Finite Element Analysis Theory and Application with ANSYS 3rd Edition Moaveni Solutions Manual

2.1

Full Download: http://alibabadownload.com/product/finite-element-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-ansys-3rd-edition-moavement-analysis-theory-and-application-with-analysis-theory-and-application-with-analysis-theory-analys

$\mathbf{a.} \begin{bmatrix} 3 & 2 & 0 \\ 2 & 4 & 5 \\ 0 & 5 & 6 \end{bmatrix}$	3 x 3, square, symmetric
$\mathbf{b.} \begin{cases} x \\ x^2 \\ x^3 \\ x^4 \end{cases}$	4 x 1 column
$\mathbf{c.} \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}$	2 x 2, square, diagonal
d. $\begin{bmatrix} 1 & y & y^2 & y^3 \end{bmatrix}$	1 x 4, row
$\mathbf{e.} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	3 x 3, square, diagonal, identity
$\mathbf{f.} \begin{bmatrix} 3 & -1 & 0 & 0 & 0 \\ 2 & 0 & 6 & 0 & 0 \\ 0 & 4 & 1 & 4 & 0 \\ 0 & 0 & 5 & 4 & 2 \\ 0 & 0 & 0 & 7 & 8 \end{bmatrix}$	5 x 5, square, banded
$\mathbf{g} \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	4 x 4, square, upper triangular
$\mathbf{h}.\begin{bmatrix} c_1 & 0 & 0 & 0\\ 0 & c_2 & 0 & 0\\ 0 & 0 & c_3 & 0\\ 0 & 0 & 0 & c_4 \end{bmatrix}$	4 x 4, square, diagonal

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, **This satisfies and the storage in a retrieval system**, or transmission in any form or by any means, electronic, mechanical, **This satisfies and the storage in a retrieval system**, or transmission in any form or by any means, electronic, mechanical, **This satisfies and permission storage in a retrieval system**, or transmission in any form or by any means, electronic, mechanical, **This satisfies and permission storage in a retrieval system**, or transmission in any form or by any means, electronic, mechanical, **This satisfies and permission storage in a retrieval system**, or transmission in any form or by any means, electronic, mechanical, **This satisfies and permission storage in a retrieval system**, or transmission in any form or by any means, electronic, mechanical, **This satisfies and permission storage in a retrieval system**, or transmission in any form or by any means, electronic, mechanical, **This satisfies and permission storage in a retrieval system**, or transmission begattered and the storage of the

a.
$$[A]+[B] = \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 2 & -1 \\ 5 & 3 & 3 \\ 4 & 5 & -7 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 0 \\ 12 & 3 & -4 \\ 5 & 0 & -4 \end{bmatrix}$$

b.
$$[A]-[B] = \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 & -1 \\ 5 & 3 & 3 \\ 4 & 5 & -7 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 2 \\ 2 & -3 & -10 \\ -3 & -10 & 10 \end{bmatrix}$$

c.
$$3[A] = 3\begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix} = \begin{bmatrix} 12 & 6 & 3 \\ 21 & 0 & -21 \\ 3 & -15 & 9 \end{bmatrix}$$

d.
$$[A]B] = \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix} = \begin{bmatrix} 12 & -1 \\ 5 & 3 & 3 \\ 4 & 5 & -7 \end{bmatrix} = \begin{bmatrix} 18 & 19 & -5 \\ -21 & -21 & 42 \\ -12 & 2 & -37 \end{bmatrix}$$

e.
$$[A][C] = \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 5 & 3 & 3 \\ 4 & 5 & -7 \end{bmatrix} = \begin{bmatrix} 18 & 19 & -5 \\ -21 & -21 & 42 \\ -12 & 2 & -37 \end{bmatrix}$$

f.
$$[A]^{2} = \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix} = \begin{bmatrix} 31 & 3 & -7 \\ 21 & 49 & -14 \\ -28 & -13 & 45 \end{bmatrix}$$

g.
$$[I][A] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix}$$

$$[A][I] = \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ 7 & 0 & -7 \\ 1 & -5 & 3 \end{bmatrix}$$

2.3

$$\begin{bmatrix} A_{11} \end{bmatrix} = \begin{bmatrix} 5 & 7 & 2 \\ 3 & 8 & -3 \end{bmatrix} \qquad \begin{bmatrix} A_{12} \end{bmatrix} = \begin{bmatrix} 0 & 3 & 5 \\ -5 & 0 & 8 \end{bmatrix}$$
$$\begin{bmatrix} A_{21} \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 10 & 5 \\ 2 & -5 & 9 \end{bmatrix} \qquad \begin{bmatrix} A_{22} \end{bmatrix} = \begin{bmatrix} 7 & 15 & 9 \\ 12 & 3 & -1 \\ 2 & 18 & -10 \end{bmatrix}$$
$$\{B_{11} \} = \begin{cases} 2 \\ 8 \\ -5 \end{cases} \qquad \begin{bmatrix} B_{12} \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 7 & 5 \\ 2 & -4 \end{bmatrix}$$
$$\{B_{21} \} = \begin{cases} 4 \\ 3 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} B_{22} \end{bmatrix} = \begin{bmatrix} 8 & 13 \\ 12 & 0 \\ 5 & 7 \end{bmatrix}$$
$$\begin{bmatrix} A_{11} \end{bmatrix} \{B_{11} \} + \begin{bmatrix} A_{12} \end{bmatrix} \{B_{21} \} = \begin{cases} 70 \\ 73 \end{bmatrix}$$
$$\begin{bmatrix} A_{11} \end{bmatrix} \{B_{11} \} + \begin{bmatrix} A_{12} \end{bmatrix} \{B_{21} \} = \begin{cases} 70 \\ 73 \end{bmatrix}$$
$$\begin{bmatrix} A_{11} \end{bmatrix} \{B_{12} \end{bmatrix} + \begin{bmatrix} A_{12} \end{bmatrix} \{B_{22} \end{bmatrix} = \begin{bmatrix} 164 & 62 \\ 80 & 43 \end{bmatrix}$$
$$\begin{bmatrix} A_{11} \end{bmatrix} B_{12} \end{bmatrix} + \begin{bmatrix} A_{22} \end{bmatrix} \begin{bmatrix} B_{22} \end{bmatrix} = \begin{bmatrix} 319 & 174 \\ 207 & 179 \\ 185 & -105 \end{bmatrix}$$
$$\begin{bmatrix} A \end{bmatrix} B \end{bmatrix} = \begin{bmatrix} 70 & 164 & 62 \\ 73 & 80 & 43 \\ 116 & 319 & 174 \\ 111 & 207 & 179 \\ -29 & 185 & -105 \end{bmatrix}$$

a.

$$[A] = \begin{bmatrix} 1 & 4 & 2 \\ 8 & 3 & 6 \\ 7 & 1 & -2 \end{bmatrix} \qquad [A]^{T} = \begin{bmatrix} 1 & 8 & 7 \\ 4 & 3 & 1 \\ 2 & 6 & -2 \end{bmatrix}$$

$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 0 & 5 & -1 \\ -3 & 1 & 7 \\ 2 & 4 & -4 \end{bmatrix} \qquad \begin{bmatrix} B \end{bmatrix}^{T} = \begin{bmatrix} 0 & -3 & 2 \\ 5 & 1 & 4 \\ -1 & 7 & -4 \end{bmatrix}$$

b.

$$\begin{bmatrix} 1 & 4 & 2 \\ 8 & 3 & 6 \\ 7 & 1 & -2 \end{bmatrix} + \begin{bmatrix} 0 & 5 & -1 \\ -3 & 1 & 7 \\ 2 & 4 & -4 \end{bmatrix} \end{bmatrix}^{T} = \begin{bmatrix} 1 & 9 & 1 \\ 5 & 4 & 13 \\ 9 & 5 & -6 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 5 & 9 \\ 9 & 4 & 5 \\ 1 & 13 & -6 \end{bmatrix}$$

$$\begin{bmatrix} A \end{bmatrix}^{T} + \begin{bmatrix} B \end{bmatrix}^{T} = \begin{bmatrix} 1 & 8 & 7 \\ 4 & 3 & 1 \\ 2 & 6 & -2 \end{bmatrix} + \begin{bmatrix} 0 & -3 & 2 \\ 5 & 1 & 4 \\ -1 & 7 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 9 \\ 9 & 4 & 5 \\ 1 & 13 & -6 \end{bmatrix}$$

c.

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} B \end{bmatrix}^{T} = \left(\begin{bmatrix} 1 & 4 & 2 \\ 8 & 3 & 6 \\ 7 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 5 & -1 \\ -3 & 1 & 7 \\ 2 & 4 & -4 \end{bmatrix} \right)^{T} = \begin{bmatrix} -8 & 17 & 19 \\ 3 & 67 & -11 \\ -7 & 28 & 8 \end{bmatrix}^{T} = \begin{bmatrix} -8 & 3 & -7 \\ 17 & 67 & 28 \\ 19 & -11 & 8 \end{bmatrix}$$

$$\begin{bmatrix} B \end{bmatrix}^{T} \begin{bmatrix} A \end{bmatrix}^{T} = \begin{bmatrix} 0 & -3 & 2 \\ 5 & 1 & 4 \\ -1 & 7 & -4 \end{bmatrix} \begin{bmatrix} 1 & 8 & 7 \\ 4 & 3 & 1 \\ 2 & 6 & -2 \end{bmatrix} = \begin{bmatrix} -8 & 3 & -7 \\ 17 & 67 & 28 \\ 19 & -11 & 8 \end{bmatrix}$$

α.

2	10	٥		(10)(14)(17) + (0)(16)(-4)
16	6	14	=	(2)(6)(18)+(10)(14)(12)+(0)(16)(-4) - (10)(16)(18)-(2)(14)(-4)-(6)(6)(12)
12	-4	18		

$$\frac{\det (A) = -872}{2}$$

$$\begin{vmatrix} 2 & 10 & 0 \\ 16 & 6 & 14 \\ 12 & -4 & 18 \end{vmatrix} = 2 \begin{vmatrix} 6 & 14 \\ -4 & 18 \end{vmatrix} - 10 \begin{vmatrix} 16 & 14 \\ 12 & 18 \end{vmatrix} + 0 \begin{vmatrix} 16 & 6 \\ 12 & 18 \end{vmatrix} + 0 \begin{vmatrix} 16 & 6 \\ 12 & -4 \end{vmatrix}$$

$$= 2 \left[(6)(18) - (14)(-4) \right] - 10 \left[(16)(18) - (14)(12) \right] + 0 \end{vmatrix}$$

$$det(A) = -872$$

ł.

matrix [B] is singular because elements of second row and first row are linearly dependent.

This result Can be shown by direct expansion as well.

6.

$$det(EAJ) = det(A) = - 872$$

2.5 Cont

С.

$$det(5[A]) = \begin{vmatrix} 10 & 50 & 0 \\ 80 & 30 & 70 \\ 60 & -20 & 90 \end{vmatrix} = (10)(30)(90) + (50)(70)(60) + 0 \\ - (50)(80)(90) - (10)(70)(-20) - 0 \end{vmatrix}$$

$$det(5[A]) = -109000$$

Since matrix [A] is 3×3, alternatively,

$$det(5EAJ) = 5^{3} det(A) = (125)(-872) = -109000$$

ì

	-1812500	0]	$\begin{bmatrix} u_2 \end{bmatrix}$	Ì	(0)	
-1812500	6343750	- 4531250	$\{u_3\}$	} = <	0 }	
0	- 4531250	4531250	$\left[u_{4} \right]$		800	

Following the steps discussed in Section 2.7, we get

	[<i>u</i> ₂]		0.0883	
1	<i>u</i> ₃	$=10^{-3}$	0.5297	ļ
	u ₄		0.7062	

2.8

 $\begin{bmatrix} 0 & 5 & 0 \\ 8 & 3 & 7 \\ 9 & -2 & 9 \end{bmatrix}$

Because of the zero elements in Row 1, the lower triangular matrix will not have a triangular form, instead it becomes

[L] =	0.8	0 889 000	1.0 0.9	000 9556 0	0 1.0000 0	
[U] =	9 0 0	-2 5 0	9 ⁻ 0 -1			

Check:

$$\begin{bmatrix} L \end{bmatrix} U \end{bmatrix} = \begin{bmatrix} 0 & 1.0000 & 0 \\ 0.8889 & 0.9556 & 1.0000 \\ 1.0000 & 0 & 0 \end{bmatrix} \begin{bmatrix} 9 & -2 & 9 \\ 0 & 5 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 5 & 0 \\ 8 & 3 & 7 \\ 9 & -2 & 9 \end{bmatrix}$$

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 10875000 & -1812500 & 0 \\ -1812500 & 6343750 & -4531250 \\ 0 & -4531250 & 4531250 \end{bmatrix}$$

$$\{b\} = \begin{cases} 0 \\ 0 \\ 800 \end{bmatrix}$$

$$\begin{bmatrix} L \end{bmatrix} = \begin{bmatrix} 1.0000 & 0 & 0 \\ -0.1667 & 1.0000 & 0 \\ 0 & -0.7500 & 1.0000 \end{bmatrix}$$

$$\begin{bmatrix} u \end{bmatrix} = 10^7 \begin{bmatrix} 1.0875 & -0.1812 & 0 \\ 0 & 0.6042 & -0.4531 \\ 0 & 0 & 0.1133 \end{bmatrix}$$

$$\{z\} = \begin{bmatrix} L \end{bmatrix}^{-1} \{b\} = \begin{bmatrix} 1.0000 & 0 & 0 \\ -0.1667 & 1.0000 & 0 \\ 0 & -0.7500 & 1.0000 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 800 \\ 800 \end{bmatrix} = \begin{cases} 0 \\ 0 \\ 800 \\ 800 \end{bmatrix}$$

$$\{U\} = \begin{bmatrix} u \end{bmatrix}^{-1} \{z\} = 10^7 \begin{bmatrix} 1.0875 & -0.1812 & 0 \\ 0 & 0.6042 & -0.4531 \\ 0 & 0 & 0.1133 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 800 \\ 800 \end{bmatrix}$$

$$\{U\} = 10^{-3} \begin{bmatrix} 0.0883 \\ 0.5297 \\ 0.7062 \end{bmatrix}$$

Note the difference between u denoting upper triangular matrix and U denoting the displacement results

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 10875000 & -1812500 & 0 \\ -1812500 & 6343750 & -4531250 \\ 0 & -4531250 & 4531250 \end{bmatrix}$$

$$\{b\} = \begin{cases} 0\\ 0\\ 800 \end{cases}$$

 $\begin{bmatrix} A \end{bmatrix}^{-1} = 10^{-6} \begin{bmatrix} 0.1103 & 0.1103 & 0.1103 \\ 0.1103 & 0.6621 & 0.6621 \\ 0.1103 & 0.6621 & 0.8828 \end{bmatrix}$

$$\begin{cases} u_2 \\ u_3 \\ u_4 \end{cases} = \begin{bmatrix} A \end{bmatrix}^{-1} \{ b \} = 10^{-6} \begin{bmatrix} 0.1103 & 0.1103 & 0.1103 \\ 0.1103 & 0.6621 & 0.6621 \\ 0.1103 & 0.6621 & 0.8828 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 800 \end{bmatrix} = 10^{-3} \begin{cases} 0.0883 \\ 0.5297 \\ 0.7062 \end{bmatrix}$$

(a) Using Gaussian method $X_1 + X_2 + X_3 = 6$ $2X_1 + 5X_2 + X_3 = 15$ - $3X_1 + X_2 + 5X_3 = 14$ $\frac{2 \times 1 + 5 \times 2 + \times 3 = 15}{-2 \times 1 - 2 \times 2 - 2 \times 3 = -12}$ $3 \times 2 - \times 3 = 3$ $\begin{cases} -3X_{1} + X_{2} + 5X_{3} = 14 \\ 3X_{1} + 3X_{2} + 3X_{3} = 18 \\ 4X_{2} + 8X_{3} = 32 \end{cases}$ $\begin{cases} 4 \times_2 + 8 \times_3 = 32 \\ -4 \times_2 + \frac{4}{3} \times_3 = -4 \\ \hline \frac{28}{3} \times_3 = 28 \end{cases} \xrightarrow{\times_3 = 3}$ $X_2 = 1 + \frac{1}{3}X_3 = 1 + \frac{1}{3}(3) = 2$ $X_2 = 2$ $X_1 = 6 - X_2 - X_3 = 6 - 2 - 3 = 1$ $X_{1} = 1$

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458

2.11

2.11 Cont

Using the LU decomposition method (b) $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 1 \\ -3 & 1 & 5 \end{bmatrix}$ {b}={i5} $u_{11} = a_{11} = 1$ $u_{12} = a_{12} = 1$ $u_{13} = a_{13} = 1$ $L_{21} = \frac{a_{21}}{a_{11}} = \frac{2}{1} = 2$ $L_{31} = \frac{a_{31}}{a_{11}} = \frac{-3}{1} = -3$ $u_{22} = a_{22} - l_{21}u_{12} = 5 - (2)(1) = 3$ $u_{23} = a_{23} - (a_{13} - a_{13} - a_{13} - a_{13}) = -1$ $l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{12}} = \frac{1 - (-3)(1)}{3} = \frac{4}{3}$ $u_{33} = a_{33} - (l_{31}u_{13} + l_{32}u_{23}) = 5 - [(-3)(1) + (\frac{4}{3})(-1)] = \frac{28}{3}$ $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 1 \\ -3 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 4 & 1 \end{bmatrix} \begin{bmatrix} 0 & 3 & -1 \\ 0 & 0 & \frac{28}{3} \end{bmatrix}$ $\begin{bmatrix} L \end{bmatrix} \{Z\} = \{b\} \xrightarrow{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 4 & 1 \end{bmatrix} \{Z_2 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_2 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_2 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_2 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_2 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_2 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_2 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_2 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 4 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 2 & 1 \end{bmatrix} \{Z_1 \\ Z_3 \\ -3 & 2 & 2 & 2 \\ -3 & 2 &$ $\begin{bmatrix} U \end{bmatrix} \{ X \} = \{ Z \} \xrightarrow{\sim} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & \frac{28}{2} \end{bmatrix} \begin{bmatrix} X_2 \\ X_2 \\ X_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 28 \end{bmatrix}$ $\left\{X\right\} = \left\{\begin{array}{c}1\\2\\2\end{array}\right\}$

2.11 Cont

(c) by finding the inverse of the Coefficient matrix $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 1 \\ -3 & 1 & 5 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{cases} 1 & 1 & 1 \\ 2 & 5 & 1 \\ -3 & 1 & 5 \end{bmatrix} \begin{pmatrix} 6 \\ 15 \\ 14 \end{bmatrix}$ $\begin{cases} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 0.8571 & -0.1429 & -0.1429 \\ -0.4643 & 0.2857 & 0.0357 \\ 0.6071 & -0.1429 & 0.1071 \end{bmatrix} \begin{pmatrix} 6 \\ 15 \\ 14 \end{bmatrix}$ $\begin{cases} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{cases} 0.8571 & -0.1429 & -0.1429 \\ -0.4643 & 0.2857 & 0.0357 \\ 0.6071 & -0.1429 & 0.1071 \end{bmatrix} \begin{pmatrix} 6 \\ 15 \\ 14 \end{bmatrix}$ $\begin{cases} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{cases} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$

$$\begin{bmatrix} A \end{bmatrix}' = \begin{bmatrix} \frac{1}{5} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{8} & 0 \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}$$

$$\begin{bmatrix} B \end{bmatrix}' = \begin{bmatrix} 0.8571 & -0.1429 & -0.1429 \\ -0.4643 & 0.2857 & 0.0357 \\ 0.6071 & -0.1429 & 0.1071 \end{bmatrix}$$

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} C \\ K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} = \begin{cases} 1 \\ 0 \end{bmatrix} \xrightarrow{} X_{11} = \frac{K_{22}}{K_{11} K_{22} - K_{12} K_{21}}$$

$$X_{21} = \frac{-K_{21}}{K_{11} K_{22} - K_{12} K_{21}}$$

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} X_{12} \\ X_{22} \end{bmatrix} = \begin{cases} 0 \\ 1 \end{bmatrix} \xrightarrow{} X_{12} = \frac{-K_{12}}{K_{11} K_{22} - K_{12} K_{21}}$$

$$X_{22} = \frac{K_{11}}{K_{11} K_{22} - K_{12} K_{21}}$$

a 2×2 matrix: $\det\left(\left(\begin{array}{cc} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array}\right) \right) \stackrel{?}{=} \left(\begin{array}{cc} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array}\right)$ $\alpha \begin{vmatrix} a_{11} & a_{12} \\ a_{12} \end{vmatrix} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} \\ a_{12} & a_{12} \end{bmatrix}$ $det \begin{bmatrix} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{bmatrix} = (\alpha a_{11})(\alpha a_{22}) - (\alpha a_{12})(\alpha a_{21})$ $\det \left(\alpha \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} = \alpha^{2} \left(a_{11} a_{22} - a_{12} a_{21} \right) = \alpha^{2} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ $Q \cdot E \cdot D$. For a 3x3 matrix: $det \left(\alpha \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0_{21} & 0_{12} & 0_{23} \end{bmatrix} \right) \stackrel{?}{=} \alpha \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0_{21} & 0_{12} & 0_{23} \end{bmatrix}$ $det \begin{pmatrix} da_{11} & da_{12} & da_{13} \\ da_{21} & da_{22} & da_{23} \\ da_{31} & da_{32} & da_{33} \end{pmatrix} = (da_{11})(da_{22})(da_{33}) + (da_{31})(da_{31}) + (da_{32})(da_{31}) + (da_{31})(da_{32})(da_{31}) + (da_{32})(da_{31}) + (da_{32})(da_{32})(da_{31}) + (da_{31})(da_{32})(da_{31}) + (da_{32})(da_{32})(da_{31}) + (da_{32})(da_{32})(da_{32})(da_{31}) + (da_{32})(da_{32})(da_{32})(da_{31}) + (da_{32})(da_{32})(da_{32})(da_{31}) + (da_{32})(da_{32})(da_{32})(da_{32}) + (da_{32})(da_{32})(da_{32})(da_{32})(da_{32}) + (da_{32})(da_{32})(da_{32})(da_{32})(da_{32}) + (da_{32})(da_{32})(da_{32})(da_{32})(da_{32})(da_{32}) + (da_{32})(da_{32})(da_{32})(da_{32})(da_{32})(da_{32})(da_{32})(da_{32})(da_{32}) + (da_{32})(da_{$ $det\left(\alpha \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{31} & a_{31} \end{bmatrix} = \alpha \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{31} & a_{31} \end{bmatrix}$ Q.E.D. In general for a nxn matrix, we have

 $det \left(x \begin{bmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ a_{n1} & a_{n2} & & a_{nn} \end{bmatrix} = x \begin{bmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{21} & & a_{2n} \\ a_{n1} & a_{n2} & & a_{nn} \end{bmatrix} = x \begin{bmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{21} & & a_{2n} \\ a_{n1} & a_{n2} & & a_{nn} \end{bmatrix}$

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458

2.13

τ

$$\begin{aligned} & \text{Ising Equation (2.83), we have} \\ & \begin{bmatrix} -\omega^2 + \frac{2K}{m_1} & -\frac{K}{m_1} \\ -\frac{K}{m_2} & -\omega^2 + \frac{2K}{m_2} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = 0 \\ & \begin{bmatrix} -\omega^2 + \frac{2(100)}{0.1} & -\frac{100}{0.1} \\ -\frac{100}{0.2} & -\omega^2 + \frac{2(100)}{0.2} \end{bmatrix} = 0 \\ & \omega_1^2 = 2366 \text{ (rady)}^2 & \omega_1 = 48.6 \text{ rady} \\ & \omega_2^2 = 634 \text{ (rady)}^2 & \omega_2 = 25.2 \text{ rady} \\ & \omega_2^2 = 634 \text{ (rady)}^2 & \omega_2 = 25.2 \text{ rady} \\ & (-23(6+2000)X_1 - 1000 X_2 = 0 & 2 \rightarrow \frac{X_2}{X_1} = -0.366 \\ & (-634 + 2000)X_1 - 1000 X_2 = 0 & 2 \rightarrow \frac{X_2}{X_1} = 1.366 \end{aligned}$$

2.15

>> a=[4 2 1;7 0 -7;1 -5 3]

a =

4 2 1 7 0 -7 1 -5 3

>> b=[1 2 -1;5 3 3;4 5 -7]

b =

1 2 -1 5 3 3 5 4 -7 >>c=[1;-2;4] c = 1 -2 4 >> a+b ans =5 4 0 12 3 -4 5 0 -4 >> a-b ans =

> 3 0 2 2 -3 -10 -3 -10 10

Cont

>> 3*a ans =12 6 3 21 0 -21 3 -15 9 >> a*b ans =18 19 -5 -21 -21 42 -12 2 -37 >>a*c ans =4 -21 23 >> a*a ans =31 3 -7 21 49 -14 -28 -13 45 >> i=[1 0 0;0 1 0;0 0 1] i =

 $\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$

Con

>> i*a

ans =

4 2 1 7 0 -7 1 -5 3

>> a*i

ans =

4	2	1
7	0	-7
1	-5	3

>>

>> A=[1 4 2;8 3 6;7 1 -2]

A =

1 4 2 6 8 3 7 1 -2

>> B=[0 5 -1;-3 1 7;2 4 -4]

B =			
-3	5 1 4	7	
>> A'			
ans =			
	8 3 6	1	
>> B'			
ans =			
0 5 -1	-3 1 7	2 4 -4	
>> (A	+B)'		
ans =			
9	5 4 13	5	

2.16 Cont.

>>A'+B'

ans =

1 5 9 9 4 5 1 13 -6

>>(A*B)'

ans =

-8 3 -7 17 67 28 19 -11 8 >> B'*A' ans =

> -8 3 -7 17 67 28 19 -11 8

>>

2.17

>> A=[2 10 0;16 6 14;12 -4 18]

A =

2 10 0 16 6 14 12 -4 18

>> B=[2 10 0;4 20 0;12 -4 18]

B =

2	10	.0
4	20	0
12	-4	18
>> de	t(A)	

ans =

-872

>> det(B)

ans =

0

>> det((A)')

ans =

-872

 $>> det(5^{*}(A))$

ans =

-109000

>>

>> A=[0 5 0;8 3 7;9 -2 9]

A =

0 5 0 8 3 7 9 -2 9

>> det(A)

ans =

-45

>> det((A)')

ans =

-45

>>

>> A=[10875000 -1812500 0;-1812500 6343750 -4531250;0 -4531250 4531250]

A =

10875000	-1812500	0
-1812500	6343750	-4531250
0	-4531250	4531250

>>b=[0;0;800]

b =

0 0 800

000

>> x=A\b

x =

1.0e-003 *

0.0883 0.5297 0.7062

>>

>> A=[0 5 0;8 3 7;9 -2 9]

A =

0 5 0 8 3 7 9 -2 9

>>[l,u]=lu(A)

1 =

0	1.0000	0
0.8889	0.9556	1.0000
1.0000	0	0

u =

9	-2	9	
0	5	0	
0	0	-1	

>>1*u

ans =

0 5 0 8 3 7 9 -2 9

2.21

>>> A=[10875000 -1812500 0;-1812500 6343750 -4531250;0 -4531250 4531250]

0

A = 10875000 -1812500 -1812500 6343750 -4531250 -4531250 0 4531250 >>b=[0;0;800] b = 0 0 800 >> [l,u]=lu(A)1 = 1.0000 0 0 -0.1667 1.0000 0 0 -0.7500 1.0000 u = 1.0e+007 * 1.0875 -0.1812 0 0.6042 -0.4531 0 0 0 0.1133 >> z=inv(l)*b z =0 0 800 >> U=inv(u)*zU = 1.0e-003 * 0.0883 0.5297 0.7062

Note the difference between u denoting upper triangular matrix and U denoting the displacement results

>> A=[10875000 -1812500 0;-1812500 6343750 -4531250;0 -4531250 4531250]

A =

10875000	-1812500	0
-1812500	6343750	-4531250
0	-4531250	4531250

>>b=[0;0;800]

b =

0 0

800

>> Ainverse=inv(A)

Ainverse =

1.0e-006 *

0.1103	0.1103	0.1103
0.1103	0.6621	0.6621
0.1103	0.6621	0.8828

>> u=Ainverse*b

u =

1.0e-003 *

0.0883 0.5297 0.7062

>>

2.23

>> A=[1 1 1;2 5 1;-3 1 5]

A =

>> b=[6 15 14]

b =

6 15 14

>>b=[6;15;14]

b =

```
6
15
14
```

(a) using the Gaussian method

>> x=A\b

x =

1.0000 2.0000 3.0000

(b) using the LU decomposition method

>>[l,u]=lu(A)

1=

-0.3333 0.2353 1.0000 -0.6667 1.0000 0 1.0000 0 0

u ==

-3.0000	1.0000	5.0000
0	5.6667	4.3333
0	0	1.6471

>> z=inv(1)*b

z ==

14.0000 24.3333 4.9412

>> x=inv(u)*z

x =

1.0000 2.0000 3.0000

(c) by finding the inverse of the coefficient matrix

>> x=inv(A)*b

x =

1.0000 2.0000 3.0000

>>

For example, consider the following 4 x 4 matrix, and $\alpha = 2$ and $\alpha = 3$.

>> A=[1 2 1 3;2 1 4 1;5 3 0 1;4 1 5 7]

A =

1 2 1 3 2 1 4 1 5 3 0 1 4 1 5 7

>> det(A)

ans =

219

>> det(2*A)

ans =

3504

Since matrix A is 4 x 4 then let us examine to see if $det(2^*A) = 2^4 * det(A)$?

 $>> 2^{4} + \det(A)$

ans =

3504

>> det(3*A)

ans =

17739

Or is $det(3^*A) = 3^4 * det(A)$?

>> 3^4*det(A)

ans =

17739

Cont

Let us now consider the following 3 x 3 matrix, and $\alpha = 2$ and $\alpha = 3$.

```
>> B=[1 2 1;2 1 4;5 3 0]
```

B =

>> det(B)

ans =

29

>> det(2*B)

ans =

232

```
Is det(2^{*}B) = 2^{3} * det(B)?
```

 $>> 2^{3}$ (B)

ans =

232

>> det(3*B)

ans =

783

Or is $det(3*B) = 3^{3}*det(B)$?

>> 3^3*det(B)

ans =

783

>>

2·2

>> A=[7.11 -1.23 0 0 0;-1.23 1.99 -0.76 0 0;0 -0.76 0.851 -0.091 0;0 0 -0.091 2.311 -2.22;0 0 0 -2.22 3.69]

A =

7.1100	-1.2300	0	0	0
-1.2300	1.9900	-0.7600	0	0
0	-0.7600	0.8510	-0.0910	0
0	0	-0.0910	2.3110	-2.2200
0	0	0	-2.2200	3.6900

>> b=[5.88*20; 0; 0; 0; 1.47*70]

b =

117.6000 0 0 102.9000

>> T=A\b

T =

20.5898 23.4091 27.9719 66.0789 67.6410

>>

>> A=[7.11 -1.23 0 0 0;-1.23 1.99 -0.76 0 0;0 -0.76 0.851 -0.091 0;0 0 -0.091 2.311 -2.22;0 0 0 -2.22 3.69]

A =

7.1100	-1.2300	0	0	0
-1.2300	1.9900	-0.7600	0	0
0	-0.7600	0.8510	-0.0910	0
0	0	-0.0910	2.3110	-2.2200
0	0	0	-2.2200	3.6900

>> b=[5.88*20; 0; 0; 0; 1.47*70]

b =

117.6000 0 0 102.9000

>> Ainverse=inv(A)

Ainverse =

0.1681	0.1585	0.1430	0.0133	0.0080
0.1585	0.9160	0.8263	0.0771	0.0464
0.1430	0.8263	1.9323	0.1803	0.1085
0.0133	0.0771	0.1803	1.0421	0.6269
0.0080	0.0464	0.1085	0.6269	0.6482

>> T=Ainverse*b

T =

20.5898 23.4091 27.9719 66.0789 67.6410

>> A=[7.11 -1.23 0 0 0;-1.23 1.99 -0.76 0 0;0 -0.76 0.851 -0.091 0;0 0 -0.091 2.311 -2.22;0 0 0 -2.22 3.69]

A =

	-1.2300 1.9900 -0.7600	0 -0.7600 0.8510	0 0 -0.0910	0 0 0
0	0	-0.0910	2.3110	-2.2200
0	0	0	-2.2200	3.6900

>> b=[5.88*20; 0; 0; 0; 1.47*70]

b =

117.6000 0 0 102.9000

>> [l,u]=lu(A)

1 =

1.0000	0	0	0	0
-0.1730	1.0000	0	0	0
0	-0.4276	1.0000	0	0
0	0	-0.1730	1.0000	0
0	0	0	-0.9672	1.0000

u =

7.1100	-1.2300	0	0	0
0	1.7772	-0.7600	0	0
0	0	0.5260	-0.0910	0
0	0	0	2.2953	-2.2200
0	0	0	0	1.5428

>> z=inv(1)*b

z =

117.6000 20.3443 8.6999 1.5051 104.3558

>> T=inv(u)*z

T =

20.5898 23.4091 27.9719 66.0789 67.6410

>>

2-28

>> A=[1 0 0 0 0;-0.0408 0.0888 -0.0408 0 0;0 -0.0408 0.0888 -0.0408 0;0 0 -0.0408 0.0888 -0.0408; 0 0 0 -0.0408 0.04455]

A =

1.0000	0	0	0	0
-0.0408	0.0888	-0.0408	0	0
0	-0.0408	0.0888	-0.0408	0
0	0	-0.0408	0.0888	-0.0408
0	0	0	-0.0408	0.0445

>> b=[100;0.144;0.144;0.144;0.075]

b =

100.0000 0.1440 0.1440 0.1440 0.0750

>> T=A\b

T =

100.0000 75.0387 59.7901 51.5633 48.9064

>>

>> A=10^5*[7.2 0 0 0 -1.49 -1.49;0 7.2 0 -4.22 -1.49 -1.49;0 0 8.44 0 -4.22 0;0 -4.22 0 4.22 0 0;-1.49 -1.49 -4.22 0 5.71 1.49;-1.49 -1.49 0 0 1.49 1.49]

A =

720000	0	0	0	-149000	-149000	
0	720000	0	-422000	-149000	-149000	
0	0	844000	0	-422000	0	
0	-422000	0	422000	0	0	
-149000	-149000	-422000	0	571000	149000	
-149000	-149000	0	0	149000	149000	

>> b=[0;0;0;-500;0;-500]

b =

0 0 -500 0 -500

>> U=A\b

U =

-0.0036 -0.0103 0.0012 -0.0115 0.0024 -0.0195

>>

>> A=[2000 -1000;-500 1000]

A =

2000 -1000 -500 1000

The eigenvalues are:

>> eig(A)

ans =

1.0e+003 *

2.3660 0.6340

Note the natural frequencies of the system are equal to the square root of the eigenvalues.

>> sqrt(eig(A))

ans =

48.6418 25.1789

The eigenvector and eigenvlaues are given by:

>> [v,e]=eig(A)

v =

0.9391 0.5907 -0.3437 0.8069

e =

1.0e+003 *

2.3660 0 0 0.6340

Normalizing the eigenvector with respect to X₁, we get:

>> -0.3437/0.9391

ans =

-0.3660

Therefore, the first mode is given by $X_2/X_1 = -0.3660$.

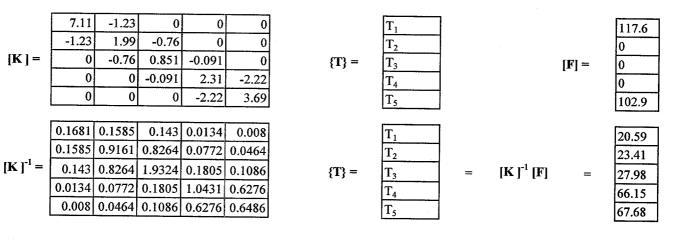
>>.8069/0.5907

ans =

1.3660

The second mode is then given by $X_2/X_1 = 1.3660$.

Problem 2-31



Problem 2-32

[K] =	1 -0.041 0 0 0	0 0.0888 -0.0408 0 0		-0.041 0.0888	0 0 -0.0408 0.04455	{ T } =	$ \begin{array}{r} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_5 $		[F] =	100 0.144 0.144 0.144 0.075
[K] ⁻¹ =			26.532 21.047	0 9.6701 21.047 36.137 33.096	19.2751 33.0956	{T} =	$ \begin{array}{r} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ \end{array} = $	[K] ⁻¹ [F]	-	100.00 75.04 59.79 51.56 48.91

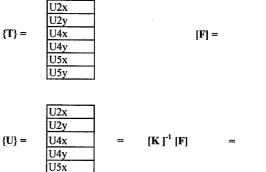
Finite Element Analysis Theory and Application with ANSYS 3rd Edition Moaveni Solutions Manual

Full Download: http://alibabadownload.com/product/finite-element-analysis-theory-and-application-with-ansys-3rd-edition-moaved

Problem 2-33

	7.2	0	0	0	-1.49	-1.49
	0	7.2	0	-4.22	-1.49	-1.49
[K]=	0	0	8.44	0	-4.22	0
	0	-4.22	0	4.22	0	0
	-1. 49	-1.49	-4.22	0	5.71	1.49
	-1.4 9	-1.49	0	0	1.49	1.49

	0.23697	0.23697	0	0.237	0	0.473934
	0.2369 7	0.90811	0	0.9081	0	1.145075
[K] ⁻¹ =	0	-1E-17	0.237	-1E-17	0.23697	-0.23697
	0.2369 7	0.90811	0	1.1451	0	1.145075
	0	-2E-17	0.237	-2E-17	0.47393	-0.47393
	0.4739 3	1.14507	-0.237	1.1451	-0.4739	2.764083



U5y

