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Preface

This Instructor’s Manual is designed to accompany the textbook, Introduction to the Theory
of Computation, third edition, by Michael Sipser, published by Cengage, 2013. It contains
solutions to almost all of the exercises and problems in Chapters 0–9. Most of the omitted
solutions in the early chapters require figures, and producing these required more work that
we were able to put into this manual at this point. A few problems were omitted in the later
chapters without any good excuse.

Some of these solutions were based on solutions written by my teaching assistants and
by the authors of the Instructor’s Manual for the first edition.

This manual is available only to instructors.
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Chapter 0

0.1 a. The odd positive integers.
b. The even integers.
c. The even positive integers.
d. The positive integers which are a multiple of 6.
e. The palindromes over {0,1}.
f. The empty set.

0.2 a. {1, 10, 100}.
b. {n| n > 5}.
c. {1, 2, 3, 4}.
d. {aba}.
e. {ε}.
f. ∅.

0.3 a. No.
b. Yes.
c. A.
d. B.
e. {(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)}.
f. {∅, {x}, {y}, {x, y}}.

0.4 A × B has ab elements, because each element of A is paired with each element of B, so
A × B contains b elements for each of the a elements of A.

0.5 P(C) contains 2c elements because each element of C may either be in P(C) or not in
P(C), and so each element of C doubles the number of subsets of C. Alternatively, we
can view each subset S of C as corresponding to a binary string b of length c, where S
contains the ith element of C iff the ith place of b is 1. There are 2c strings of length c
and hence that many subsets of C.

0.6 a. f(2) = 7.
b. The range = {6, 7} and the domain = {1, 2, 3, 4, 5}.
c. g(2, 10) = 6.
d. The range = {1, 2, 3, 4, 5} × {6, 7, 8, 9, 10} and the domain = {6, 7, 8, 9, 10}.
e. f(4) = 7 so g(4, f(4)) = g(4, 7) = 8.
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2 Theory of Computation, third edition

0.7 The underlying set is N in these examples.
a. Let R be the “within 1” relation, that is, R = {(a, b)| |a − b| ≤ 1}.
b. Let R be the “less than or equal to” relation, that is, R = {(a, b)| a ≤ b}.
c. Finding a R that is symmetric and transitive but not reflexive is tricky because of the

following “near proof” that R cannot exist! Assume that R is symmetric and transitive
and chose any member x in the underlying set. Pick any other member y in the underlying
set for which (x, y) ∈ R. Then (y, x) ∈ R because R is symmetric and so (x, x) ∈ R
because R is transitive, hence R is reflexive. This argument fails to be an actual proof
because y may fail to exist for x.

Let R be the “neither side is 1” relation, R = {(a, b)| a �= 1 and b �= 1}.

0.10 Let G be any graph with n nodes where n ≥ 2. The degree of every node in G is one
of the n possible values from 0 to n − 1. We would like to use the pigeon hole principle
to show that two of these values must be the same, but number of possible values is too
great. However, not all of the values can occur in the same graph because a node of
degree 0 cannot coexist with a node of degree n − 1. Hence G can exhibit at most n − 1
degree values among its n nodes, so two of the values must be the same.

0.11 The error occurs in the last sentence. If H contains at least 3 horses, H1 and H2 contain
a horse in common, so the argument works properly. But, if H contains exactly 2 horses,
then H1 and H2 each have exactly 1 horse, but do not have a horse in common. Hence
we cannot conclude that the horse in H1 has the same color as the horse in H2. So the 2
horses in H may not be colored the same.

0.12 a. Basis: Let n = 0. Then, S(n) = 0 by definition. Furthermore, 1
2n(n + 1) = 0. So

S(n) = 1
2n(n + 1) when n = 0.

Induction: Assume true for n = k where k ≥ 0 and prove true for n = k + 1. We
can use this series of equalities:

S(k + 1) = 1 + 2 + · · · + k + (k + 1) by definition

= S(k) + (k + 1) because S(k) = 1 + 2 + · · · + k

= 1
2k(k + 1) + (k + 1) by the induction hypothesis

= 1
2 (k + 1)(k + 2) by algebra

b. Basis: Let n = 0. Then, C(n) = 0 by definition, and 1
4 (n4 + 2n3 + n2) = 0. So

C(n) = 1
4 (n4 + 2n3 + n2) when n = 0.

Induction: Assume true for n = k where k ≥ 0 and prove true for n = k + 1. We
can use this series of equalities:

C(k + 1) = 13 + 23 + · · · + k3 + (k + 1)3 by definition

= C(k) + (k + 1)3 C(k) = 13 + · · · + k3

= 1
4 (n4 + 2n3 + n2) + (k + 1)3 induction hypothesis

= 1
4 ((n + 1)4 + 2(n + 1)3 + (n + 1)2) by algebra

0.13 Dividing by (a − b) is illegal, because a = b hence a − b = 0 and division by 0 is
undefined.
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Chapter 1

1.12 Observe that D ⊆ b∗a∗ because D doesn’t contain strings that have ab as a substring.
Hence D is generated by the regular expression (aa)∗b(bb)∗. From this description,
finding the DFA for D is more easily done.

1.14 a. Let M ′ be the DFA M with the accept and non-accept states swapped. We show that M ′

recognizes the complement of B, where B is the language recognized by M . Suppose
M ′ accepts x. If we run M ′ on x we end in an accept state of M ′. Because M and M ′

have swapped accept/non-accept states, if we run M on x, we would end in a non-accept
state. Therefore, x �∈ B. Similarly, if x is not accepted by M ′, then it would be accepted
by M . So M ′ accepts exactly those strings not accepted by M . Therefore, M ′ recognizes
the complement of B.
Since B could be any arbitrary regular language and our construction shows how to
build an automaton to recognize its complement, it follows that the complement of any
regular language is also regular. Therefore, the class of regular languages is closed under
complement.

b. Consider the NFA in Exercise 1.16(a). The string a is accepted by this automaton. If we
swap the accept and reject states, the string a is still accepted. This shows that swapping
the accept and non-accept states of an NFA doesn’t necessarily yield a new NFA rec-
ognizing the complementary language. The class of languages recognized by NFAs is,
however, closed under complement. This follows from the fact that the class of languages
recognized by NFAs is precisely the class of languages recognized by DFAs which we
know is closed under complement from part (a).

1.18 Let Σ = {0, 1}.
a. 1Σ∗0
b. Σ∗1Σ∗1Σ∗1Σ∗

c. Σ∗0101Σ∗

d. ΣΣ0Σ∗

e. (0 ∪ 1Σ)(ΣΣ)∗

f. (0 ∪ (10)∗)∗1∗

g. (ε ∪ Σ)(ε ∪ Σ)(ε ∪ Σ)(ε ∪ Σ)(ε ∪ Σ)
h. Σ∗0Σ∗ ∪ 1111Σ∗ ∪ 1 ∪ ε

i. (1Σ)∗(1 ∪ ε)
j. 0∗(100 ∪ 010 ∪ 001 ∪ 00)0∗

k. ε ∪ 0

l. (1∗01∗01∗)∗ ∪ 0∗10∗10∗

3
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m. ∅
n. Σ+

1.20 a. ab, ε; ba, aba
b. ab, abab; ε, aabb
c. ε, aa; ab, aabb
d. ε, aaa; aa, b
e. aba, aabbaa; ε, abbb
f. aba, bab; ε, ababab
g. b, ab; ε, bb
h. ba, bba; b, ε

1.21 In both parts we first add a new start state and a new accept state. Several solutions are
possible, depending on the order states are removed.

a. Here we remove state 1 then state 2 and we obtain
a∗b(a ∪ ba∗b)∗

b. Here we remove states 1, 2, then 3 and we obtain
ε ∪ ((a ∪ b)a∗b((b ∪ a(a ∪ b))a∗b)∗(ε ∪ a))

1.22 b. /#(#∗(a ∪ b) ∪ /)∗#+/

1.24 a. q1, q1, q1, q1; 000.
b. q1, q2, q2, q2; 111.
c. q1, q1, q2, q1, q2; 0101.
d. q1, q3; 1.
e. q1, q3, q2, q3, q2; 1111.
f. q1, q3, q2, q1, q3, q2, q1; 110110.
g. q1; ε.

1.25 A finite state transducer is a 5-tuple (Q,Σ,Γ, δ, q0), where
i) Q is a finite set called the states,

ii) Σ is a finite set called the alphabet,
iii) Γ is a finite set called the output alphabet,
iv) δ : Q × Σ−→Q × Γ is the transition function,
v) q0 ∈ Q is the start state.

Let M = (Q,Σ,Γ, δ, q0) be a finite state transducer, w = w1w2 · · ·wn be a string
over Σ, and v = v1v2 · · · vn be a string over the Γ. Then M outputs v if a sequence of
states r0, r1, . . . , rn exists in Q with the following two conditions:

i) r0 = qo

ii) δ(ri, wi+1) = (ri+1, vi+1) for i = 0, . . . , n − 1.

1.26 a. T1 = (Q,Σ,Γ, δ, q1), where
i) Q = {q1, q2},

ii) Σ = {0, 1, 2},
iii) Γ = {0, 1},
iv) δ is described as

0 1 2
q1 (q1,0) (q1,0) (q2,1)
q2 (q1,0) (q2,1) (q2,1)

v) q1 is the start state.
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b. T2 = (Q,Σ,Γ, δ, q1), where
i) Q = {q1, q2, q3},

ii) Σ = {a, b},
iii) Γ = {0, 1},
iv) δ is described as

a b
q1 (q2,1) (q3,1)
q2 (q3,1) (q1,0)
q3 (q1,0) (q2,1)

v) q1 is the start state.

1.29 b. Let A2 = {www| w ∈ {0,1}∗}. We show that A2 is nonregular using the pumping
lemma. Assume to the contrary that A2 is regular. Let p be the pumping length given by
the pumping lemma. Let s be the string apbapbapb. Because s is a member of A2 and
s has length more than p, the pumping lemma guarantees that s can be split into three
pieces, s = xyz, satisfying the three conditions of the lemma. However, condition 3
implies that y must consist only of as, so xyyz �∈ A2 and one of the first two conditions
is violated. Therefore A2 is nonregular.

1.30 The error is that s = 0p1p can be pumped. Let s = xyz, where x = 0, y = 0 and
z = 0p−21p. The conditions are satisfied because

i) for any i ≥ 0, xyiz = 00i0p−21p is in 0∗1∗.
ii) |y| = 1 > 0, and

iii) |xy| = 2 ≤ p.

1.31 We construct a DFA which alternately simulates the DFAs for A and B, one step at a time.
The new DFA keeps track of which DFA is being simulated. Let M1 = (Q1, Σ, δ1, s1, F1)
and M2 = (Q2,Σ, δ2, s2, F2) be DFAs for A and B. We construct the following DFA
M = (Q,Σ, δ, s0, F ) for the perfect shuffle of A and B.

i) Q = Q1 × Q2 × {1, 2}.
ii) For q1 ∈ Q1, q2 ∈ Q2, b ∈ {1, 2}, and a ∈ Σ:

δ((q1, q2, b), a) =

{
(δ1(q1, a), q2, 2) b = 1
(q1, δ1(q2, a), 1) b = 2.

iii) s0 = (s1, s2, 1).
iv) F = {(q1, q2, 1)| q1 ∈ F1 and q2 ∈ F2}.

1.32 We construct an NFA which simulates the DFAs for A and B, nondeterministically
switching back and forth from one to the other. Let M1 = (Q1,Σ, δ1, s1, F1) and
M2 = (Q2,Σ, δ2, s2, F2) be DFAs for A and B. We construct the following NFA
N = (Q,Σ, δ, s0, F ) for the shuffle of A and B.

i) Q = Q1 × Q2.
ii) For q1 ∈ Q1, q2 ∈ Q2, and a ∈ Σ:

δ((q1, q2), a) = {(δ1(q1, a), q2), (q1, δ2(q2, a))}.
iii) s0 = (s1, s2).
iv) F = {(q1, q2)| q1 ∈ F1 and q2 ∈ F2}.

1.33 Let M = (Q,Σ, δ, q0, F ) be a DFA that recognizes A. Then we construct NFA N =
(Q′, Σ, δ′, q′0, F

′) recognizing DROP-OUT(A). The idea behind the construction is
that N simulates M on its input, nondeterministically guessing the point at which the
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dropped out symbol occurs. At that point N guesses the symbol to insert in that place,
without reading any actual input symbol at that step. Afterwards, it continues to simu-
late M .

We implement this idea in N by keeping two copies of M , called the top and bottom
copies. The start state is the start state of the top copy. The accept states of N are the
accept states of the bottom copy. Each copy contains the edges that would occur in M .
Additionally, include ε edges from each state q in the top copy to every state in the
bottom copy that q can reach.

We describe N formally. The states in the top copy are written with a T and the
bottom with a B, thus: (T, q) and (B, q).

i) Q′ = {T,B} × Q,
ii) q′0 = (T, q0),

iii) F ′ = {B} × F ,

iv) δ′((T, q), a) =

{
{(T, δ(q, a))} a ∈ Σ
{(B, δ(q, b))| b ∈ Σ} a = ε

δ′((B, q), a) =

{
{(B, δ(q, a))} a ∈ Σ
∅ a = ε

1.35 Let M = (Q,Σ, δ, q0, F ) be a DFA that recognizes A. We construct a new DFA M ′ =
(Q,Σ, δ, q0, F

′) that recognizes A/B. Automata M and M ′ differ only in the sets of
accept states. Let F ′ = {r| starting at r and reading a string in B we get to an accept
state of M}. Thus M ′ accepts a string w iff there is a string x ∈ B where M accepts
wx. Hence M ′ recognizes A/B.

1.36 For any regular language A, let M1 be the DFA recognizing it. We need to find a DFA
that recognizes AR. Since any NFA can be converted to an equivalent DFA, it suffices to
find an NFA M2 that recognizes AR.

We keep all the states in M1 and reverse the direction of all the arrows in M1. We
set the accept state of M2 to be the start state in M1. Also, we introduce a new state q0

as the start state for M2 which goes to every accept state in M1 by an ε-transition.

1.39 The idea is that we start by comparing the most significant bit of the two rows. If the
bit in the top row is bigger, we know that the string is in the language. The string does
not belong to the language if the bit in the top row is smaller. If the bits on both rows
are the same, we move on to the next most significant bit until a difference is found. We
implement this idea with a DFA having states q0, q1, and q2. State q0 indicates the result
is not yet determined. States q1 and q2 indicate the top row is known to be larger, or
smaller, respectively. We start with q0. If the top bit in the input string is bigger, it goes
to q1, the only accept state, and stays there till the end of the input string. If the top bit
in the input string is smaller, it goes to q2 and stays there till the end of the input string.
Otherwise, it stays in state q0.

1.40 Assume language E is regular. Use the pumping lemma to a get a pumping length p
satisfying the conditions of the pumping lemma. Set s = [ 01 ]p [ 10 ]p. Obviously, s ∈ E
and |s| ≥ p. Thus, the pumping lemma implies that the string s can be written as xyz

with x = [ 01 ]a , y = [ 01 ]b , z = [ 01 ]c [ 10 ]p, where b ≥ 1 and a + b + c = p. However, the
string s′ = xy0z = [ 01 ]a+c [ 10 ]p �∈ E, since a + c < p. That contradicts the pumping
lemma. Thus E is not regular.
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1.41 For each n ≥ 1, we build a DFA with the n states q0, q1, . . . , qn−1 to count the number
of consecutive a’s modulo n read so far. For each character a that is input, the counter
increments by 1 and jumps to the next state in M . It accepts the string if and only if the
machine stops at q0. That means the length of the string consists of all a’s and its length
is a multiple of n.

More formally, the set of states of M is Q = {q0, q1, . . . , qn−1}. The state q0 is
the start state and the only accept state. Define the transition function as: δ(qi, a) = qj

where j = i + 1 mod n.

1.42 By simulating binary division, we create a DFA M with n states that recognizes Cn. M
has n states which keep track of the n possible remainders of the division process. The
start state is the only accept state and corresponds to remainder 0.

The input string is fed into M starting from the most significant bit. For each input
bit, M doubles the remainder that its current state records, and then adds the input bit.
Its new state is the sum modulo n. We double the remainder because that corresponds
to the left shift of the computed remainder in the long division algorithm. If an input
string ends at the accept state (corresponding to remainder 0), the binary number has no
remainder on division by n and is therefore a member of Cn.

The formal definition of M is ({q0, . . . , qn−1}, {0, 1}, δ, q0, {q0}). For each qi ∈ Q
and b ∈ {0, 1}, define δ(qi, b) = qj where j = (2i + b) mod n.

1.43 Use the same construction given in the proof of Theorem 1.39, which shows the equiv-
alence of NFAs and DFAs. We need only change F ′, the set of accept states of the new
DFA. Here we let F ′ = P(F ). The change means that the new DFA accepts only when
all of the possible states of the all-NFA are accepting.

1.44 Let Ak = Σ∗0k−10∗. A DFA with k states {q0, . . . , qk−1} can recognize Ak. The start
state is q0. For each i from 0 to k−2, state qi branches to qi+1 on 0 and to q0 on 1. State
qk−1 is the accept state and branches to itself on 0 and to q0 on 1.

In any DFA with fewer than k states, two of the k strings 1, 10, . . . , 10k−1 must
cause the machine to enter the same state, by the pigeon hole principle. But then, if we
add to both of these strings enough 0s to cause the longer of these two strings to have
exactly k − 1 0s, the two new strings will still cause the machine to enter the same state,
but one of these strings is in Ak and the other is not. Hence, the machine must fail to
produce the correct accept/reject response on one of these strings.

1.45 b. Let M = (Q,Σ, δ, q0, F ) be an NFA recognizing A, where A is some regular language.
We construct M ′ = (Q′, Σ, δ, q′0, F

′) recognizing NOEXTEND(A) as follows:

i) Q′ = Q

ii) δ′ = δ

iii) q′0 = q0

iv) F ′ = {q| q ∈ F and there is no path of length ≥ 1 from q to an accept state}.

1.47 To show that ≡L is an equivalence relation we show it is reflexive, symmetric, and tran-
sitive. It is reflexive because no string can distinguish x from itself and hence x ≡L x for
every x. It is symmetric because x is distinguishable from y whenever y is distinguish-
able from x. It is transitive because if w ≡L x and x ≡L y, then for each z, wz ∈ L iff
xz ∈ L and xz ∈ L iff yz ∈ L, hence wz ∈ L iff yz ∈ L, and so w ≡L y.
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1.49 a. F is not regular, because the nonregular language {abncn| n ≥ 0} is the same as F ∩
ab∗c∗, and the regular languages are closed under intersection.

b. Language F satisfies the conditions of the pumping lemma using pumping length 2. If
s ∈ F is of length 2 or more we show that it can be pumped by considering four cases,
depending on the number of a’s that s contains.

i) If s is of the form b∗c∗, let x = ε, y be the first symbol of s, and let z be the rest
of s.

ii) If s is of the form ab∗c∗, let x = ε, y be the first symbol of s, and let z be the rest
of s.

iii) If s is of the form aab∗c∗, let x = ε, y be the first two symbols of s, and let z be the
rest of s.

iv) If s is of the form aaa∗b∗c∗, let x = ε, y be the first symbol of s, and let z be the
rest of s.

In each case, the strings xyiz are members of F for every i ≥ 0. Hence F satisfies the
conditions of the pumping lemma.

c. The pumping lemma is not violated because it states only that regular languages satisfy
the three conditions, and it doesn’t state that nonregular languages fail to satisfy the three
conditions.

1.50 The objective of this problem is for the student to pay close attention to the exact formu-
lation of the pumping lemma.

c. This language is that same as the language in in part (b), so the solution is the same.
e. The minimum pumping length is 1. The pumping length cannot be 0, as in part (b). Any

string in (01)∗ of length 1 or more contains 01 and hence can be pumped by dividing it
so that x = ε, y = 01, and z is the rest.

f. The minimum pumping length is 1. The pumping length cannot be 0, as in part (b). The
language has no strings of length 1 or more so 1 is a pumping length. (the conditions
hold vacuously).

g. The minimum pumping length is 3. The string 00 is in the language and it cannot be
pumped, so the minimum pumping length cannot be 2. Every string in the language of
length 3 or more contains a 1 within the first 3 symbols so it can be pumped by letting y
be that 1 and letting x be the symbols to the left of y and z be the symbols to the right
of y.

h. The minimum pumping length is 4. The string 100 is in the language but it cannot be
pumped (down), therefore 3 is too small to be a pumping length. Any string of length 4
or more in the language must be of the form xyz where x is 10, y is in 11∗0 and z is in
(11∗0)∗0, which satisfies all of the conditions of the pumping lemma.

i. The minimum pumping length is 5. The string 1011 is in the language and it cannot
be pumped. Every string in the language of length 5 or more (there aren’t any) can be
pumped (vacuously).

j. The minimum pumping length is 1. It cannot be 0 as in part (b). Every other string can
be pumped, so 1 is a pumping length.

1.51 a. Assume L = {0n1m0n| m, n ≥ 0} is regular. Let p be the pumping length given by the
pumping lemma. The string s = 0p10p ∈ L, and |s| ≥ p. Thus the pumping lemma
implies that s can be divided as xyz with x = 0a, y = 0b, z = 0c10p, where b ≥ 1 and
a + b + c = p. However, the string s′ = xy0z = 0a+c10p �∈ L, since a + c < p. That
contradicts the pumping lemma.
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c. Assume C = {w| w ∈ {0, 1}∗ is a palindrome} is regular. Let p be the pumping length
given by the pumping lemma. The string s = 0p10p ∈ C and |s| ≥ p. Follow the
argument as in part (a). Hence C isn’t regular, so neither is its complement.

1.52 One short solution is to observe that Y ∩ 1∗#1∗ = {1n#1n| n ≥ 0}. This language is
clearly not regular, as may be shown using a straightforward application of the pumping
lemma. However, if Y were regular, this language would be regular, too, because the
class of regular languages is closed under intersection and complementation. Hence Y
isn’t regular.

Alternatively, we can show Y isn’t regular directly using the pumping lemma. As-
sume to the contrary that Y is regular and obtain its pumping length p. Let s = 1p!#12p!.
The pumping lemma says that s = xyz satisfying the three conditions. By condition 3,
y appears among the left-hand 1s. Let l = |y| and let k = (p!/l). Observe that k is an
integer, because l must be a divisor of p!. Therefore, adding k copies of y to s will add
p! additional 1s to the left-hand 1s. Hence, xy1+kz = 12p!#12p! which isn’t a member
of Y . But condition 1 of the pumping lemma states that this string is a member of Y , a
contradiction.

1.53 The language D can be written alternatively as 0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 ∪ ε, which is
obviously regular.

1.54 The NFA Nk guesses when it has read an a that appears at most k symbols from the end,
then counts k − 1 more symbols and enters an accept state. It has an initial state q0 and
additional states q1 thru qk. State q0 has transitions on both a and b back to itself and on
a to state q1. For 1 ≤ i ≤ k − 1, state qi has transitions on a and b to state qi+1. State
qk is an accept state with no transition arrows coming out of it. More formally, NFA
Nk = (Q,Σ, δ, q0, F ) where

i) Q = {q0, . . . , qk}

ii) δ(q, c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{q0} q = q0 and c = a

{q0, q1} q = q0 and c = b

{qi+1} q = qi for 1 ≤ i < k and c ∈ Σ
∅ q = qk or c = ε

iii) F = {qk}.

1.55 Let M be a DFA. Say that w leads to state q if M is in q after reading w. Notice that if
w1 and w2 lead to the same state, then w1p and w2p also lead to the same state, for all
strings p.

Assume that M recognizes Ck with fewer than 2k states, and derive a contradiction.
There are 2k different strings of length k. By the pigeonhole principle, two of these
strings w1 and w2 lead to the same state of M .

Let i be the index of the first bit on which w1 and w2 differ. Since w1 and w2 lead M
to the same state, w1bi−1 and w2bi−1 lead M to the same state. This cannot be the case,
however, since one of the strings should be rejected and the other accepted. Therefore,
any two distinct k bit strings lead to different states of M . Hence M has at least 2k

states.

1.60 a. We construct M ′ from M by converting each transition that is traversed on symbol a ∈ Σ
to a sequence of transitions that are traversed while reading string f(a) ∈ Γ∗. The formal
construction follows.
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Let M = (Q,Σ, δ, q0, F ). For each a ∈ Σ let za = f(a) and let ka = |za|.
We write za = za

1za
2 . . . za

ka
where za

i ∈ Γ. Construct M ′ = (Q′,Γ, δ′, q0, F ). Q′ =
Q ∪ {qa

i | q ∈ Q, a ∈ Σ, 1 ≤ i ≤ ka}
For every q ∈ Q,

δ′(q, b) =

{
{r| δ(q, a) = r and za = ε} b = ε

{qa
1 | b = za

1} b �= ε

δ′(qa
i , b) =

{
{qa

i+1| b = za
i+1} 1 ≤ i < ka and b �= ε

{r| δ(q, a) = r} i = ka and b = ε

b. The above construction shows that the class of regular languages is closed under homo-
morphism. To show that the class of non-regular languages is not closed under homomor-
phism, let B = {0m1m| m ≥ 0} and let f : {0,1}−→{2} be the homomorphism where
f(0) = f(1) = 2. We know that B is a non-regular language but f(B) = {22m|m ≥ 0}
is a regular language.

1.61 a. RC(A) = {wi+1 · · ·wnw1 · · ·wi| w = w1 · · ·wn ∈ A and 1 ≤ i ≤ n}, because
we can let x = w1 · · ·wi and y = wi+1 · · ·wn. Then RC(RC(A)) gives the same
language because if st = wi+1 · · ·wnw1 · · ·wi for some strings s and t, then ts =
wj+1 · · ·wnw1 · · ·wj for some j where 1 ≤ j ≤ n.

b. Let A be a regular language that is recognized by DFA M . We construct a NFA N
that recognizes RC(A). In the idea behind the construction, N guesses the cut point
nondeterministically by starting M at any one of its states. Then N simulates M on
the input symbols it reads. If N finds that M is in one of its accept states then N may
nondeterministically reset M back to it’s start state prior to reading the next symbol.
Finally, N accepts its input if the simulation ends in the same state it started in, and
exactly one reset occurred during the simulation. Here is the formal construction. Let
M = (Q,Σ, δ, q0, F ) recognize A and construct N = (Q′,Σ, δ′, r, F ′) to recognize
RC(A).

Set Q′ = (Q×Q×{1, 2})∪{r}. State (q, r, i) signifies that N started the simulation
in M ’s state q, it is currently simulating M in state r, and if i = 1 a reset hasn’t yet
occurred whereas if i = 2 then a reset has occurred.

Set δ′(r, ε) = {(q, q, 1)| q ∈ Q}. This starts simulating M in each of its states,
nondeterministically.

Set δ′((q, r, i), a) = {(q, δ(r, a), i)} for each q, r ∈ Q and i ∈ {1, 2}. This contin-
ues the simulation.

Set δ′((q, r, 1), ε) = {(q, q0, 2)} for r ∈ F and q ∈ Q. This allows N to reset the
simulation to q0 if M hasn’t yet been reset and M is currently in an accept state.

We set δ′ to ∅ if it is otherwise unset.
F ′ = {(q, q, 2)| q ∈ Q}.

1.62 Assume to the contrary that ADD is regular. Let p be the pumping length given by
the pumping lemma. Choose s to be the string 1p=0+1p, which is a member of ADD .
Because s has length greater than p, the pumping lemma guarantees that s can be split
into three pieces, s = xyz, satisfying the conditions of the lemma. By the third condition
in the pumping lemma have that |xy| ≤ p, it follows that y is 1k for some k ≥ 1. Then
xy2z is the string 1p+k=0+1p, which is not a member of ADD , violating the pumping
lemma. Hence ADD isn’t regular.
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1.63 Let A = {2k| k ≥ 0}. Clearly B2(A) = 10∗ is regular. Use the pumping lemma to
show that B3(A) isn’t regular. Get the pumping length p and chose s ∈ B3(A) of length
p or more. We show s cannot be pumped. Let s = xyz. For string w, write (w)3 to be
the number that w represents in base 3. Then

lim
i→∞

(xyiz)3
(xyi)3

= 3|z| and lim
i→∞

(xyi+1z)3
(xyi)3

= 3|y|+|z|

so

lim
i→∞

(xyi+1z)3
(xyiz)3

= 3|y|.

Therefore for a sufficiently large i,

(xyi+1z)3
(xyiz)3

= 3|y| ± α

for some α < 1. But this fraction is a ratio of two members of A and is therefore a whole
number. Hence α = 0 and the ratio is a power of 3. But the ration of two members of
A also is a power of 2. No number greater than 1 can be both a power of 2 and of 3, a
contradiction.

1.64 Given an NFA M recognizing A we construct an NFA N accepting A 1
2− using the

following idea. M keeps track of two states in N using two “fingers”. As it reads each
input symbol, N uses one finger to simulate M on that symbol. Simultaneously, M
uses the other finger to run M backwards from an accept state on a guessed symbol. N
accepts whenever the forward simulation and the backward simulation are in the same
state, that is, whenever the two fingers are together. At those points we are sure that N
has found a string where another string of the same length can be appended to yield a
member of A, precisely the definition of A 1

2−.
In the formal construction, Exercise 1.11 allows us to assume for simplicity that the

NFA M recognizing A has a single accept state. Let M = (Q,Σ, δ,q0, qaccept). Construct
NFA N = (Q′,Σ, δ′, q′0, F

′) recognizing the first halves of the strings in A as follows:
i) Q′ = Q × Q.

ii) For q, r ∈ Q define
δ′((q, r), a) = {(u, v)| u ∈ δ(q, a) and r ∈ δ(v, b) for some b ∈ Σ}.

iii) q0
′ = (q0, qaccept).

iv) F ′ = {(q, q)| q ∈ Q}.

1.65 Let A = {0∗#1∗}. Thus, A 1
3− 1

3
∩ {0∗1∗} = {0n1n| n ≥ 0}. Regular sets are closed

under intersection, and {0n1n| n ≥ 0} is not regular, so A 1
3− 1

3
is not regular.

1.66 If M has a synchronizing sequence, then for any pair of states (p, q) there is a string
wp,q such that δ(p, wp,q) = δ(q, wp,q) = h, where h is the home state. Let us run two
copies of M starting at states p and q respectively. Consider the sequence of pairs of
states (u, v) that the two copies run through before reaching home state h. If some pair
appears in the sequence twice, we can delete the substring of wp,q that takes the copies
of M from one occurrence of the pair to the other, and thus obtain a new wp,q. We repeat
the process until all pairs of states in the sequence are distinct. The number of distinct
state pairs is k2, so |wp,q| ≤ k2.

Suppose we are running k copies of M and feeding in the same input string s. Each
copy starts at a different state. If two copies end up at the same state after some step,
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they will do exactly the same thing for the rest of input, so we can get rid of one of them.
If s is a synchronizing sequence, we will end up with one copy of M after feeding in s.
Now we will show how to construct a synchronizing sequence s of length at most k3.

i) Start with s = ε. Start k copies of M , one at each of its states. Repeat the following
two steps until we are left with only a single copy of M .

ii) Pick two of M ’s remaining copies (Mp and Mq) that are now in states p and q after
reading s.

iii) Redefine s = swp,q. After reading this new s, Mp and Mq will be in the same state,
so we eliminate one of these copies.

At the end of the above procedure, s brings all states of M to a single state. Call that state
h. Stages 2 and 3 are repeated k − 1 times, because after each repetition we eliminate
one copy of M . Therefore |s| ≤ (k − 1)k2 < k3.

1.67 Let C = Σ∗BΣ∗. Then C is the language of all strings that contain some member of
B as a substring, If B is regular then C is also regular. We know from the solution to
Problem 1.14 that the complement of a regular language is regular, and so C is regular.
It is the language of all strings that do not contain some member of B as a substring.
Note that A avoids B = A ∩ C. Therefore A avoids B is regular because we showed
that the intersection of two regular languages is regular.

1.68 a. Any string that doesn’t begin and end with 0 obviously cannot be a member of A. If
string w does begin and end with 0 then w = 0u0 for some string u. Hence A = 0Σ∗0
and therefore A is regular.

b. Assume for contradiction that B is regular. Use the pumping lemma to get the pumping
length p. Letting s = 0p10p we have s ∈ B and so we can divide up s = xyz according
to the conditions of the pumping lemma. By condition 3, xy has only 0s, hence the string
xyyz is 0l10p for some l > p. But then 0l10p isn’t equal to 0k1u0k for any u and k,
because the left-hand part of the string requires k = l and the right-hand part requires
k ≤ p. Both together are impossible, because l > p. That contradicts the pumping
lemma and we conclude that B isn’t regular.

1.69 a. Let s be a string in U whose length is shortest among all strings in U . Assume (for
contradiction) that |s| ≥ max(k1, k2). One or both of the DFAs accept s because s ∈ U .
Say it is M1 that accepts s. Consider the states q0, q1, . . . , ql that M1 enters while
reading s, where l = |s|. We have l ≥ k1, so q0, q1, . . . , ql must repeat some state.
Remove the portion of s between the repeated state to yield a shorter string that M1

accepts. That string is in U , a contradiction. Thus |s| < max(k1, k2).
b. Let s be a string in U whose length is shortest among all strings in U . Assume (for

contradiction) that |s| ≥ k1k2. Both of the DFAs reject s because s ∈ U . Consider
the states q0, q1, . . . , ql and r0, r1, . . . , rl that M1 and M2 enter respectively while
reading s, where l = |s|. We have l ≥ k1k2, so in the sequence of ordered pairs
(q0, r0), (q1, r1), . . . , (ql, rl), some pair must repeat. Remove the portion of s between
the repeated pair to yield a shorter string that both M1 and M2 reject. That shorter string
is in U , a contradiction. Thus |s| < k1k2.

1.70 A PDA P that recognizes C operates by nondeterministically choosing one of three
cases. In the first case, P scans its input and accepts if it doesn’t contain exactly two
#s. In the second case, P looks for a mismatch between the first two strings that are
separated by #. It does so by reading its input while pushing those symbols onto the
stack until it reads #. At that point P continues reading input symbols and matching
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them with symbols that are popped off the stack. If a mismatch occurs, or if the stack
empties before P reads the next #, or if P reads the next # before the stack empties, then
it accepts. In the third case, P looks for a mismatch between the last two strings that are
separated by #. It does so by reading its input until it reads # and the it continues reading
input symbols while pushing those symbols onto the stack until it reads a second #. At
that point P continues reading input symbols and matching them with symbols that are
popped off the stack. If a mismatch occurs, or if the stack empties before P reaches the
end of the input or if P reaches the end of the input before the stack empties, then it
accepts.

Alternatively, here is a CFG that generates C.

A → Y DY #Y | Y #Y DY | Y | Y #Y | Y #Y #Y #Z
D → XDX | 0E1 | 1E0
E → XEX | #
X → 0 | 1
Y → XY | ε
Z → Y #Z | ε

1.71 a. Observe that B = 1Σ∗1Σ∗ and thus is clearly regular.
b. We show C is nonregular using the pumping lemma. Assume C is regular and let p be

its pumping length. Let s = 1p01p. The pumping lemma says that s = xyz satisfying
the three conditions. Condition three says that y appears among the left-hand 1s. We
pump down to obtain the string xz which is not a member of C. Therefore C doesn’t
satisfy the pumping lemma and hence isn’t regular.

1.72 a. Let B = {0110}. Then CUT(B) = {0110, 1010, 0011, 1100, 1001} and
CUT(CUT(B)) = {0110, 1010, 0011, 1100, 1001, 0101}.

b. Let A be a regular language that is recognized by DFA M . We construct a NFA N that
recognizes CUT(A). This construction is similar to the construction in the solution to
Problem 1.61. Here, N begins by nondeterministically guessing two states q1 and q2 in
M . Then N simulates M on its input beginning at state q1. Whenever the simulation
reaches q2, nondeterministically N may switch to simulating M at its start state q0 and
if it reaches state q1, it again nondeterministically may switch to state q2. At the end of
the input, if N ’s simulation has made both switches and is now in one of M ’s accept
states, it has completed reading an input yxz where M accepts xyz, and so it accepts.

1.73 a. The idea here is to show that a DFA with fewer than 2k states must fail to give the right
answer on at least one string. Let A = (Q,Σ, δ, q0, F ) be a DFA with m states. Fix the
value of k and let W = {w| w ∈ Σk} be the set of strings of length k.

For each of the 2k strings w ∈ W , let qw be the state that A enters after it starts in
state q0 and then reads w. If m < 2k then two different strings s and t must exist in W
where A enters the same state, i.e., qs = qt. The string ss is in WW so A must enter
an accepting state after reading ss. Similarly, st �∈ WW so A must enter a rejecting
string after reading st. But qs = qt, so A enters the same state after reading ss or st, a
contradiction. Therefore m ≥ 2k.

b. We can give an NFA N = (Q,Σ, δ, c0, F ) with 4k + 4 states that recognizes WW . The
NFA N branches into two parts. One part accepts if the inputs length isn’t 2k. The other
part accepts if the input contains two unequal symbols that are k separated.

Formally, let Q = {c0, . . . , c2k+1, r, y1, . . . , yk, z1, . . . , zk} and
let F = {c0, . . . , c2k−1, c2k+1, yk, zk}.
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For 0 ≤ i ≤ 2k and a ∈ Σ, set δ(ci, a) = {ci+1} and δ(ck+1, a) = {ck+1}.
Additionally, δ(c0, ε) = {r}, δ(r, 0) = {r, y1} and δ(r, 1) = {r, z1}.
Finally, for 0 ≤ i < k − 1, set δ(yi, a) = {yi+1} and δ(zi, a) = {zi+1},
δ(yk−1, 1) = {yk}, δ(yk, a) = {yk}, and
δ(zk−1, 1) = {zk}, δ(zk, a) = {zk}.
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Chapter 2

2.1 Here are the derivations (but not the parse trees).
a. E ⇒ T ⇒ F ⇒ a

b. E ⇒ E+T ⇒ T+T ⇒ F+T ⇒ F+F ⇒ a+F ⇒ a+a

c. E ⇒ E+T ⇒ E+T+T ⇒ T+T+T ⇒ F+T+T ⇒ F+F+T ⇒ F+F+F ⇒ a+F+F ⇒
a+a+F ⇒ a+a+a

d. E ⇒ T ⇒ F ⇒ (E) ⇒ (T) ⇒ (F) ⇒ ((E)) ⇒ ((T)) ⇒ ((F)) ⇒ ((a))

2.2 a. The following grammar generates A:

S → RT
R → aR | ε
T → bTc | ε

The following grammar generates B:

S → TR
T → aTb | ε
R → cR | ε

Both A and B are context-free languages and A ∩ B = {anbncn| n ≥ 0}. We know
from Example 2.36 that this language is not context free. We have found two CFLs
whose intersection is not context free. Therefore the class of context-free languages is
not closed under intersection.

b. First, the context-free languages are closed under the union operation. Let G1 =
(V1,Σ, R1, S1) and G2 = (V2, Σ, R2, S2) be two arbitrary context free grammars. We
construct a grammar G that recognizes their union. Formally, G = (V,Σ, R, S) where:

i) V = V1 ∪ V2

ii) R = R1 ∪ R2 ∪ {S → S1, S → S2}
(Here we assume that R1 and R2 are disjoint, otherwise we change the variable
names to ensure disjointness)

Next, we show that the CFLs are not closed under complementation. Assume, for a
contradiction, that the CFLs are closed under complementation. Then, if G1 and G2

are context free grammars, it would follow that L(G1) and L(G2) are context free. We
previously showed that context-free languages are closed under union and so L(G1) ∪
L(G1) is context free. That, by our assumption, implies that L(G1) ∪ L(G1) is context

free. But by DeMorgan’s laws, L(G1) ∪ L(G1) = L(G1)∩L(G2). However, if G1 and

15
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G2 are chosen as in part (a), L(G1) ∪ L(G1) isn’t context free. This contradiction shows
that the context-free languages are not closed under complementation.

2.4 b. S → 0R0 | 1R1 | ε
R → 0R | 1R | ε

c. S → 0 | 1 | 00S | 01S | 10S | 11S
e. S → 0S0 | 1S1 | 0 | 1 | ε
f. S → S

2.5 a. This language is regular, so the PDA doesn’t need to use its stack. The PDA reads the
input and uses its finite control to maintain a counter which counts up to 3. It keeps track
of the number of 1s it has seen using this counter. The PDA enters an accept state and
scans to the end of the input if it has read three 1s.

b. This language is regular. The PDA reads the input and keeps track of the first and last
symbol in its finite control. If they are the same, it accepts, otherwise it rejects.

c. This language is regular. The PDA reads the input and keeps track of the length (modulo
2) using its finite control. If the length is 1 (modulo 2) it accepts, otherwise it rejects.

d. The PDA reads the input and pushes the symbols onto the stack. At some point it
nondeterministically guesses where the middle is. It looks at the middle symbol. If that
symbol is a 1, it rejects. If it is a 0 the PDA reads the rest of the string, and for each
character read, it pops one element off of its stack. If the stack is empty when it finishes
reading the input, it accepts. If the stack is empty before it reaches the end of the input,
or nonempty when the input is finished, it rejects.

e. The PDA reads the input and pushes each symbol onto its stack. At some point it non-
deterministically guesses when it has reached the middle. It also nondeterministically
guesses whether string has odd length or even length. If it guesses even, it pushes the
current symbol it’s reading onto the stack. If it guesses the string has odd length, it goes
to the next input symbol without changing the stack. Then it reads the rest of the input,
and it compares each symbol it reads to the symbol on the top of the stack. If they are
the same, it pops the stack, and continues reading. If they are different, it rejects. If the
stack is empty when it finishes reading the input, it accepts. If the stack is empty before
it reaches the end of the input, or nonempty when the input is finished, it rejects.

f. The PDA never enters an accept state.

2.6 b.

S → XbXaX | T | U
T → aTb | Tb | b
U → aUb | aU | a
X → aX | bX | ε

d.

S → M#P#M | P#M | M#P | P
P → aPa | bPb | a | b | ε | # | #M#
M → aM | bM | #M | ε

Note that we need to allow for the case when i = j, that is, some xi is a palindrome.
Also, ε is in the language since it’s a palindrome.

2.9 A CFG G that generates A is given as follows:
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G = (V,Σ, R, S), V = {S,Eab, Ebc, C, A}, and Σ = {a, b, c}. The rules are:

S → EabC | AEbc

Eab → aEabb | ε
Ebc → bEbcc | ε

C → Cc | ε
A → Aa | ε

Initially substituting EabC for S generates any string with an equal number of a’s and
b’s followed by any number of c’s. Initially substituting Ebc for S generates any string
with an equal number of b’s and c’s prepended by any number of a’s.

The grammar is ambiguous. Consider the string ε. On the one hand, it can be
derived by choosing EabC with each of Eab and C yielding ε. On the other hand, ε can
be derived by choosing AEbc with each of A and Ebc yielding ε. In general, any string
aibjck with i = j = k can be derived ambiguously in this grammar.

2.10 1. Nondeterministically branch to either Stage 2 or Stage 6.
2. Read and push a’s.
3. Read b’s, while popping a’s.
4. If b’s finish when stack is empty, skip c’s on input and accept .
5. Skip a’s on input.
6. Read and push b’s.
7. Read c’s, while popping b’s.
8. If c’s finish when stack is empty, accept .

2.11 1. Place $ and E on the stack.
2. Repeat the following steps forever.
3. If the top of stack is the variable E, pop it and nondeterministically push

either E+T or T into the stack.
4. If the top of stack is the variable T , pop it and nondeterministically push

either T xF or F into the stack.
5. If the top of stack is the variable F , pop it and nondeterministically push

either (E) or a into the stack.
6. If the top of stack is a terminal symbol, read the next symbol from the

input and compare it to the terminal in the stack. If they match, repeat. If
they do not match, reject on this branch of the nondeterminism.

7. If the top of stack is the symbol $, enter the accept state. Doing so accepts
the input if it has all been read.

2.12 Informal description of a PDA that recognizes the CFG in Exercise 2.3:
1. Place the marker symbol $ and the start variable R on the stack.
2. Repeat the following steps forever.
3. If the top of stack is the variable R, pop it and nondeterministically push

either XRX or S into the stack.
4. If the top of stack is the variable S, pop it and nondeterministically push

either aTb or bTa into the stack.
5. If the top of stack is the variable T , pop it and nondeterministically push

either XTX , X or ε into the stack.
6. If the top of stack is the variable X , pop it and nondeterministically push

either a or b into the stack.
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7. If the top of stack is a terminal symbol, read the next symbol from the
input and compare it to the terminal symbol in the stack. If they match,
repeat. If they do not match, reject on this branch of the nondeterminism.

8. If the top of stack is the symbol $, enter the accept state. Doing so accepts
the input if it has all been read.

2.13 a. L(G) is the language of strings of 0s and #s that either contain exactly two #s and any
number of 0s, or contain exactly one # and the number of 0s on the right-hand side of
the # is twice the number of 0s on the left-hand side of the #.

b. Assume L(G) is regular and obtain a contradiction. Let A = L(G) ∩ 0∗#0∗. If L(G)
is regular, so is A. But we can show A = {0k#02k| k ≥ 0} is not regular by using a
standard pumping lemma argument.

2.14

S0 → AB | CC | BA | BD | BB | ε
A → AB | CC | BA | BD | BB
B → CC
C → 0
D → AB

2.16 Let G1 = (V1, Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs.
Construct a new CFG G∪ where L(G∪) = L(G1)∪L(G2). Let S be a new variable

that is neither in V1 nor in V2 and assume these sets are disjoint.
Let G∪ = (V1 ∪ V2 ∪ {S}, Σ, R1 ∪ R2 ∪ {r0}, S), where r0 is S → S1 | S2.
We construct CFG G◦ that generates L(G1) ◦ L(G2) as in G∪ by changing r0 in

G∪ into S → S1S2.
To construct CFG G∗ that generates the language L(G1)∗, let S′ be a new variable

not in V1 and make it the starting variable. Let r0 be S′ → S′S1 | ε be a new rule in G∗ .

2.17 Let A be a regular language generated by regular expression R. If R is one of the atomic
regular expressions b, for b ∈ Σε, construct the equivalent CFG ({S}, {b}, {S → b}, S).
If R is the atomic regular expressions ∅, construct the equivalent CFG ({S}, {b}, {S →
S}, S). If R is a regular expression composed of smaller regular expressions combined
with a regular operation, use the result of Problem 2.16 to construct an equivalent CFG
out of the CFGs that are equivalent to the smaller expressions.

2.18 S can generate a string of T s. Each T can generate strings in {ambm| m ≥ 1}. Here are
two different leftmost derivations of ababab.
S ⇒ SS ⇒ SSS ⇒ TSS ⇒ abSS ⇒ abTS ⇒ ababS ⇒ ababT ⇒ ababab.
S ⇒ SS ⇒ TS ⇒ abS ⇒ abSS ⇒ abTS ⇒ ababS ⇒ ababT ⇒ ababab.
The ambiguity arises because S can generate a string of T s in multiple ways. We can
prevent this behavior by forcing S to generate each string of T s in a single way by
changing the first rule to be S → TS instead of S → SS. In the modified grammar, a
leftmost derivation will repeatedly expand T until it is eliminated before expanding S,
and no other option for expanding variables is possible, so only one leftmost derivation
is possible for each generated string.

2.19 Let A be a CFG that is recognized by PDA P and construct the following PDA P ′ that
recognizes RC(A). For simplicity, assume that P empties its stack when it accepts its
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input. The new PDA P ′ must accept input yx when P accepts xy. Intuitively, would like
P ′ to start by guessing the state and the stack contents that P would be in after reading x,
so that P ′ can simulate P on y, and then if P ends up in an accept state after reading y,
we can simulate P on x to check that it ends up with the initially guessed start and stack
contents. However, P ′ has no way to store the initially guessed stack contents to check
that it matches the stack after reading x. To avoid this difficulty, P ′ guesses these stack
symbols only at the point when P would be popping them while reading y. It records
these guesses by pushing a specially marked copy of each guessed symbol. When P ′

guesses that it has finished reading y, it will have a copy of the stack that P would have
when it finishes reading x but in reverse order, with marked symbols instead of regular
symbols. Then, while P ′ simulates P reading x, whenever P pushes a symbol, P ′ may
guess that it is one of the symbols that would have been popped while P read y, and if
so P ′ pops the stack and matches the symbol P would push with the marked symbol P ′

popped.

2.20 Let B = {1m2n3n4m| n, m ≥ 0} which is a CFL. If CUT(B) were a CFL then
the language CUT(B) ∩ 2∗1∗3∗4∗ would be a CFL because Problem 2.30 shows that
the intersection of a CFL and a regular language is a CFL. But that intersection is
{2n1m3n4m| n, m ≥ 0} which is easily shown to be a non-CFL using the pumping
lemma.

2.21 We show that an ambiguous CFG cannot be a DCFG. If G is ambiguous, G derives some
string s with at least two different parse trees and therefore s has at least two different
rightmost derivations and at least two different leftmost reductions. Compare the steps of
two of these different leftmost reductions and locate the first string where these reduction
differ. The preceding string must be the same in both reductions, but it must have two
different handles. Hence G is not a DCFG.

2.23 a. Let B = {aibjck| i �= j for i, j, k ≥ 0} and C = {aibjck| j �= k for i, j, k ≥ 0}. The
following DPDA recognizes B. Read all a’s (if any) and push them onto the stack. Read
b’s (if any) while popping the a’s. If the b’s finish while a’s remain on the stack or if
b’s remain unread when the stack becomes empty, then scan to the end of the input and
accept , assuming that the input is in a∗b∗c∗ which was checked in parallel. Otherwise,
reject .

A similar DPDA recognizes C. Thus B and C are DCFLs. However we have shown
in the text that A = B ∪ C isn’t a DCFL. Therefore the class of DCFLs is not closed
under union.

b. We have shown in the text that the class of DCFLs is closed under complement. Thus, if
the class of DCFLs were closed under intersection, the class would also be closed under
union because B ∪C = B ∩C, contradicting Part a of this problem. Hence the class of
DCFLs is not closed under intersection.

c. Define B and C as in Part a. Let B′ = (01 ∪ 0)B and C ′ = (10 ∪ 1)C. Then
D = B′∪C ′ is a DCFL because a DPDA can determine which test to use by reading the
first few symbols of the input. Let E = (1∪ε)D which is (101∪10∪01∪0)B∪(110∪
11 ∪ 10 ∪ 1)C. To see that E isn’t a DCFL, take F = E ∩ 01(abc)∗. The intersection
of a DCFL and a regular language is a DCFL so if E were a DCFL then F would be a
DCFL but F = 01A which isn’t a DCFL for the same reason A isn’t a DCFL.

d. Define C and F as in Part c. The language H = 1 ∪ ε ∪ D is easily seen to be a DCFL.
However H∗ is not a DCFL because H∗ ∩ 01(abc)∗ = F ∪ 1 ∪ ε and the latter isn’t a
DCFL for the same reason that F isn’t a DCFL.
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e. Define B and C as in Part a. Let K = 0BR ∪ 1CR. First, show that K is a DCFL
by giving a DPDA which operates as follows. After reading the first symbol, the DPDA
follows the deterministic procedure to recognize membership in BR or in CR depending
on whether the first symbol is 0 or 1. Next, show that KR is not a DCFL by showing
how to convert a DPDA P for KR into a DPDA P ′ for the language A = B ∪C which
the text shows isn’t a DCFL. Modify P so that it recognizes the endmarked version of
KR. Thus L(P ) = KR��� = B0��� ∪ C1���. It is enough to design P ′ to recognize
A��� = B��� ∪ C��� because A��� is a DCFL iff A is a DCFL. It simulates P but also keeps
additional information on the stack which says what P would do if its next input symbol
were 0 or it it were 1. Then when P ′ reads ���, it can use this information to accept when
P would have accepted if the prior input symbol had been either a 0 or a 1.

2.24 a. Let E = {w| w has an equal number of a’s and b’s}. It is enough to show that T
∗⇒ w iff

w ∈ E. The forward direction is straightforward. If T
∗⇒ w then w ∈ E because every

substitution adds an equal number of a’s and b’s. The reverse direction is the following
claim.

Claim: If w ∈ E then T
∗⇒ w.

Proof by induction on |w|, the length of w.
Basis, |w| = 0: Then w = ε and the rule T → ε shows that T

∗⇒ w.
Induction step: Let k > 0 and assume the claim is true whenever |w| < k. Prove

the claim is true for |w| = k.
Take w = w1 · · ·wk ∈ E where |w| = k and each wi is a or b. Let x = wR. For

1 ≤ i ≤ k, let ai (bi) be the number of a’s (b’s) that appear among the first i symbols of
x and let ci = ai−bi. In other words, ci is the running count of the excess number of a’s
over b’s across x. Because w ∈ E and E is closed under reversal, we know that ck = 0.
Let m be the smallest i for which ci = 0. Consider the case where x1 = a. Then c1 = 1.
Moreover, ci > 0 from i = 1 to m − 1 and cm−1 = 1. Thus, x2 · · ·xm−1 ∈ E and
xm = b and then also xm+1 · · ·xk ∈ E. We can write x = ax2 · · ·xm−1bxm+1 · · ·xk

and so w = (xm−1 · · ·xk)Rb(x2 · · ·xm−1)Ra. The induction assumption implies that
T

∗⇒ (xm−1 · · ·xk)R and T
∗⇒ (x2 · · ·xm−1)R. Therefore the rule T → TbTa shows

that T
∗⇒ w. A similar argument works for the case where x1 = b.

b. Omitted
c. The DPDA reads the input and performs the following actions for each symbol read.

If the stack is empty or if the input symbol is the same as the top stack symbol, the
DPDA pushes the input symbol. Otherwise, if the top stack symbol differs from the
input symbol, it pops the stack. When it reads ���, it accepts if the stack is empty, and
otherwise it doesn’t accept.

2.26 Following the hint, the modified P would accept the strings of the form {ambmcm|m ≥
1}. But that is impossible because this language is not a CFL.

2.27 Assume that DPDA P recognizes B and construct a modified DPDA P ′ which simulates
P while reading a’s and b’s. If P enters an accept state, P ′ checks whether the next
input symbol is a c, and if so it simulates P on bc (pretending it has read an extra b) and
then continues to simulate P on the rest of the input. It accepts only when P enters an
accept state after reading c’s. Then P ′ recognizes the non-CFL {ambmcm| m ≥ 1}, an
impossibility.
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2.28 Assume to the contrary that DPDA P recognizes C. For a state q and a stack symbol x,
call (q, x) a minimal pair if when P is started q with x on the top of its stack, P never
pops its stack below x, no matter what input string P reads from that point on. In that
case, the contents of P ’s stack at that point cannot affect its subsequent behavior, so P ’s
subsequent behavior can depend only on q and x. Additionally, call (q, ε) a minimal
pair. It corresponds to starting P in state q with an empty stack.

Claim: Let y be any input to P . Then y can be extended to z = ys for some
s ∈ {0,1}∗ where P on z enters a minimal pair.

To prove this claim, observe that if P on input y enters a minimal pair then we
are done immediately, and if P on input y enters a pair (q, x) which isn’t minimal then
some input s1 exists on which P pops its stack below x. If P on input ys1 then enters
a minimal pair, we are again done because we can let z = ys1. If that pair still isn’t
minimal then some input s2 exists which take P to an even lower stack level. If P on
ys1s2 enters a minimal pair, we are done because we can let z = ys1s2. This procedure
must terminate with a minimal pair, because P ’s stack shrinks at every step and will
eventually become empty. Thus, the claim is proved.

Let k = 1 + |Q| × (|Γ| + 1) be any value which is greater than the total number
of minimal pairs. For every i ≤ k, let yi = 10i1. The strings yi are all distinct, and no
string yi is a prefix of some other string yj . The claim shows that we can extend these
to z1, . . . , zk ∈ {0,1}∗ where each zi takes P to a minimal pair. Because k exceeds the
number of minimal pairs, two of these strings, zi and zj , lead to the same minimal pair.
Observe that P accepts both ziz

R
i and zjz

R
j because these strings are members of C.

But because zi and zj lead to the same minimal pair, P ’s will behave identically if we
append the same string to either of them. Thus P accepts input ziz

R
j because it accepts

input zjz
R
j . But ziz

R
j �∈ C, a contradiction.

2.31 The grammar generates all strings not of the form akbk for k ≥ 0. Thus the complement
of the language generated is L(G) = {akbk| k ≥ 0}. The following grammar generates
L(G): {{S}, {a, b}, {S → aSb | ε}, S}.

2.32 Let P be a PDA that recognizes A. We construct a PDA P ′ that recognizes A/B as
follows. It operates by reading symbols and simulating P . Whenever P branches non-
deterministically, so does P ′. In addition, at every point P ′ nondeterministically guesses
that it has reached the end of the input and refrains from reading any more input symbols.
Instead, it guesses additional symbols as if they were input and continues to simulate P
on this guessed input, while at the same time using its finite control to simulate a DFA
for B on the guessed input string. If P ′ simultaneously reaches accept states in both of
these simulations, P ′ enters an accept state.

2.33 The following CFG G generates the language C of all strings with twice as many a’s as
b’s. S → bSaa | aaSb | aSbSa | SS | ε.

Clearly G generates only strings in C. We prove inductively that every string in C
is in L(G). Let s be a string in C of length k.

Basis If k = 0 then S = ε ∈ L(G).
Induction step If k > 0, assume all strings in C of length less than k are generated

by G and show s is generated by G.
If s = s1 . . . sk then for each i from 0 to k let ci to be the number of a’s minus twice

the number of b’s in s1 . . . si. We have c0 = 0 and ck = 0 because s ∈ L(G). Next we
consider two cases.
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i) If ci = 0 for some i besides 0 and k, we divide into two substrings s = tu where
t is the first i symbols and u is the rest. Both t and u are members of C and hence
are in L(G) by the induction hypothesis. Therefore the rule S → SS show that
s ∈ L(G).

ii) If ci �= 0 for all i besides 0 and k, we consider three subcases.
i. If s begins with b, then all ci from i = 1 to k−1 are negative, because c1 = −2

and jumping from a negative ci to a positive ci+1 isn’t possible because the c
values can increase only by 1 at each step. Hence s ends with aa, because
no other ending would give ck = 0. Therefore s = btaa where t ∈ C. By
the induction hypothesis, t ∈ L(G) and so the rule S → bSaa shows that
s ∈ L(G).

ii. If s begins with a and all ci are non-negative, then s2 = a and sk = b. There-
fore s = aatb where t ∈ C. By the induction hypothesis, t ∈ L(G) and so the
rule S → aaSb shows that s ∈ L(G).

iii. If s begins with a and some ci is negative, then select the lowest i for which
a negative ci occurs. Then ci−1 = +1 and ci = −1, because the c values can
decrease only by 2 at each step. Hence si = b. Furthermore s ends with a,
because no other ending would give ck = 0. If we let t be s2 · · · si−1 and u
be si+1 · · · sk−1 then s = atbua where both t and u are members of C and
hence are in L(G) by the induction hypothesis. Therefore the rule S → aSbSa
shows that s ∈ L(G).

2.34 We construct a PDA P that recognizes C. First it nondeterministically branches to check
either of two cases: that x and y differ in length or that they have the same length but
differ in some position. Handling the first case is straightforward. To handle the second
case, it operates by guessing corresponding positions on which the strings x and y differ,
as follows. It reads the input at the same time as it pushes some symbols, say 1s, onto
the stack. At some point it nondeterministically guesses a position in x and it records the
symbol it is currently reading there in its finite memory and skips to the #. Then it pops
the stack while reading symbols from the input until the stack is empty and checks that
the symbol it is now currently reading is different from the symbol it had recorded. If so,
it accepts.

Here is a more detailed description of P ’s algorithm. If something goes wrong, for
example, popping when the stack is empty, or getting to the end of the input prematurely,
P rejects on that branch of the computation.

1. Nondeterministically jump to either 2 or 4.
2. Read and push these symbols until read #. Reject if # never found.
3. Read and pop symbols until the end of the tape. Reject if another # is read

or if the stack empties at the same time the end of the input is reached. Oth-
erwise accept .

4. Read next input symbol and push 1 onto stack.
5. Nondeterministically jump to either 4 or 6.
6. Record the current input symbol a in the finite control.
7. Read input symbols until # is read.
8. Read the next symbol and pop the stack.
9. If stack is empty, go to 10, otherwise go to 8.
10. Accept if the current input symbol isn’t a. Otherwise reject .

2.35 We construct a PDA P recognizing D. This PDA guesses corresponding places on which
x and y differ. Checking that the places correspond is tricky. Doing so relies on the
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observation that the two corresponding places are n/2 symbols apart, where n is the
length of the entire input. Hence, by ensuring that the number of symbols between the
guessed places is equal to the number other symbols, the PDA can check that the guessed
places do indeed correspond, Here we give a more detailed description of the PDA al-
gorithm. If something goes wrong, for example, popping when the stack is empty, or
getting to the end of the input prematurely, P rejects on that branch of the computation.

1. Read next input symbol and push 1 onto the stack.
2. Nondeterministically jump to either 1 or 3.
3. Record the current input symbol a in the finite control.
4. Read next input symbol and pop the stack. Repeat until stack is empty.
5. Read next input symbol and push 1 onto the stack.
6. Nondeterministically jump to either 5 or 7.
7. Reject if current input symbol equals a.
8. Read next input symbol and pop the stack. Repeat until stack is empty.
9. Accept if input is empty.

Alternatively we can give a CFG for this language as follows.

S → AB | BA
A → XAX | 0
B → XBX | 1
X → 0 | 1

2.38 Consider a derivation of w. Each application of a rule of the form A → BC increases the
length of the string by 1. So we have n − 1 steps here. Besides that, we need exactly n
applications of terminal rules A → a to convert the variables into terminals. Therefore,
exactly 2n − 1 steps are required.

2.39 a. To see that G is ambiguous, note that the string

if condition then if condition then a:=1 else a:=1

has two different leftmost derivations (and hence parse trees):

1. 〈STMT〉
→ 〈IF-THEN〉
→ if condition then 〈STMT〉
→ if condition then 〈IF-THEN-ELSE〉
→ if condition then if condition then 〈STMT〉 else 〈STMT〉
→ if condition then if condition then a:=1 else 〈STMT〉
→ if condition then if condition then a:=1 else a:=1

2. 〈STMT〉
→ 〈IF-THEN-ELSE〉
→ if condition then 〈STMT〉 else 〈STMT〉
→ if condition then 〈IF-THEN〉 else 〈STMT〉
→ if condition then if condition then 〈STMT〉 else 〈STMT〉
→ if condition then if condition then a:=1 else 〈STMT〉
→ if condition then if condition then a:=1 else a:=1

b. The ambiguity in part a) arises because the grammar allows matching an else both to the
nearest and to the farthest then. To avoid this ambiguity we construct a new grammar that
only permits the nearest match, by disabling derivations which introduce an 〈IF-THEN〉
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before an else. This grammar has two new variables: 〈E-STMT〉 and 〈E-IF-THEN-ELSE〉,
which work just like their non-〈E〉 counterparts except that they cannot generate the dan-
gling 〈IF-THEN〉. The rules of the new grammar are the same as for the old grammar
except we remove the 〈IF-THEN-ELSE〉 rule and add the following new rules:

〈E-STMT〉 → 〈ASSIGN〉|〈E-IF-THEN-ELSE〉
〈E-IF-THEN-ELSE〉 → if condition then 〈E-STMT〉 else 〈E-STMT〉
〈IF-THEN-ELSE〉 → if condition then 〈E-STMT〉 else 〈STMT〉

2.40 I found these problems to be surprisingly hard.
a. Define an a-string to be a string where every prefix has at least as many a’s as b’s. The

following grammar G generates all a-strings unambiguously.

M → AaM | A
A → aAbA | ε

Here is a proof sketch. First we claim that A generates all balanced a-strings unambigu-
ously. Let w = w1 · · ·wn be any string. Let ci be the number of a’s minus the number
of b’s in positions 1 through i in w. The mate of a at position i in w is the b at the
lowest position j > i where cj < ci. It is easy to show inductively that for any balanced
a-string w and any parse tree for w generated from A, the rule A → aAbA generates the
mated pairs at the same time, hence it divides the string in a unique way and consequently
grammar is unambiguous.

Next we claim that M generates all a-strings that have an excess of a’s. Say that a
is unmated if it has no mate. We can show inductively that for any a-string, the M rule
M → AaM generates the unmated a’s and the A rules generates the mated pairs. The
generation can be done in only one way so the grammar is unambiguous.

b.

E → aAbE | bBaE | ε
A → aAbA | ε
B → bBaB | ε

Proof omitted.
c.

E → aAbE | bBaE | F
A → aAbA | ε
B → bBaB | ε
F → aAF | ε

Proof omitted.

2.41 This proof is similar to the proof of the pumping lemma for CFLs. Let G = (V,Σ, S, R)
be a CFG generating A and let b be the length of the longest right-hand side of a rule in
G. If a variable A in G generates a string s with a parse tree of height at most h, then
|s| ≤ bh.

Let p = b|V |+2 where |V | is the number of variables in G. Let s1 = a2p!bp!cp!.
Consider a parse tree for s1 that has the fewest possible nodes. Take a symbol c in s1

which has the longest path to S in the parse tree among all c’s. That path must be longer
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than |V | + 1 so some variable B must repeat on this path. Chose a repetition that occurs
among the lowest (nearest to the leaves) |V |+1 variables. The upper B can have at most
b|V |+2 ≤ p c’s in the subtree below it and therefore it can have at most that number of
b’s or else the tree surgery technique would yield a derived string with unequal numbers
of b’s and c’s. Hence the subtree below the upper B doesn’t produce any a’s. Thus the
upper and lower B’s yield a division of s1 into five parts uvxyz where v contains only
b’s and y contains only c’s. Any other division would allow us to pump the result to
obtain a string outside of A. Let q = |v| = |y|. Because q ≤ p we know that q divides
p!. So we can pump this string up and get a parse tree for a2p!b2p!c2p!.

Next let s2 = ap!bp!c2p! and carry out the same procedure to get a different parse
tree for a2p!b2p!c2p!. Thus this string has two different parse trees and therefore G is
ambiguous.

2.42 a. Assume A is context-free. Let p be the pumping length given by the pumping lemma.
We show that s = 0p1p0p1p cannot be pumped. Let s = uvxyz.
If either v or y contain more than one type of alphabet symbol, uv2xy2z does not contain
the symbols in the correct order and cannot be a member of A. If both v and y contain
(at most) one type of alphabet symbol, uv2xy2z contains runs of 0’s and 1’s of unequal
length and cannot be a member of A. Because s cannot be pumped without violating the
pumping lemma conditions, A is not context free.

d. Assume A is context-free. Let p be the pumping length from the pumping lemma. Let
s = apbp#apbp. We show that s = uvxyz cannot be pumped. Use the same reasoning
as in part (c).

2.43 Assume B is context-free and get its pumping length p from the pumping lemma. Let
s = 0p12p0p. Because s ∈ B, it can be split s = uvxyz satisfying the conditions of the
lemma. We consider several cases.

i) If both v and y contain only 0’s (or only 1’s), then uv2xy2z has unequal numbers of 0s
and 1s and hence won’t be in B.

ii) If v contains only 0s and y contains only 1s, or vice versa, then uv2xy2z isn’t a palin-
drome and hence won’t be in B.

iii) If both v and y contain both 0s and 1s, condition 3 is violated so this case cannot occur.
iv) If one of v and y contain both 0s and 1s, then uv2xy2z isn’t a palindrome and hence

won’t be in B.
Hence s cannot be pumped and contradiction is reached. Therefore B isn’t context-free.

2.44 Assume C is context-free and get its pumping length p from the pumping lemma. Let
s = 1p3p2p4p. Because s ∈ C, it can be split s = uvxyz satisfying the conditions of
the lemma. By condition 3, vxy cannot contain both 1s and 2s, and cannot contain both
3s and 4s. Hence uv2xy2z doesn’t have equal number of 1s and 2s or of 3s and 4s, and
therefore won’t be a member of C, so s cannot be pumped and contradiction is reached.
Therefore C isn’t context-free.

2.45 Assume to the contrary that F is a CFL. Let p be the pumping length given by the pump-
ing lemma. Let s = a2p2

b2p be a string in F . The pumping lemma says that we can
divide s = uvxyz satisfying the three conditions. We consider several cases. Recall that
condition three says that |vxy| ≤ p.

i) If either v or y contain two types of symbols, uv2xy2z contains some b’s before a’s
and is not in F .
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ii) If both v and y contain only a’s, uv2xy2z has the form a2p2+lb2p where l ≤ p < 2p.
But 2p2 + l isn’t a multiple of 2p if l < 2p so uv2xy2z �∈ F .

iii) If both v and y contain only b’s, uvmxymz for m = 2p2 has the form aibj where i < j
and so it cannot be in F .

iv) If v contains only a’s and y contains only b’s, let t = uvmxymz. String t cannot be
member of F for any sufficiently large value of m. Write s as ag+|v|bh+|y|. Then t is
ag+m|v|bh+m|y|. If t ∈ F then g + m|v| = k(h + m|y|) for some integer k. In other
words

k =
g + m|v|
h + m|y| .

If m is sufficiently large, g is a tiny fraction of m|v| and h is a tiny fraction of m|y| so
we have

k =
m|v|
m|y| =

|v|
|y|

because k is an integer. Moreover k < p. Rewriting the first displayed equation we
have g − hk = m(k|y| − |v|) which must be 0, due to the second displayed equation.
But we have chosen s so that g − hk �= 0 for k < p, so t cannot be member of F .

Thus none of the cases can occur, so the string s cannot be pumped, a contradiction.

2.46 L(G) is the language of strings of 0s and #s that either contain exactly two #s and any
number of 0s, or contain exactly one # and the number of 0s to the right of the # is
twice the number of 0s to the left. First we show that three is not a pumping length for
this language. The string 0#00 has length at least three, and it is in L(G). It cannot be
pumped using p = 3, because the only way to divide it into uvxyz satisfying the first
two conditions of the pumping lemma is u = z = ε, v = 0, x = #, and y = 00, but that
division fails to satisfy the third condition.

Next, we show that 4 is a pumping length for L(G). If w ∈ L(G) has length at least
4 and if it contains two #s, then it contains at least one 0. Therefore, by cutting w into
uvxyz where either v or y is the string 0, we obtain a way to pump w. If w ∈ L(G)
has length at least 4 and if it contains a single #, then it must be of the form 0k#02k for
some k ≥ 1. Hence, by assigning u = 0k−1, v = 0, x = #, y = 00, and z = 02k−2, we
satisfy all three conditions of the lemma.

2.47 Assume G generates a string w using a derivation with at least 2b steps. Let n be the
length of w. By the results of Problem 2.38, n ≥ 2b+1

2 > 2b−1.
Consider a parse tree of w. The right-hand side of each rule contains at most two

variables, so each node of the parse tree has at most two children. Additionally, the
length of w is at least 2b, so the parse tree of w must have height at least b+1 to generate
a string of length at least 2b. Hence, the tree contains a path with at least b + 1 variables,
and therefore some variable is repeated on that path. Using a surgery on trees argument
identical to the one used in the proof of the CFL pumping lemma, we can now divide w
into pieces uvxyz where uvixyiz ∈ G for all i ≥ 0. Therefore, L(G) is infinite.

2.48 Let F = {aibjckdl| i, j, k, l ≥ 0 and if i = 1 then j = k = l}. F is not context free
because F ∩ab∗c∗d∗ = {abncndn| n ≥ 0}, which is not a CFL by the pumping lemma,
and because the intersection of a CFL and a regular language is a CFL. However, F does
satisfy the pumping lemma with p = 2. (p = 1 works, too, with a bit more effort.)
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If s ∈ F has length 2 or more then:
i) If s ∈ b∗c∗d∗ write s as s = rgt for g ∈ {b, c, d} and divide s = uvxyz where u = r,

v = g, x = y = ε, z = t.
ii) If s ∈ ab∗c∗d∗ write s as s = at and divide s = uvxyz where u = ε, v = a,

x = y = ε, z = t.
iii) If s ∈ aaa∗b∗c∗d∗ write s as s = aat and divide s = uvxyz where u = ε, v = aa,

x = y = ε, z = t.
In each of the three cases, we may easily check that the division of s satisfies the condi-
tions of the pumping lemma.

2.49 Let G = (Σ, V, T, P, S) be a context free grammar for A. Define r to be the length of
the longest string of symbols occurring on the right hand side of any production in G.
We set the pumping length k to be r2|V |+1. Let s be any string in A of length at least
k and let T be a derivation tree for A with the fewest number of nodes. Observe that
since s ≥ k, the depth of T must be at least 2|V |+ 1. Thus, some path p in T has length
at least 2|V | + 1. By the pigeonhole principle, some variable V ′ appears at least three
times in p. Label the last three occurrences of V ′ in p as V1, V2, and V3. Moreover,
define the strings generated by V1, V2, and V3 in T as s1, s2, and s3 respectively. Now,
each of these strings is nested in the previous because they are all being generated on the
same path. Suppose then that s1 = l1s2r1 and s2 = l2s3r2. We now have three cases to
consider:

i) |l1l2| ≥ 1 and |r1r2| ≥ 1: In this case, there is nothing else to prove since we can
simply pump in the usual way.

ii) |l1l2| = 0: Since we defined T to be a minimal tree, neither r1 nor r2 can be the empty
string. So, we can now pump r1 and r2.

iii) |r1r2| = 0: This case is handled like the previous one.

2.51 Let A and B be defined as in the solution to Problem 2.50. Let D be the shuffle of A and
B. Then let E = D ∩ ((0 ∪ 1)(a ∪ b))∗ The language E is identical to the language C
in Problem 2.50 and was shown there to be non-context free. The intersection of a CFL
and a regular language is a CFL, so D must not be context free, and therefore the class
of CFLs isn’t closed under the shuffle operation.

2.52 The language C is context free, therefore the pumping lemma holds. Let p be the pump-
ing length and s ∈ C be a string longer then p, so it can be split in uvxyz such that
uvixyiz ∈ C for all i > 0, where |vy| > 0. All prefixes are in C so all uvi ∈ C and
thus the regular language u(v)∗ ⊆ C. If v �= ε, that language is infinite and we’re done.
If v = ε, then y �= ε, and the infinite regular language uvx(y)∗ ⊆ C.

2.53 a. Let B = {aibjck| i �= j or i ≤ k} which is a CFL. Let s = aibjck ∈ B. Assume
k ≥ 2. Let s′ = aibjck−1 which is a prefix of s. Show that s′ ∈ B if i �= j or i �= k.
1. If i �= j then s′ ∈ B.
2. If i < k then i ≤ (k − 1) so s′ ∈ B.
3. If i > k then i �= j (because s ∈ B) so s′ ∈ B.
If i = j = k then s has no prefix in B because removing some of the c’s would
yield a string that fails both conditions of membership in B. Thus, (NOPREFIX(B) ∩
a∗b∗ccc∗) ∪ abc ∪ ε = {aibici| i ≥ 0} which isn’t a CFL. Therefore, NOPREFIX(B)
cannot be a CFL.

b. Let C = {aibjck| i �= j or i ≥ k} which is a CFL. Let s = aibjck ∈ C. If i �= j
or if i > k then sc ∈ C. But if i = j = k then s has no extension in C. Therefore,
NOEXTEND(C) = {aibici| i ≥ 0} which isn’t a CFL.
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2.54 Assume Y is a CFL and let p be the pumping length given by the pumping lemma. Let
s = 1p+1#1p+2# · · · #15p. String s is in Y but we show it cannot be pumped. Let
s = uvxyz satisfying the three conditions of the lemma. Consider several cases.

i) If either v or y contain #, the string uv3xy3z has two consecutive ti’s which are equal
to each other. Hence that string is not a member of Y .

ii) If both v and y contain only 1s, these strings must either lie in the same run of 1s or in
consecutive runs of 1s within s, by virtue of condition 3. If v lies within the runs from
1p+1 to 13p then uv2xy2z adds at most p 1s to that run so that it will contain the same
number of 1s in a higher run. Therefore the resulting string will not be a member of
Y . If v lies within the runs from 13p+1 to 15p then uv0xy0z subtracts at most p 1s
to that run so that it will contain the same number of 1s in a lower run. Therefore the
resulting string will not be a member of Y .

The string s isn’t pumpable and therefore doesn’t satisfy the conditions of the pumping
lemma, so a contradiction has occurred. Hence Y is not a CFL.

2.55 a. First note that a PDA can use its stack to simulate an unbounded integer counter. Next
suppose A ⊆ {0, 1}∗ is recognized by a DFA D. Clearly, a binary string x is in
SCRAMBLE(A) iff x has the same length and same number of 1s as some w that is
accepted by D. Thus, a PDA M for SCRAMBLE(A) operates on input x by nondeter-
ministically simulating D on every possible |x|-long input w using its stack as a counter
to keep track of the difference between the number of 1s in w and the number of 1s in x.
A branch of M ’s computation accepts iff it reaches the end of x with the stack recording
a difference of 0 and the simulation of D on an accepting state.

b. If |Σ| > 2, then the claim in part (a) is false. For example, consider the regular language
A = (abc)∗ over the ternary alphabet Σ = {a, b, c}.

SCRAMBLE(A) = {x ∈ Σ∗| x has the same number of a’s, b’s and c’s.}

This language is not context-free.

2.56 Let MA be a DFA that recognizes A, and MB be a DFA that recognizes B. We construct
a PDA recognizing A�B. This PDA simulates MA on the first part of the string pushing
every symbol it reads on the stack until it guesses that it has reached the middle of the
input. After that it simulates MB on the remaining part of the string popping the stack
for every symbol it reads. If the stack is empty at the end of the input and both MA and
MB accepted, the PDA accepts. If something goes wrong, for example, popping when
the stack is empty, or getting to the end of the input prematurely, the PDA rejects on that
branch of the computation.

2.57 Suppose A is context-free and let p be the associated pumping length. Let s = 12p0p1p12p

which is in A and longer than p. By the pumping lemma we know that s = uvxyz sat-
isfying the three conditions. We distinguish cases to show that s cannot be pumped and
remain in A.
• If vxy is entirely in the last two thirds of s, then uv2xy2z contains 0s in its first third

but not in its last third and so is not in A.
• Otherwise, vxy intersects the first third of s, and it cannot extend beyond the first half

of s without violating the third condition.
– If v contains both 1s and 0s, then uv2xy2z contains 0s in its first third but not in

its last third and so is not in A.
– If v is empty and y contains both 0s and possibly 1s, then again uv2xy2z contains

0s in its first third but not in its last third and is not in A.
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– Otherwise, either v contains only 1s, or v is empty and y contains only 1s. In both
cases, uv1+6pxy1+6pz contains 0s in its last third but not in its first third and so is
not in A.

A contradiction therefore arises and so A isn’t a CFL.

2.58 a.

S → XSX | T1
T → XT | X
X → 0 | 1

Here T is any nonempty string, and S is any string with T1 in the middle (so the 1 falls
at least one character to the right of the middle).

b. Read the input until a 1 appears, while at the same time pushing 0s. Pop two 0s. Con-
tinue reading the input while popping the stack in an accept state until reach the end of
the input. If the stack empties before reaching the end of the input, then do not read any
more input (i.e., reject).

2.59 a.

S → T | 1
T → XXTX | XTXX | XTX | X1X
X → 0 | 1

b. Assume that C2 is a CFG and apply the pumping lemma to obtain the pumping length
p. Let s = 0p+210p10p+2. Clearly, s ∈ C2 so we may write s = uvxyz satisfying the
three conditions of the pumping lemma. If either v or y contains a 1, then the string uxz
contains fewer than two 1s and thus it cannot be a member of C2. By condition three of
the pumping lemma, parts v and y cannot together contain 0s from both of the two outer
runs of 0s. Hence in the string uv2xy2z the 1s cannot both remain in the middle third
and so uv2xy2z is not in C2.
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