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Solutions to the Review Questions at the End of Chapter 2 
 
1. (a) The use of vertical rather than horizontal distances relates to the idea 
that the explanatory variable, x, is fixed in repeated samples, so what the 
model tries to do is to fit the most appropriate value of y using the model for a 
given value of x. Taking horizontal distances would have suggested that we 
had fixed the value of y and tried to find the appropriate values of x.  
 
(b) When we calculate the deviations of the points, yt, from the fitted 

values, tŷ , some points will lie above the line (yt > tŷ ) and some will lie below 

the line (yt < tŷ ). When we calculate the residuals ( tû = yt – tŷ ), those 

corresponding to points above the line will be positive and those below the line 
negative, so adding them would mean that they would largely cancel out. In 
fact, we could fit an infinite number of lines with a zero average residual. By 
squaring the residuals before summing them, we ensure that they all 
contribute to the measure of loss and that they do not cancel. It is then 
possible to define unique (ordinary least squares) estimates of the intercept 
and slope.  
 
(c) Taking the absolute values of the residuals and minimising their sum 
would certainly also get around the problem of positive and negative residuals 
cancelling. However, the absolute value function is much harder to work with 
than a square. Squared terms are easy to differentiate, so it is simple to find 
analytical formulae for the mean and the variance.  
 
 
2. The population regression function (PRF) is a description of the model that 
is thought to be generating the actual data and it represents the true 
relationship between the variables. The population regression function is also 
known as the data generating process (DGP). The PRF embodies the true 

values of  and , and for the bivariate model, could be expressed as 
 

ttt uxy     

       
Note that there is a disturbance term in this equation. In some textbooks, a 
distinction is drawn between the PRF (the underlying true relationship 
between y and x) and the DGP (the process describing the way that the actual 
observations on y come about). 
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The sample regression function, SRF, is the relationship that has been 
estimated using the sample observations, and is often written as 
 

 tt xy  ˆˆˆ   

 
Notice that there is no error or residual term in the equation for the SRF: all 

this equation states is that given a particular value of x, multiplying it by $  

and adding $  will give the model fitted or expected value for y, denoted ŷ . It 

is also possible to write 
 

ttt uxy ˆˆˆ     

       
This equation splits the observed value of y into two components: the fitted 
value from the model, and a residual term. The SRF is used to infer likely 

values of the PRF. That is the estimates $ and $  are constructed, for the 

sample data.  
 
 
3. An estimator is simply a formula that is used to calculate the estimates, i.e. 
the parameters that describe the relationship between two or more 
explanatory variables. There are an infinite number of possible estimators; 
OLS is one choice that many people would consider a good one. We can say 
that the OLS estimator is “best” – i.e. that it has the lowest variance among the 
class of linear unbiased estimators. So it is optimal in the sense that no other 
linear, unbiased estimator would have a smaller sampling variance. We could 
define an estimator with a lower sampling variance than the OLS estimator, 
but it would either be non-linear or biased or both! So there is a trade-off 
between bias and variance in the choice of the estimator. 
 
 
 
4. A list of the assumptions of the classical linear regression model’s 
disturbance terms is given in Box 2.3 on p.44 of the book. 
 
We need to make the first four assumptions in order to prove that the ordinary 

least squares estimators of  and  are “best”, that is to prove that they have 
minimum variance among the class of linear unbiased estimators. The 
theorem that proves that OLS estimators are BLUE (provided the assumptions 
are fulfilled) is known as the Gauss-Markov theorem. If these assumptions are 
violated (which is dealt with in Chapter 4), then it may be that OLS estimators 
are no longer unbiased or “efficient”. That is, they may be inaccurate or 
subject to fluctuations between samples. 
 
We needed to make the fifth assumption, that the disturbances are normally 
distributed, in order to make statistical inferences about the population 
parameters from the sample data, i.e. to test hypotheses about the coefficients. 
Making this assumption implies that test statistics will follow a t-distribution 
(provided that the other assumptions also hold). 
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5. If the models are linear in the parameters, we can use OLS. 
 
(2.57) Yes, can use OLS since the model is the usual linear model we have been 
dealing with. 
 
(2.58) Yes. The model can be linearised by taking logarithms of both sides and 
by rearranging. Although this is a very specific case, it has sound theoretical 
foundations (e.g. the Cobb-Douglas production function in economics), and it 
is the case that many relationships can be “approximately” linearised by taking 
logs of the variables. The effect of taking logs is to reduce the effect of extreme 
values on the regression function, and it may be possible to turn multiplicative 
models into additive ones which we can easily estimate. 
 
(2.59) Yes. We can estimate this model using OLS, but we would not be able to 

obtain the values of both  and, but we would obtain the value of these two 
coefficients multiplied together. 
 
(2.60) Yes, we can use OLS, since this model is linear in the logarithms. For 
those who have done some economics, models of this kind which are linear in 

the logarithms have the interesting property that the coefficients ( and) can 
be interpreted as elasticities. 
 
(2.61). Yes, in fact we can still use OLS since it is linear in the parameters. If 
we make a substitution, say qt = xtzt, then we can run the regression 
 

 yt =  +qt + ut  
 
as usual. 
 
So, in fact, we can estimate a fairly wide range of model types using these 
simple tools. 
 
 
6. The null hypothesis is that the true (but unknown) value of beta is equal to 
one, against a one sided alternative that it is greater than one: 
 

 H0 :  = 1 

 H1 :  > 1 
 
The test statistic is given by 
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We want to compare this with a value from the t-table with T-2 degrees of 
freedom, where T is the sample size, and here T-2 =60. We want a value with 
5% all in one tail since we are doing a 1-sided test. The critical t-value from the 
t-table is 1.671: 
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The value of the test statistic is in the rejection region and hence we can reject 
the null hypothesis. We have statistically significant evidence that this security 
has a beta greater than one, i.e. it is significantly more risky than the market as 
a whole. 
 
 
7. We want to use a two-sided test to test the null hypothesis that shares in 
Chris Mining are completely unrelated to movements in the market as a 
whole. In other words, the value of beta in the regression model would be zero 
so that whatever happens to the value of the market proxy, Chris Mining 
would be completely unaffected by it. 
 
The null and alternative hypotheses are therefore: 
 

 H0 :  = 0 

 H1 :   0 
 
The test statistic has the same format as before, and is given by: 
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We want to find a value from the t-tables for a variable with 38-2=36 degrees 
of freedom, and we want to look up the value that puts 2.5% of the distribution 
in each tail since we are doing a two-sided test and we want to have a 5% size 
of test over all: 

5% rejection 

region

 f(x)

+1.671
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The critical t-value is therefore 2.03. 
 
Since the test statistic is not within the rejection region, we do not reject the 
null hypothesis. We therefore conclude that we have no statistically significant 
evidence that Chris Mining has any systematic risk. In other words, we have 
no evidence that changes in the company’s value are driven by movements in 
the market. 
 
8. A confidence interval for beta is given by the formula: 
 

 ))ˆ(ˆ,)ˆ(ˆ( critcrit tSEtSE    

 
Confidence intervals are almost invariably 2-sided, unless we are told 
otherwise (which we are not here), so we want to look up the values which put 
2.5% in the upper tail and 0.5% in the upper tail for the 95% and 99% 
confidence intervals respectively. The 0.5% critical values are given as follows 
for a t-distribution with T-2=38-2=36 degrees of freedom: 
 
 
 
 
 
 
 

-2.03 +2.03

2.5% rejection region2.5% rejection region
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The confidence interval in each case is thus given by (0.2140.186*2.03) for a 
95% confidence interval, which solves to (-0.164, 0.592) and 

(0.2140.186*2.72) for a 99% confidence interval, which solves to (-
0.292,0.720) 
 
There are a couple of points worth noting.  
 
First, one intuitive interpretation of an X% confidence interval is that we are 
X% sure that the true value of the population parameter lies within the 
interval. So we are 95% sure that the true value of beta lies within the interval 
(-0.164, 0.592) and we are 99% sure that the true population value of beta lies 
within (-0.292, 0.720). Thus in order to be more sure that we have the true 
vale of beta contained in the interval, i.e. as we move from 95% to 99% 
confidence, the interval must become wider. 
 
The second point to note is that we can test an infinite number of hypotheses 
about beta once we have formed the interval. For example, we would not reject 
the null hypothesis contained in the last question (i.e. that beta = 0), since that 
value of beta lies within the 95% and 99% confidence intervals. Would we 
reject or not reject a null hypothesis that the true value of beta was 0.6? At the 
5% level, we should have enough evidence against the null hypothesis to reject 
it, since 0.6 is not contained within the 95% confidence interval. But at the 1% 
level, we would no longer have sufficient evidence to reject the null hypothesis, 
since 0.6 is now contained within the interval. Therefore we should always if 
possible conduct some sort of sensitivity analysis to see if our conclusions are 
altered by (sensible) changes in the level of significance used. 
 
9. We test hypotheses about the actual coefficients, not the estimated values. 
We want to make inferences about the likely values of the population 
parameters (i.e. to test hypotheses about them). We do not need to test 
hypotheses about the estimated values since we know exactly what our 
estimates are because we calculated them! 

-2.72 +2.72

0.5% rejection region0.5% rejection region
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