Solutions to Lab Manual to accompany **Industrial Automated Systems:** Instrumentation and Motion Control

Terry Bartelt

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Experiment 1

Operational Amplifiers

Experiment Questions

- 1. analog
- 2. linear
- 3. greater
- 4. 6, -
- 5. –5V

INP		
V ₁	V 2	V _{OUT} (V)
+4	+1	-5
+2	+3	+5
+1	0	-5
+4	+4	0
0	+1	+5
+3	+2	-5

V _{IN} (V)	Vout(V)
+0.2	-1
-0.4	+2
0	0
+0.32	-1.6
0 +0.32	0 -1.6

V _{IN} (V)	V _{OUT} (V)
+0.3	-0.75
-0.15	+0.38
-2.0	-5
+0.4	-1

Figure 1-2 b

Figure 1-3 b

Figure 1-3 c

Inp	ut Volt	age	Output Voltage					
V ₁	V ₂	V ₃	Measured	Calculated				
+1	+1	+1	-3	-3				
+1	-1	-1	+1	+1				
+2	-1	-1	0	0				
-3	-1	+3	+1	+1				
+1	+2	-1	-2	-2				

Figure 1-4 b

Schmitt Trigger

Procedure Question Answer

1. No. Because the 7476 J-K flip-flop is negative-edge triggered, and reacts only to positive-to-negative–going signals that change abruptly. The rectified sine wave does not change fast enough.

Step 5

Point 1						
$V_{th} - =$.9	_VDC				
$V_{th} + =$	1.7	_VDC				

Table 2-1

Waveform	At Point 1	At Point 2	Is the Flip-Flop Toggling (Yes, No)
Circuit (a)	\sim		NO
Circuit (b)			YES

Table 2-2

Experiment Questions

- Convert electronic signals to square waves.
 Perform NAND gate and Inverter logic functions.
- 2. D
- 3. edge
- 4. Low, High
- 5. hysteresis
- 6. Because when sine waves are counted, they must be converted to square waves before being applied to a flip-flop.

Step 7

Magnitude Comparator

Experiment

Procedure Question Answer

1. If the high-order bits are equal, then the output state is determined by comparing the low-order bits.

Step 2A

	Inp	ut B			Inp	ut A	Outputs			
B ₃	B ₂	B ₁	B ₀	A 3	A 2	A 1	A 0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	1	1	0	0
1	0	0	1	1	0	0	0	1	0	0
0	0	1	1	0	1	0	0	0	0	1
0	0	0	1	1	0	0	1	0	0	1

Table 3-2

Step 3B

	Input B Input A			Input A				nsion Ir	nputs		Outputs	5	
B ₃	B ₂	B ₁	B ₀	A 3	A ₂	A 1	A 0	I _A <b< th=""><th>I_A=B</th><th>IA>B</th><th>A<b< th=""><th>A=B</th><th>A>B</th></b<></th></b<>	I _A =B	IA>B	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	1	1	1	1	1	0	0	0	0	1
0	0	0	1	0	0	0	1	0	0	1	0	0	1
0	1	1	0	0	1	1	0	0	1	0	0	1	0
1	1	1	0	1	1	0	1	0	0	1	1	0	0
0	1	0	1	1	1	1	0	0	1	0	0	0	1

Table 3-4

Experiment Questions

- 1. 1111
- 2. Yes. By connecting a Low to the MSB of inputs A and B, and applying the three binary bits to the remaining inputs.

3. $I_A > B = 0$ $I_A = B = 0$ $I_A < B = 1$

4.4

5. When A is greater than B, or B is greater than A, the circuit would operate normally. When A is equal to B, however, output A<B would incorrectly go High instead of output A=B.

SCR Phase Control Circuit

Step 3 169 volts, yes Step 4 15 volts, yes

- 1. D
- 2. B
- 3. 169–15 = 154
- 4. A
- 5. B
- 6. B

Experiment 5

Photoresistor

Step 1 Dark resistance = $40K\Omega$

Step 3 Ambient light voltage = -8V Dark voltage = +7V

Design Question

Switch the position of ${\rm R}_1$ with that of the photoresistor.

- 1. A
- 2. B
- 3. B
- 4. B
- 5. A

Optocoupler

Step 1 1 Meg ohm Step 2 150 ohms Step 4

Step 5 B

Step 6 25KHz

Step 7 I_C = 3.5mA I_f = 16mA CTR 22%

- 1. True
- 2. A
- 3. A
- 4. 25%
- 5. C

Digital-to-Analog Converter

Experiment

Procedure Question Answers

- 1. A
- 2. A
- 3. 16 (2⁴)
- 4. 1
- 5. Eight different voltage levels. When an open is at the LSB input, a binary 1 is always applied to the LSB digital input lead of the D/A converter. This causes the D/A converter to produce the following counts:

Desired Count	Count with Pin 12 Open
0	1
1	1
2	3
3	3
4	5
5	5
6	7
7	7
8	9
9	9
10	11
11	11
12	13
13	13
14	15
15	15

Full Download: http://alibabadownload.com/product/industrial-automated-systems-instrumentation-and-motion-control-1st-edition-bartelt-

8

Experiment 7 Digital-to-Analog Converter

6. 32

The number of outputs is determined by multiplying 2 by the power of the number of inputs applied to the digital input of the D/A converter (2^5) .

- 1. 256
- 2. 1
- 3. Change V_{REF} applied to pin 14.
 - Change the resistor value connected to pin 14.
 - Change the R_F resistor connected to pin 4.