Laboratory Manual for General Organic and Biological Chemistry 3rd Edition Timberlake Solutions Manual

Full Download: https://alibabadownload.com/product/laboratory-manual-for-general-organic-and-biological-chemistry-3rd-edition

Date	Name
Section	Team
Instructor	

Pre-Lab Study Questions 14

1. Why does an oil-and-vinegar salad dressing have two separate layers?

Salad dressing forms layers because oil is not soluble in water. This causes a heterogeneous mixture, which is seen as two separate layers.

2. What is meant by the mass percent (m/m) concentration of a solution?

It describes the grams of solute in the grams of solution multiplied by 100.

3. What is molarity?

It is a concentration unit. It is the moles of solute in the liters of solution.

4. Why are some electrolytes considered strong, whereas others are considered weak?

Strong electrolytes, such as strong acids, form many ions in solution. Weak electrolytes, such as weak acids, form few ions in solution.

5. A solution is prepared with 3.26 g KCl and water to make 25.0 mL of KCl. **a.** What is the % (m/v) of the KCl solution?

$$(m/v)$$
KCl = $\frac{3.26 \text{g KCl}}{25.0 \text{mL sol'n}}(100) = 13.04 \approx 13.0\%$

b. What is the molarity (M) of the KCl solution?

$$M_{KCl} = \frac{3.26 \text{g KCl} \left(\frac{1 \text{ mole KCl}}{74.6 \text{g KCl}}\right)}{25.0 \text{ mL sol'n} \left(\frac{1 \text{ L}}{1000 \text{ mL}}\right)} = 1.747989 \approx 1.75 \text{ M Kcl}$$

Date	Name
Section	
Instructor	

REPORT SHEET

LAB

14

Solutions, Electrolytes, and Concentration

A. Polarity of Solutes and Solvents

Solute	1. Soluble/Not Soluble in		2. Identify the Solute as Polar or Nonpolar
	Water	Cyclohexane	
KMnO ₄	Yes	No	Polar
I ₂	No	Yes	Nonpolar
Sucrose	Yes	No	Polar
Vegetable oil	No	Yes	Nonpolar

B. Electrolytes and Nonelectrolytes

Substance	1. Observations (Intensity of Lightbulb)	2. Type of Electrolyte (Strong, Weak, or Nonelectrolyte)	3. Type of Particles (Ions, Molecules, or Both)
0.1 M NaCl	Bright light	Strong	Ions
0.1 M Sucrose	No light	Nonelectrolyte	Molecules
0.1 M HCl	Bright light	Strong	Ions
$\begin{array}{c} 0.1 \mathrm{M}\mathrm{HC_2H_3O_2,}\\ \text{Acetic acid} \end{array}$	Dim light	Weak	Both
0.1 M NaOH	Bright light	Strong	Ions
$0.1 \text{ M NH}_4\text{OH}$	Dim light	Weak	Both
$\begin{array}{c} 0.1\mathrm{M}\mathrm{C_{2}H_{5}OH,}\\ \mathrm{Ethanol} \end{array}$	No light	Nonelectrolyte	Molecules

Questions and Problems

- Q1 Why are some solutes soluble in water, but others are soluble in cyclohexane?Only polar solutes are soluble in polar water because their polarities are the same. Similarly nonpolar solutes are soluble in nonpolar cyclohexane because their polarities are the same.
- Q2 For the three solutes tested in **B**, write an equation for their dissolution in water:

HCl(aq)	$HCl_{(aq)} \rightarrow H^{1+}_{(aq)} + Cl^{1-}_{(aq)}$
$NH_4OH(aq)$	$NH_4OH_{(aq)} \stackrel{\leftrightarrow}{\underset{\square}{\leftrightarrow}} NH_{(aq)}^{1+} + OH_{(aq)}^{1-}$
C ₆ H ₁₂ O ₆ (aq)	$C_6H_{12}O_6(aq) \rightarrow C_6H_{12}O_6(aq)$

Q3 Classify the solutes in each of the following equations as a weak electrolyte, a strong electrolyte, or a nonelectrolyte in water:

a.	$XY_2(s) \longrightarrow X^{2+}(aq) + 2Y^{-}(aq)$	Strong
b.	$HX(g) \longrightarrow H^+(aq) + X^-(aq)$	Weak
c.	$XYZ(s) \longrightarrow XYZ(aq)$	Nonelectrolyte
d.	$YOH(s) \longrightarrow Y^+(aq) + OH^-(aq)$	Strong

C. Electrolytes in Body Fluids

1. Type of IV Solution	Lactated Ringer's (mEq/L)	5% Isolyte P (mEq/L)	Plasnalyte (mEq/L)
2. Cations	$Na^{1+} = 130 K^{1+} = 4 Ca^{2+} = 3$	Na ¹⁺ = 25 K ¹⁺ = 20 Mg ²⁺ = 3	$Na^{1+} = 140$ $K^{1+} = 5$ $Mg^{2+} = 3$
3. Anions	$Cl^{1-} = 109$ HPO4 ²⁻ = 28	$Cl^{1-} = 22$ HPO4 ²⁻ = 3 Ac ¹⁻ = 23	$Cl^{1-} = 98$ $Glu^{1-} = 23$ $Ac^{1-} = 27$
4. Total Charge of Cations (+)	137	48	148
5. Total Charge of Anions (–)	137	48	148
6. Sum of the Charges	0	0	0

Questions and Problems

Q4 What would be the overall charge in any IV solution? Why? The overall IV solution charge is always zero because positive charges are always equal to negative charges.

D. Concentration of a Sodium Chloride Solution

1.	Mass of evaporating dish	36.21	g
2.	Volume of NaCl solution	10.0	mL
3.	Mass of dish and NaCl solution	47.41	g
4.	Mass of dish and dry NaCl	38.01	g
Calcula	tions		
5.	Mass of NaCl solution	11.20	g
6.	Mass of the dry NaCl salt	1.80	g
7.	Mass/mass percent	16.1	% (m/m)
	$\frac{1.80 \text{g NaCl}}{11.20 \text{ g sol'n}}(100) = 16.07142$		
8.	Mass/volume percent (<i>Show calculations</i> .)	18.0	% (m/v)
	$\frac{1.80 \text{g NaCl}}{10.0 \text{ mL}}(100) = 18$		
9.	Moles of NaCl	0.0308	moles
	(Show calculations.) 1.80 g NaCl $\left(\frac{1 \text{ mole NaCl}}{58.5 \text{ g NaCl}}\right) = 0.03079$		
10	• Volume of sample in liters	0.0100	L

10.0 mL
$$\left(\frac{1 l}{1000 mL}\right) = 0.01$$

11. Molarity of NaCl solution**3.08**M(Show calculations.)

$$\frac{0.03079 \text{ moles NaCl}}{0.0100 \text{ L sol'n}} = 3.079$$

Laboratory Manual for General Organic and Biological Chemistry 3rd Edition Timberlake Solutions Manual

Full Download: https://alibabadownload.com/product/laboratory-manual-for-general-organic-and-biological-chemistry-3rd-edition

Questions and Problems

- **Q5** A 15.0-mL sample of NaCl solution has a mass of 15.78 g. After the NaCl solution is evaporated to dryness, the dry salt residue has a mass of 3.26 g. Calculate the following concentrations for the NaCl solution.
 - **a.** % (m/m)

$$\frac{3.26 \text{ g NaCl}}{15.78 \text{ g sol'n}}(100) = 20.7\% (\text{m}/\text{m})\text{NaCl}$$

- b. % (m/v) $\frac{3.26 \text{ g NaCl}}{15.0 \text{ mL}} (100) = 21.7\% (m/v) \text{NaCl}$
- c. molarity (M)

$$\frac{3.26 \text{ g NaCl}\left(\frac{1 \text{ mole NaCl}}{58.5 \text{ g NaCl}}\right)}{15.0 \text{ mL sol'n}\left(\frac{1 \text{ L sol'n}}{1000 \text{ mL sol'n}}\right)} = 3.72 \text{ M NaCl}$$

Q6 How many grams of KI are in 25.0 mL of a 3.0 % (m/v) KI solution? (Use % as a conversion factor)

25.0 mL KI
$$\left(\frac{3.0 \text{ g KI}}{100 \text{ mL KI}}\right) = 0.75 \text{ g KI}$$

Q7 How many milliliters of a 2.5 M MgCl₂ solution contain 17.5 g MgCl₂? (Use M as a conversion factor)

$$17.5 \text{ g MgCl}_2 \left(\frac{1 \text{ mole MgCl}_2}{95.21 \text{ g MgCl}_2}\right) \left(\frac{1 \text{ L sol'n}}{2.5 \text{ mole MgCl}_2}\right) \left(\frac{1000 \text{ mL}}{1 \text{ L sol'n}}\right)$$

 $= 73.52168 \approx 74 \text{ mL sol'n}$