

∥∥∥∥∥∥
 5/3
−1/3
−4/3

∥∥∥∥∥∥.
So Theorem 1.3(b) implies ∥v − projd(v) ∥ =

1

3

∥∥∥∥∥∥
 5
−1
−4

∥∥∥∥∥∥ =
1

3

√
25 + 1 + 16 =

√
42

3
.

Set n = [5,−1,−4] = [a, b, c] we found in Step 4 because it is orthogonal to d.

From n · p = d = [5,−1,−4] · [0, 1, 1] = −5. Since Q = (1, 0,−1), x0 = 1, y0 = 0, z0 = −1.

Now compare: d(Q, ℓ2) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
=

|5 + 4 + 5|√
12 + (−2)2 + 12

=
14√
42

=

√
42

3
.
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37. Since the given planes P1 and P2 are parallel, we can simply choose Q in P1, P in P2.
Following Example 1.26, we have:

Step 1. Since 2x+ y − 2z = 0, Q = (0, 0, 0) is on P1.

Since 2x+ y − 2z = 5, P = (0, 5, 0) is on P2 and n = [2, 1,−2] = [a, b, c].

Step 2. v =
−−→
PQ = q− p = [0, 0, 0]− [0, 5, 0] = [0,−5, 0]

Step 3. projn(v) =
(n · v
n · n

)
n =

(
2 · 0− 1 · 5− 2 · 0
22 + 12 + (−2)2

) 2
1

−2

 = −5

9

 2
1

−2

 =

 −10/9
−5/9
10/9

.
Step 4. The distance d(Q,P2) from P1 to P2 is ∥v − projn(v)∥ =

∥∥∥∥∥∥
 −10/9

−5/9
10/9

∥∥∥∥∥∥.
So Theorem 1.3(b) implies ∥projn(v) ∥ =

5

9

∥∥∥∥∥∥
 2

1
−2

∥∥∥∥∥∥ =
5

9

√
4 + 1 + 4 =

5

3
.

From n · p = d = [2, 1,−2] · [0, 5, 0] = 5. Since Q = (0, 0, 0), x0 = y0 = z0 = 0.

Now compare: d(Q,P2) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
=

|0 + 0 + 0− 5|√
22 + 12 + (−2)2

=
5√
9
=

5

3
.

38. Since the given planes P1 and P2 are parallel, we can simply choose Q in P1, P in P2.
Following Example 1.26, we have:

Step 1. Since x+ y + z = 1, Q = (1, 0, 0) is on P1.

Since x+ y + z = 3, P = (3, 0, 0) is on P2 and n = [1, 1, 1] = [a, b, c].

Step 2. v =
−−→
PQ = q− p = [1, 0, 0]− [3, 0, 0] = [−2, 0, 0]

Step 3. projn(v) =
(n · v
n · n

)
n =

(
1 · (−2) + 1 · 0 + 1 · 0

12 + 12 + 12

) 1
1
1

 = −2

3

 1
1
1

 =

 −2/3
−2/3
−2/3

.
Step 4. The distance d(Q,P2) from P1 to P2 is ∥v − projn(v)∥ =

∥∥∥∥∥∥
 −2/3
−2/3
−2/3

∥∥∥∥∥∥.
So Theorem 1.3(b) implies ∥projn(v) ∥ =

2

3

∥∥∥∥∥∥
 1
1
1

∥∥∥∥∥∥ =
2

3

√
1 + 1 + 1 =

2
√
3

3
.

From n · p = d = [1, 1, 1] · [3, 0, 0] = 3. Since Q = (1, 0, 0), x0 = 1, y0 = 0, z0 = 0.

Now compare: d(Q,P2) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
=

|1 + 0 + 0− 3|√
12 + 12 + 12

=
2√
3
=

2
√
3

3
.
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39. Will show d(B, ℓ) =
|ax0 + by0 − c|√

a2 + b2
, where n =

[
a
b

]
, n · a = c, and B = (x0, y0).

Step 1. From Figure 1.61, we see d(B, ℓ) = ∥projn(v) ∥ =
∥∥∥(n · v

n · n

)
n
∥∥∥ =

|n · v|
∥n∥

.

Step 2. Since v = b− a, n · v = n · (b− a) = n · b− n · a =

[
a
b

]
·
[
x0
y0

]
− c = ax0 + by0 − c.

Step 3. So, d(B, ℓ) = ∥projn(v) ∥ =
∥∥∥(n · v

n · n

)
n
∥∥∥ =

|n · v|
∥n∥

=
|ax0 + by0 − c|√

a2 + b2
.

40. Will show d(B,P) =
|ax0 + by0 + cz0 − d|√

a2 + b2 ++c2
, where n =

 ab
c

, n · a = d, and B = (x0, y0, z0).

Step 1. From Figure 1.62, we see d(B,P) = ∥projn(v) ∥ =
∥∥∥(n · v

n · n

)
n
∥∥∥ =

|n · v|
∥n∥

.

Step 2. Since v = b−a, n ·v = n ·(b− a) = n ·b−n ·a =

 ab
c

 ·
 x0y0
z0

−d = ax0+by0+cz0−d.

Step 3. So, d(B,P) = ∥projn(v) ∥ =
∥∥∥(n · v

n · n

)
n
∥∥∥ =

|n · v|
∥n∥

=
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.

41. We will apply the formula from Exercise 39, d(B, ℓ) =
|n · v|
∥n∥

.

Step 1. We select B = (x0, y0) on ℓ1 so that n · b =

[
a
b

]
·
[
x0
y0

]
= ax0 + by0 = c1.

Step 2. We select A on ℓ2 so that n · a = c2.

Step 3. Set v = b− a, then d(B,P) =
|n · v|
∥n∥

=
|n · (b− a) |

∥n∥
=

|n · b− n · a|
∥n∥

=
|c1 − c2|
∥n∥

.

42. We will apply the formula from Exercise 40, d(B,P) =
|n · v|
∥n∥

.

Step 1. We select B = (x0, y0, z0) on P1 so that n · b =

 ab
c

 ·

 x0y0
z0

 = ax0 + by0 + cz0 = d1.

Step 2. We select A on P2 so that n · a = d2.

Step 3. Set v = b− a, then d(B,P) =
|n · v|
∥n∥

=
|n · (b− a) |

∥n∥
=

|n · b− n · a|
∥n∥

=
|d1 − d2|

∥n∥
.
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43. As in Example 1.14 of Section 1.2, we note that cos θ =
|u · v|
∥u∥∥v∥

.

So, given two planes P1 with n1 and P2 with n2, we have cos θ =
|n1 · n2|
∥n1∥∥n2∥

.

Step 1. Since P1 has equation x+ y + z = 0, n1 = [1, 1, 1].

Since P2 has equation 2x+ y − 2z = 0, n2 = [2, 1,−2].

Step 2. Therefore, n1 = [1, 1, 1] · [2, 1,−2] = 1 · 2 + 1 · 1− 1 · 2 = 1,

∥n1∥ =
√
12 + 12 + 12 =

√
3, and ∥n2∥ =

√
22 + 12 + (−2)2 = 3.

Step 3. So cos θ =
1

3
√
3
and θ = cos−1

(
1

3
√
3

)
≈ 78.9◦.

44. As in Example 1.14 of Section 1.2, we note that cos θ =
|u · v|
∥u∥∥v∥

.

So, given two planes P1 with n1 and P2 with n2, we have cos θ =
|n1 · n2|
∥n1∥∥n2∥

.

Step 1. Since P1 has equation 3x− y + 2z = 5, n1 = [3,−1, 2].

Since P2 has equation x+ 4y − z = 2, n2 = [1, 4,−1].

Step 2. Therefore, n1 · n1 = [3,−1, 2] · [1, 4,−1] = 3 · 1− 1 · 4− 2 · 1 = −3,

∥n1∥ =
√

32 + (−1)2 + 22 =
√
14, and ∥n2∥ =

√
12 + 42 + (−1)2 = 3

√
2.

Step 3. So cos θ = − 3

3
√
28

= −
√
7

14
and θ = cos−1

(
−
√
7

14

)
≈ 100.9◦.

Since we need an acute angle, we take 180◦ − 100.9◦ = 79.1◦.



1.3 Lines and Planes 53

45. As in Example 1.14 of Section 1.2, we note that cos θ =
|u · v|
∥u∥∥v∥

.

So, given P with n and ℓ with d, we have cos θ =
|n · d|
∥n∥∥d∥

.

Step 1. To show P and ℓ intersect, we note:
x+ y + 2z = (2 + t) + (1− 2t) + 2(3 + t) = 9 + t = 0 implies t = −9.
So, P and ℓ intersect at the point [2 + (−9), 1− 2(−9), 3 + (−9)] = [−7, 19,−6].

Step 2. Since P has equation x+ y + 2z = 0, n = [1, 1, 2].

Given
x = 2 + t
y = 1− 2t
z = 3 + t

, ℓ satisfies

 xy
z

 =

 2
1
3

+ t

 1
−2
1

. So, d =

 1
−2
1

.
Step 3. Therefore, n · d = [1, 1, 2] · [1,−2, 1] = 1 · 1− 1 · 2 + 2 · 1 = 1,

∥n∥ =
√
12 + 12 + 22 =

√
6, and ∥d∥ =

√
12 + (−2)2 + 12 =

√
6.

Step 4. So cos θ =
1√
6
√
6
=

1

6
and θ = cos−1

(
1

6

)
≈ 80.4◦.

46. As in Example 1.14 of Section 1.2, we note that cos θ =
|u · v|
∥u∥∥v∥

.

So, given P with n and ℓ with d, we have cos θ =
|n · d|
∥n∥∥d∥

.

Step 1. To show P and ℓ intersect, we note:
4x− y − z = 4(t)− (1 + 2t)− (2 + 3t) = −3− t = 6 implies t = −9.
So, P and ℓ intersect at the point [(−9), 1 + 2(−9), 2 + 3(−9)] = [−9,−17,−25].

Step 2. Since P has equation 4x− y − z = 0, n = [4,−1,−1].

Given
x = t
y = 1 + 2t
z = 2 + 3t

, ℓ satisfies

 xy
z

 =

 0
1
2

+ t

 1
2
3

. So, d =

 1
2
3

.
Step 3. Therefore, n · d = [4,−1,−1] · [1, 2, 3] = 4 · 1− 1 · 2− 1 · 3 = −1,

∥n∥ =
√

42 + (−1)2 + (−1)2 = 3
√
2, and ∥d∥ =

√
12 + 22 + 32 =

√
14.

Step 4. So cos θ = − 1

3
√
28

= −
√
7

42
and θ = cos−1

(
−
√
7

42

)
≈ 93.6◦.

Since we need an acute angle, we take 180◦ − 93.6◦ = 86.4◦.



54 1 Vectors

47. Will find an expression for p in terms of v and n given n is orthogonal to p, that is p · n = 0.

Step 1. We solve for c starting from the given equation p = v − cn.

p = v − cn ⇒
cn = v − p

(cn) · n = (v − p) · n ⇒
c(n · n) = v · n− p · n
c(n · n) = n · v

c =
n · v
n · n

Given
By x = y − z implies z = y − x
Taking the dot product of n with both sides.
By properties of the dot product
By v · n = n · v and p · n = 0

Dividing both sides by n · n (a scalar)

Note : Figure 1.66 also shows cn = projn(v) =
(n · v
n · n

)
n which implies c =

n · v
n · n

.

Step 2. Letting c =
n · v
n · n

in p = v − cn, we have p = v −
(n · v
n · n

)
n.

48. We will find p = projP(v) using p = v −
(n · v
n · n

)
n and v = [1, 0,−2].

(a) Step 1. Since x+ y + z = 0, n = [1, 1, 1].
So n · v = [1, 1, 1] · [1, 0,−2] = 1 · 1 + 1 · 0− 1 · 2 = −1,

n · n = [1, 1, 1] · [1, 1, 1] = 1 · 1 + 1 · 1 + 1 · 1 = 3, and c =
n · v
n · n

= −1

3
.

Step 2. So p = v −
(n · v
n · n

)
n =

 1
0

−2

− 1

3

 1
1
1

 =

 1
0

−2

−

 1/3
1/3
1/3

 =

 2/3
−1/3
−7/3

.
(b) Step 1. Since 3x− y + z = 0, n = [3,−1, 1].

So n · v = [3,−1, 1] · [1, 0,−2] = 3 · 1− 1 · 0− 1 · 2 = 1,

n · n = [3,−1, 1] · [3,−1, 1] = 3 · 3 + 1 · 1 + 1 · 1 = 11, and c =
n · v
n · n

=
1

11
.

Step 2. So p = v −
(n · v
n · n

)
n =

 1
0

−2

− 1

11

 1
1
1

 =

 1
0

−2

−

 1/11
1/11
1/11

 =

 10/11
−1/11
−23/11

.
(c) Step 1. Since 3x− 2z = 0, n = [3, 0,−2].

So n · v = [3, 0,−2] · [1, 0,−2] = 3 · 1− 0 · 0 + 2 · 2 = 7,

n · n = [3, 0,−2] · [3, 0,−2] = 3 · 3 + 0 · 0 + 2 · 2 = 13, and c =
n · v
n · n

=
7

13
.

Step 2. So p = v −
(n · v
n · n

)
n =

 1
0

−2

− 7

13

 1
1
1

 =

 1
0

−2

−

 7/13
7/13
7/13

 =

 6/13
−7/13
−33/13

.
(d) Step 1. Since 2x− 3y + z = 0, n = [2,−3, 1].

So n · v = [2,−3, 1] · [1, 0,−2] = 2 · 1− 3 · 0− 1 · 2 = 0.

Step 2. So p = v =

 1
0

−2

.
Note : The projection is the vector itself because the vector is parallel to the plane.

That is equivalent to the vector being orthogonal to the normal of the plane.
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Exploration: The Cross Product

Since Explorations are self-contained, only solutions will be provided.

1. (a) u× v =

 1(2)− 1(−1)
1(3)− 0(2)
0(−1)− 1(3)

 =

 3
3

−3

. (b) u× v =

 −3
−3
3

.
(c) u× v =

 0
0
0

. (d) u× v =

 1
−2
1

.
2. e1 × e2 =

 1
0
0

×

 0
1
0

 =

 0− 0 (1)
0− 0

1 (1)− 0

 =

 0
0
1

 = e3,

e2 × e3 =

 0
1
0

×

 0
0
1

 =

 1
0
0

 = e1, and e3 × e1 =

 0
0
1

×

 1
0
0

 =

 0
1
0

 = e2.

3. Two vectors are orthogonal if their dot product equals zero. Check:

(u× v) · u =

 u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 ·

 u1u2
u3


= (u2v3 − u3v2)u1 + (u3v1 − u1v3)u2 + (u1v2 − u2v1)u3
= (u2v3u1 − u1v3u2) + (u3v1u2 − u2v1u3) + (u1v2u3 − u3v2u1) = 0.

(u× v) · v =

 u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 ·

 v1v2
v3


= (u2v3 − u3v2) v1 + (u3v1 − u1v3) v2 + (u1v2 − u2v1) v3
= (u2v3v1 − u2v1v3) + (u3v1v2 − u3v1v2) + (u1v2v3 − u1v3v2) = 0.
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4. (a) A vector normal to the plane is n = u× v =

 0
1
1

×

 3
−1
2

 =

 3
3

−3

.
Thus, the normal form for the equation of this plane is n · x = n · p ⇔ 3

3
−3

 ·

 xy
z

 =

 3
3

−3

 1
0

−2

⇔ 3x+ 3y − 3z = 9 ⇔ x+ y − z = 3.

(b) Two vectors on the plane are u =
−−→
PQ = [2, 1, 1] and v =

−→
PR = [1, 3,−2],

so a vector normal to the plane is n = u× v =

 2
1
1

×

 1
3

−2

 =

 −5
5
5

.
Thus, the normal form for the equation of this plane is n · x = n · p ⇔ −5

5
5

 ·

 xy
z

 =

 −5
5
5

 0
−1
1

⇔ −5x+ 5y + 5z = 0 ⇔ −x+ y + z = 0.

5. (a) v × u =

 v2u3 − v3u2
v3u1 − v1u3
v1u2 − v2u1

 = −

 u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 = − (u× v).

(b) u× 0 =

 u1u2
u3

×

 0
0
0

 u2(0)− u3(0)
u3(0)− u1(0)
u1(0)− u2(0)

 =

 0
0
0

 = 0.

(c) u× u =

 u2u3 − u3u2
u3u1 − u1u3
u1u2 − u2u1

 =

 0
0
0

 = 0.

(d) u× kv =

 u2kv3 − u3kv2
u3kv1 − u1kv3
u1kv2 − u2kv1

 = k

 u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 = k (u× v).

(e) u× ku = k (u× u) = k (0) = 0.

(f) We compute the cross product as follows:

u× (v +w) =

 u2 (v3 + w3)− u3 (v2 + w2)
u3 (v1 + w1)− u1 (v3 + w3)
u1 (v2 + w2) − u2 (v1 + w1)


=

 (u2v3 − u3v2) + (u2w3 − u3w2)
(u3v1 − u1v3) + (u3w1 − u1w3)
(u1v2 − u2v1) + (u1w2 − u2w1)


=

 (u2v3 − u3v2)
(u3v1 − u1v3)
(u1v2 − u2v1)

+

 (u2w3 − u3w2)
(u3w1 − u1w3)
(u1w2 − u2w1)

 = u× v + u×w.
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6. (a) We compute the cross product as follows:

u · (v ×w) =

 u1u2
u3

 ·

 v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1


= u1v2w3 − u1v3w2 + u2v3w1 − u2v1w3 + u3v1w2 − u3v2w1

= (u2v3 − u3v2)w1 + (u3v1 − u1v3)w2 + (u1v2 − u2v1)w3

= (u× v) ·w.
(b) We compute the cross product as follows:

u× (v ×w) =

 u1u2
u3

×

 v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 =

 u2 (v1w2 − v2w1)− u3 (v3w1 − v1w3)
u3 (v2w3 − v3w2)− u1 (v1w2 − v2w1)
u1 (v3w1 − v1w3)− u2 (v2w3 − v3w2)


=

 (u1w1 + u2w2 + u3w3) v1 − (u1v1 + u2v2 + u3v3)w1

(u1w1 + u2w2 + u3w3) v2 − (u1v1 + u2v2 + u3v3)w2

(u1w1 + u2w2 + u3w3) v3 − (u1v1 + u2v2 + u3v3)w3


= (u1w1 + u2w2 + u3w3)

 v1v2
v3

− (u1v1 + u2v2 + u3v3)

 w1

w2

w3


= (u ·w)v− (u · v)w.

(c) We compute the cross product as follows:

∥u× v∥2 =

∥∥∥∥∥∥
 u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

∥∥∥∥∥∥
2

= (u2v3 − u3v2)
2
+ (u1v3 − u3v1)

2
+ (u1v2 − u2v1)

2

=
(
u21 + u22 + u23

)2 (
v21 + v22 + v23

)2 − (u1v1 + u2v2 + u3v3)
2

= ∥u∥2 ∥v∥2 − (u · v)2 .

7. 2: e1 × (e2 × e3) = (e1 · e3) e2 − (e1 · e2) e3 [by 6(b)] =0 since ei · ej = 0 for i ̸= j.
Thus, since the ei have length 1, we must have e1 = e2 × e3, by 6(c).
Show e2 = e3 × e1 and e3 = e1 × e2 by cyclically permuting the indices.

3: u · (u× v) = (u× u) · v [by 10(a)]= 0 · v [by 9(c)]= 0, so u is orthogonal to u× v.
Similarly, v · (u× v) = v · (−1) (v × u) = (v × v) · u = 0. So v is orthogonal to u× v.

8. (a) ∥u× v∥2 = ∥u∥2 ∥v∥2 − (u · v)2 = ∥u∥2 ∥v∥2 − ∥u∥2 ∥v∥2 cos2 θ
= ∥u∥2 ∥v∥2

(
1− cos2 θ

)
= ∥u∥2 ∥v∥2 sin2 θ ⇒

∥u× v∥ = ∥u∥ ∥v∥ sin θ.
(b) From Figure 1, and recalling the area of a triangle is A = 1

2 (base)(height), we have:
A = 1

2 (∥u∥) (∥v∥ sin θ). But ∥u× v∥ = 1
2 ∥u∥ ∥v∥ sin θ, so A = 1

2 ∥u× v∥.

(c) Let u =
−−→
AB = [1,−1,−1] and v =

−→
AC = [4,−3, 2]. Then(b) ⇒

The area of triangle ABC is A = 1
2 ∥[1,−1,−1]× [4,−3, 2]∥ = 1

2

√
62.
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1.4 Applications

1. Following Example 1.34, we find the resultant force, r, using f1 and f2.

The magnitude of r is ∥r∥ =
√

∥f1∥2 + ∥f1∥2 =
√
122 + 52 = 13.

The angle θ between r and east (the direction of f2) is θ = tan−1
(
12

5

)
≈ 67.4◦.

The direction of the resultant is closer to north than east. Why does this make sense?

2. Following Example 1.34, we find the resultant force, r, using f1 and f2.

The magnitude of r is ∥r∥ =
√

∥f1∥2 + ∥f1∥2 =
√
152 + 202 = 25.

The angle θ between r and west (the direction of f1) is θ = tan−1
(
20

15

)
≈ 53.1◦.

The direction of the resultant is closer to south than west. Why does this make sense?

3. Similar to Example 1.34, we find the resultant force, r, using f1 and f2.

If we let f1 =

[
8
0

]
, then f2 =

[
8 cos(60◦)
8 sin(60◦)

]
=

[
4

4
√
3

]
.

So, the resultant force is r = f1 + f2 =

[
8
0

]
+

[
4

4
√
3

]
=

[
12

4
√
3

]
.

The magnitude of r is ∥r∥ =

√
122 +

(
4
√
3
)2

= 8
√
3.

The angle formed by r and f1 is θ = tan−1

(
4
√
3

12

)
= tan−1

(
1√
3

)
= 30◦.

The resultant force also forms a 30◦ with f2. Why does this make sense?
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4. Similar to Example 1.34, we find the resultant force, r, using f1 and f2.

If we let f1 =

[
4
0

]
, then f2 =

[
6 cos(135◦)
6 sin(135◦)

]
=

[
−3

√
2

3
√
2

]
.

So, the resultant force is r = f1 + f2 =

[
4
0

]
+

[
−3

√
2

3
√
2

]
=

[
4− 3

√
2

3
√
2

]
.

The magnitude of r is ∥r∥ =

√(
4− 3

√
2
)2

+
(
3
√
2
)2

=
√
52− 24

√
2 ≈

√
18 ≈ 4.24.

The angle formed by r and f1 is θ = tan−1

(
3
√
2

4− 3
√
2

)
≈ 93.3◦.

More than one angle has a tangent of
3
√
2

4− 3
√
2
. How do you determine the correct one?

5. Similar to Example 1.34, we find the resultant force, r, using f1, f2, and f3.

If we let f1 =

[
2
0

]
then f2 =

[
−6
0

]
, and f3 =

[
4 cos(60◦)
4 sin(60◦)

]
=

[
2

2
√
3

]
.

So, the resultant force is r = f1 + f2 + f3 =

[
2
0

]
+

[
−6
0

]
+

[
2

2
√
3

]
=

[
−2

2
√
3

]
.

The magnitude of r is ∥r∥ =

√
(−2)

2
+
(
2
√
3
)2

=
√
4 + 12 =

√
16 = 4.

The angle formed by r and f1 is θ = tan−1

(
2
√
3

−2

)
= 120◦.

More than one angle has a tangent of
2
√
3

−2
. How do you determine the correct one?

6. Similar to Example 1.34, we find the resultant force, r, using f1, f2, f3, and f4.

If we let f1 =

[
10
0

]
, then f2 =

[
0
13

]
, f3 =

[
−5
0

]
, and f4 =

[
0

−8

]
.

So, the resultant force is r = f1 + f2 + f3 + f4 =

[
10
0

]
+

[
0
13

]
+

[
−5
0

]
+

[
0

−8

]
=

[
5
5

]
.

The magnitude of r is ∥r∥ =
√
52 + 52 =

√
50 = 5

√
2.

The angle formed by r and f1 is θ = tan−1
(
5

5

)
= 45◦.
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7. Following Example 1.35, we resolve f into fx and fy.

Specifically, if we let fx =

[
x
0

]
and fy =

[
0
y

]
, then f = fx + fy =

[
x
0

]
+

[
0
y

]
=

[
x
y

]
.

Let the angle formed by f and fx be 60◦.

Then since ∥f∥ = 10 =
√
x2 + y2, we have cos−1

(
x√

x2 + y2

)
= cos−1

( x
10

)
.

That implies
x

10
= cos 60◦ =

1

2
. So, x =

1

2
· 10 = 5 and y =

√
102 − 52 =

√
75 = 5

√
3.

Therefore, f resolves into fx =

[
5
0

]
and fy =

[
0

5
√
3

]
.

Why can we choose fx =

[
x
0

]
and fy =

[
0
y

]
?

Hint: We are told f is resolved into forces that are perpendicular to each other.

8. Similar to Example 1.35, we resolve f into fr and fp where fr is parallel to the ramp
and fp is perpendicular to it.

Specifically, if we let fr =

[
r
0

]
and fp =

[
0
p

]
, then f = fr + fp =

[
r
0

]
+

[
0
p

]
=

[
r
p

]
.

Note that the angle formed by f and fr is 60◦. Why?

Then since ∥f∥ = 10 =
√
r2 + p2, we have cos−1

(
r√

r2 + p2

)
= cos−1

( r
10

)
.

That implies
r

10
= cos 60◦ =

1

2
. So, r =

1

2
· 10 = 5.

So, the force parallel to the ramp that must be applied to keep the block
from sliding down the ramp is 5 N.

We can choose fr =

[
r
0

]
and fp =

[
0
p

]
. Why? Hint: fr and fp are perpendicular to each other.
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9. Similar to Example 1.35, we resolve f into fx and fy where fx is parallel to the ground
and fy is the lifting force perpendicular to it.

Specifically, if we let fx =

[
x
0

]
and fy =

[
0
y

]
, then f = fx + fy =

[
x
0

]
+

[
0
y

]
=

[
x
y

]
.

Note that the angle formed by f and fy is 45◦. Why?

Then since ∥f∥ = 1500 =
√
x2 + y2, we have sin−1

(
y√

x2 + y2

)
= cos−1

( y

1500

)
.

That implies
y

1500
= sin 45◦ =

√
2

2
. So, y =

√
2

2
· 1500 = 750

√
2.

So, the vertical force that tends to lift the vehicle off the ground is 750
√
2 N.

We seem to have ignored the mass of the car and the acceleraton due to gravity. Did we?

10. Similar to Example 1.35, we resolve f into fx and fy where fx is parallel to the ground
and fy is perpendicular to it.

Specifically, if we let fx =

[
x
0

]
and fy =

[
0
y

]
, then f = fx + fy =

[
x
0

]
+

[
0
y

]
=

[
x
y

]
.

Note that the angle formed by f and fx is 45◦. Why?

Then since ∥f∥ = 100 =
√
x2 + y2, we have sin−1

(
x√

x2 + y2

)
= cos−1

( x

100

)
.

That implies
x

100
= cos 45◦ =

√
2

2
. So, x =

√
2

2
· 100 = 50

√
2.

So, the force that is causing the lawn mower to move forward is 50
√
2 N.

We seem to have ignored the mass of the mower and the acceleraton due to gravity. Did we?

11. Similar to Example 1.36, we find t, the tension in the wire, using ∥fy∥, the weight of the sign.
Since the mass of the sign is 50 kg, ∥fy∥ = 50 · 9.8 = 490 N.

The angle formed by t and fy is 60◦, so ∥fy∥ = 490 = ∥t∥ cos 60◦ = 1

2
· ∥t∥.

That implies the tension in the cable is ∥t∥ = 2 · 490 = 980 N.
We seem to have ignored the horizontal component of the weight of the sign. Did we?
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12. Similar to Example 1.36, we find s, the tension in each string, using ∥w∥, the weight of the sign.
Since the mass of the sign is 1 kg, ∥w∥ = 1 · 9.8 = 9.8 N.

Furthermore, since the angle formed by s and w is 45◦, the tension in each string is equal to
exactly half of the weight of the sign.

So,
1

2
· ∥w∥ = 4.9 = ∥s∥ cos 45◦ = 1√

2
· ∥s∥.

That implies the tension in each string is ∥s∥ = 4.9
√
2 ≈ 6.9 N.

13. Find the sine of the angles the wires make with the ceiling, then follow Example 1.36.

The triangle formed by the wires and the ceiling is right. Why? Hint: What are the lengths of
the sides?

So, the angle the 15-cm wire makes with the ceiling has sin θ1 =
20

25
= 0.8.

Likewise, the angle the 20-cm wire makes with the ceiling has sin θ2 =
15

25
= 0.6.

Following Example 1.36, we have
∥f1∥
sin θ1

=
∥f2∥
sin θ2

=
∥r∥

sin 90◦
where ∥r∥ = 15 · 9.8 = 147 N.

So, f1 =
∥r∥ sin θ1
sin 90◦

=
147 (0.8)

1
= 117.6 N and f2 =

∥r∥ sin θ2
sin 90◦

=
147 (0.6)

1
= 88.2 N.

14. Following Example 1.36, we have
∥f1∥

sin 30◦
=

∥f2∥
sin 45◦

=
∥r∥

sin 105◦
where ∥r∥ = 20 · 9.8 = 196 N.

So, f1 =
∥r∥ sin 30◦

sin 105◦
=

196 (0.5)

0.9659
≈ 101.46 N and f2 =

∥r∥ sin 45◦

sin 105◦
=

196 (0.7071)

0.9659
≈ 143.48 N.

15. We require that [1, 0, 1, 1, d] · [1, 1, 1, 1, 1] = 0 ⇒ 1 + 1 + 1 + d = 0 ⇒ d = 1.
So the associated parity check code vector is v = [1, 0, 1, 1, 1].

16. We require that [1, 1, 0, 1, 1, d] · [1, 1, 1, 1, 1, 1] = 0 ⇒ 1 + 1 + 1 + 1 + d = 0 ⇒ d = 0.
So the associated parity check code vector is v = [1, 1, 0, 1, 1, 0].

17. We check if v · 1 = 0: [1, 0, 1, 0] · [1, 1, 1, 1] = 1 + 0 + 1 + 0 = 0.
So a single error could not have occurred.

18. We check if v · 1 = 0: [1, 1, 1, 0, 1, 1] · [1, 1, 1, 1, 1, 1] = 1 + 1 + 1 + 1 + 1 = 1.
So a single error could have occurred.

19. We check if v · 1 = 0: [0, 1, 0, 1, 1, 1] · [1, 1, 1, 1, 1, 1] = 1 + 1 + 1 + 1 = 0.
So a single error could not have occurred.

20. We check if v · 1 = 0: [1, 1, 0, 1, 0, 1, 1, 1] · [1, 1, 1, 1, 1, 1, 1, 1] = 1 + 1 + 1 + 1 + 1 + 1 = 0.
So a single error could not have occurred.

21. We require that [1, 2, 2, 2, d] · [1, 1, 1, 1, 1] = 0 in Z3. Thus 1 + 2 + 2 + 2 + d = 0 ⇒ d = 2.

22. We require that [3, 4, 2, 3, d] · [1, 1, 1, 1, 1] = 0 in Z5. Thus 3 + 4 + 2 + 3 + d = 0 ⇒ d = 3.
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23. We require that [1, 5, 6, 4, 5, d] · [1, 1, 1, 1, 1, 1] = 0 in Z7.
Thus, 1 + 5 + 6 + 4 + 5 + d = 0 ⇒ d = 0.

24. We require that [3, 0, 7, 5, 6, 8, d] · [1, 1, 1, 1, 1, 1, 1] = 0 in Z9.
Thus 3 + 7 + 5 + 6 + 8 + d = 0 ⇒ d = 7.

25. Let u and v be arbitrary vectors in Znm that differ in exactly one component.
So: u = [u1, u2, . . . , ui, . . . , un],v = [v1, v2, . . . , vj , . . . , vn], where ui = vi, i ̸= j:

c · (u− v) = [1, 1, . . . , 1] · ([u1, u2, . . . , ui, . . . , un]− [v1, v2, . . . , vj , . . . , vn])

= [1, 1, . . . , 1] · ([0, 0, . . . , ui, . . . , 0]− [0, 0, . . . , vj , . . . , 0]) = ui − vj ̸= 0

So, c · u ̸= c · v.

26. c · u = 0 ⇒ 3 (0 + 9 + 6 + 7 + 0 + 7) + (5 + 4 + 4 + 0 + 2) + d = 0 ⇒ 7 + 5 + d = 0 ⇒ d = 8.

27. c · u = 0 ⇒ 3 (0 + 4 + 1 + 1 + 4 + 2) + (1 + 0 + 4 + 8 + 1) + d = 0 ⇒ 6 + 4 + d = 0 ⇒ d = 0.

28. Let u = [0, 4, 6, 9, 5, 6, 1, 8, 2, 0, 1, 5] be a UPC vector.

(a) We check if c · u = 0:

c · u = [3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1] · [0, 4, 6, 9, 5, 6, 1, 8, 2, 0, 1, 5]
= 3 (0 + 6 + 5 + 1 + 2 + 1) + (4 + 9 + 6 + 8 + 0) + 5 = 5 + 7 + 5 = 7 ̸= 0

so, the UPC cannot be correct.

(b) Now u = [0, 4, u3, 9, 5, 6, 1, 8, 2, 0, 1, 5], and we require that c · u = 0:
3(0 + u3 + 5 + 1 + 2 + 1) + (4 + 9 + 6 + 8 + 0) + 5 = 0 ⇔
3 (u3 + 9) + 2 = 0 ⇔ 3u3 + 7 = 8 ⇔ 3u3 = 1 ⇔ u3 = 7.

So, the correct UPC is [0, 4, 7, 9, 5, 6, 1, 8, 2, 0, 1, 5].

29. Let u = [u1, u2, . . . , u12] be a correct UPC.

Let u′ =
[
u1, . . . u

′

i, . . . , u12

]
be a UPC with an error in the ith component.

Now we check if u′ is correct, first noting that u′ = u− uiei + u′iei.
We have c · u′ = c · (u− uiei + u′iei) = c · u− uic · ei + u′ic · ei = c · ei (u′i − ui).
But c · ei = 1 or 3 ̸= 0 and u′i ̸= ui since the ith component is wrong.
So c · u′ ̸= 0, and the UPC will detect the single error.
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30. (a) We check if c · u′ = 0:

c · u′ = [3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1] · [0, 4, 7, 9, 2, 7, 0, 2, 0, 9, 4, 6]
= 3 (0 + 7 + 2 + 0 + 0 + 4) + (4 + 9 + 7 + 2 + 9) + 6 = 9 + 1 + 6 = 6 ̸= 0

So, the error will be detected.

(b) Transposing the third and fourth components of u gives u′ = [0, 7, 9, 4, 2, 7, 0, 2, 0, 9, 4, 6],
while c · u′ = 0 in Z10, so the error will not be detected.

(c) Assume there is a transposition error between the ith and (i+ 1)
th

components and that
the new UPC = u′ = u+ ei (ui+1 − ui) + ei+1 (ui − ui+1) satisfies c · u′ = 0. So:

0 = c · (u+ ei (ui+1 − ui) + ei+1 (ui − ui+1))

= c · u+ c · ei (ui+1 − ui) + c · ei+1 (ui − ui+1)

= ci (ui+1 − ui) + ci+1 (ui − ui+1) = ui(ci+1 − ci) + ui+1 (ci − ci+1)

Case 1: If i is even then ci = 1, ci+1 = 3, and the constraint becomes 0 = 2ui + 8ui+1.

Case 2: If i is odd then ci = 3, ci+1 = 1, and the constraint becomes 0 = 8ui + 2ui+1.

So, if ui and ui+1 are transposed and 8ui + 2ui+1 = 0, the error will not be detected.

NOTE: The trivial solution is ui = ui+1, that is the adjacent components are the same.

31. c · u = 0 ⇒ [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] · [0, 3, 8, 7, 9, 7, 9, 9, 3, d] = 1 + d⇒ d = 10.

32. c · u = 0 ⇒ [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] · [0, 3, 9, 4, 7, 5, 6, 8, 2, d] = 4 + d⇒ d = 7.

33. Let u = [0, 4, 4, 9, 5, 0, 8, 3, 5, 6] be an ISBN vector.

(a) c · u = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] · [0, 4, 4, 9, 5, 0, 8, 3, 5, 6] = 218 = 9 ̸= 0 in Z11.
Thus the ISBN cannot be correct (because c · u ̸= 0).

(b) Now u = [0, 4, 4, 9, u5, 0, 8, 3, 5, 6], and we require that c · u = 0: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] ·
[0, 4, 4, 9, u5, 0, 8, 3, 5, 6] = 0 ⇔ 1 + 6u5 = 0 ⇔ 6u5 = 10 ⇔ u5 = 9.
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34. (a) u = [0, 6, 7, 9, 7, 6, 2, 9, 0, 6] is a correct ISBN.
Consider a transposition between the fourth and fifth components.
Then u′ = [0, 6, 7, 7, 9, 6, 2, 9, 0, 6].
Now check if u′ is correct: c ·u′ = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] · [0, 6, 7, 7, 9, 6, 2, 9, 0, 6] = 9 ̸= 0.
So, the error would be detected.

(b) In general, an ISBN vector u satisfies the check constraint
10∑
i=1

(11− i) (ui) = 0,

but in Z11 (11− i) = −i, so the constraint becomes
10∑
i=1

(−i) (ui) = 0.

Consider a transposition of any two adjacent elements (say the uj and uj+1 elements).
This gives a new vector u′ = u+ ej (uj+1 − uj) + ej+1 (uj − uj+1).

The check constraint on u′ becomes
10∑
i=1

(−i) (u′i) = 0,

but u′i = ui + (ej)i (uj+1 − uj) + (ej+1)i (uj − uj+1), so this becomes

10∑
i=1

(−i) (u′i) = =
10∑
i=1

(−i) (ui) +
10∑
i=1

(−i) (ej)i (uj+1 − uj) +
10∑
i=1

(−i) (ej+1)i (uj − uj+1)

=
10∑
i=1

(−i) (ej)i (uj+1 − uj) +
10∑
i=1

(−i) (ej+1)i (uj − uj+1)

= (−j) (uj+1 − uj) + (− (j + 1)) (uj − uj+1)

= (−j) (uj+1 − uj) + (−j + 10) (uj − uj+1) = 10 (uj − uj+1)

So the constraint
10∑
i=1

(−i) (u′i) = 0 can only be met if uj = uj+1,

in which case the transposed vector is the same as the original.

So the constraint
10∑
i=1

(−i) (ui) = 0 cannot be broken by transposing adjacent components.

An error made in any two adjacent components of the ISBN will be detected.

(c) See the proof in part (b).

35. Consider the ISBN u = [0, 8, 3, 7, 0, 9, 9, 0, 2, 6].

(a) c · u = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] · [0, 8, 3, 7, 0, 9, 9, 0, 2, 6] = 5 in Z11. c · u ̸= 0,
so this ISBN cannot be correct (because c · u ̸= 0).

(b) Consider the ISBN u with the first and second components transposed. Then:
u = [8, 0, 3, 7, 0, 9, 9, 0, 2, 6], c · u = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] · [8, 0, 3, 7, 0, 9, 9, 0, 2, 6] = 0.
So, the correct ISBN is u = [8, 0, 3, 7, 0, 9, 9, 0, 2, 6].

(c) Consider the ISBN u = [0, 3, 8, 7, 0, 9, 9, 0, 2, 6]. If a transposition error occurs between the
second and third components we get the vector u′ = [0, 8, 3, 7, 0, 9, 9, 0, 2, 6],
where c · u′ = 5 ̸= 0, so the error would be detected.
However, this error cannot be corrected because transpositions to both
u = [0, 3, 8, 7, 0, 9, 9, 0, 2, 6] and u′′ = [8, 0, 3, 7, 0, 9, 9, 0, 2, 6] give proper ISBNs.
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Chapter 1 Review

1. We will explain and give counter examples to justify our answers below.

(a) True . Follows from the properties of Rn listed in Theorem 1.1 in Section 1.1:

u = u+ 0
= u+ (w + (−w))
= (u+w) + (−w)
= (v +w) + (−w)
= v + (w + (−w))
= v + 0
= v

Zero Property, Property (c)
Additive Inverse Property, Property (d)
Distributive Property, Property (b)
By the given condition u+w = v +w
Distributive Property, Property (b)
Additive Inverse Property, Property (d)
Zero Property, Property (c)

(b) False . See Example 1.16 and Exercise 54 in Section 1.2. Two key counter examples:
Since 0 · v = 0 for every vector v in R3, 0 is orthogonal to every vector.
That is, if u = 0, we know nothing about v and w.
Let u and v be orthogonal to w then u ·w = v ·w = 0.
E.g., consider u = [a, 0, 0], v = [0, b, 0], and w = [0, 0, c].

(c) False . Note this property is not listed in Theorem 1.2 in Section 1.2.
Let v = 0 then u · 0 = 0 and 0 ·w = 0, but there is no restriction on u and w.
Let u = w then u · v = 0 and v · u = 0, but u · u ̸= 0 unless u = 0.
E.g., consider u = [a, 0, 0], v = [0, b, 0], and w = [c, 0, 0], then u ·w = ac.

(d) False . When a line is parallel to plane then d · n = 0, that is d is orthogonal to n.
See Figure 1.57 in Section 1.3.

(e) True . Every line in plane P and parallel to P is orthogonal to its normal vector n.
See Figure 1.62 in Section 1.3.

(f) True . See the remarks following Example 1.24 in Section 1.3.

(g) False . In R3 many non-parallel lines are skew (non-intersecting lines with d1 ̸= d2).
For example, ℓ1 with x = td with d = [1, 0, 0] (the x-axis) and
ℓ2 with x = p+ td with p = [0, 0, 1] and d = [0, 1, 0]
(the line parallel to the y-axis through [0, 0, 1]).

(h) False . See Examples 1.27 to 1.29 in Section 1.4.
For example, [1, 0, 1] · [1, 0, 1] = 1 + 0 + 1 = 0 in Z2.
In general, the dot product of any binary vector with an even number of 1s is 0.

(i) True . See Example 1.37 in Section 1.4.
We have c · u = 3(0 + 1+ 7+ 5+ 7+ 8) + (4 + 7+ 1+ 2+ 0+ 2) = 100 = 0 in Z10.

(j) False . See Example 1.38 in Section 1.4.
c · u = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] · [0, 5, 3, 2, 3, 4, 1, 7, 4, 8] = 162 ̸= 0 in Z11.
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2. See Examples 1.1 and 1.5 in Section 1.1.

Let w =

[
10

−10

]
then z = 4u+ v +w = 4

[
−1
5

]
+

[
3
2

]
+

[
10

−10

]
=

[
9
12

]
.

So the coordinates of the point at the head of 4u+ v are (9, 12).

3. See Example 1.5 in Section 1.1. Note : We should do the vector arithmetic first.

2x+ u = 3(x− v) implies x = u+ 3v =

[
−1
5

]
+ 3

[
3
2

]
=

[
8
11

]
.

4. As in Exploration: Vectors and Geometry , we have
−−→
BA = b− (−a) = b+ a.

5. We proceed as in Example 1.14 of Section 1.2.

We have u · v = −1 · 2 + 1 · 1− 2 · 1 = −3, ∥u∥ =
√
(−1)2 + 12 + 22 =

√
6, and ∥v∥ =

√
6.

Therefore, cos θ = − 3√
6
√
6
= −1

2
, so θ = cos−1

(
−1

2

)
=

2π

3
radians or 120◦.

6. We proceed as in Example 1.17 of Section 1.2.
The length of v and the angle it makes with u determines how much of u it covers.
This is basically what proju(v) = cu says. The projection of v shadows a fraction of u.

So u · v =

 1
−2
2

·
 1
1
1

 = 1, u · u =

 1
−2
2

·
 1
−2
2

 = 9, proju(v) =
(u · v
u · u

)
u =

 1/9
−2/9
2/9

.
In this case, the projection of v shadows 1

9 of u.

7. We use the given conditions to find a unit vector in the xy-plane orthogonal to v = [1, 2, 3].

Step 1. Figure 1.15 in Section 1.1 implies any vector in the xy-plane has a z-component of 0.
So, the vector u we are looking for must be of the form u = [a, b, 0].

Step 2. Like Exercise 42 in Section 1.2, since u is orthogonal to v, we have

u · v =

 1
2
3

·
 ab
0

 = a+ 2b = 0. So a = −2b and u =

 −2b
b
0

 = b

 −2
1
0

.
Step 3. As in Example 1.12 of Section 1.2, we normalize u to create w, the unit vector.

Letting b = 1 above gives us u =

 −2
1
0

 and ∥u∥ =
√
(−2)2 + 12 + 02 =

√
5.

So one vector that works is w =

(
1

∥u∥

)
u =

1√
5

 −2
1
0

 =

 −2/
√
5

1/
√
5

0

.
Note : The fact that we got to choose a value for b implies there are infinitely many solutions.
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8. We begin by noting
x = 2− t
y = 3 + 2t
z = −1 + t

implies x =

 2
3

−1

+ t

 −1
2
1

, so d =

 −1
2
1

 = n.

From Example 1.23 of Section 1.3, we have n · p =

 −1
2
1

·
 1
1
1

 = −1 · 1 + 1 · 2 + 1 · 1 = 2.

So the normal equation n · x = n · p becomes the general equation −x+ 2y + z = 2.

9. Planes that are parallel have parallel normals, so since our plane is parallel to 2x+ 3y − z = 0,

a normal to given plane and therefore our plane is n =

 2
3

−1

.
As in Example 1.23 of Section 1.3, we find the plane through P = (3, 2, 5) with n =

 2
3

−1

.
With p =

 3
2
5

 and x =

 xy
z

, we have n · p = 2 · 3 + 3 · 2− 1 · 5 = 7.

So the normal equation n · x = n · p becomes the general equation 2x+ 3y − z = 7.

10. As in Exercise 9, we use the given conditions to find the normal of the plane, n.

Step 1. The normal of the plane n must be normal to every line in the plane.

So, we find d1 =
−−→
AB, d2 =

−−→
BC and compute n · d1 = 0, n · d2 = 0.

d1 =

 1
0
1

−

 1
1
0

 =

 0
−1
1

 and d2 =

 0
1
2

−

 1
0
1

 =

 −1
1
1

.
n · d1 =

 ab
c

 ·

 0
−1
1

 = −b+ c = 0 ⇒ c = b. So n =

 ab
b

.
n · d2 =

 ab
b

 ·

 −1
1
1

 = −a+ b+ b = 0 ⇒ a = 2b. So n =

 2b
b
b

 = b

 2
1
1

.
Step 2. Take P = A = (1, 1, 0) and compute n · x = n · p to find the general equation.

Since n · p = 2 · 1 + 1 · 1 + 1 · 0 = 3, we have the general equation 2x+ y + z = 3.

Note : We could also have taken p = b or c since n · b = n · c = 3. Why?
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11. We proceed as in Exercise 41 of Section 1.2. See the notes prior to Exercise 41.

Let u =
−−→
AB =

 1− 1
0− 1
1− 0

 =

 0
−1
1

 and v =
−→
AC =

 0− 1
1− 1
2− 0

 =

 −1
0
2

.
(a) We compute the necessary values ...

u · v =

 0
−1
1

 ·

 −1
0
2

 = 2,

u · u =

 0
−1
1

 ·

 0
−1
1

 = 2
(
∥u∥ =

√
2
)
,

proju(v) =
(u · v
u · u

)
u =

 0
−1
1

⇒

v − proju(v) =

 −1
1
1

⇒

∥v − proju(v)∥ =

√
(−1)

2
+ 12 + 12

=
√
3

... then substitute into the formula for A:

A = 1
2 ∥u∥ ∥v − proju(v)∥

= 1
2

√
2
√
3 =

√
6
2 .

(b) We compute the necessary values ...

u · v =

 0
−1
1

 ·

 −1
0
2

 = 2,

∥u∥ =

√
02 + (−1)

2
+ 12 =

√
2,

∥v∥ =

√
(−1)

2
+ 02 ++22 =

√
5 ⇒

cos θ =
u · v

∥u∥ ∥v∥
=

2√
10

=

√
10

5
⇒

sin θ =
√
1− cos2 θ =

√
1−

(√
10
5

)2
=
√
15
5

... then substitute into the formula for A:

A = 1
2 ∥u∥ ∥v∥ sin θ

= 1
2

√
2
√
5
√
15
5 =

√
6
2 .

12. From Example 1 in Exploration: Vectors and Geometry , we have m = 1
2 (a+ b).

So m = 1
2 (a+ b) = 1

2

 5
1

−2

+

 3
−7
0

 =

 4
−3
−1

.
Therefore, the midpoint of the line segment between A and B is (4,−3,−1).

13. We proceed as in Exercise 61 from Section 1.2.
We need to show ∥u∥ = 2 and ∥v∥ = 3 imply u · v ̸= −7.
From Theorem 1.4 (the Cauchy-Schwarz Inequality), we have |x · y| ≤ ∥x∥ ∥y∥.
Substituting in the given values of ∥u∥ = 2 and ∥v∥ = 3 shows |u · v| ≤ 6.
Therefore, −6 ≤ u · v ≤ 6. It follows immediately that u · v ̸= −7.
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14. We will follow Example 1.26 in Section 1.3, then use d(Q,P) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.

By definition ax+ by + cz = d implies n = [a, b, c], so 2x+ 3y − z = 0 implies n = [2, 3,−1].

By Figure 1.62 in Section 1.3, we calculate the length of
−−→
RQ = projn(v), where v =

−−→
PQ.

Step 1. By trial and error, we find P = (0, 0, 0) satisfies 2x+ 3y − z = 0.

Step 2. v =
−−→
PQ = q− p = [3, 2, 5]− [0, 0, 0] = [3, 2, 5].

Step 3. projn(v) =
(n · v
d · n

)
n =

(
2 · 3 + 3 · 2− 1 · 5
22 + 32 + (−1)

2

) 2
3

−1

 =
1

2

 2
3

−1

 =

 1
3/2

−1/2

.
Step 4. The distance from Q to P is ∥projn(v)∥ =

∥∥∥∥∥∥
 1

3/2
−1/2

∥∥∥∥∥∥ =
1

2

∥∥∥∥∥∥
 2

3
−1

∥∥∥∥∥∥ =

√
14

2
.

Now for d(Q,P) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
we need identify a, b, c, d, and x0, y0, z0.

Since 2x+ 3y − z = 0, a = 1, b = 3, c = −1, d = 0. From Q = (3, 2, 5), x0 = 3, y0 = 2, z0 = 5.

So d(Q,P) =
|2 · 3 + 3 · 2− 1 · 5− 0|√

22 + 32 + (−1)2
=

7√
14

=

√
14

2
as in Example 1.26 in Section 1.3.

15. We follow Example 1.27 in Section 1.3, then use d(Q, ℓ) =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.

Comparing

 xy
z

 =

 0
1
2

+ t

 1
1
1

 to x = p+ td, we see ℓ has P = (0, 1, 2) and d =

 1
1
1

.
Now if we let v =

−−→
PQ, then

−→
PR = projd(v) and

−−→
RQ = v − projd(v).

Step 1. v =
−−→
PQ = q− p = [3, 2, 5]− [0, 1, 2] = [3, 1, 3].

Step 2. projd(v) =

(
d · v
d · d

)
d =

(
1 · 3 + 1 · 1 + 1 · 3
1 · 1 + 1 · 1 + 1 · 1

) 1
1
1

 =
7

3

 1
1
1

 =

 7/3
7/3
7/3

.
Step 3. The vector we want is v − projd(v) =

 3
1
3

−

 7/3
7/3
7/3

 =

 2/3
−4/3
2/3

 = −2

3

 1
−2
1

.
Step 4. The distance d(Q, ℓ) is ∥v − projd(v)∥ =

∥∥∥∥∥∥
 2/3
−4/3
2/3

∥∥∥∥∥∥ =
2

3

∥∥∥∥∥∥
 1
−2
1

∥∥∥∥∥∥ =
2
√
6

3
.

n · x = n · p,

 1
−2
1

·
 xy
z

 =

 1
−2
1

·
 0
1
2

 so x− 2y + z = 0 and a = 1, b = −2, c = 1, d = 0.

So d(Q, ℓ) =
|3− 4 + 5− 0|√
12 + (−2)2 + 12

=
4√
6
=

2
√
6

3
as in Example 1.27 of Section 1.3.
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16. We follow Example 1.34 in Section 1.4.

3− (2 + 4)3 (4 + 3)2 = 3− (1)3(2)2 = 3− (1)(4) = −1 = 4.

Note : −1 = 4 in Z5 since 1 + 4 = 5 = 0 = 1 + (−1).

17. We begin by noting that 5 · 3 = 15 = 1 in Z7 so 3−1 = 5 in Z7 since 5 · 3 = 1 = 3 · 3−1.

3(x+ 2) = 5 ⇒
5 · 3(x+ 2) = 5 · 5 ⇒
x+ 2 = 25 = 4 ⇒
x = 2.

We multiply both sides by 5
because 3−1 = 5 in Z7.
25 = 21 + 4 = 7 · 3 + 4 = 4 in Z7.
Simply subtract 2 from both sides.

Note : We should check our answer: 3(2 + 2) = 12 = 7 · 1 + 5 = 5 in Z7.

18. It is impossible to solve 3(x+ 2) = 5 in Z9 since 3 does not have a multiplicative inverse.

Note : Any number that shares a common factor with the base ,
like in this case 3 and 9, will not have a multiplicative inverse. Why?

19. Similar to Example 1.38, we compute the products in the dot product in Z5.

[2, 1, 3, 3] · [3, 4, 4, 2] = 2 · 3 + 1 · 4 + 3 · 4 + 3 · 2 = 1 + 4 + 2 + 1 = 3.

20 Similar to Example 1.39, we compute the dot product to find the conditions in Z4
2.

[1, 1, 1, 0] · [d1, d2, d3, d4] = 1 · d1 + 1 · d2 + 1 · d3 = d1 + d2 + d3 = 2.

So, either d1 = d2 = 1 and d3 = 0 or d1 = d3 = 1 and d2 = 0 or d2 = d3 = 1 and d1 = 0.
That is, there are 3 possibilities.

However, since d4 can be 0 or 1 in each case, there are six binary vectors that satisfy u · v = 0.
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