
Introduction to
Parallel Computing

Solution Manual

Ananth Grama

Anshul Gupta

George Karypis

Vipin Kumar

Copyright c©2003 by Asdison Wesley

Introduction to Parallel Computing 2nd Edition Grama Solutions Manual
Full Download: http://alibabadownload.com/product/introduction-to-parallel-computing-2nd-edition-grama-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/introduction-to-parallel-computing-2nd-edition-grama-solutions-manual/

Contents

CHAPTER 1 Introduction 1

CHAPTER 2 Models of Parallel Computers 3

CHAPTER 3 Principles of Parallel Algorithm Design 11

CHAPTER 4 Basic Communication Operations 13

CHAPTER 5 Analytical Modeling of Parallel Programs
17

CHAPTER 6 Programming Using the Message-Passing
Paradigm 21

CHAPTER 7 Programming Shared Address Space
Platforms 23

CHAPTER 8 Dense Matrix Algorithms 25

CHAPTER 9 Sorting 33

CHAPTER 10 Graph Algorithms 43

CHAPTER 11 Search Algorithms for Discrete Optimization
Problems 51

CHAPTER 12 Dynamic Programming 53

CHAPTER 13 Fast Fourier Transform 59

Bibliography 63

i

Preface

This instructors guide to accompany the text ”Introduction to Parallel Computing” contains solutions to selected prob-
lems.

For some problems the solution has been sketched, and the details have been left out. When solutions to problems
are available directly in publications, references have been provided. Where necessary, the solutions are supplemented
by figures. Figure and equation numbers are represented in roman numerals to differentiate them from the figures and
equations in the text.

iii

CHAPTER 1

Introduction

1 At the time of compilation (11/02), the five most powerful computers on the Top 500 list along with their peak
GFLOP ratings are:

1. NEC Earth-Simulator/ 5120, 40960.00.

2. IBM ASCI White, SP Power3 375 MHz/8192 12288.00.

3. Linux NetworX MCR Linux Cluster Xeon 2.4 GHz -Quadrics/ 2304, 11060.00.

4. Hewlett-Packard ASCI Q - AlphaServer SC ES45/1.25 GHz/ 4096, 10240.00.

5. Hewlett-Packard ASCI Q - AlphaServer SC ES45/1.25 GHz/ 4096 10240.00.

2 Among many interesting applications, here are a representative few:

1. Structural mechanics: crash testing of automobiles, simulation of structural response of buildings and
bridges to earthquakes and explosions, response of nanoscale cantilevers to very small electromagnetic
fields.

2. Computational biology: structure of biomolecules (protein folding, molecular docking), sequence match-
ing for similarity searching in biological databases, simulation of biological phenomena (vascular flows,
impulse propagation in nerve tissue, etc).

3. Commercial applications: transaction processing, data mining, scalable web and database servers.

3 Data too fluid to plot.

4 Data too fluid to plot.

1

CHAPTER 2

Models of Parallel
Computers

1 A good approximation to the bandwidth can be obtained from a loop that adds a large array of integers:

for (i = 0; i < 1000000; i++)

sum += a[i];

with sum and array a suitably initialized. The time for this loop along with the size of an integer can be used
to compute bandwidth (note that this computation is largely memory bound and the time for addition can be
largely ignored).
To estimate L1 cache size, write a 3-loop matrix multiplication program. Plot the computation rate of this
program as a function of matrix size n. From this plot, determine sudden drops in performance. The size at
which these drops occur, combined with the data size (2n2) and word size can be used to estimate L1 cache
size.

2 The computation performs 8 FLOPS on 2 cache lines, i.e., 8 FLOPS in 200 ns. This corresponds to a compu-
tation rate of 40 MFLOPS.

3 In the best case, the vector gets cached. In this case, 8 FLOPS can be performed on 1 cache line (for the
matrix). This corresponds to a peak computation rate of 80 MFLOPS (note that the matrix does not fit in the
cache).

4 In this case, 8 FLOPS can be performed on 5 cache lines (one for matrix a and four for column-major access
to matrix b). This corresponds to a speed of 16 MFLOPS.

5 For sample codes, see any SGEMM/DGEMM BLAS library source code.

6 Mean access time = 0.8 × 1 + 0.1 × 100 + 0.8 × 400 ≈ 50ns. This corresponds to a computation rate of 20
MFLOPS (assuming 1 FLOP/word).
Mean access time for serial computation = 0.7 × 1 + 0.3 × 100 ≈ 30ns. This corresponds to a computation
rate of 33 MFLOPS.
Fractional CPU rate = 20/33 ≈ 0.60.

7 Solution in text.

8 Scaling the switch while maintaining throughput is major challenge. The complexity of the switch is O(p2).

9 CRCW PRAM is the most powerful because it can emulate other models without any performance overhead.
The reverse is not true.

10 We illustrate the equivalence of a butterfly and an omega network for an 8-input network by rearranging the
switches of an omega network so that it looks like a butterfly network This is shown in Figure 2.1 [Lei92a].

3

4 Models of Parallel Computers

<111,0>

<110,0>

<101,0>

<100,0>

<011,0>

<010,0>

<001,0>

<000,0>

<000,1>

<010,1>

<100,1>

<110,1>

<001,1>

<011,1>

<101,1>

<111,1>

<000,2>

<100,2>

<001,2>

<101,2>

<010,2>

<110,2>

<011,2>

<111,2>

<000,3>

<001,3>

<010,3>

<011,3>

<100,3>

<101,3>

<110,3>

<111,3>

Figure 2.1 An 8-input omega network redrawn to look like a butterfly network. Node 〈i, l〉 (node i at level l) is identical to node
〈 j, l〉 in the butterfly network, where j is obtained by right circular shifting the binary representation of i l times.

12 Consider a cycle A1, A2, . . . , Ak in a hypercube. As we travel from node Ai to Ai+1, the number of ones in
the processor label (that is, the parity) must change. Since A1 = Ak , the number of parity changes must be
even. Therefore, there can be no cycles of odd length in a hypercube.
(Proof adapted from Saad and Shultz [SS88]).

13 Consider a 2d processor hypercube. By fixing k of the d bits in the processor label, we can change the
remaining d − k bits. There are 2d−k distinct processors that have identical values at the remaining k bit
positions. A p-processor hypercube has the property that every processor has log p communication links, one
each to a processor whose label differs in one bit position. To prove that the 2d−k processors are connected in
a hypercube topology, we need to prove that each processor in a group has d − k communication links going
to other processors in the same group.
Since the selected d bits are fixed for each processor in the group, no communication link corresponding to
these bit positions exists between processors within a group. Furthermore, since all possible combinations of
the d − k bits are allowed for any processor, all d − k processors that differ along any of these bit positions
are also in the same group. Since the processor will be connected to each of these processors, each processor
within a group is connected to d − k other processors. Therefore, the processors in the group are connected in
a hypercube topology.

14 Refer to Saad and Shultz [SS88].

15 NOTE
The number of links across the two subcubes of a d-dimensional hypercube is 2d−1 and not 2d − 1.

The proposition can be proved by starting with a partition in which both halves form subcubes. By construc-
tion, there are p/2(= 2d−1) communication links across the partition. Now, by moving a single processor

Chapter 2 5

from one partition to the other, we eliminate one communication link across the boundary. However, this
processor is connected to d − 1 processors in the original subcube. Therefore, an additional d − 1 links are
added. In the next step, one of these d −1 processors is moved to the second partition. However, this processor
is connected to d − 2 processors other than the original processors. In this way, moving processors across the
boundary, we can see that the minima resulting from any perturbation is one in which the two partitions are
subcubes. Therefore, the minimum number of communication links across any two halves of a d-dimensional
hypercube is 2d−1.

16 Partitioning the mesh into two equal parts of p/2 processors each would leave at least
√

p communication
links between the partitions. Therefore, the bisection width is

√
p. By configuring the mesh appropriately, the

distance between any two processors can be made to be independent of the number of processors. Therefore,
the diameter of the network is O(1). (This can however be debated because reconfiguring the network in a par-
ticular manner might leave other processors that may be more than one communication link away from each
other. However, for several communication operations, the network can be configured so that the communi-
cation time is independent of the number of processors.) Each processor has a reconfigurable set of switches
associated with it. From Figure 2.35 (page 80), we see that each processor has six switches. Therefore, the
total number of switching elements is 6p. The number of communication links is identical to that of a regular
two-dimensional mesh, and is given by 2(p − √

p).
The basic advantage of the reconfigurable mesh results from the fact that any pair of processors can commu-
nicate with each other in constant time (independent of the number of processors). Because of this, many
communication operations can be performed much faster on a reconfigurable mesh (as compared to its regular
counterpart). However, the number of switches in a reconfigurable mesh is larger.

17 Partitioning the mesh into two equal parts of p/2 processors each would leave at least
√

p communication
links between the partitions. Therefore, the bisection width of a mesh of trees is

√
p. The processors at the

two extremities of the mesh of trees require the largest number of communication links to communicate. This
is given by 2 log(

√
p) + 2 log(

√
p), or 2 log p. A complete binary tree is imposed on each row and each

column of the mesh of trees. There are 2
√

p such rows and columns. Each such tree has
√

p − 1 switches.
Therefore, the total number of switches is given by 2

√
p(

√
p − 1), or 2(p − √

p).
Leighton [Lei92a] discusses this architecture and its properties in detail.

18 In the d-dimensional mesh of trees, each dimension has p1/d processors. The processor labels can be expressed
in the form of a d-tuple. The minimum number of communication links across a partition are obtained when
the coordinate along one of the dimensions is fixed. This would result in p(d−1)/d communication links.
Therefore, the bisection width is p(d−1)/d .
Connecting p1/d processors into a complete binary tree requires p1/d − 1 switching elements. There are
p(d−1)/d distinct ways of fixing any one dimension and there are d dimensions. Therefore, the total number
of switching elements is given by dp(d−1)/d (p1/d − 1), or d(p − p(d−1)/d).
Similarly, the number of communication links required to connect processors along any one dimension is
given by 2(p1/d − 1). Using a procedure similar to the one above, we can show that the total number of
communication links is given by dp(d−1)/d2(p1/d − 1), or 2d(p − p(d−1)/d).
The diameter of the network can be derived by traversing along each dimension. There are d dimensions and
traversing each dimension requires 2 log(p1/d) links. Therefore, the diameter is d2 log(p1/d), or 2 log p.
The advantages of a mesh of trees is that it has a smaller diameter compared to a mesh. However, this comes
at the cost of increased hardware in the form of switches. Furthermore, it is difficult to derive a clean planar
structure, as is the case with 2-dimensional meshes.

19 Leighton [Lei92a] discusses this solution in detail.

20 Figure 2.2 illustrates a 4 × 4 wraparound mesh with equal wire lengths.

21 Consider a p × q × r mesh being embedded into a 2d processor hypercube. Assume that p = 2x , q = 2y , and
r = 2z . Furthermore, since p × q × r = 2d , x + y + z = d.
The embedding of the mesh can be performed as follows: Map processor (i, j, k) in the mesh to processor

6 Models of Parallel Computers

Figure 2.2 A 4 × 4 wraparound mesh with equal wire lengths.

G(i, x)G(j, y)G(k, z) (concatenation of the Gray codes) in the hypercube using the Gray code function G
described in Section 2.7.1 (page 67).
To understand how this mapping works, consider the partitioning of the d bits in the processor labels into
three groups consisting of x , y, and z bits. Fixing bits corresponding to any two groups yields a subcube
corresponding to the other group. For instance, fixing y+z bits yields a subcube of 2x processors. A processor
(i, j, k) in the mesh has direct communication links to processors (i + 1, j, k), (i − 1, j, k), (i, j + 1, k),
(i, j −1, k), (i, j, k +1), and (i, j, k −1). Let us verify that processors (i +1, j, k) and (i −1, j, k) are indeed
neighbors of processor (i, j, k). Since j and k are identical, G(j, y) and G(k, z) are fixed. This means that the
two processors lie in a subcube of 2x processors corresponding to the first x bits. Using the embedding of a
linear array into a hypercube, we can verify that processors (i +1, j, k) and (i −1, j, k) are directly connected
in the hypercube. It can be verified similarly that the other processors in the mesh which are directly connected
to processor (i, j, k) also have a direct communication link in the hypercube.

23 Ranka and Sahni [RS90] present a discussion of the embedding of a complete binary tree into a hypercube.

24 The mapping of a mesh into a hypercube follows directly from an inverse mapping of the mesh into a hyper-
cube. Consider the congestion of the inverse mapping. A single subcube of

√
p processors is mapped onto

each row of the mesh (assuming a
√

p × √
p mesh). To compute the congestion of this mapping, consider

the number of links on the mesh link connecting one half of this row to the other. The hypercube has
√

p/2
links going across and a single row of the mesh (with wraparound) has two links going across. Therefore, the
congestion of this mapping is

√
p/4.

It can be shown that this mapping yields the best congestion for the mapping of a hypercube into a mesh.
Therefore, if the mesh links are faster by a factor of

√
p/4 or more, the mesh computer is superior. For the

example cited, p = 1024. Hence, for the mesh to be better, its links must be faster by a factor of
√

1024/4 = 8.
Since the mesh links operate at 25 million bytes per second and those of the hypercube operate at 2 million
bytes per second, the mesh architecture is indeed strictly superior to the hypercube.

25 The diameter of a k-ary d-cube can be derived by traversing the farthest distance along each dimension. The
farthest distance along each dimension is k/2 and since there are d such dimensions, the diameter is dk/2.
Each processor in a k-ary d-cube has 2d communication links. Therefore, the total number of communication
links is pd.
The bisection width of a k-ary d-cube can be derived by fixing one of the dimensions and counting the number
of links crossing this hyperplane. Any such hyperplane is intersected by 2k(d−1) (for k > 2) communication
links. The factor of 2 results because of the wraparound connections. (Note that the bisection width can also
be written as 2kd−1).

Chapter 2 7

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

p = 256

p = 512

p = 1024

degree (d)

Time

Figure 2.3 Communication time plotted against the degree of a cut-through network routing using number of communication
links as a cost metric.

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

p = 256

p = 512

p = 1024

degree (d)

Time

Figure 2.4 Communication time plotted against the degree of a cut-through routing network using bisection width as a cost
metric.

The average communication distance along each dimension is k/4. Therefore, in d dimensions, the average
distance lav is kd/4.

27 (1) The cost of a k-ary d-cube of p processors in terms of number of communication links is given by dp (for
k > 2). The corresponding cost for a binary hypercube is given by p log p/2. Therefore, if the width of each
channel in the k-ary d-cube is r , then the total cost is given by dpr . If this cost is identical to the cost of a
binary hypercube, then dpr = p log p/2, or r = log p/(2d).
(2) The bisection width of a k-ary d-cube of p processors is given by 2kd−1 and that of a binary hypercube is
given by p/2. If the channel width of the k-ary d-cube is r , then equating the costs yields r × 2kd−1 = p/2.
Therefore, the channel width is r = p/(4 × kd−1). Since kd = p, r = k/4.
(The cost and bisection width of these networks is given in Table 2.1 (page 44))

28 The average distance between two processors in a hypercube is given by log p/2. The cost of communicating
a message of size m between two processors in this network with cut-through routing is

Tcomm = ts + th
log p

2
+ twm.

The average distance between two processors in a k-ary d-cube is given by kd/4. The cost of communicating

8 Models of Parallel Computers

200

300

400

500

600

700

800

900

2 3 4 5 6 7 8 9 10

p = 256

p = 512

p = 1024

degree (d)

Time

Figure 2.5 Communication time plotted against the degree of a store-and-forward network routing using number of communica-
tion links as a cost metric.

0

5000

10000

15000

20000

25000

30000

35000

2 3 4 5 6 7 8 9 10

p = 256

p = 512

p = 1024

degree (d)

Time

Figure 2.6 Communication time plotted against the degree of a store-and-forward network routing using bisection width as a cost
metric.

a message of size m between two processors in this network with cut-through routing is

Tcomm = ts + th
kd

4
+ tw

r
m,

where r is the scaling factor for the channel bandwidth.
From Solution 2.20, if number of channels is used as a cost metric, then we have r = s = log p/(2d).
Therefore,

Tcomm = ts + th
kd

4
+ 2twd

log p
m.

Similarly, using the bisection width as a cost metric, we have r = s = k/4. Therefore,

Tcomm = ts + th
kd

2
+ ktw

4
m.

The communication times are plotted against the dimension of the k-ary d-cube for both of these cost metrics
in Figures 2.3 and 2.4.

29 The cost of communicating a message of size m between two processors in a hypercube with store-and-forward

Chapter 2 9

routing is

Tcomm = ts + twm
log p

2
.

Using the number of links as a cost metric, for a k-ary d-cube the corresponding communication time is given
by

Tcomm = ts + tw
2d

log p

kd

2
m.

This communication time is plotted against the degree of the network in Figure2.5.
Using the bisection width as a cost metric, for a k-ary d-cube the corresponding communication time is given
by

Tcomm = ts + ktw
4

kd

2
m.

This communication time is plotted against the degree of the network in Figure2.6.

Introduction to Parallel Computing 2nd Edition Grama Solutions Manual
Full Download: http://alibabadownload.com/product/introduction-to-parallel-computing-2nd-edition-grama-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/introduction-to-parallel-computing-2nd-edition-grama-solutions-manual/

