iGenetics A Mendelian Approach 1st Edition Russell Test Bank

Full Download: http://alibabadownload.com/product/igenetics-a-mendelian-approach-1st-edition-russell-test-bank/ Exam Name MATCHING. Choose the item in column 2 that best matches each item in column 1. Please select the best match for each term 1) Haploid A) Possessing the correct number of 1) _____ chromosomes Answer: C 2) Diploid B) Possessing too few or too many copies of 2) _____ a single chromosome Answer: E 3) ____ 3) Euploid C) One complete set of chromosomes Answer: A D) Several complete sets of chromosomes 4) Polyploid 4) _____ Answer: D E) Two complete sets of chromosomes 5) Aneuploid 5) _____ Answer: B Please select the most appropriate match. 6) Monohybrid cross A) 9:3:3:1 6) _____ Answer: C B) Test cross 7) Dihybrid cross 7) _____ Answer: A C) 3:18) AA x aa D) monohybrid F₂ 8) _____ Answer: E 9) E) parental cross 1:2:1:2:4:2:1:2:1 9) _____ Answer: G F) dihybrid cross

10)

Aa x aa Answer: B G) dihybrid F2

10) _____

12) AaBb x AaBb Answer: F

Answer: D

11) 1:2:1

11) _____

12) _____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

13) In lilies, white flowers (*W*) are dominant to purple flowers (*w*). If two plants that are heterozygous for flower color are mated, the offspring might have which genotype?

13) _____

A) Ww

B) ww

C) WW

D) All of the above

E) None of the above

Answer: D	
 14) In a pea plant that is heterozygous for seed color, what proportion of gametes will carry the recessive allele? A) 1/4 B) 3/4 C) 1/2 D) All of the gametes E) None of the gametes Answer: C 	14)
 15) In his experiments, Mendel noted that when two traits are involved in a genetic cross, they are inherited independently of each other. The reason for this is that A) genes on different chromosomes separate during the formation of gametes. B) genes on the same chromosome separate during the formation of gametes. C) alleles on the same chromosome separate during the formation of gametes. D) chromosomes often recombine. E) alleles on the same gene separate during the formation of gametes. Answer: A 	15)
 16) In a test cross between an individual with an unknown genotype that exhibits the dominant phenotype and a known homozygous recessive individual, the progeny showed a 1:1 ratio of dominant to recessive phenotypes. The individual of unknown genotype is therefore for that gene. A) unizygous B) homogeneous C) heterozygous D) hemizygous E) homozygous Answer: C 	16)
 17) The chi-squared statistic can best be described as A) a statistical test that compares observed and expected population means. B) a statistically significant test. C) the standardized deviation of observed data from expected data. D) a statistical test used in genetics. E) none of the above. Answer: C 	17)
18) In the F ₂ generation, how many genotypic classes are possible from a dihybrid cross of two heterozygotes in which the genes involved show complete dominance? A) 3 B) 4 C) 8 D) 9 E) 12 Answer: D	18)
19) In the F ₂ generation, how many genotypic classes are possible from a trihybrid cross of two heterozygotes in which the genes involved show complete dominance? A) 2 B) 8 C) 16 D) 27 E) 61 Answer: D	19)
20) If the results of a chi-square test of a given set of data show a P value greater than 0.05, then th null hypothesisA) must be rejected.	e 20)

C) cannot be rejoin D) must be acceed E) must be rephasen: C	pted.				
B) a measure of C) arbitrarily se	ty of getting the ob the accuracy of a s t depending on sta the accuracy of a o	ntistical test.	ation by chance.		21)
22) A man whose fath same recessive trait?	-			her expressing the child expressing the	22)
A) 1/5 Answer: C	B) 1/2	C) 1/6	D) 1/3	E) 1/4	
23) In humans, brown woman with brow the man and the w A) BB and BB B) Bb and Bb C) BB and Bb D) bb and bb E) Bb and bb Answer: B	n eyes and they ha	ominant to blue eyes ave three blue-eyed			23)
24) The probability tha A) 1/2 Answer: D	at two parents wit B) 1/32	h a family of four wi	ill have one girl and D) 1/16	three boys is E) 1/4	24)
25) A couple with thre A) 1/4 Answer: D	ee girls is expecting B) 1/8	g a fourth child. The C) 1/16	probability that thi D) 1/2	s child is also a girl is E) 1/32	25)
26) Net or overall prol is formally known A) the probabili B) the product r C) the chi-squar D) the sign test. E) the sum rule.	as ty rule. rule. e test.	ned by multiplying :	separate independe	nt probabilities. This	26)
B) Every affecte	oserved in every g d person must hav neterozygote will t	-	ed parent.		27)

B) cannot be accepted.

		-		didate for Mendelia	n studies?	28)
		•	e, and producing m			
·		•	e, and producing few ace, and producing f			
			ce, and producing m			
	0	and nonreproduc	tive			
Answer: D)					
•	•		•	l reported 6,022 yello	ow seeds and 2,001	29)
-		•	r class were expecte	d?		
·	hould be vellow a	nnd 6,017 green				
	hould be	-				
	_	nd 4,011 yellow				
	-	and 2,006 green				
Answer: E	•					
	•		-	as yielded 7,324 F ₂ o		30)
				to the botanist Carl 1	N ^ä geli. How many	
of these w	ere exped	rted to be wrinkle	d □ the recessive trai	t?		
	сте схрес			D) F 402	E) 2 ((2	
A) 0	•	B) 7,324	C) 1,831	D) 5,493	E) 3,662	
	•			D) 5,493	E) 3,662	
A) 0 Answer: C	te 'T' if t	B) 7,324 he statement is tr	C) 1,831 rue and 'F' if the stat	ement is false.	,	
A) 0 Answer: C E/FALSE. Wri 31) A test cros	te 'T' if t	B) 7,324 he statement is tr	C) 1,831 rue and 'F' if the stat		,	31)
A) 0 Answer: C /FALSE. Wri 31) A test cros offspring.	te 'T' if t	B) 7,324 he statement is tr heterozygous don	C) 1,831 rue and 'F' if the stat	ement is false.	,	31)
A) 0 Answer: C E/FALSE. Wri 31) A test cros	te 'T' if t	B) 7,324 he statement is tr	C) 1,831 rue and 'F' if the stat	ement is false.	,	31)
A) 0 Answer: C FALSE. Wri 31) A test cros offspring. Answer: 32) Two indiv	te 'T' if to ss with a l True iduals ca	B) 7,324 he statement is tr heterozygous don False n be phenotypical	C) 1,831 rue and 'F' if the stat minant individual w	ement is false.	ygous dominant	31)
A) 0 Answer: C /FALSE. Wri 31) A test cros offspring. Answer:	te 'T' if to ss with a l True iduals ca	B) 7,324 he statement is tr heterozygous don False	C) 1,831 rue and 'F' if the stat minant individual w	ement is false. ill yield only heteroz	ygous dominant	,
A) 0 Answer: C /FALSE. Wri 31) A test cros offspring. Answer: 32) Two indiv Answer:	te 'T' if to ss with a l True iduals ca True	B) 7,324 he statement is trest theterozygous don False n be phenotypical False	C) 1,831 rue and 'F' if the stat minant individual w	ement is false. ill yield only heteroz e different genotypes	ygous dominant	,
A) 0 Answer: C E/FALSE. Wri 31) A test cross offspring. Answer: 32) Two indives Answer:	te 'T' if to ss with a l True iduals ca True	B) 7,324 he statement is trest theterozygous don False n be phenotypical False	C) 1,831 Tue and 'F' if the state individual was also before the state individual wa	ement is false. ill yield only heteroz e different genotypes	ygous dominant	32)
A) 0 Answer: C E/FALSE. Wri 31) A test cross offspring. Answer: 32) Two indiv Answer: 33) The genote Answer:	te 'T' if the swith a land the swith a land the swith a land the switch a land the s	B) 7,324 he statement is trespected in a False	C) 1,831 Tue and 'F' if the state minant individual we lly identical yet have dihybrid cross is 9:3	ement is false. ill yield only heteroz e different genotypes	ygous dominant	32)
A) 0 Answer: C I/FALSE. Wri 31) A test cross offspring. Answer: 32) Two indiv Answer: 33) The genote Answer:	te 'T' if the swith a land the swith a l	B) 7,324 he statement is tr heterozygous don False n be phenotypical False atio expected in a	C) 1,831 Tue and 'F' if the state minant individual we lly identical yet have dihybrid cross is 9:3	ement is false. ill yield only heteroz e different genotypes	ygous dominant	32)
A) 0 Answer: C Z/FALSE. Wri 31) A test cross offspring. Answer: 32) Two indives Answer: 33) The genote Answer: 34) The phenomery Answer:	te 'T' if the swith a land the swith a land the swith a land the switch a land the s	B) 7,324 he statement is trespected in a False ermines the genote False False	C) 1,831 Tue and 'F' if the state minant individual we lly identical yet have dihybrid cross is 9:3	ement is false. ill yield only heteroz e different genotypes :3:1.	ygous dominant	32)
A) 0 Answer: C //FALSE. Wri 31) A test cross offspring. Answer: 32) Two indives Answer: 33) The genotes Answer: 34) The phenomenance Answer:	te 'T' if the swith a line and the swith a line and the swith a line and the switch and the swit	B) 7,324 he statement is trespected in a False ermines the genote False False	C) 1,831 Tue and 'F' if the state minant individual we will lly identical yet have dihybrid cross is 9:3 type.	ement is false. ill yield only heteroz e different genotypes :3:1.	ygous dominant	32) 33) 34)
A) 0 Answer: C E/FALSE. Wri 31) A test cross offspring. Answer: 32) Two indiv Answer: 33) The genoty Answer: 34) The phenoty Answer: 35) True-breed Answer:	te 'T' if the swith a land the swith a land the swith a land the switch a land the s	B) 7,324 he statement is trespected in a False ermines the genote False retion False retion expected in a False	C) 1,831 Tue and 'F' if the state minant individual we will lly identical yet have dihybrid cross is 9:3 type.	ement is false. ill yield only heteroz e different genotypes :3:1.	ygous dominant	32) 33) 34)
A) 0 Answer: C E/FALSE. Wri 31) A test cross offspring. Answer: 32) Two indiv Answer: 33) The genoty Answer: 34) The phenoty Answer: 35) True-breed Answer:	te 'T' if the swith a land the swith a land the swith a land the switch a land the s	B) 7,324 he statement is trespected in a False ermines the genote False retion False retion expected in a False	C) 1,831 Tue and 'F' if the state minant individual we will lly identical yet have dihybrid cross is 9:3 Type.	ement is false. ill yield only heteroz e different genotypes :3:1.	ygous dominant	32) 33) 34) 35)
A) 0 Answer: C E/FALSE. Wri 31) A test cross offspring. Answer: 32) Two indiv. Answer: 33) The genoty. Answer: 34) The phenoty. Answer: 35) True-breed. Answer: 36) Mendel wo. Answer:	te 'T' if the swith a line of the iduals can be the iduals in the iduals the first true	B) 7,324 he statement is trespected in a False atio expected in a False ermines the genote False viduals are producted false st to describe domes False	C) 1,831 Tue and 'F' if the state minant individual we will lly identical yet have dihybrid cross is 9:3 Type.	ement is false. ill yield only heteroz e different genotypes :3:1.	ygous dominant	32) 33) 34) 35)

E) None of the above

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

38) Mendel was the first scientist to deduce the idea of diploidy ☐ that is, that organisms like pea plants and humans possess two complete sets of genetic material. Summarize ndeand reasoning

that led him to	38)	
this conclusio		_
n.		_
	Answer: The F_1 and F_2 phenotypic ratios that Mendel observed in different crosses led him to conjecture that each parent contributes one version of a "unit factor" for each trait during reproduction. Each individual thus possesses two such factors (diploidy), and it is combinations of unit factors that constitute the genotype.	
39)	Mendel selected seven traits to analyze in his famous pea plant crosses, and all of these traits yielded expected 3:1 phenotypic F ₂ ratios in monohybrid crosses. He was fortunate in his selection of these traits. How so? What problem might he have encountered that may have yielded confusing ratios? Answer: By chance, some of the traits he selected might not have been assorting independently, owing to linkage (occurring on the same chromosome).	39)
40)	Mendel's insights started with his approach of analyzing discrete traits, leading to the idea of "particulate" rather than "blending" inheritance. Yet this was an uncommon way to view the inheritance of traits, as many found it counterintuitive or contrary to	40)
	experience. How so? Answer: Experience with breeding pets or livestock, or even having children, suggests that parental traits seem to blend together in the offspring. This is because most traits that breeders considered are complex, polygenic traits. By focusing on simple discrete traits, Mendel was able to show that his "unit factors" simply combined and recombined in pairs each generation and were not blended away.	
41)	What are the steps involved in setting up a dihybrid F3 cross?	41)
/	Answer: True-breeding parentals doubly homozygous for different alleles for each of two traits are crossed, yielding F ₁ s that are heterozygous for both traits. Two of these are then crossed to yield F ₂ s. Two of these, when crossed, will yield the F ₃ generation.	
42)	A monohybrid cross is made for flower color, where purple is dominant to white.	42)
	Fifteen hundred F_2 offspring are analyzed. How many white flowers are expected? Answer: One-quarter of the offspring should be homozygous recessive, thus: $(0.25) \times 1,500 = 375$ white flowers.	
43)	Speculate on the molecular basis for dominance and recessiveness, using flower color as an example, where red is dominant over white. Answer: If the trait is controlled by a gene responsible for synthesizing red pigment, the recessive allele could be a dysfunctional mutant. Red pigment would be made as long as there was at least one functional copy of the gene present □this is the essence of dominance, where the presence of a single allele is sufficient to mask the recessive allele.	43)
44)	You observe an individual of your favorite study organism expressing the dominant phenotype for a certain trait. How would you go about determining if the individual was homozygous dominant or heterozygous for that trait? Answer: Perform a test cross with a recessive homozygous individual: If $Aa \times aa \rightarrow$ offspring are Aa : $aa \rightarrow ab$ and if $ab \rightarrow ab$ and if $ab \rightarrow ab$ and if $ab \rightarrow ab$ and offspring are $ab \rightarrow ab$ heterozygotes.	44)

45)	An albino man and a nonalbino woman have several children, one of whom is albino. (a) What can you conclude about the genotype of the mother? (b) What is the probability that the nonalbino children are heterozygous? Answer: (a) The mother must be heterozygous (a carrier) in order to have even one albino offspring. (b) With parents of genotype $Aa \times aa$, any nonalbino offspring must be heterozygous, so the probability is 100 percent.	45)
46)	A nonalbino man and a nonalbino woman have several children, one of whom is albino. (a) What can you conclude about the genotype of the mother? (b) What is the probability that the nonalbino children are heterozygous? Answer: (a) Both parents must be heterozygous (a carrier) in order to have an albino offspring. (b) With parents of genotype $Aa \times Aa$, the nonalbino offspring genotypes possible are AA , Aa , and aA . Two of these three are carriers, so there is a 2/3 (66 percent) chance that a nonalbino child is a carrier.	46)
47)	A dihybrid cross yields 200 F_2 offspring. How many are expected to resemble the homozygous recessive parental? Answer: In a dihybrid cross, $1/16$ of the offspring are expected to be homozygous recessive. Thus, $1/16 \times 200 = 12.5$ offspring.	47)
48)	A monohybrid (1-gene) cross yields 4 genotypic classes, and a dihybrid (2-gene) cross yields 16. How many classes are expected from a tetrahybrid (4-gene) cross? Answer: Following the simple relationship $4^1 = 4$ and $4^2 = 16$, $4^4 = 256$ expected genotypic classes.	48)
	Explain why heterozygotes are expected to be produced twice as frequently as either homozygote in a monohybrid F_1 cross. Answer: Combinatorials. Each individual offspring genotype has an equal likelihood of occurring (=1/4), but since there are two ways to make heterozygotes (Aa and aA), together they occur with a $1/4 + 1/4 = 1/2$ frequency, twice that of either homozygote, which occur at a frequency of $1/4$ each.	49)
50)	State the key difference between Mendel's principle of segregation and independent assortment. Answer: Segregation refers to separation of alleles into gametes, while independent assortment refers to random combinations of such alleles from different genes occurring in gametes.	50)

- 1) C
- 2) E
- 3) A
- 4) D
- 5) B
- 6) C
- 7) A
- 8) E
- 9) G
- 10) B
- 11) D
- 12) F
- 13) D
- 14) C
- 15) A
- 16) C
- 17) C
- 18) D
- 19) D
- 20) C
- 21) A
- 22) C
- 23) B
- 24) D
- 25) D
- 26) B
- 27) D
- 28) D
- 29) E
- 30) C
- 31) FALSE
- **32) TRUE**
- 33) FALSE
- 34) FALSE
- 35) TRUE
- 36) FALSE
- 37) FALSE
- 38) The F₁ and F₂ phenotypic ratios that Mendel observed in different crosses led him to conjecture that each parent contributes one version of a "unit factor" for each trait during reproduction. Each individual thus possesses two such factors (diploidy), and it is combinations of unit factors that constitute the genotype.
- 39) By chance, some of the traits he selected might not have been assorting independently, owing to linkage (occurring on the same chromosome).
- 40) Experience with breeding pets or livestock, or even having children, suggests that parental traits seem to blend together in the offspring. This is because most traits that breeders considered are complex, polygenic traits. By focusing on simple discrete traits, Mendel was able to show that his "unit factors" simply combined and recombined in pairs each generation and were not blended away.
- 41) True-breeding parentals doubly homozygous for different alleles for each of two traits are crossed, yielding F₁s that are heterozygous for both traits. Two of these are then crossed to yield F2s. Two of these, when crossed, will yield the F₃ generation.
- 42) One-quarter of the offspring should be homozygous recessive, thus: $(0.25) \times 1,500 = 375$ white flowers.
- 43) If the trait is controlled by a gene responsible for synthesizing red pigment, the recessive allele could be a

iGenetics A Mendelian Approach 1st Edition Russell Test Bank

Full Download: http://alibabadownload.com/product/igenetics-a-mendelian-approach-1st-edition-russell-test-bank/

dysf onal mutant. Red pigment would be made as long as there was at least one functional copy of the gene present □this uncti is the essence of dominance, where the presence of a single allele is sufficient to mask the recessive allele.

- 44) Perform a test cross with a recessive homozygous individual: If $Aa \times aa \rightarrow$ offspring are Aa:aa in a 1:1 ratio, and if $AA \times aa \rightarrow$ all offspring are Aa heterozygotes.
- 45) (a) The mother must be heterozygous (a carrier) in order to have even one albino offspring. (b) With parents of genotype $Aa \times aa$, any nonalbino offspring must be heterozygous, so the probability is 100 percent.
- 46) (a) Both parents must be heterozygous (a carrier) in order to have an albino offspring. (b) With parents of genotype $Aa \times Aa$, the nonalbino offspring genotypes possible are AA, Aa, and aA. Two of these three are carriers, so there is a 2/3 (66 percent) chance that a nonalbino child is a carrier.
- 47) In a dihybrid cross, 1/16 of the offspring are expected to be homozygous recessive. Thus, $1/16 \times 200 = 12.5$ offspring.
- 48) Following the simple relationship $4^1 = 4$ and $4^2 = 16$, $4^4 = 256$ expected genotypic classes.
- 49) Combinatorials. Each individual offspring genotype has an equal likelihood of occurring (=1/4), but since there are two ways to make heterozygotes (Aa and aA), together they occur with a 1/4 + 1/4 = 1/2 frequency, twice that of either homozygote, which occur at a frequency of 1/4 each.
- 50) Segregation refers to separation of alleles into gametes, while independent assortment refers to random combinations of such alleles from different genes occurring in gametes.